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Abstract

While there is a process in the wild to derive the laws of physics —
the practice of science— it has never been formalized completely within
mathematics. Here, we report a formulation of science in terms of a listing
of experiments, and show it sufficient to entail physics as the model which
universally governs its practice. The first step to formalize it will be to
eliminate ambiguities by defining experiments as reproducible protocols
and expressing them in terms of Turing complete languages and halting
programs. A listing of such experiments via a machine or algorithm is re-
cursively enumerable and, if understood as an incremental contribution to
knowledge, then serves as a reformulation of mathematics consistent with
the practice of science. In turn this formalization leads to a definition of
the observer as a measure space on all possible experiments, and the laws
of physics are simply those that maximizes the information of the mea-
sure. Using this methodology, we will be able to demonstrate the origins
of quantum field theory, general relativity, their generalization to quan-
tum gravity, and to obtain a resolution to enduring open problems such as
the origin of the Born rule, the dissolution of the wave-function collapse
problem and the selection of the interpretation of quantum mechanics...
yielding a comprehensive formulation of physics from first principles.
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1 The Formal System of Knowledge

Theories of truth are formalized in mathematics, for instance propositional logic
or first order logic, and their aim are to correctly propagate truth from statement
to statement; whereas in the scientific approach, we tend to find theories of
knowledge whose aim are to produce incremental contributions to validate (or
invalidate) an ever more complete model thereof.

Knowledge is similar to truth in many ways. For instance, both quantita-
tively relate to a binary state: knowledge is either known (1) or unknown (0),
and truth is either true (1) or false (0). But the effective differences are notable.
For instance, theories of truth despise incompleteness as it signals obscurities,
whereas those of knowledge seek it as it signals an opportunity for progress; Ax-
iomatic theories formulated in terms of truth sometimes clash with one another
(incompatible premises entail contradictions), whereas those formulated based
on knowledge contribute to one another (knowledge is closed under union).

We have many theories of truth in mathematics, but so far we have not
captured these differences and intuitions into a formal system of knowledge.
What mathematical tools can we use to do so?

Attempts to find a complete logical basis for truth have been made ad nau-
seam in the past but they failed for primarily two reasons. First, they were at-
tempted before Gödel-type theorems were known or appreciated, and attempts
were directed at constructing decidable logical bases for truth. Secondly, instead
of directing efforts to recursively enumerable bases following the discovery of said
incompleteness theorems, efforts simply felt out of favour as it was understood
that any sufficiently expressive system of truth would contain obscurities, and
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this made them philosophically unattractive. It is however possible to construct
recursively enumerable bases (provided they are not decidable), and further the
limitations of recursive enumeration ought to instead be seen as an opportu-
nity; in this case, to create a formal system to map out knowledge, such that
it may serve as the foundation to a formalization of science. In this case, the
theory challenges us to discover new knowledge, rather than to merely fix truth
definitionally only to bail out at the first obscurity, and in this context we call
it a theory of knowledge to distinguish it from a theory of truth. Theories of
knowledge, as recursively enumerable systems, are a more general concept than
theories of truth which are subsets thereof. Indeed, for all statements that are
either true (1) or false (0), it is the case that we can know (1) its truth value;
but if a statement is such that it is undecidable, a binary state of knowledge
still applies to it, in this case its truth value is unknown (0).

To help fix the intuition, consider the following amusing construction which
we will call rotting arithmetic. In logic we are allowed to inject any sentence
as a new axiom, and to investigate its consequences. Rotting arithmetic will be
defined as the union of the axioms of Peano’s arithmetic and of the axiom of
rot, which we define as follows:

Axiom of rot :=
!
22

4,871,982,796,652,701

− 1
"

is a prime (1)

Rotting Arithmetic := {Peano’s Arithmetic} ∪ {Axiom of rot} (2)

The axiom of rot claims that a very large is number is a prime. If it’s true,
then it has no effects on the system, but if it’s false, the system is inconsis-
tent. Comparatively, the largest known prime (at the time of this writing) is
282,589,933 − 1 which is orders of magnitude smaller than the number referenced
in the axiom of rot. Since we have used randomness to generate the axiom of
rot, odds are minuscules that it is a prime... or perhaps we did hit the jackpot
and it is a prime. A theory of knowledge can assign the state unknown (0) to
the axiom of rot until such a time as we find out if the proposed number is or
isn’t a prime; whereas a theory of truth expects true or false right now, as it’s
truth-value is in principle.

It may be that it takes us a century until we find out if the axiom of rot
isn’t or isn’t true, as our computing capacities need to improve before we can
know. As time goes by the freshness of the theory slowly diminishes, until such
a time as it is revealed to be rotten at which time it is discarded (or it keeps
perpetually fresh if we did hit the jackpot and the number is a prime).

A comprehensive theory of knowledge ought to tackle feasible forms of knowl-
edge: what we know in the here and now, in addition to what is known or
unknown, or true and false, in principle.

The example of rotten arithmetic may appear convoluted or unnatural —
after-all why would we take the chance with an axiom of rot, when we can easily
do arithmetic without it —, but now consider what often happens in science.
For nearly a century before Einstein produced the theory of special relativity
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(Einstein, 20th century), the union of both classical mechanics (Newton, 17th
century) and electromagnetism (19th century) was considered fresh:

Law of Inertia := F = ma (3)

Maxwells’ equation := ∇ ·E = ρ/ε0,∇ ·B = 0, ... (4)

Union := {F = ma} ∪ {Maxwells’ equation} (5)

The discovery of ”rot” in their union (Maxwell’s equations reports a constant
speed of light independently of the observer’s velocity, whereas velocities in
F=ma are additive) had to wait for nearly a century to be noticed and corrected.
In the mean time, most were happy to use both theories, and the problem
remained unnoticed. Similarly to the case of rotten arithmetic, the state of
knowledge of ”rot” in the union had to go from unknown (0) to known (1),
before a new model was to be produced.

Falsification in general can be manipulated in a similar fashion. But instead
of having two axiomatic theories, we have an empirical statement along with an
axiomatic theory:

Observation := Precession of Mercury’s orbit (6)

Law of Gravitation := F = GmM/r2 (7)

Falsification? := {P[...] of Mercury’s orbit} ∪ {F = GmM/r2} (8)

The statement ”Precession of Mercury’s orbit” would plausibly take the
form of a series of point on a graph, indicating a sequence of measurements,
and falsification occurs if those points are not the elements of a solution to the
law of gravitation.

Of course, in this introduction we have merely sketched the ideas informally.
And so we re-iterate our question; what mathematical tools are the best to
describe knowledge formally? To find out we must be a bit more technical. Let
us look at the philosophical discipline that study knowledge: epistemology —
What does it tell us about knowledge, that we can use?

Epistemology, at least historically, has considered knowledge to be that
which is a justified true belief. For instance ”I know Bob is from Arkansas
(as a justified true belief), because his driver’s license is from Arkansas (jus-
tification), and he is from Arkansas (true)”. However, the Gettier problem[1]
is a well known objection to this definition. Essentially, if the justification is
not loophole free, there exists a case where one is right by pure luck, even if
the claim were true and believed to be justified. For instance, if one glances
at a field and sees a shape in the form of a dog, one might think he or she is
justified in the belief that there is a dog in the field. Now suppose there is a
dog elsewhere in the field, but hidden from view. The belief ”there is a dog in
the field” is justified and true, but it is tough sale to call it knowledge because
it is only true by pure luck.
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Richard Kirkham[2] proposed to add the criteria of infallibility to the jus-
tification. Knowledge, previously justified true belief, would now be infallible
true belief. Merely seeing the shadow of a dog in a field would not be enough to
qualify as infallible true belief; all claims have to be exactly proportional to the
evidence. This is generally understood to eliminate the loophole, but it is an
unpopular solution because adding it is assumed to reduce knowledge to radi-
cal skepticism in which almost nothing is knowledge, thus rendering knowledge
non-comprehensive.

