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Abstract

In this study, we introduce the notion of a geometric constraint. We
then derive a probability measure by maximizing the Shannon entropy
under this constraint and show it to embed gravity in the form of a general
linear gauge theory and its covariant derivative. We further show that the
measure, when demanding that it preserve the Dirac current, accepts only
two observables: one having SU(2) x U(1) gauge symmetry and the other
having the SU(3) gauge symmetry. At the fundamental level of quantum
mechanics this time, some interesting results are obtained; first, purely
from entropy and geometry, a plausible origin for the wave function along
with the Born rule is revealed; second, we find the wave-function collapse
problem to be superseded by a theory of instrumentation, satisfying the
axioms of quantum mechanics, which we introduce as the metrological
interpretation. The key idea of our method is to connect geometry with
the theory of probability by using the trace. The trace can be seen as
the expected eigenvalues of the matrix times the dimension of the vector
space, and the eigenvalues are the ratios of the distortion of the geometric
transformation associated with the matrix. This provided us with the
means to connect quantum-mechanics, entropy, and geometry in all its
generality.
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1 Introduction

A new form of constraint referred to as the geometric constraint is introduced.
This constraint extends the tools of statistical mechanics to geometric and quan-
tum systems.

Using this constraint, the entropy is maximized to produce a geometric prob-
ability measure. The measure, via its general linear invariance, supports gravity
in any dimensions and in four-dimensions (4D) accepts only two observables to



preserve the Dirac current: one having the SU(2) x U(1) gauge symmetry and
the other having the SU(3) gauge symmetry. This makes the method particu-
larly interesting because it accepts some notion of particle physics in addition
to gravity.

The key idea is to connect geometry and the probability theory using the
trace. The trace accepts a probability interpretation[1] as the expectation value
of the eigenvalues times the dimension of the vector space. It also connects to
the geometry as the eigenvalues are the ratio of the distortion of the geometric
transformation associated with the matrix.

The geometric constraint is defined as

trM = Z p(q) tr M(q (1)
q€Q

where M is an arbitrary n X n matrix, and Q is a statistical ensemble. Here,
tr M denotes the expectation value of the statistically weighted sum of matrices
M(q) parametrized over the ensemble Q.

Alternatively (and preferably), we may use the geometric algebra to define

the constraint. We will use this approach in this paper. In this case, it will be
defined as

tru= Y plq)tru(q (2)

q€Q

where u is an arbitrary multi-vector of G(n,R). In either case, the con-
straints are equally expressive, but the use of multi-vectors rather than matri-
ces makes the geometric character of the method stand out. More details on
geometric algebra are provided in the method section.

In statistical mechanics, using this equality as a constraint on the entropy
is a claim that we can observe (up to a phase) the distortions produced by any
geometric transformations in nature and that the permissible statistics preserve
the expectation value of these distortions. For instance, a statistical system
measured exclusively using a ruler, clock, and protractor will carry, following our
entropy maximization procedure, the Lorentz group symmetry in its associated
probability measure.

In statistical mechanics, constraints are used to derive the Gibbs measure
using Lagrange multipliers[2] by maximizing the entropy.

For instance, an energy constraint on the entropy is

E=> plg)E(q), 3)

q€Q

which is associated with an energy meter measuring the system energy and
producing a series of energy measurements Ey, Es, ... converging to an expec-
tation value E.



Another common constraint is that of the volume

V=> p@)V(a), (4)

q€Q

which is associated with a volume meter acting on the system by producing a
sequence of measurements of the volume Vi, V5, ... converging to an expectation
value V.

Moreover, the sum over the statistical ensemble must be equal to 1, as shown
below.

1= p(q) ()

q€Q

With equations (3) and (5), the typical system of statistical mechanics is
obtained by maximizing the entropy using its corresponding Lagrange equation.
The Lagrange multipliers method is expressed as

L=—kp) pla)np@)+A|{1=> ple)| +B|E=D_p@E@) ], ()

geQ q€Q q€Q

where, A and 3 are Lagrange multipliers.
Therefore, solving ‘g—ﬁ =0 for p, we obtain the Gibbs measure as

p(0,8) = % exp(—BE(q)). (7)

where,

Z(B) = _ exp(—BE(q)). (®)

q€Q

In our procedure, we replace (3) with tr M, and the constraint is now ge-
ometric. Instead of energy meters or volume meters, we have rulers, clocks,
protractors, stretch meters, shear meters, and torsion meters.

For our procedure to properly connect to quantum mechanics, the statisti-
cal interpretation of the entropy must be altered with respect to its statistical
mechanics interpretation. The probability measure will be interpreted as quanti-
fying the information associated with the receipt of a message of measurements.
Therefore, we replace the Boltzmann entropy with the Shannon entropy. This
replacement does not change the form of the mathematical equation for the
entropy (the expressions for the Boltzmann and the Shannon entropies are the
same up to a multiplication constant) but only the final interpretation (discus-
sion, section 5).



The corresponding Lagrange equation is

L==> pl@)nplg)+A|[1=Y plq) | +7 [ tru—>_ plg)trulq) |, (9)

q€Q q€Q q€Q

and it is now sufficient to solve aa_c = 0 for p to obtain the solution.

The manuscript is organized as follows: In the methods section, referencing
the work of Lundholm([3], we will introduce a number of tools using geometric
algebra. Specifically, we will introduce the notion of a determinant for multi-
vectors and notions of a Clifford conjugate generalizing the complex conjugate.
These tools will allow us to entirely express our results geometrically.

In the results section, we will present two solutions to the Lagrange equation.
The first is a recovery of standard non-relativistic quantum mechanics, which
occurs when the matrix is reduced from an arbitrary matrix to a representation
of the imaginary number. The second is the general case with an arbitrary
matrix.

We then expand upon our initial results by introducing a geometric foun-
dation to quantum mechanics, both in two-dimensional (2D) and 4D consistent
with the general solution. In this foundation, the self-adjoint observables are
generalized to observables equal to their Clifford conjugate. Remarkably, in
4D, we obtain an even more sophisticated relation for observables pitting four
terms, which together uniquely satisfy the SU(2) x U(1) and the SU(3) gauge
symmetry. Lastly for this section, we discuss the prospects of a gauge theory of
gravity, which exploits the flexibility of our probability measure to remain nor-
malizable and invariant with respect to all general linear transformation (and
superposition thereof) which be believe are required to accommodate gravity in
4D.

Finally, in the discussion, we introduce an interpretation of quantum me-
chanics consistent with its newly revealed origin as the measure maximizing the
Shannon entropy subject to constrainment by geometric measurements, which
we call the metrological interpretation. In this interpretation, the measurements
and the constraint they entail on the entropy are considered more fundamental
than the wave function which is entirely derivable from them. The end prod-
uct is a theory which deprecates the measurement problem, superseding it with
theory of instrumentation, and provides a plausible account for the origins of
quantum mechanics in nature.