Here, we will adopt the insight of Kirkham regarding the requirement of
infallibility whilst resolving the non-comprehensiveness objection, and also re-
taining the intuitive characteristics of knowledge as we have described them in
this introduction. To do so, we will structure our statements such that they are
individually infallible, yet as a group form a Turing complete language. Our
tool of choice will be halting programs. Such will be the building blocks of
knowledge in our system. As we will see, halting programs carry all desired
features to make this possible. But there is a catch. Halting programs are of
course subject to the halting problem and this will make the system inherently
experimental: acquiring knowledge will be difficult, even arbitrarily difficulty,
and may even contain dead-ends (non-halting programs). Some may argue this
is what makes the process sufficiently interesting in the first place.

The concept that knowledge is given in the form of infallible statements will
allow us to union all new discoveries of knowledge with older ones, without
any risk of the new ones invalidating the previous ones. Rather, it will be
explanatory models of knowledge that would or could be invalidated (fallible)
by new knowledge (infallible). Contributions of new knowledge to a lexicon will
thus be incremental by guarantee.

Here, we understand halting programs as a descriptive language, similar in
expressive power to any other Turing complete language, such as say english.
But unlike english, using halting programs makes the description of each unit
of knowledge completely free of ambiguities. And ambiguities are of course
antithetical to knowledge. General translations between all Turing languages
exists, and so we do not lose any expressive power by using them, over any other
choice of language. For instance, any mathematical problem can be reformulated
as a statement regarding the halting status of a program via the Curry–Howard
correspondence. We will give more examples as appropriate and as we detail
the idea further.

For more information regarding the connection between mathematics, sci-
ence and programs, we recommend the works of Gregory Chaitin[3, 4, 5], a
pioneer on the idea. A familiarity with his work is assumed. Let us now con-
tinue.

1.1 Halting Programs as Knowledge

How do we construct an infallible statement, so that it qualifies as an epistemic
statement in the sense of Kirkham?

Let us take the example of a statement that may appear as an obvious true
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statement such as ”1+1 = 2”, but is in fact not infallible. Here, we will provide
the correct definition of an infallible statement, but equally important, such
that the set of all such statements is Turing complete, thus forming a language
of maximum expressive power.

Specifically, the sentence ”1 + 1 = 2” halts on some Turing machine, but
not on others and thus is not infallible. Instead consider the sentence PA ⊢
[s(0)+s(0) = s(s(0))] to be read as ”Peano’s axioms prove that 1+1 = 2”. Such
a statement embeds as a prefix the set of axioms in which it is provable. One
can deny that 1+1 = 2 (for example, an adversary could claim binary numbers,
in which case 1+1 = 10), but if one specifies the exact axiomatic basis in which
the claim is provable, said adversary would find it harder to find a loophole to
fail the claim. Nonetheless, even with this improvement, an adversary can fail
the claim by providing a Turing machine for which PA ⊢ [s(0) + s(0) = s(s(0))]
does not halt.

The key is to structure the statement so that all context required to prove
the statement is provided along with the statement itself; then it is the claim
that the context entails the statement that is infallible. If we use the tools of
theoretical computer science we can produce statements free of all loopholes,
thus ensuring they are infallible. Those statements, which are mathematical
theorems, are also —via Curry–Howard correspondence— halting programs:

Let Σ be a set of symbols; called an alphabet. A word is a sequence of
symbols from Σ. The empty word is represented as ∅. The set of all finite
words is given as:

W :=

∞#

i=0

Σi (9)

Finally a language L is as a subset of W.
As an example, the sentences of the binary alphabet Σ = {0, 1} are the

binary words {∅, 0, 1, 00, 01, 10, 11, 000, . . . }.
There exists multiple models of computation, such a Turing machines, µ-

recursive functions, Lambda calculus, etc. Here, to retain generality we will use
computable functions without requiring a specific model.

Instead of a Turing machine, we will consider a Turing-computable function
and its definition is as follows:

A Turing machine Φ computes a partial function TM: W → W iff:

1. For each d ∈ Dom(TM), Φ(d) halts and equals TM(d).

2. For each d /∈ Dom(TM), Φ(d) never halts.

Then, TM is a Turing-computable function (or simply, a computable func-
tion). We denote TM as the set of all computable partial functions from
W → W.

Likewise, and instead of a universal Turing machine as a specific implementa-
tion, we will prefer to use a universal Turing-computable partial function of two
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inputs DM: W×W → W. To use the elements of TM in this function, we must
introduce a bijective function, which we call an encoding, as: 〈·〉 : TM ↔ W
specific to the DM. Then, if forall TM ∈ TM and forall d ∈ Dom(TM), it is the
case that if DM(〈TM〉, d) ≃ TM(d), then DM is a universal function, and we
denote it as UTM.

Definition 1 (Halting Program). A halting program p is a pair TM×W:

p := (TM, d) (10)

such that TM(d) = r.

With this definition, d can be considered as the statement, TM is its context,
and if TM(d) halts, then both are paired as a context-free halting claim:

p = (TM, d); UTM(〈TM〉, d) halts (11)

Since a translation exists between universal Turing machine, a claim that
d halts on TM, if known, entails ”p halts” is verifiable on all universal Turing
machines, and requires no specific context for this to be verified.

For instance, the following program[6] is a formal proof of the commutativity
of addition for natural numbers written in COQ (familiarity with formal proof
system is not required for this paper, we simply state an example to fix the
intuition).

plus_comm =

fun n m : nat =>

nat_ind (fun n0 : nat => n0 + m = m + n0)

(plus_n_0 m)

(fun (y : nat) (H : y + m = m + y) =>

eq_ind (S (m + y))

(fun n0 : nat => S (y + m) = n0)

(f_equal S H)

(m + S y)

(plus_n_Sm m y)) n

: forall n m : nat, n + m = m + n

The claim ”p = (COQ, plus comm); UTM(p) halts” is a unit of knowledge,
and I can share this unit of knowledge with others.

Or as a more readable example of a halting program:

fn one_plus_one_equals_two(){

if 1+1==2{

return;

}

loop{};

}
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The claim ”p = (cargo run, one plus one equals two);UTM(p) halts” is an-
other a unit of knowledge.

The second objection is that the infallibility requirement is too demanding,
preventing knowledge from being comprehensive by making it able at most to
only tackle a handful of statements. However, the set of all halting programs
constitutes the entire domain of the universal Turing machine, and thus the
expressive power of halting programs must be on par with any Turing complete
language. Since there exists no greater expressive power for a formal language
than that of Turing completeness, then no reduction takes place. The resulting
construction is both element-wise infallible, and comprehensive as a set:

Definition 2 (Lexicon (of Knowledge)). The set of all programs TM×W that
halts constitutes the lexicon of knowledge K.

• K constitute a model of knowledge.

• K is unique.

• K is non-computable, but is recursively enumerable.

• K contains countably infinitely many elements.

• Unlike the hyperwebster[7] which includes all possible words from Σ re-
gardless of halting status and thus is without knowledge, here each entry
is a halting program and is thus usable in some context (Examples are
given in section 1.4).

• We can definite K, we can also contribute to it, but we cannot complete
it.

Definition 3 (Translation (of K)). A translation T of K is a map from TM×W
to W×W such that the encoding function 〈·〉 is applied to each element of TM.
A translation of K is expressed as the domain of a universal Turing machine
UTM.

TUTM := Dom(UTM) (12)

And contains all pairs W×W that halt on UTM.

Theorem 1 (Incompleteness Theorem). Since a translation of K is the domain
of a UTM, is is undecidable. The proof follows from the domain of a universal
Turing machine being undecidable. Since 〈·〉 is bijective, it follows that K is also
undecidable.

The theorem implies that the we will never run out of new knowledge to
discover, and can thus perpetually contribute to the lexicon.

Theorem 2 (K is recursively enumerable). Listing of K by dovetailing.

Proof. First, let us recursively enumerate the translation T of K. Consider a
dovetail program scheduler which works as follows.
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1. Sort the columns of W × W in shortlex, then trace a line across the
pairs starting at (〈TM1〉, d1) then (〈TM2〉, d1), (〈TM1〉, d2), (〈TM2〉, d2),
(〈TM3〉, d1) and so on. This produces an order which grabs all pairs.

d1 d2 d3 . . .

〈TM1〉 (〈TM1〉, d1) (〈TM1〉, d2) (〈TM1〉, d3) . . . (13)

〈TM2〉 (〈TM2〉, d1) (〈TM2〉, d2) (〈TM2〉, d3) . . . (14)

〈TM3〉 (〈TM3〉, d1) (〈TM3〉, d2) (〈TM3〉, d3) . . . (15)

...
...

...
...

. . .

2. Take the first element of the sort, DM(〈TM1〉, d1), then run it for one
iteration.

3. Take the second element of the sort, DM(〈TM2〉, d1), then run it for one
iteration.

4. Go back to the first element, then run it for one more iteration.

5. Take the third element of the sort, DM(〈TM1〉, d2), then run it for one
iteration.

6. Continue with the pattern, performing iterations one by one, with each
cycle adding a new element of the sort.

7. Make note of any pair (〈TMi〉, dj) which halts.

Finally, use the encoding function to convert W × W to TM × L, yielding
the lexicon.

This scheduling strategy is called dovetailing and allows one to enumerate
the domain of a universal Turing machine recursively, without getting stuck by
any singular program that may not halt. Progress will eventually be made on
all programs... thus producing a recursive enumeration.

Definitionally, the domain of a recursively enumerable function is a set; how-
ever in practice and implemented as an algorithm, a dovetailer and other im-
plementations of recursive enumerations produces a sequence of incremental
contributions to knowledge, as each new element that halts gets added to a list;
the order of which depends on the implementation.

1.2 Incremental Contributions

We will now use the lexicon of knowledge and halting programs to redefine the
foundations of mathematics in terms of incremental contributions to knowledge,
replacing formal axiomatic systems.

In principle, one can use any Turing complete language to re-express math-
ematics. The task is not particularly difficult but the work can in some cases
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be substantial. One generally has to build a translator between the two formu-
lation, whose existence is interpreted as a proof of equivalence. For instance,
one can write all of mathematics using the english language (if one were so in-
cluded), or with using set theory (with arbitrary set equipment), or category
theory, or using a computer language such as c++, or using arithmetic with
multiplication, etc. If the language is Turing complete, then it is as expressive
as any other Turing complete language, and a translator is guaranteed to exist.
So why pick a particular system over another? This is often due to other con-
veniences and constraints than pure expressive power. For instance, sets allow
us to intuitively express a very large class of mathematical problems quite con-
veniently. Typical selection criterions are; can we express the problem at hand
clearly?, elegantly?, are the solutions also clear and easier to formulate, than in
the alternative system?

Here we will use and introduce the incremental contribution formulation of
mathematics, and, as we will see, its advantages are stunning. An incremental
contribution comprises a group of programs known to halt, and this group of
programs defines a specific instance of accumulated mathematical knowledge.

Definition 4 (Incremental Contribution (to Knowledge)). Let K be the lexicon
of knowledge. An incremental contribution m of n halting program is an element
of the n-fold Cartesian product of K:

m ∈ Kn (16)

The tuple, in principle, can be empty m := (), finite n ∈ N or countably
infinite n = ∞.

• Note on the notation: we will designate pi = (TMi, di) as an halting
program element of m, and proj1(pi) and proj2(pi) designate the first and
second projection of the pair pi, respectively. Thus proj1(pi) is the TMi

associated with pi, and proj2(pi) is the input di associated with pi. If
applied to a tuple or set of pairs, then proj1(m) returns the set of all TM
in m and proj2(m) returns the set of all inputs d in m.

The programs comprising the incremental contribution adopt the normal
role of both axioms and theorems and form a single verifiable atomic concept
constituting a unit of mathematical knowledge. Let us explicitly point out the
difference between the literature definition of a formal system and ours: for the
former, its theorems are a subset of the sentences of L provable from the axioms
— whereas for a sequence of incremental contributions, its elements are pairs of
TM×W which halts on a UTM.

Let us now explore some of the advantages of using incremental contribu-
tions versus formal axiomatic systems. Sequences of incremental contributions
are more conductive to a description of the scientific process, including the ac-
cumulation of experimental knowledge, than formal axiomatic systems are. Let
us take an example. Suppose we wish to represent in real-time, and with live
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updates, the set of all knowledge produced by a group of, say 50,000, mathe-
maticians working in a decentralized manner (perhaps from their offices) over
the course of at least many decades, and perhaps even for an indefinite amount
of time into the future. Some of the work they produced may build on each
others’, but it will also be the case that part of their work is incompatible. For
instance, some might find contradictions in their assumptions and abandon large
segments of their work. As one learns primarily from his or her errors, we may
wish to catalogue these contradictions for posterity. Let us first try with formal
axiomatic systems. Finding the ’correct’ and singular formal axiomatic system
to describe the totality of what they have discovered, including abandoned work
and contradictions, will be quite a challenge. One challenge occurs whenever a
new contradiction is found, as one would need to further isolate it within a wrap-
per of para-consistent logic, before inclusion within the all-encompassing formal
axiomatic system. Another challenge occurs when mathematicians invent new,
possibly more elegant, axiomatic basis outright. One would constantly need to
adjust his or her proposed all-encompassing formal axiomatic system to account
for new discoveries as they are made. Such an axiomatic basis would eventually
grow to an unmaintainable level, not unlike the spaghetti codes of the early
days of software engineering. And we have not even mentioned the problems
spawned by general incompleteness theorems such as those of Gödel and Gre-
gory Chaitin, and the negative resolution to Hilbert’s second problem! What if
someone proves a statement (using a new axiomatic basis) that is not provable
from the ”master” axiomatic basis; in this case re-adjustments are perpetually
necessary. As mathematicians are a creative bunch, one would never be able
to settle on a final axiomatic system as they could always decide to explore
a sector of mathematical space not covered by the current system. Compara-
tively, using an incremental contribution, the task is much easier: One simply
need to push each new discovery at the end of the sequence; no adjustment is
ever required after insertion, we never run out of space, and halting programs
do not undermine each other even if they internally represent a contradiction.
An incremental contribution is the equivalent of an empirical notebook of raw
mathematical knowledge.

Formal axiomatic systems do not excel at pure description because they are
more akin to an interpretation of mathematical knowledge based on a preference
of some patterns or tools (we like sets, thus ZFC!, or we prefer categories, thus
category theory!). New knowledge and new problems will eventually force one
to challenge this preference. Not so with incremental contributions! Incremental
contributions are the true starting point of the logical inquiry as they represent
unadulterated mathematical knowledge.

We will now explore the concept more rigorously.

1.3 Connection to Formal Axiomatic Systems

We can, of course, connect our incremental contributions formulation of math-
ematics to the standard formal axiomatic system (FAS) formulation:
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Definition 5 (Enumerator (of a FAS)). Let FAS be a formal axiomatic system
and let s be a valid sentence of FAS. A function enumeratorFAS is an enumerator
for FAS if it recursively enumerates the theorems of FAS. For instance:

enumeratorFAS(s) =

$
1 FAS ⊢ s

∄/ does-not-halt otherwise
(17)

Definition 6 (Domain (of a FAS)). Let FAS be a formal axiomatic system and
let enumeratorFAS be a function which recursively enumerates the theorems of
FAS. Then the domain of FAS, denoted as Dom(FAS), is the set of all sentences
s ∈ L which halts for enumeratorFAS.