2 Methods

2.1 Notation

e Typography: Sets will be written using the blackboard bold typography
(e.g., L, W, and Q), unless a prior convention has already assigned it an-
other symbol. Matrices will be in bold uppercase (e.g., P and M), tuples,



vectors, and multi-vectors will be in bold lowercase (e.g., u, v, and g),
and most other constructions (e.g., scalars and functions) will have plain
typography (e.g., a, A). The unit pseudo-scalar (of geometric algebra),
imaginary number, and identity matrix will be i, ¢, and I, respectively.

e Sets: The projection of a tuple p will be proj,(p). As an example, the
elements of R> = R; x Ry are denoted as p = (z,y). The projection
operators are proj; (p) = = and proj,(p) = y. If projected over a set, the
results are proj; (R?) = R; and proj,(R?) = Ry. The size of a set X is |X].

The symbol 2 indicates a group isomorphism relation between two sets.
The symbol ~ indicates equality if defined, or both undefined otherwise.

e Analysis: The asterisk z! denotes the complex conjugate of z.

e Matrix: The Dirac gamma matrices are 7y, 71, 72, and 3. The Pauli
matrices are o, oy, and o,. The dagger M denotes the conjugate trans-
pose of M. The commutator is defined as [M,P] : MP — PM and the
anti-commutator is defined as {M, P} : MP + PM.

e Geometric algebra: The elements of an arbitrary curvilinear geometric ba-
sis will be denoted as eg, ey, es,...,e, (such that e, - e, = gu), and
Xo,X1,X2,...,%X, (such that X, - X, = 7,,) if they are orthonormal. A
geometric algebra of m dimensions over a field F is denoted as G(m,F).
The grades of a multi-vector is denoted as (v)j. Specifically, (v)o is a
scalar, (v} is a vector, (v)s is a bi-vector, (v),—1 is a pseudo-vector, and
(v), is a pseudo-scalar. A scalar and a vector such as (v)g + (v); form a
para-vector, and a combination of even grades ((v)o+ (V)2 +(V)4+...) or
odd grades ((v)1+(v)3+...) form even or odd multi-vectors, respectively.

Let G(2,R) be the 2D geometric algebra over the reals. We can write a
general multi-vector of G(2,R) as u = a + x + b, where a is a scalar, x is
a vector, and b is a pseudo-scalar.

Let G(4,R) be the 4D geometric algebra over the reals. We can write
a general multi-vector of G(4,R) as u = a + x + f + v + b, where a is
a scalar, x is a vector, f is a bivector, v is a pseudo-vector, and b is a
pseudo-scalar.

2.2 Geometric constraints

Definition 1 (Geometric constraints). Let M be a n x n matriz and let Q be
a statistical ensemble. Then, this equality constraint is

trM =" p(q) tr M(g), (10)
q€Q

which is called a geometric constraint.



The geometric constraint can also be represented using a multi-vector u of a
geometric algebra G(4,R)

tru=» p(q)tru(q), (11)

The trace tt M or tru denotes the expectation value of the statistically
weighted sum of matrices M(q) or of multi-vectors u(q) parametrized over the
ensemble Q.

2.3 Geometric representation of matrices

The notation will be significantly improved if we use a geometric representation
of matrices, which we introduce in this section.

2.3.1 Geometric representation of 2x2 real matrices

Let G(2,R) be the 2D geometric algebra over the reals. We can write a general
multi-vector of G(2,R) as

u=a+x+Db, (12)

where, a is a scalar, x is a vector, and b is a pseudo-scalar.
Each multi-vector has a structure-preserving (addition/multiplication) ma-
trix representation.

Definition 2 (2D geometric representation ).

(13)

a+ TR+ Yy +IRAY {a” _bﬂ/]

b+y a-—=

The converse is also true; each 2 x 2 real matrix is represented as a multi-
vector of G(2,R).

We can define the determinant using constructs of geometric algebra[3]. The
determinant of u is

Definition 3 (Geometric representation of the determinant 2D).
det : G(2,R) —R
u— u'y, (14)
where, uf is
Definition 4 (Clifford conjugate 2D).

ut = (u)p — (u); — (u)s. (15)



For example,

detu=(a—x—b)la+x+Db) (16)
=a? 2% -y  +1? (17)
_ at+z —b+y
e[yt V] (18)

Finally, we defined the Clifford transpose.

Definition 5 (2D Clifford transpose). The Clifford transpose is the geometric
analogue to the conjugate transpose. The conjugate transpose can be interpreted
as a transpose followed by an element-by-element application of the complex
conjugate. Here, the Clifford transpose is a transpose followed by an element-
by-element application of the Clifford conjugate.

I
Upo N Uon ll(i)O N ufno
= : (19)
Umo .- Umnp Wmo - -- uﬁm
If applied to a vector, then
i
Vi
= [v% v,m (20)
Vi

2.3.2 Geometric representation of 4x4 real matrices

Let G(4,R) be the 2D geometric algebra over the reals. We can write a general
multi-vector of G(4,R) as

u=a+x+f+v+b, (21)

where, a is a scalar, x is a vector, f is a bi-vector, v is a pseudo-vector, and
b is a pseudo-scalar.

Each multi-vector has a structure-preserving (addition/multiplication) ma-
trix representation. The multi-vectors of G(4,R) are represented as follows:

Definition 6 (4D geometric representation).

a+1tyo +x7 +yy2 + 273
+ forvo A1 + foevo Av2 + fozvo Ays + fazve Ays 4 fiz3vi Ay 4 fi2vr A e
+ vty Ay2 A3 + VYo A2 Ays +vyyo Ayr Az + vv0 Ay A2
+bo A A A



a+xo —ifi2 —ivs fiz —ifaz + v2 — vy —ib 4+ x3 + fo3 — ivo
~ | —f13 —ifaz — w2 —in a+ xo + ifi2 +ivs 1 +ix2 + for + i foz
T | —ib—x3+ fos+ivo —x1 +ixe + for — ifo2 a—xo — tfi2 +v3
—x1 —1x2 + fo1 + i fo2 —ib+ x3 — foz + ivo —f13 — ifaz + v2 +iv1
(22)

Here, the converse is not true, that is, it is only a subset of a 4 x 4 real matrix
that can be represented as a multi-vector of G(4,R). However, the 4D multi-
vector only grabs a fraction of 4 x 4 complex matrices. Moreover, since both
the 4 x 4 matrices and multi-vectors of G(4,R) have 16 independent variables
and their determinants are real-valued, they have similar properties.

In 4D, we can define the determinant solely using constructs of geometric
algebra[3]. The determinant of u is

Definition 7 (4D geometric representation of determinant).
det : G(4,R) — R (23)
u+— [utuz4uty, (24)
where, ut is
Definition 8 (4D Clifford conjugate).
uf = (w)o — () — (u)2 + (w)s + (u)s, (25)

where [m] 34y is the blade-conjugate of degrees 3 and 4 (flipping the plus
sign to a minus sign for blades 3 and 4)

[ul 3,4y = (o + ()1 + ()2 — ()3 — (W) (26)

2.4 Unitary gauge (Recap)

Quantum electrodynamics are obtained by gauging the wave function with U(1).
The U(1) invariance results from the usage of the complex norm in ordinary
quantum theory. A parametrization of ¢ over a differentiable manifold is re-
quired to support this derivation. Localizing the invariance group § — 6(x) over
the said parametrization yields the corresponding covariant derivative, which is
given by

D[L = a,u + iqA/t(x)a (27)

where, A, (z) is the gauge field.
If a gauge transformation is applied to 1 and A,,, then

,(/) N e—qu(z)w and AM — AM —|—8M9(a:). (28)

The covariant derivative is

x1 —ix2 + fo1r — i fo2
—ib — T3 — f03 — ’L"Uo
f13 —ifez —v2 +in1
a— o +ifi2 —ivs



D/ﬂ/’ = 8u1;[} + iqA/ﬂ[} (29)
= 0u(e™" ) +iq(Ay + 0,0(x)) (7Y (30)
= e 9D,y (31)
Finally, the field is expressed as

Fl“/ = [IDM’DV}? (32)

where D,, is the covariant derivative with respect to the potential one-form
A, = AZT,, and T, are the generators of the lie algebra of U(1).

3 Result

3.1 Non-relativistic quantum mechanics

In this section, we recover non-relativistic quantum mechanics using the La-
grange multipliers method and a geometric constraint.
Instead of the Boltzmann entropy, we use the Shannon entropy.

S==Y plq)np(q) (33)

q€Q

In statistical mechanics, we use ”scalar” constraints on the entropy, such as
the energy meter and volume meter. These are sufficient for recovering the Gibbs
ensemble but insufficient for recovering quantum mechanics. A “specialized”
geometric constraint which is invariant for a complex phase, is defined as

w3 ﬂzzpm)tr by 0] (34)

q€Q

where, [a(q) —b(q)} = qa(q) + ib(q) is the matrix representation of the

blg) alq)

complex numbers. Similar to the energy meter or volume meter, geometric
instruments produce a sequence of measurements converging to an expectation
value, but such measurements have a phase invariance. The trace grants and
enforces this phase invariance.

The Lagrangian equation that maximizes the entropy subject to this con-
straint is

S e (1 S G B

qeQ q€Q q€Q



Maximizing this equation for p by posing %é) = 0, we obtain

%‘(Cq) = —Inp(g) —1—a—7tr [b&) bo(qq (36)
0=Inp(g) +1+a+Ttr {b(oq) _bo(q)} (37)

= Inp(q)=—-1—a—rtr [b(oq) _%(q)} (38)
= p(g) = exp(—1 — @) exp (Ttr [b&) _%(q)D (39)
= % det exp (—T {b&) _%(Q)D , (40)

where, Z(7) is obtained as

1—qezQexp ~1-aq) exp( Tt [b(oq qD (41)
— (exp(=1—a)) qg@exp (m[ (; qu (42)
_ qe%det exp <—T [b& : *%@D (43)

The exponential of the trace is equal to the determinant of the exponential
via the relation det exp A = exp tr A.
Finally, we obtained

Z(lT) det exp (—T {b(oq ) b()(Q)D (44)

=~ |exp —i7b(q)|? Born rule (45)

p(T,q) =

Renaming 7 — t/h and b(q) — H/(q) recovers the familiar form of

p(a) =  lexp(~itH(q) /). (46)

or in even a more familiar form

p(a) = 5 [W(@)F, where () = exp(~itH(q)/h). (47)

With this, we can show that all three Dirac Von-Neumann axioms and the
Born rule are satisfied, thus providing an origin story for quantum mechanics
linked to entropy and geometry.

10



Indeed, from (47), we can identify the wave function as the vector of some or-
thogonal space (in this case, a complex Hilbert space) and the partition function
as its inner product expressed as

Z = (Yl). (48)

After normalization, the physical states are its unit vectors. The probability
of any particular state is given as

1
p(q) = W

Finally, any self-adjoint matrix, defined as (Ov[) = (|Ov), will corre-
spond to a real-valued statistical mechanics observable if measured in its eigen-
basis.

The equivalence is complete.

(¥(a)) "4 (q). (49)

3.2 Probability measure of all geometric measurements

Here, we investigate the arbitrary geometric constraint

trM =) p(q) tr M(q (50)
q€Q

where M is the arbitrary n x n matrix.

We note that we could have used an arbitrary multi-vector u of G(4,R)
instead of M; the steps of the derivation are the same.

The Lagrange equation used to maximize the entropy subject to this con-
straint is expressed as

L==> pl@h(g+a 1= pl@) | +7[txM=> plg)trM(q) |,

q€Q q€Q q€Q
(51)
where a and 7 are the Lagrange multipliers.
Maximizing this equation for p by posing 6?@ y = 0, we obtain
oL
9000 =—Inp(q) —1—a—7trM(q) (52)
0=Inp(q) +1+a+7trM(q) (53)
= lnp(q) —l—a—TtrM( ) (54)
p(q) = exp(—1 — a) exp(—7 tr M(q)) (55)
1

= i detexp(~rM(g)) (56)

11



where, Z(7) is obtained as

1= Z exp(—1 — a) exp(—7 tr M(q)) (57)
q€Q

= (exp(-1—a))"' =) exp(—7trM(q)) (58)
q€Q

Z(r) =) _ detexp(—M(q)) (59)
q€Q

The resulting probability measure is

pla.7) = 5 detexp(~rM(g), (60)
where
Z(1) = Zdet exp(—7M(q)). (61)
qeQ

Posing ¢(q, 7) = exp(—7M(q)), we can write p(q, 7) = det ¥ (g, 7), where the
determinant acts as a ”generalized Born rule,” connecting in this case a general
linear amplitude to a real number representing a probability.

It is the sophistication of the general linear amplitude along with the deter-
minant acting as a ”generalized Born rule” that increases the opportunity to
support both general relativity and the standard model, while nonetheless be-
having as a consistent physical system due to having its origins solidly anchored
in the robust framework of statistical mechanics.

4 Geometric foundation of physics

In this section, we investigate the main result as a general linear quantum theory.
In addition, we introduce the algebra of geometric observables applicable to
the general linear wave function. The 2D case constitutes a special case
whose definitions have direct correspondences with those of ordinary quantum
mechanics. The 4D case is significantly more sophisticated than the 2D case,
and will be investigated immediately after.