Definition 7 (Formal Axiomatic Representation (of a sequence of incremental
contributions)). Let FAS be a formal axiomatic system, let m be a sequence of
incremental contributions and let enumeratorFAS be a function which recursively
enumerates the theorems of FAS. Then FAS is a formal axiomatic representa-
tion of m iff:

Dom(FAS) = proj2(m) (18)

Definition 8 (Factual Isomorphism). Two formal axiomatic systems FAS1 and
FAS2 are factually-isomorphic if and only if Dom(FAS1) = Dom(FAS2).

1.4 Discussion — The Mathematics of Knowledge

Each element of an incremental contribution is a program-input pair represent-
ing an algorithm which is known to halt. Let us see a few examples.

How does one know how to tie one’s shoes? One knows the algorithm re-
quired to produce a knot in the laces of the shoe. How does one train for a
new job? One learns the internal procedures of the shop, which are known to
produce the result expected by management. How does one impress manage-
ment? One learns additional skills outside of work and applies them at work
to produce results that exceed the expectation of management. How does one
create a state in which there is milk in the fridge? One ties his shoes, walks
to the store, pays for milk using the bonus from his or her job, then brings
the milk back home and finally places it in the fridge. How does a baby learn
about object permanence? One plays peak-a-boo repeatedly with a baby, until
it ceases to amuse the baby — at which point the algorithm which hides the
parent, then shows him or her again, is learned as knowledge. How does one
untie his shoes? One simply pulls on the tip of the laces. How does one untie
his shoes if, after partial pulling, the knot accidentally tangles itself preventing
further pulling? One uses his fingers or nails to untangle the knot, and then
tries pulling again.

Knowledge can also be in more abstract form — for instance in the form of
a definition that holds for a special case. How does one know that a specific
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item fits a given definition of a chair? One iterates through all properties refer-
enced by the definition of the chair, each step confirming the item has the given
property — then if it does for all properties, it is known to be a chair according
to the given definition.

Aesthetics are not settled by knowledge, and thus competing definitions are
simultaneously supported as knowledge:

fn is_person_heavy(weight: int) -> bool{

if weight>200{

return true;

}

return false;

}

fn is_person_heavy_alt(weight: int) -> bool{

if weight>300{

return true;

}

return false;

}

One can have knowledge that person A (weight=250) is or isn’t heavy accord-
ing to multiple different definitions, and even if such produces different answers
one would not need therapy to recover from the ”contradiction”. As long as
each definition have a different name, the incremental contribution framework
can support them.

In all cases, knowledge is an algorithm along with an input, such that the
algorithm halts for it, lest it is not knowledge. The set of all known pairs form
an incremental contribution to knowledge.

Let us consider a few edge cases. What if a sequence contains both ”A” and
”not A” as theorems? For instance, consider:

m :=
%
(TM1, A), (TM1,¬A)

&
(19)

Does such a contradiction create a problem? Should we add a few restric-
tions to avoid this unfortunate scenario? Let us try an experiment to see what
happens — specifically, let me try to introduce A∧¬A into my personal knowl-
edge, and then we will evaluate the damage I have been subjected to by this
insertion. Consider the following implementation of TM1:

fn main(input: String){

if p=="A" {

return;

}

if p=="not A"{

return;

14



}

loop();

}

It thus appears that I can have knowledge that the above program halts for
both ”A” and ”not A” and still survive to tell the tale. A-priori, the sentences
”A” and ”not A” are just symbols. Our reflex to attribute the law of excluded
middle to these sentences requires the adoption of a deductive system. This
occurs one step further at the selection of a specific formal axiomatic represen-
tation of the sequence of incremental contributions, and not at the level of the
sequence itself.

The only inconsistency that would create problems for this framework would
be a proof that a given halting program both [HALTS] and [NOT HALTS] on a
UTM. By definition of a UTM, this cannot happen lest the machine was not a
UTM to begin with. Thus, we are expected to be safe from such contradictions.

Now, suppose one has a sizeable sequence of incremental contributions which
may contain a plurality of pairs:

m :=
%
(TM1, d1), (TM2,¬d1), (TM1, d2), (TM2, d1), (TM2,¬d3)

&
(20)

Here, the negation of some, but not all, is also present across the pairs: in this
instance, the theorems d1 and d3 are negated but for different premises. What
interpretation can we give to such elements of a sequence? For our example,
let us call the sentences d1, d2, d3 the various flavours of ice cream. It could be
that the Italians define ice cream in a certain way, and the British define it in
a slightly different way. Recall that halting programs are pairs which contain
a computable function and a premise. The computable function contains the
’definition’ under which the flavour qualifies as real ice cream. A flavour with
a large spread is considered real ice cream by most definitions (i.e. vanilla or
chocolate ice cream), and one with a tiny spread would be considered real ice
cream by only very few definitions (i.e. tofu-based ice cream). Then, within this
example, the presence of p1 and its negation associated with another definition,
simply means that tofu-based ice cream is ice cream according to one definition,
but not according to another.

Reality is of a complexity such that a one-size-fits-all definition does not
work for all concepts, and further competing definitions might exist: a chair
may be a chair according to a certain definition, but not according to another.
The existence of many definitions for one concept is a part of reality, and a
mathematical framework which correctly describes it ought to be sufficiently
flexible to handle this, without itself exploding into a contradiction.

Even in the case where both A and its negation ¬A were to be theorems
of m while also having the same premise, is still knowledge. It means one has
verified that said premise is inconsistent. One has to prove to oneself that a
given definition is inconsistent by trying it out against multiple instances of a
concept, and those ’trials’ are each incremental contributions.
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1.5 Axiomatic Information

Let us introduce axiomatic information. If any account for the elements of
any particular incremental contribution is relegated to having been ’randomly
picked’, according to a probability measure ρ, from the set of all possible halting
programs, then we can quantify the information of the pick using the entropy.

Definition 9 (Axiomatic Information). Let Q be a set of halting programs.
Then, let ρ : Q → [0, 1] be a probability measure that assigns a real in [0, 1]
to each program in Q. The axiomatic information of a single element of Q is
quantified as the entropy of ρ:

S = −
'

p∈Q
ρ(p) ln ρ(p) (21)

For instance, a well-known (non-computable) probability measure regarding
a sum of prefix-free programs is the Halting probability[8] of computer science:

Ω =
'

p∈Dom(UTM)

2−|p| =⇒ ρ(p) = 2−|p| (22)

The quantity of axiomatic information (and especially its maximization),
rather than any particular set of axioms, will be the primary quantity of in-
terest for the production of a maximally informative theory in this framework.
A strategy to gather mathematical knowledge which picks halting programs
according to the probability measure which maximizes the entropy will be a
maximally informative strategy.

2 The Formal System of Science

We now assign to our re-formulation of mathematics in terms of incremental
contributions, the interpretation of a purely mathematical system of science. As
hinted previously, the primary motivation for constructing a system of science
follows from the set of knowledge being recursively enumerable (as opposed to
decidable) making its enumeration subject to the non-halting problem. Notably,
in the general case, halting programs can only be identified by trial and error
and this makes the approach irreducibly experimental.

At this point in the paper, I must now warn the reader that almost any
of the definitions I choose to present next will likely either quickly induce at
least a feeling of uneasiness, or may even trigger an aversion in some readers.
First and foremost, let me state that the definitions are, we believe, mathemat-
ically correct, scientifically insightful and productive, and thus we elected to
fight against this aversion, rather than to deprive ourselves of said definitions.
This uneasiness would present itself to a similar intensity regardless of which
definition I now choose to present first, and so I might as well pick the simplest
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one. For instance, let us take the relatively simple definition of the scientific
method, which will be:

Definition 10 (Scientific method). A function which recursively enumerates
knowledge, is called a scientific method.

Mathematically speaking, this is a very simple definition. First, it is indeed
purely mathematical, and formal, and in fact coincide with the definition of a
universal function (i.e. the UTM theorem) — which is a non-controversial math-
ematical concept. We have previously defined knowledge as halting programs
(this made it comprehensible) and it’s domain as that of a universal Turing
machine (this made it comprehensive). Now we simply define a recursive enu-
meration function for said domain and we give it a name. The notion of the
scientific method, a previously informal (naive1) construction, is now imported
into pure mathematics and as such we have produced a net gain for science,
compared to not having it.

The features of the scientific method are found implicitly in the definition.
Indeed, implicit in said definition lies a requirement for the function to verify
the input to be knowledge by running its corresponding program to completion,
and reporting success once proven to halt. That it may or may not halt is the
hypothesis, and the execution of the function is the ’experiment’ which verifies
the hypothesis. If an input runs for an abnormally long time, one may try a dif-
ferent hypothesis hoping to reach the conclusion differently. Since knowledge is
element-wise infallible, each terminating experiments are formally reproducible
as many times as one needs to, to be satisfied of its validity. All of the tenets
of the scientific method are implicit in the definition, and its domain is that of
knowledge itself, just as we would expect from the scientific method. Finally, the
domain of the function is arbitrarily complex and countably infinite, therefore
we never run out of new knowledge allowing for a perpetual and never ending
application of the scientific method. Mathematically, it is a remarkably simple
definition for such an otherwise rich concept.

But outside of mathematical land, the tone gets a bit more grim. Some
readers may need a few more definitions before they start feeling the full weight
induced by a total commitment to formalization on their worldview, but for
many this definition will mark that point. Let us give a few comments to illus-
trate the type and intensity of the aversions that can plausibly be experienced:

1. Those who previously believed, or even nurtured the hope that, reality
admitted elements of knowledge that are outside the scientific method
*must* now find a flaw in our definitions, lest they have to correct their
worldview. As scientific as most people claim to be, this forms a surpris-
ingly large group. The unbiased response is, rather, to appreciate that
what they thought was knowledge was in fact fallible (and thus simply a
guess), whereas the scientific method does not output guesses, it outputs
knowledge (which is infallible).

1We refer to the word naive in the mathematical sense; i.e. as a theory which is not
formalized. No negative connotation are implied.
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2. Those who nurture a worldview which is not ”reducible” to our defini-
tion of knowledge in terms of halting program, *must* now argue that
our definition contains gaps of knowledge, lest they have to correct their
worldview. But our definition is simply the unique logical construction
of knowledge with is both comprehensible and comprehensive. Thus, as
comprehensiveness implies no gaps, their worldview is revealed to neces-
sarily contain at least some elements that are incurably incomprehensible,
or it would be reducible to our definition...

3. The elimination of all naive concepts or notions (no more ”magic” or
”handwaving”) is now required. If one has a worldview that relies upon
a plurality of non-formalizable ambiguities, then one’s worldview will not
survive this formalization. For many, this is interpreted as killing the
”fun” or the ”imagination” from reality. Since this is the first time a fully
formalizable model of reality has been presented, then no one’s pre-existing
worldview is expected to survive (ouch!).

Does one even stand a chance at maintaining his or her informal (naive)
worldview, when facing such definitions? Many of our base definitions were
carefully chosen to merely match and rebrand pre-existing and well respected
mathematical definitions; this was a strategic choice to make it incredibly dif-
ficult (not to say impossible) to find fatal flaws. In our experience the battery
of aversion we typically receive boils down to an equivalent formulation of ”I
can’t find the error, but it *must* be wrong because [my worldview] requires it
to be different” or variations of ”I just don’t see it, bye!”. Of course, no actual
pinpointing of a fatal error is ever produced (otherwise we would either correct
it, or immediately abandon the project altogether depending on the nature of
the error presented).

Consider the alternative for a moment and let us try to be a crowd pleaser.
How could we leave room for the obscure so that people to not feel constrained
by formalism, while remaining mathematically precise? Should we define the
scientific method as a function that recursively enumerates 95% of knowledge,
leaving a sympathetic 5% out for love, beauty and poetry? How would we
possibly justify this mathematically. Functions which recursively enumerate
one hundred percent of the domain do exists; should we just lie to ourselves
and pretend they don’t? Of course, we cannot. Whether a painting is or isn’t
beautiful, if not the result of an instantiation of infallible knowledge, is merely
a guess. The scientific method does not output guesses, it outputs knowledge.

Now, there is a way to discuss, for instance, beauty scientifically: if one
actually works out a precise definition of beauty, such as:

fn is_beautiful(painting: Object) -> bool{

if (painting.colors.count()>=3){

return true;

}

return false;

}
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Then congratulations, one now has a definition of beauty that is actually
comprehensible for the scientific method! The function returns true if the paint-
ing has 3 or more colours, otherwise it returns false. The scientific method can
now use this definition to output all objects which are ”beautiful” according to
said definition.

Good luck getting everyone to agree to accept this definition as the be-all-
end-all of beauty. However, all hope is not lost: the set of all halting programs
includes the totality of all possible comprehensible definitions of beauty and
therefore if a ’good-one’ does exists then by necessity of having them all it
must be in there, otherwise it simply means the concept is fundamentally non-
comprehensible (not formalizable as a halting program). Picking the ’good-one’
from the set of all comprehensible definitions of beauty could merely be a social
convention based on what everyone concept of beauty coalesces into. Even
under this more challenging description, which references a social convention,
comprehensible definitions are still found in the purview of the scientific method,
as one can use a function such as this:

fn is_beautiful(painting: Object, people: Vec<Person>) -> bool{

for person in people{

if person.is_beautiful(painting)==true{

return true;

}

}

return false;

}

This function returns true if at least one person thinks it’s beautiful. In
this case, the scientific method ’polls’ every ’person’ in ’people’ and asks if the
painting is beautiful, and as soon as one says yes, then it returns true, otherwise
it returns false. In this case the definition of beauty is comprehensible provided
that each ’person’ in ’people’ also produced a comprehensible implementation
of the function is beautiful. The scientific method a-priori has no preference
for which definition we end up agreeing (or disagreeing) upon, it simply verifies
that which can be verified comprehensibly.

The scientific method’s sole purpose is to convert comprehensible questions
(or definitions) into knowledge.

Let us return to our discussion on aversion. At the other end of the aver-
sion spectrum, we find some readers (it would be overly optimistic to expect
it from all readers, but hopefully some) that accept and understand that the
proposed system induces what amounts to a checkmate position for informal
(naive) worldview. Of those readers, most will then condition themselves to
accept a re-adjustment of their worldview such that it becomes conductive to
complete formalisation. This will be no easy task, because many concepts cen-
tral to mainstream science and physics are *not* formalizable absent of import-
ing what people like Max Tegmark calls physical baggage. For these readers,
their desire for formalization is greater than their attachment to their infor-
mal (naive) worldview, and they are willing to make the necessary sacrifices
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to work completely formally. Just like the beginnings of mainstream science
quickly displaced (most of) the charlatans and purveyors of quackery physical
or medical products, formal science via its definition of knowledge displaces the
charlatans and purveyors of informal ”intellectual products” who are reliant on
ambiguities. Resistance from those purveyors is of course inevitable.

Let us now reprise our lighter tonality to introduce and complete the formal
system of science. Although the ”magic” is now gone, we hope that the reader
can find the will to smile again by immersing himself or herself in the cheerful
world of formal terminating protocols, in lieu of said ”magic”.

2.1 Terminating Protocols (as Knowledge about Nature)

Both Oxford Languages and the Collins dictionary defines a protocol as

[Protocol]: A procedure for carrying out a scientific experiment

Comparatively, Wikipedia, interestingly more insightful in this case, de-
scribes it as follows:

[Protocol]: In natural and social science research, a protocol is
most commonly a predefined procedural method in the design and
implementation of an experiment. Protocols are written whenever
it is desirable to standardize a laboratory method to ensure suc-
cessful replication of results by others in the same laboratory or by
other laboratories. Additionally, and by extension, protocols have
the advantage of facilitating the assessment of experimental results
through peer review.