4.1 2D axiomatic definition of the algebra

Let V be an m-dimensional vector space over G(2,R). A subset of vectors in V
forms an algebra of observables A(V) if the following holds:

12



A)

B)

v € A(V), the sesquilinear map
() VxV— G(2,R)
(u,v) — utv (62)
is positive-definite when u = v, that is (1, ) > 0

Vip € A(V). Then, for each element 1/(q) € 1, the function

V() (q) (63)

is positive-definite: p(v(q),v) >0

We note the following comments and definitions:

From A) and B), it follows that Vi € A(V), the probabilities sum up to
unity:

> p(w(g).p) =1 (64)

P(a)EY

1 is called a natural (or physical) state.

(1, 1)) is called the partition function of 1.

If (), 1)) = 1, then 1) is called a unit vector.

p(q, ) is called the probability measure (or generalized Born rule) of ¥(q).

The set of all matrices T acting on v as Tt — 1’, making the sum of
probabilities normalized (invariant).

> pW(a), TY) = > plv(g)9) =1 (65)
P(q)€P P(q) €Y

are the natural transformations of .
A matrix O such that Vuvv € A(V) :
(Ou,v) = (u, Ov) (66)
is called an observable.
The expectation value of an observable O is

1

©) = )

(O, ) (67)

13



4.2 Observable in 2D — self-adjoint operator

The general case of an observable in 2D is investigated in this section. A matrix
O is an observable if it is a self-adjoint operator. It is defined as

(00, ¢) = (¢, 09) (68)
YuVv € V.

Setup: Let O = {200 201} be an observable. Let ¢ and ¥ be two two-state
10 O11

vectors of multi-vectors ¢ = {il} and ¥ = [zl} Here, the components ¢,
2 2

ds, Y1, P55, 000, 001, 010, 011 are multi-vectors of G(2,R).

Derivation: 1. Calculate (O¢,v):

2(06, ) = (0006, + 001¢) 91 + 17 (0000, + 00105)

+ (0108 + 011¢5) b5 + i (0100, + 0116,) (69)
= ¢110£0 1+ ¢£031¢1 + ¢f{000¢1 -+ 1/’{0014152
+ diojg, + P01,y + Yho10h, + o116, (70)

2. Now, (¢, Ov):

2(¢, 09h) = 1 (0001 + 001%5) + (000%; + 001%5)

+ ¢£(010"P1 +011%5) + (01091 + 0119,) (71)
= plony; + ¢loot, + piofd, + Yioh, ¢,
+ ¢£010’l/)1 + ¢§011¢2 + "Mof{o 1+ ¢£0§1¢1 (72)

For (O¢, 1) = (¢, O1p) to be realized, these relations must hold:

oéo = 0go (73)
031 =019 (74)
oj{O = 01 (75)
0%1 = 011. (76)

Therefore, O must be equal to its own Clifford transpose. Thus, O is an
observable iff

of =0, (77)

14



which is equivalent to the self-adjoint operator O = O of complex Hilbert
spaces.

The geometric sophistication of this geometric observable allows the proba-
bility measure to retain invariance over a larger class of geometric transforma-
tions than what is possible with unitary transformation. These transformations
are sufficiently flexible to support gravity while retaining valid observable statis-
tics.

4.3 Observable in 2D — eigenvalues / spectral theorem

The application of the spectral theorem to OF = O such that its eigenvalues are
real is as follows: Consider

_ ago a — xe; — yes — beja
0= L‘ + zer +yes + beio an ] ’ (78)
Tt follows that Of = O
P ago a — re; —yes — bejo
o= [a + ze; + yes + beqo any } ’ (79)

This example is the most general 2 x 2 matrix O such that Of = O.
The eigenvalues are obtained as

agg — A a — re; — yes — bejo
= det(O — AI) = det
0 et(0 —AD) ¢ {a—i—xel + yes + beq ai; — A ]a (80)

This implies that

0= (0,00 — )\)(CLH — /\) — (a —Trey —yegx — belg)(a + req + yeo + b612 + a11)

(81)
0 = (ago — N)(ai; — \) — (a® — 2% —y* + b?), (82)
Finally,
1 2 2 2 2 2
)\:{5(0004-&11—\/(@00—&11) +4(a* — 2% —y +b)), (83)
1
5 (aoo + aiy —+ \/(0,00 — (111)2 —+ 4(@2 — 1'2 — y2 4 b2))} (84)

Note that, in the case where agp — a11 = 0, the roots would be complex if
a’?— 2% —y?+b? < 0, but we already stated that the determinant of real matrices
must be greater than zero because of the exponential maps to the orientation-
preserving general linear group. Therefore, it is the case where a? —2% —y%+b? >
0 because this expression is the determinant of the multi-vector. Consequently,
for orientation-preserving transformations, Of = O implies that its roots are
real-valued, thus constituting a “geometric” observable in the traditional sense

of an observable whose eigenvalues are real-valued.

15



4.4 2D left action

A left action on the wave function T |¢)) connects to the bilinear form as
()| T*T |4). The invariance requirement on T is

(W] THT [0) = (P[) . (85)

Therefore, we are interested in the group of matrices such that
THT = I. (86)

Let us consider a two-state system. A general transformation is

w T

T = {“ ”} , (87)

where u, v, w, z are 2D multi-vectors. The expression T*T is

¥ i ks i ks i
tp _ |V U vw:vv+uu VW + utx

T [wi xi} {u x} [wiv + oty wiw + 2tz (88)

For the results to be the identity, it must be the case where
vy +utu =1 (89)
vtw +utz =0 (90)
who + 2ty =0 (91)
whtw + 2tz =1 (92)

This is the case if

1 v u
T= Vot +utu [_ewui ew”i] , 53)

where u, v are 2D multi-vectors and e¥ is a unit multi-vector. Comparatively,
the unitary case is obtained when the vector part of the multi-vector vanishes
x — 0, and is

1 a b
U= Va0 {_ewa eiea]‘] : (94)

We can show that TIT = I as follows:

16



1 i —e %y v U
o
= T'T= viv + utu [ui e~ %v } {—e“’ui e“’vi} (95)

T ot + utu | —utv wtu 4 ot (96)

=1 (97)

1 [v*v +uty vty — v*u]

In the case where T and |i)) are n-dimensional, we can find an expression
for it starting from a diagonal matrix.

z1X+y1y+ib
D |:€ 1 1 1 0 ] ’ (98)

0 eT2X+y2y+ibe

where, T = PDP~!. It follows easily that‘DiD = I because each diagonal
entry produces unity: e~ T1X-¥1¥—ibigriXty1ytiby —

An arbitrary matrix T such that TYT = I can be expressed as an exponential

T = exp(—TA), (99)

where A* = —A. Then,

exp(—TA)i exp(—7A) = exp(TA)exp(—TA) =1 (100)

An example of a matrix A is

X1 +b1 X3+ bs
X3 +b3 X9 +b2 (101)