The above description precisely hits all the right cords, making it especially
delightful as an introduction of the concept. We will now make the case for
a new description of nature, or natural processes, which is conductive to com-
plete formalization. Of course, as we did for knowledge, we will require this
description of nature to also be comprehensible and comprehensive in the same
mathematical sense.

The proposed description will essentially require that one describes nature
via the set of all protocols known to have terminated thus far. This type of
description has a similar connotation to our previous formulation of mathematics
in terms of halting images. This is on purpose; it is so the tools introduced for
the former also be usable for the later. The proposed description is further
familiar to a requirement well-known to peer-review, and should be already
familiar to most readers. In the peer-reviewed literature, the typical requirement
regarding the reproducibility of a protocol is that an expert of the field be
able to reproduce the experiment, and this is of course a much lower standard
than formal reproducibility which is a mathematically precise definition, but
nonetheless serves as a good entry-level example.

Hinkelmann, Klaus and Kempthorne, Oscar in ’Design and Analysis of Ex-
periments, Introduction to Experimental Design’[9] note the following:
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If two observers appear to be following the same protocol of mea-
surement and they get different results, then we conclude that the
specification of the protocol of measurement is incomplete and is sus-
ceptible to different implementation by different observers. [...] If a
protocol of measurement cannot be specified so that two trained ob-
servers cannot obtain essentially the same observation by following
the written protocol of measurement, then the measurement process
is not well-defined.

In practice it is tolerated to reference undefined, and perhaps even undefin-
able, physical baggage, as long as ’experts in the field’ understand each other.
For instance, one can say ”take a photon-beam emitter” or one can reference an
”electric wire”, etc, without having to provide a formal baggage-free definition
of either of these concepts. Those definitions of physical objects ultimately tie
to a specific product ID, as made by a specific manufacturer, and said ID is
often required to be mentioned in the research report explicitly. For the electric
wire, a commonly used product, it is perhaps sufficient that the local hardware
store sells them, and for more complex products, such as a specific laser or pro-
tein solutions, an exact ID from the manufacturer will likely be required for the
paper to pass peer-review. If we attempted to explain to, say, an alien from
another universe what an electric wire is, we would struggle unless our neigh-
bourhood chain of hardware stores also as a local office in its universe for it to
buy the same type of wire. In computer language terms, we would say we pass
the concept of the electric wire to another expert by reference.

Appeal to the concept of ’expert’ is a way for us to introduce and to tolerate
informality into a protocol without loosing face; as that which is understood
by ’experts’ does not need to be specified. In a formal system of science we
will require a much higher standard of protocol repeatability than merely being
communicable to a fellow expert. We aim for mathematically precise definitions.
For a protocol to be completely well-defined, the protocol must specify all steps
of the experiment including the complete inner workings of any instrumentation
used for the experiment. The protocol must be described as an effective method
equivalent to an abstract computer program.

Let us now produce a thought experiment to help us understand how this
will be done.

2.2 The Universal Experimenter (Thought experiment)

Suppose that an industrialist, perhaps unsatisfied with the abysmal record of
irreproducible publications in the experimental sciences (i.e. replication crisis),
or for other motivations, were to construct what we would call a universal
experimenter ; that is, a machine able to execute in nature the steps specified
by any experimental protocol.

A universal experimenter shares features with the universal constructor of
Von-Neumann, as well as some hint of constructor theory concepts, but will be
utilized from a different stand-point, making it particularly helpful as a tool
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to formalize the practice of science and to investigate its scope and limitations
self-reflectively. Von-Neumann was particularly interested in the self-replicating
features of such a construction, but self-replication will here not our primary
focus of interest. Rather, the knowledge producible by such a machine will be
our focus.

The Universal Constructor of Von-Neumann is a machine that is able to
construct any physical item that can be constructed, including copies of itself.
Whereas, a Universal Experimenter is a machine that can execute any scientific
protocol, and thus perform any scientific experiment. Of course, both machines
are subject to the halting problem, and thus a non-terminating protocols (or
an attempt to construct the non-constructible in the case of the Universal Con-
structor) will cause the machine to run forever.

Both the machine and the constructor can be seen as the equivalent of each
other. Indeed, it is the case that a Universal Constructor is also a Universal
Experimenter (as said constructor can build a laboratory in which an arbitrary
protocol is executed), and a Universal Experimenter is also a Universal Con-
structor (as a protocol could call for the construction of a Universal Constructor,
or even for a copy of itself, to experiment on).

Specifically, a Universal Experimenter produces a result if the protocol it is
instructed to follows terminates. A realization of such a machine would com-
prise possibly wheels or legs for movement, robotic arms and fingers for object
manipulation, a vision system and other robotic appendages suitable for both
microscopic and macroscopic manipulation. It must have memory in sufficient
quantity to hold a copy of the protocol and a computing unit able to work out
the steps and direct the appendages so that the protocol is realized in nature.
It must be able to construct a computer, or more abstractly a Turing machine,
and run computer simulation or other numerical calculation as may be specified
by the protocol. The machine can thus conduct computer simulations as well as
physical experiments. Finally, the machine must have the means to print out,
or otherwise communicate electronically, the result (if any) of the experiment.
Such result may be in the form of a numerical output, a series of measurements
or even pictures where appropriate.

Toy models are easily able to implement an universal experimenter; for in-
stance Von Neumann, to define an implementation universal constructor, cre-
ated a 2-D grid ’universe’, allocated a state to each element of the grid, then
defined various simple rules of state-transformations, and showed that said rule
applied on said grid allowed for various initial grid setups in which a constructor
creates copies of itself. Popular games, such as Conway’s Game of Life are able
to support self-replication and even the implementation of a universal Turing
machine, and thus would admit specific implementations of a universal experi-
menter. In real life, the human body (along with its brain) is the closest machine
I can think of that could act as a general verifier of experiments.

How would a theoretical physicist work with such a machine?
To put the machine to good use, a theoretical physicist must first write a

protocol as a series of steps the machine can understand. For instance, the ma-
chine can include move instructions, using it to move its appendages in certain
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ways as well as a capture instruction to take snapshots of its environment,
etc. In any case, the physicist will produce a sequence of instructions for the
machine to execute. The physicist would also specify an initial setup, known
as the preparation, such that the protocol is applied to a well-defined initial
condition. The initial condition is specified in the list of instructions, as such it
is created by the machine making the full experiment completely reproducible.
Finally, the physicist would then upload the protocol to the machine, and wait
for the output to be produced.

The mathematical definition of the protocol is as follows:

Definition 11 (Protocol). A protocol is defined as a partial computable func-
tion:

prot : W −→ W
prep /−→ r

(23)

• The domain of the protocol Dom(prot) includes the set of all preparations
which terminates for it.

Let us now define the universal experimenter. A universal experimenter is
able to construct any preparation and execute any protocol on it. If a protocol
does not terminate, then the universal experimenter will run forever, hence it is
subject to the non-halting problem.

Definition 12 (Universal Experimenter). Let 〈prot〉 be the description of a
protocol encoded into the language of a universal experimenter UE, and prep, the
preparation, both be sentences of a W, called the instructions. Then a universal
experimenter is defined as:

UE(〈prot〉, prep) ≃ prot(prep) (24)

for all protocols and all preparations.

Definition 13 (Experiment). Let PROT be the set of all protocols, and let W
be the set all preparations. An experiment p is a pair PROT×W:

p := (prot, prep) (25)

such that prot(prep) = r.

Definition 14 (Domain of science). We note D as the domain of science. The
domain of science is the set of all experiments.