In ordinary quantum mechanics, the equivalent relation is (e!)fe!? =
efiHeiH =7

4.5 Dynamics in 2D

We will now derive the relativistic dynamics in 2D.
We start with this equation

exp(=0TA) (7)) = |[¢(7 + 67)) . (102)

Now we approximate the exponential into a power series
exp(—07A) |Y(7)) = 1 —6TA |Pp(7)) . (103)
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We continue as follows

(1= 67A) [9(r)) = 0(r +67)) (104
[0(r)) = S7A[9(r)) = 107 +67)) (105)
~SrA () = 97 +67) — () (100
iy = B0~ ) o)
~Aly(r) = A7) (108

In the case where we pose x — 0 (this corresponds to a reduction of the
SL(2, R) to the SO(1,1)), then A reduces to a matrix of pseudo-scalars, which
can be written as Ax_,o = iB. The corresponding equation is:

~iBy(r)) = LA (109)

This compares to the Schrodinger equation which is

~iH () = A0, (10

The wave function is the solution to this differential equation and is given
as

Y(1) = exp(—7iB + a) (111)
However, despite being nearly identical to the Schrodinger, here our equation

Lorentz is invariant due to the pseudo-scalar being a geometric object — we can
see it as follows:

V(T %oth(1) = exp(—7iB + a)* &g exp(—7iB + a) (112)
= exp(7iB + a)Xg exp(—7iB + a) (113)
= exp(2a) exp(7iB)%( exp(—7iB) (114)
= pexp(7iB)%X( exp(—7iB) (115)

But since i = %9%; then B is bi-vector of G(4,R) and these corresponds to
a Lorentz rotor SO(1,1).

PH(1)%0 (1) = pexp(TRo%1 B)%o exp(—7%o%; B) (116)
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The expression exp(7Xo%1B)%X( exp(—7%X0%1B) maps Xg to a curvilinear ba-
sis ep via the application of the rotor and its reverse: exp(7Xo%x1B) = R(7) and
exp(—TXox1B) = R(7)

R(T)%0R(T) = eo(7) (117)
Therefore

PH(7) %ot (1) = peo(T) (118)

In the David Hestenes formulation of the relativistic wave function this is
simply the Dirac current, where eq(7) is interpreted as the velocity vg, and puvg
is the weighted probability that the particle has the given velocity.

In 141 spacetime, the other component of the current vector is

PH7)R)(T) = pes(7) (119)

David Hestenes[4] shows that this formulation is equivalent to other formu-
lations for the relativistic wave-function.

4.6 Algebra of geometric observables in 4D

The general case for a vector space over 4 x 4 matrices is considered.

In 2D, we extended the complex Hilbert space to a ” geometric Hilbert space”
and found that the familiar properties of the complex Hilbert spaces were trans-
ferable to the geometry of the general linear group.

In 4D, we will not have the benefit of a direct correspondence.

The main roadblock is that in 4D, we need four multiplicands |¥4) | 3’477[}11/1,
compared to the 2D case whose determinant is given by %1, which can be
interpreted as an inner product of two vectors. As such, we are unable to
produce a sesquilinear form of the inner product as we did for the 2D case.
Since there is no satisfactory inner product, there is no Hilbert space in the
usual sense of a complete inner product space.

Nevertheless, the quantum mechanics ”features” (wave-function measure-
ments, linear transformations, observables as matrix or operators, and interfer-
ence patterns in the probability measure) remain in the 4D case.

Our aim is to find the space that supports the general linear wave function
in 4D.

A "tensor extension” can be created to the Hilbert space. In this case, the
role of the inner product is adopted by a “rank 4” tensor linking four vectors to
an element of G(4,R). In this environment, the typical concepts of quantum me-
chanics have equivalences, and the sophistication of the “rank 4” tensor’s Hilbert
space allows the wave function to accommodate all transformations which we
believe may be required to support general relativity in a quantum mechanical
theory while retaining valid probabilities for its observables.

19



Let V be a m-dimensional vector space over the 4 x 4 real matrices. A subset
of vectors in V forms an algebra of observables A(V) if the following holds:

1. Vi € A(V), the quadri-sesquilinear form
(CAETRNR VxVxVxV— GH4,R)

m

(u,v,w,x) —> ZLUfUiJ:%Awiixi (120)
i=1

is positive-definite when u = v = w = x; that is (¢, 1,4, 1) > 0
2. Y4y € A(V), then for each element ¥ (q) € 1, the function

p(¥(q), ¥) = det 1(q), (121)

1
(P, 9,1, )
is positive-definite: p(w(q),1) >0
We note the following properties, features, and comments:

e From A) and B), it follows that, Vi) € A(V), and the probabilities sum to
unity.

> p@le)p) =1 (122)

Y(9)ey
e 1) is called a natural (or physical) state.
o (1,1, 1, 1) is called the partition function of 1.
o If (1,4, 1), 1p) = 1, then 1) is called a unit vector.

e p(1(q),) is called the probability measure (or generalized Born rule) of
¥(q)-

e The set of all matrices T acting on 1 such as Tt — 1)’ makes the sum
of probabilities normalized (invariant):

> o), Ty) = > pib(q), ) =1 (123)

Y(gey Y(g)ey

are the natural transformations of 1.
e A matrix O such that YuVvvVwVx € V:
(Ou,v,w,x) = (u,Ov,w,x) = (u,v,Ow,x) = (u,v,w,0x) (124)
is called an observable.

e The expectation value of an observable O is

(O, 4,9, )
0) = 0.0, 9.9) (125)
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4.6.1 Observables

In 4D, an observable must satisfy equation 125:

L(OP) |3 41bth = 1O |5 4t p = [1hTeh|3,4(O)Hp = L1/117/1J3,47!1101</1 |
126

[ O3 40ty = (WO |3 40ty = Y1540 0M ) = Lwin3,4w101(p |
127

Since the middle terms cancel |1]3 4% = 1, the relations can be simplified
as

2 [PrOt 340 = e [P0 5 49 = 2 [t ]340 ) = 2 [t 3,09 (128)

It follows that an observable must satisfy

|0*|34 = [0]34=0"=0. (129)
This is readily satisfied in two cases: complex and bi-vector cases.

1. In the first case, if O € C™*"™, then the relations are satisfied if O is self-
adjoint Of = O. The corresponding invariance group of the evolution of
this observable is unitary UTU = I.

2. In the second case, if O is a bi-vector, it is satisfied if O = O. The corre-
sponding invariance group of the evolution of this observable is F¥F = I.

As we will now see, if we then demand that each of these two cases, the
evolution preserve the invariance of the Dirac current, then the first and second
cases correspond to the SU(2) x U(1) and SU(3) groups, respectively.

4.6.2 SU(2)xU(1) group

We will now investigate the first case that satisfies the 4D relation for the
observables. This corresponds to the case where the observables are self-adjoint
Of = O and where the evolution is unitary UTU = I. We will be looking for
the most general unitary transformation, expressed as a multi-vector of G(4,R)
which leaves the Dirac current invariant.