Definition 15 (Experimental Contribution (to Knowledge)). An experimental
contribution to knowledge is a tuple of n elements of D:

m := Dn (26)
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• An experimental contribution to knowledge only contains protocol-preparation
pairs that have terminated.

• An experimental contribution to knowledge corresponds, intuitively, to a
sequence of related or unrelated experiments, that have been verified by the
machine.

• An experimental contribution to knowledge corresponds to an instance of
natural knowledge (knowledge about nature). It represents knowledge in
the epistemological sense because the protocols maps to halting programs,
and knowledge about nature specifically, because the machine performs the
requested experiment in nature... just like an experimentalist would.

• Finally, as the set of knowledge is comprehensive, then all systems which
admits knowledge, physical or otherwise, can be represented in the form
of a specific experimental contribution associated to a specific verifier, and
said contribution constitutes a complete representation of the knowledge
said system has produced thus far for its operator.

For a UV to execute a protocol, both the protocol and its preparation must
be described without ambiguity. Physical baggage such as a camera cannot be
referenced informally in the specifications of the protocol, otherwise the UV
cannot construct it. If the protocol calls for the usage of a camera, then the be-
haviour of the camera must also be specified without ambiguity in formal terms
within the instructions. Consequently, all rules and/or physical laws which are
required to be known, including any initial conditions, must be precisely pro-
vided in the description, so that the UV can construct the experiment. For some
highly convoluted experiments, such as : ”is this a good recipe for apple pie?”...
the aphorism from Carl Sagan ”If you wish to make an apple pie from scratch,
you must first invent the universe” is adopted quite literally by the universal
experimenter. The universal experimenter must create (or at least simulate)
the universe, let interstellar matter accretes into stars, let biological evolution
run its course, then finally conduct the experiment once the required actors are
in play by feeding them apple pie. For a universal experimenter, certain proto-
cols, due to their requirement for arbitrary complex contexts or general protocol
complexity, cannot be created more efficiently than from literal scratch and by
going through the full sequence of events until the end of the experiment.

2.3 Classification of Scientific Theories

Definition 16 (Scientific Theory). Let m be an experimental contribution by
UV, and let ST be a formal axiomatic system. If

proj2(m) ∩Dom(ST) ∕= ∅ (27)

then ST is a scientific theory of m.
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Definition 17 (Empirical Theory). Let m be an experimental contribution by
UV and let ST be a scientific theory. If

proj2(m) = Dom(ST) (28)

then ST is an empirical theory of m.

Definition 18 (Scientific Field). Let m be an experimental contribution by UV
and let ST be a scientific theory. If

Dom(ST) ⊂ proj2(m) (29)

then ST is a scientific field of m.

Definition 19 (Predictive Theory). Let m be an experimental contribution by
UV and let ST be a scientific theory. If

proj2(m) ⊂ Dom(ST) (30)

then ST is a predictive theory of m.
Specifically, the predictions of ST are given as follows:

S := Dom(ST) \ proj2(m) (31)

Scientific theories that are predictive theories are supported by experiments,
but may diverge outside of this support.

2.4 The Fundamental Theorem of Science

With these definitions we can prove, from first principle, that the possibility of
falsification is a necessary consequence of the scientific method.

Theorem 3 (The Fundamental Theorem of Science). Let m1 and m2 be two
experimental contributions to knowledge, such that the premises of the former
are a subset of the later: proj2(m1) ⊂ proj2(m2). If ET2 is an empirical
theory of m2, then it follows that ET2 is a predictive theory of m1. Finally,
up to factual-isomorphism, Dom(ET2) has measure 0 over the set of all distinct
domains spawned by the predictive theories of m2.

Proof. Dom(ET2) is unique up to factual-isomorphism. Yet, the number of
distinct domains spawned by the set of all possible predictive theories of m1 is
infinite. Finally, the measure of one element of an infinite set is 0.

Consequently, the fundamental theorem of science leads to the concept of
falsification, as commonly understood in the philosophy of science and as given
in the sense of Popper. It is (almost) certain that a predictive scientific theory
will eventually be falsified.
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2.5 Final Details

Definition 20 (Knowledge Space). Let m be an experimental contribution com-
prised of n terminating protocols, and let Mm =

(n
i=1 proji(m) be the set com-

prised of the elements of m. The knowledge space E of m is the ”powertuple”
of m:

Em :=

n#

i=0

(Mm)i (32)

• Conceptually, a powertuple is similar to a powerset where the notion of
the set is replaced by that of the tuple.

• Put simply, the knowledge space of m is the set of all possible experimental
contributions (including the empty experimental contribution) that can be
built from m.

• All elements of a knowledge space are experimental contributions, and all
”sub-tuples” of an experimental contributions are elements of its space.

3 A Formal Theory of the Observer

Biology has the organism, microbiology the cell and chemistry the molecule,
but what about physics, what is its fundamental object of study? Is it the
planets (16th century), is it mechanics (17th century), is it thermodynamics
(18th century), is it electromagnetism (19th century), is it quantum mechanics
and special relativity (early 20th century) or is it general relativity, quantum
field theory, the standard model and cosmology (20th century). Is it broadly
what we haven’t figured out about nature yet? Or is it permissively anything
physicists do?

Here, we will set the foundation of our theory of physics. The first step
will be to use our formal system of science to define the observer, then physics
will be self-reflectively entailed by said definition. Physics will be revealed as
the science of what the observer can or cannot do in nature. In our theory of
physics, the observer will be the fundamental object of study.

Let us first attempt to fix the intuition by taking the example of a generic
theory of the electron. To understand the electron, one must experiment on
the electron. For instance, in a lab, one could power electricity into a wire,
undertake spin measurements, perform double-slits experiments or magnetism
experiments, etc. All of these experiments build up the knowledge of the elec-
tron’s behaviour and properties. Eventually with enough accumulated knowl-
edge, one can formulate a theory of the electron, which describes its behaviour
and properties. The theory of the electron is considered a physical theory by
association, because it applies to the electron, which by definition is a physical
particle.
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We now invite the reader to think of our theory of the observer along the
same lines, except we replace the word ’electron’ with the word ’observer’. In-
stead of experimenting on the electron, we experiment on the observer. Instead
of a few targeted experiment in the lab, we target all possible experiments this
observer could do. Instead of recovering, say, the Schrödinger equation which
governs the behaviour of the electron, we get a comprehensive theory of funda-
mental physics which governs the participation of the observer in nature.

But where the electron only knows a few tricks, the scope of possible observer
participation is a coalescence of three mathematically related but philosophically
distinct concepts: the universal Turing machine, the universal constructor and
the universal experimenter, and thus is able to account for all construction
and verification rules whether physical, simulated or mathematical and over
all possible knowledge-bearing states of any possible systems. Essentially, the
observer has Turing-complete participatory freedom.

Let us note that despite the comprehensive scope the theory, the definition
of the observer will be remarkably simple. However, perhaps as a victim of
its own axiomatic simplicity, it can be difficult to understand why it works so
simply, why it works so completely and, last but not least, why it works at
all, and thus challengingly runs counters to many’s intuitions and expectations.
We advise the reader to read this part along with the main result multiple
times and as needed, as it significantly helps train and re-train one’s intuition
to accommodate the new information, the techniques and the strategies that
are at play in this derivation.

3.1 A Theory of the Observer

The departure here from typical practice and intuition is exceptional; let us
note that the observer in modern theoretical physics is considered by many to
be the last element of quantum physics that is not yet mathematically integrated
into the formalism. Whereas here, is it the only axiom that we define, and is
sufficient by itself to entail fundamental physics.

Axiom 1 (Observer). An observer of m, denoted as O, is a measure space over
the knowledge space of m:

O := (m,E, ρ : E → [0, 1]) (33)

where ρ is a probability measure, m is an experimental contribution, and E
is the knowledge space of m.