Let u =a+x+f + v+ b be an arbitrary multi-vector of G(4,R), let M be
its matrix representation, and let ) be the wave-function.

In the David Hestenes’ notation[4], the wave-function is given as

v/ pet’R, (130)
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where p represents a scalar probability density p, where €® is a complex
phase and where R is a rotor, expressed as the exponential of a bi-vector.
In our notation this is equivalent to squaring the wave-function followed by

the elimination of the shear and distortion terms x — 0 and v — 0.

PV |xms0v0 = €22TIPT = /peibR (131)

We note en passant that our theory can be interpreted in some sense as the
“square” or “double-copy” of a quantum field theory. Or equivalently, that a
typical quantum field theory is “half” of the most general quantum field theory
that can be supported in 4D spacetime. Or, finally, that the wave function ¢ =
v/ pe’ R represents, in essence, the “manual” extension of the 2D wave function
to 4D, obtained not by entropy-maximization procedures, but by merely adding
extra terms to the rotor, whilst continuing to use the 2D probability measure
rather than the more general 4D measure. We note the work of [5] which shares
the “double-copy” connotations with this paragraph. However, as of yet we
have not been able to investigate if our approach connects in any way to their
results.

For now, we will restrict the set of multi-vectors e to those multi-vectors
that realize the Dirac current and make it remain invariant after transformation.
Specifically, we wish to satisfy this relation

Py = (") (e"y) (132)

Let us now investigate.

Notably, x and v anti-commute with v, and therefore must be equal to
0 as they would otherwise not cancel out. Furthermore, the bi-vectors of u
have basis 7071, 7072; 7073: 7172, 7173, and y2y3. Among these, only v172,7173,
and 9773 commute with ~yy; therefore, the rest must be equal to 0. Finally,
the pseudo-scalar anti-commutes with =y, but this is fine as it must cancel in
the Dirac current. Therefore, the most general multi-vector that realizes the
definition of the Dirac current and retain its invariance is

u — a+ Framye + Fizv1ys + Fazyeys + byovireys (133)

To see its physical significance, we noted v,7v2 = Ios, y173 = Ios and
v2v3 = Io1. The resulting multi-vector is unitary and is equal to

U=¢" = 6%1(F2301+F1302+F1203+b). (134)

The terms Fszo1 + Fi309 + Fiaoz and b are responsible for the SU(2) and
U (1) symmetries, respectively. As reference we cite [6, 7], where David Hestenes
and later Lasenby constructs the electroweak sector (and discuss the chromo-
dynamics sector) using the geometric algebra associated with such invariance
conditions.
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4.6.3 SU(3) group

The second case will be investigated in this section. It corresponds to where the
observables is given as O = O and where the evolution is F*F = I.
Let f be a bi-vector:

f = Foivoma + Foevayo + Fosvoys + Fasyays + Fisyiys + Fiayive. (135)

Alternatively, we can write f as

f = (Fo1 +1iFa3)v0m1 + (Foe + iF13)7270 + (Fos + 1F12)7073, (136)

where i is the G(4, R) pseudo-scalar.
The current FyoF is

FiyF = —FyoF = (F§i + Fop + Fos + Fis + Fi3 + )0
+ (=2Fo2F12 + 2Fp3F13)m
+ (=2Fo1 Fi2 + 2Fo3F3) 72
+ (=2Fo1 Fi3 + 2Fp2E3) 3

—_
w
0¢]
D —

For F*yF to be make the Dirac current retain its invariance (F1))*yoF1p =
1¥y01, the cross-product must vanish leaving only

FlyoF = (F§y + Fp + Fis + Fia + Fas + Fib)vo, (141)

which is the SU(3) group.

With the previous SU(2) x U(1) result (case 1) and SU(3) (case 2), the 4D
geometric observables produce the symmetry group of the standard model of
particle physics, while leaving almost no room for anything different.

Here, the SU(2) x U(1) and the SU(3) groups are the result of ”casting” the
general 4D probability measure into a requirement to preservice the invariance
of the Dirac current, which is associated with a “2D probability” (the probability
measure is a polynomial of degree 2, not 4). The ”casting” reduces the set of all
multi-vector transformations 1)’ = uw to only those that leave the Dirac current
Y01 invariant. The resulting multi-vectors form the SU(2) x U(1) group in
the first satisfiable case of the observable, and the SU(3) group in the second.

4.6.4 Covariant Derivative

We now produce the covariant derivative associated with our wave function, and
shows that it couples to gravity.
A general linear transformation is given by
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V' () = g(z)g™", (142)

The determinant will leave the probability measure of the wave function
invariant because

det(gtp(z)g™") = det ¥(z). (143)

The gauge-covariant derivative associated with this transformation is

D, = 09 — [igA,, Y. (144)

Finally, the field is given as

Rp,u = [D/_uDu]y (145)

where, R, is the Riemann tensor.

Our argument with this result is simply to argue that any dynamical theory
derived and compatible with our probability measure will then by necessity
include gravity within our framework.

4.6.5 General linear gauge (A few comments)

The fundamental invariance group of the general linear wave function is the
orientation-preserving general linear group GL™ (n, R). Similar to quantum elec-
trodynamics (via the U(1) gauge) being an archetypal example of quantum field
theory (QFT), gravity (via the GL*(n,R) gauge) will be the archetypal exam-
ple of our system. Since this is the gauge of the probability measure, it will find
itself to be present in all Lagrangians compatible with our method and should
therefore couple with ” everything”, as we would expect from gravity.

The exponential term exp(—7M(q)) maps to a one-parameter subgroup of
the orientation as the resulting GL(n,R)-valued field can be viewed as the
Christoffel symbols I'* and the commutator of the covariant derivatives as the
Riemann tensor. This is not a new result and has its roots in the initial results
by Utiyama[8] and Kibble[9].

Alternative gauges also produce either general relativity or extensions thereof:
for instance, the Lorentz, Poincaré, or affine gauge. A state of the art summary
is available by P Holland[10].

Each of these gauges tends to produce slightly different versions of gravity.
Therefore, the correct gauge for gravity must still be identified experimentally.

The novelty with our method is that our wave function can now accom-
modate all transformations required to realize general relativity while retaining
invariance.
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4.7 Step towards falsifiable predictions

A number of falsifiable predictions is listed below.

The main idea is that a general linear wave function would allow a larger
class of interference patterns, compared to the tolerance with the complex inter-
ference. The general linear interference pattern includes all the ways in which
space-time can interfere with itself, including those resulting from rotations,
boosts, shear, torsion, etc.

As a secondary idea, it is also plausible that an Aharonov—Bohm effect ex-
periment on gravity[11] could detect a general linear phase.

An interference pattern follows from a linear combination of u and v, and
the application of the determinant:

det(u + v) = det u + det v + extra-terms (146)

The sum of the probability and extra terms, det u + det v, represents the
interference term.

We use the extra terms to define a bilinear form using the dot product
notation.

G(2n,R) x G(2n,R) — R (147)

1
u-vi— §(det(u+v) —detu —detv) (148)

For example, in 2D, we have

u=a +xe + Yyi1€2 + blelg (149)
V = ag + r2€1 + Y22 + boeqs (150)
= u-v=aias+ bi1by — 122 — Y19>. (151)

If detu > 0 and det v > 0, then u - v is always positive, thereby qualifying
as a positive-definite inner product, but no greater than either detu or detv,
whichever is greater. Therefore, it also satisfies the conditions of an interference
term.

e In 2D, the dot product is equivalent to the form

%(det(u +v)—detu—detv) = % (u+v)H(u+v) —ulu—viv)
(152)
=utu +utv + viu + viv — utu — viv
(153)
=ulv +viu (154)
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e In 4D, it is substantially more complex:

1
§(det(u +v) —detu—detv) (155)
1
=3 (L(u + v)i(u +v)|sa(u+ V)i(u +v)— LuiuJ374uiu - LvivJ374viv)
(156)
1
=3 (Luiu +utv + viu + viv )z (utu + utv + viu 4 viv) — )
(157)
= LuiuJ3,4uiu + LuiuJ3’4uiv + LuiuJ3,4viu + LuiungVIv
+ \_uingAuiu + LuivJ3,4uiv + LuivJ3,4viu+ LuingAviv
+ \_viunguiu—i— LviuJ3)4uiv + LviuJ3)4viu+ LviuJ3)4viv
+ LVIVJ374uiu + LvivJ374uiv + I_VIVJ374V111 + I_VIVJ3,4V1V — ...
(158)

= |utu|s utv + [utu]z gviu 4 [utu)s uviv
u'v|su fa+ Lu VJ34u v+ Lu VJ34V u+ |u VJ34viV

3 4llill—|— L uJ3,4u¢v + LV uJ3,4v u—+ LV uJ3,4viv

)

+ [utv]
+ [vtu]
+ [viv]zutu+ [viv]s sutv + [viv]s avia (159)

vi
A simpler version of this interference pattern is possible when the general
linear group is reduced.
Complex interference:

A reduction of the general linear group to the circle group reduces the in-
terference pattern to a complex interference.

91 + a|* = [91]* + [1h2]® + 2[¢b1 [[9ha] cos (¢1 — ¢2) (160)

Deep spinor interference:

A reduction to the spinor group reduces the interference pattern to a ”deep
spinor rotation”.

Consider a two-state wave function (we note that [f, b] = 0)).

P =y +1hy = e eMePt 4 e2eleP (161)

The geometric interference pattern for a full general linear transformation
in 4D is given by
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[ ] 5.4t ep. (162)

Starting with the sub-product

Php = (eMe TPt 4 g2 eb2)(pmef1ePr | o2ef2eP2) (163)
= Mg figPretighePr | g1 p—fighgazpfo obe
+ e2e~f2gP2et1efi g1 | 020 T2 b2o02 M2 b2 (164)

— e2ale2b1 + 62a262b2 + ea1+ageb1+b2 (e_fl €f2 + e—fzefl) (165)

The full product is expressed as

Lwin374d)i¢ — (620,16—2]31 + €2a26—2b2 + ea1+age—b1—b2 <€_f16f2 + 6—f2€f1>)

X (62a1 62b1 _|_ 62(12 62b2 + ea1+a2 eb1+b2 (e—fl €f2 + e—fQ efl)
(166)

_ €2a1€_2b1 €2a162b1 + €2a16_2b1 62a262b2 + e2a16—2b1 6a1+a2 eb1+b2 (e—fl ef2 + e—fg efl)
+ €2a2€_2b2 62(11 €2b1 + e2a26—2b2 €2a2€2b2 + 62a2€_2b2 ea1+a2 eb1+b2 (e—fl efg + e—f2 efl)
=+ 6a1+a2€—b1—b2 (e—fl €f2 + e—fg efl )€2a1€2b1

+ ea1+a2€—b1—b2 (e—fl efg + e—fg ef1 )€2ag €2b2

+ €a1+a26_b1 —b2 (e—f1 €f2 + €—f2 6f1 )€a1+a2 eb1+b2 (e—f1 €f2 + €—f2 6f1 )

— ¢lar | ghaz | 9p201+2a cos(2by — 2by) (
4 entaz(e~hiefs 4 o=f2ofi)( (
620,1 (e—b1+b2 + ebl—bQ) (170
+ 62a2(eb1—b2 +e—b1+bz)) (
+ 62a1+2a2 (effl efg + 67f2 efl )2 (
— clm =+ elaz +262a1+2a2 005(2()1 _ sz)
S
sum complex interference
+ 2€a1+a2 (€2a1 + 62a2)(e~f1 ef2 + e~f2 ef1 )(COS(Bl _ BQ)) + €2A1+2A2 (e*ﬁ ef2 + e~f2 ef1 )2

deep spinor interference

(173)

Finally, we stress that the general linear interference pattern occurs in the
context of quantum gravity, as the ordinary quantum field theory reduces to a
typical complex interference.
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5 Discussion

We have recovered the foundations of quantum mechanics using the tools of
statistical mechanics to maximize the entropy. In doing so we have replaced the
Boltzmann entropy with the Shannon entropy, and this has an impact on the
resulting interpretation. In contrast to the multiple interpretations of quantum
mechanics, the interpretation of statistical mechanics is singular and free of
paradoxes, and this will carry over to our interpretation.

The resulting interpretation of quantum mechanics is minimal, free of para-
doxes, we believe palatable, and almost tautological.

Definition 9 (Metrological interpretation). There exist instruments that record
sequences of measurements on systems. These measurements are unique up to
a geometric phase, and the Born rule (including its geometric generalization)
18 the entropy-maximizing measure constrained by the expectation value of these
measurements.

In statistical mechanics, an instrument is assumed to measure a system. For
instance, an energy meter or volume meter can produce a sequence of measure-
ments whose average converges towards an expectation value, which constitutes
a constraint on the entropy.

Nature allows for geometrically richer measurements and instrumentations
than what is possible to express with simple ”scalar instruments.” For instance,
a ruler, clock, and protractor also admit numerical measurements, but they
contain geometric phase invariances such as the Lorentz invariance.

In the metrological interpretation it is not the wave function but the exis-
tence of such instruments that is taken as axiomatic. Essentially, the laws of
physics are entirely determined by the geometrical richness of the instruments
that can be constructed in nature.

In this study, we interpreted the trace as the expectation value of the eigen-
values of a matrix transformation times the dimension of the vector space. Max-
imizing the entropy under the constraint of this expectation value introduces
various phase-invariances into the resulting probability measure. Specifically,
the constraint

afy V=S HY) (174)

q€Q

induces a complex phase invariance into the probability measure p(q) =
| exp(—i7b(q))|?, which gives rise to the Born rule and wave function. Moreover,
the constraint

trM = trp(q)M(q) (175)
q€Q
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induces a general linear phase invariance in the probability measure p(q) =
detexp (—7M(q)), giving rise to a probability measure supporting multiple
gauges and observables commonly in used in modern physics. In each case,
we can interpret the constraint as an instrument acting on the system. In the
complex phase, we associated the constraint to an incidence counter measuring
a particle or photon. Moreover, in the general linear case, we associated the con-
straint to a measure that is invariant with respect to all changes of coordinates
in the general linear phase.

The complete correspondence between an ordinary system of statistical me-
chanics and ours is as follows.

Table 1: Correspondence

Concept Statistical Mechanics ~Geometric Constraint (Ours)
Entropy Boltzmann Shannon

Measure Gibbs Born rule on wave function
Constraint Energy meter Phase-invariant instrument
Micro-state  Energy values Possible measurements
Macro-state  Equation of state Evolution of the wave function
Experience  Ergodic Message of measurements

In the correspondence, the usage of the Shannon entropy instead of the
Boltzmann entropy changes the experience from ergodic to a message (in the
sense of the theory of communication of Claude Shannon[12]) of measurements.
The receipt of such a message by say, an observer, is interpreted as the registra-
tion of a ’click’[13] on a screen or other detecting instrument. Quantum physics
can then be interpreted as the probability measure resulting from maximizing
the entropy of a message of geometrically invariant measurements.

The probabilistic interpretation of the wave function via the Born rule is
inherited from statistical mechanics and results from maximizing the entropy
under geometric constraints. The wave function is also entailed; hence, it is not
considered axiomatic either. However, it is the registration of a measurement
taken by an instrument along with the geometric constraints on the entropy
that is axiomatic.

The axioms of quantum mechanics are recoverable as theorems from the

solution % = 0 for p, where,

L==> p@)plg)+A|1=> pla) | +7 [ trM—=>_ p(q) trM(g)
q€Q q€Q q€Q
(176)

The new axioms are now the geometric constraint, entropy maximization
procedure, and typical tools of statistical mechanics.

29



Now, let us discuss the wave-function collapse problem:

Specifically, the mathematical foundation of quantum mechanics contains
the following axiom: If the measurement of a quantity O on v gives the result
On, then the state immediately after measurement is given by the normalized
projection of 1 onto the eigensubspace of o,, as

P 1)
(W] Pn [9)

The measurement-collapse problem is superseded as follows: Before the wave
function enters the picture, measurements are assumed to have already been reg-
istered by an instrument and are associated with a geometric constraint, which
is axiomatic. Registering new measurements in this case does not mean that a
wave function has collapsed, but means that we need to adjust the constraints
and derive a new wave function consistent with them. Since the wave function
is derived by maximizing the entropy constrained by registered measurements,
it never undergoes an update from an uncollapsed state to a collapsed state.
The collapse problem is a sign of attributing an ontology to the wave function;
however, the ontology belongs to the instruments and their measurements —
not the wave function.

For instance, it is by throwing multiple coins into the air and noting that
about half land on head and the other half on tail that we can deduce a cor-
responding probability measure. Such a probability measure cannot be used
to derive the result of the next flip but only its expectation value. Likewise,
here it is the expectation value of measurements that are used to derive the
wave function. The present derivation of the wave function as a solution to a
maximization problem on the entropy under a geometric constraint (themselves
representing expectation values) is mathematically consistent with this under-
standing. The connection to statistical mechanics resets our expectation and
understanding of the Born rule to be a probability measure whose domains is
that of expectation values and not of singular occurrences of events.

P = (177)

6 Conclusion

With geometric constraints, probability measures that support richer geometry
than what was commonly used can now be easily constructed and manipulated,
and this substantially extends the opportunity to capture all modern physics
within a single framework. A theory of gravity and the wave function of the
general linear group are derived, and the Born rule extended to the determinant.
As we have also seen, “casting” the general linear wave function into the defi-
nition of the Dirac current reduces the theory to the SU(2)x U(1) and SU(3)
groups for the first and second satisfying cases of the 4D observable, respec-
tively, thereby recovering the group symmetries associated with the standard
model. These gauge groups do not have to be injected manually and instead
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follow uniquely from the most general instrument that can be constructed in
4D, and of the satisfiability condition for observables in 4D.

Finally, we note that more work needs to be done with this theory to com-
plete it; we have only laid its foundations here. For instance, we have not
investigated the complete representation of the particles of the standard model
(only its gauge symmetries), and we have not investigate the interaction picture
of this probability measure in the context of gravity. These elements of study
are reserved for future work.

References

[1] Makoto Yamashita (https://mathoverflow.net/users/9942/makoto ya-
mashita). Geometric interpretation of trace. MathOverflow.
URL:https://mathoverflow.net/q/46447 (version: 2016-05-17).

[2] Frederick Reif. Fundamentals of statistical and thermal physics. Waveland
Press, 2009.

[3] Douglas Lundholm and Lars Svensson. Clifford algebra, geometric algebra,
and applications. arXiv preprint arXiv:0907.5356, 2009.

[4] David Hestenes. Spacetime physics with geometric algebra. American
Journal of Physics, 71(7):691-714, 2003.

[6] Zvi Bern, John Joseph M Carrasco, and Henrik Johansson. Perturbative
quantum gravity as a double copy of gauge theory. Physical Review Letters,
105(6):061602, 2010.

[6] David Hestenes. Space-time structure of weak and electromagnetic inter-
actions. Foundations of Physics, 12(2):153-168, 1982.

[7] Anthony Lasenby. Some recent results for su(3) and octonions within the
geometric algebra approach to the fundamental forces of nature. arXiv
preprint arXiv:2202.06753, 2022.

[8] Ryoyu Utiyama. Invariant theoretical interpretation of interaction. Physical
Review, 101(5):1597, 1956.

[9] Tom WB Kibble. Lorentz invariance and the gravitational field. Journal
of mathematical physics, 2(2):212-221, 1961.

[10] Peter Holland. Gauge theories of gravitation: A reader with commentaries,
edited by milutin blagojevi¢ and friedrich w. hehl: Scope: edited book,
reference, review. level: postgraduate, early career researcher, researcher,
2013.

[11] Chris Overstreet, Peter Asenbaum, Joseph Curti, Minjeong Kim, and
Mark A Kasevich. Observation of a gravitational aharonov-bohm effect.
Science, 375(6577):226-229, 2022.

31



[12] Claude Elwood Shannon. A mathematical theory of communication. Bell
system technical journal, 27(3):379-423, 1948.

[13] John A Wheeler. Information, physics, quantum: The search for links.
Complezity, entropy, and the physics of information, 8, 1990.

32