We note that, unlike traditional measure theory in mathematics, here our
definition of the measure is over tuples rather than sets. A prescription to
tackle such a measure will be given in the main result section.

Axiom 1 is as close as I could get to a mathematical definition of the observer
as ”I think, therefore I am”, while still retaining a minimal degree of generality
and precision sufficient to claim fundamental physics self-reflectively from said
definition.
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Just like we did earlier with a minimalistic definition of the scientific method
as a recursive enumeration of the domain of science, and then showed that the
richness of the concept was implicit in the relatively simple definition, here a
similar richness will be recovered for fundamental physics as a consequence of
this definition.

To obtain the laws of physics, in an exact formulation, we will have to max-
imize the information associated with the result of the measure referenced in
axiom 1, and this will be achieved by maximizing the entropy. Maximizing the
entropy of a measure over a power-tuple rather than a power-set requires a tech-
nical prescription which is given in the main result section. As for the context,
we will not think of the entropy in terms of the simplified notion common in
introductory physics as a ’measure of disorder’, rather we will think of it as a
quantification of information in the sense of Claude Shannon. In this context,
the information acquired by the observer following a measure adopts the role of
a message that fixes the newly acquired knowledge into a new state describing
the knowledge of the observer. The fundamental physics is a specialization of
the definition of the observer, in the sense that an observer is a measure space
over halting space, and the laws of physics will be its entropy-maximized version:

Thesis 1 (Fundamental Physics). The probability measure that maximizes the
information produced by O constitutes the fundamental physics, or simply ’the
laws of physics’.

We note that our definition of fundamental physics is a probability measure.
It is not given as a pre-formulated law such as F = ma. That is not to say that
laws do not come into play; but when they do they are derived from this measure,
and not brutely postulated. Taking an example of statistical mechanics, the
ideal gas law PV = nRT can be derived from the Gibbs measure as an equation
of state under the appropriate energy and volume constraint on entropy. In the
present case, derived laws become the logical equivalent of a statement on what
the observer can or cannot do to remain consistent with its own definition and
state.

Let us also clarify that axiomatic information does not represent knowledge
itself, rather it encodes the state of knowledge of the observer. We distinguish
knowledge (which is infallible once known) from information (which tells us
which subtuple the observer has measured).

3.2 Preliminary Discussion

3.2.1 Science

To introduce falsification within a formal system of science, the notion of knowl-
edge being infallible is critical. It is the reason why we can be certain that
acquiring new knowledge does in fact necessarily falsify any conflicting models.
If our knowledge was uncertain, we would simply be perpetually juggling the
probabilistic weights of various hypotheses and models, and no model could ever
be falsified. With this in mind, let us correct a terminology error made by Karl
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Popper. A core tenet of Karl Popper’s philosophy is that scientific knowledge
is always transitory, and so a scientific theory would be subject to falsification.
The correction is minor, but nonetheless leads to substantial clarifications. The
correction is on the usage of the term knowledge; knowledge is not transitory
rather it is the models that are. Models are entailed by knowledge, as such they
do not entail it in return. In fact, when acquiring new knowledge, if the model
conflicts with it, then the model always loses the tug of war because the former
is infallible while the later isn’t. The correct terminology is that scientific mod-
els (not knowledge) are transitory because knowledge (which isn’t transitory)
takes precedence over the conflicting model.

Karl Popper’s extended philosophy is correct in regards to scientific theories
(e.g. biology, economic science, psychology, etc.), but physics as it would is a
different beast altogether. The difference between the two stands out when we
investigate their relationship to our newly formalized observer. For instance, if
an observer ”violates” a scientific theory, then said theory is simply falsified.
This happens every once in a while, and other than perhaps a bruised ego, not
much harm is done. Whereas, if an observer were to violate the laws of physics,
presumably all hell would break loose. Of course, without a formal system of
science, we have historically constructed our laws of physics the same way as
any other scientific theory assuming they are of the same category, and thus the
difference was unnoticed, but with a formal system of science we can pinpoint the
difference. A scientific theory is purely explanatory in nature because it involves
a choice of formal axiomatic representation of the experimental contribution,
and it is this choice that is falsified when facing conflicting knowledge. Whereas,
the observer cannot violate the fundamental physics without ceasing to be a
measure space of knowledge, and thus violating its own definition. There is a
self-referential component from the observer onto physics, which is absent from
mere scientific theories, that makes the fundamental physics inviolable to the
observer, whereas the scientific theory is only falsifiable to the observer hence
not inviolable.

In mathematics we typically welcome newfound clear-cut delimitations be-
tween previously overlapping concepts. For instance, chemistry overlaps with
physics significantly, and so does biology via bio-physics. What is the exact
split, if any, or is everything physics? With our system, we now know the differ-
ence; scientific theories are entailed by knowledge, whereas fundamental physics
is entailed by the definition of the observer. A word of caution however; in
practice one could always demand that we subject Axiom 1, and its predictions,
to the falsification process, and thus physics, via the definition of the observer
remains falsifiable and predictive despite being of a different class. Thus and
although to the untrained eye they may appear the same from their many sim-
ilarities, physics is the unique member of a special class of falsifiable theories.
The similarities are enough so that we probably do not have to rewrite the entire
philosophy on the matter, but at the mathematical level special care must be
taken.

This difference carries over with respect to the techniques used to falsify
physics. Physics, although falsifiable as we just said, is not subject to the fun-
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damental theorem of science which applies only to formal axiomatic represen-
tations of experimental contributions and is responsible for a common scientific
theory being falsifiable. For physics, a special falsification theorem must be
created, and such must start with the definition of the observer rather than
with the elements of the experimental contribution. The resulting falsification
theorem will be more challenging than the first, simply because the observer is a
measure space and this is a more challenging mathematical object to work with
than a mere enumeration. To falsify a common scientific theory via the funda-
mental theorem of science, it suffices to identify a halting program within the
experimental manifest that is not entailed by it. For instance, J.B.S. Haldane
one of the founders of evolutionary biology reportedly stated that finding the
fossils of a rabbit in the Precambrian would falsify the theory of evolution. This
is a binary yes/no type of falsification. Whereas, since physics is entailed by a
measure space, which in inherently probabilistic, falsifying physics will involve
the use of probabilities. Specifically, we will find that repeat experiments over
multiple copies of identical preparations, such that a probability distribution
can be extracted from a plurality of measurements, will be required to test or
falsify physics by comparing it to expectation values it predicts.

3.2.2 Observer

The reader will notice that Axiom 1 does not reference a plurality of observers,
rather it postulates what amounts to a singleton observer. The system is in-
tended to be formulated from the perspective of the observer. This should be
less surprising than it tends to be as it avoids a battery of observer-related
paradoxes, and captures the philosophically safest foundation, but ouch if the
intent is misunderstood. Let us explain the term, and then we will discuss its
motivation and attempt to address the concerns. The term singleton is im-
ported from software engineering, where the singleton pattern refers to a design
pattern of object-oriented programming in which a class can only be instanti-
ated once. Singleton does not mean that the program itself can only be ran
once, it only means that each running copy has only one instantiation of its
singleton variables within its memory. Our system supports the idea of ”run-
ning” multiple times in parallel, thus admitting multiple observers —or more
precisely formulated; it allows other observers to claim singleton status from
their perspective—, and the singleton observer axiom is not designed to prevent
that; it simply means that for each execution, the theory is formulated from
the perspective of its singleton observer. The singleton observer is ”I” from my
perspective, and ”you” from your perspective, and ”him” from his perspective,
etc. To be explicit, it is not a universal observer neither it is God — just you,
him, her or I. The singleton observer is a mathematical description of who ”I”
am that also conveniently formalizes the set of tools ”I” have access to in order
to understand or participate in nature. Let us point out that if we find it reason-
able to expect that physics ought to work for any number of observers between 1
and infinity; then physics must also work with just one — and just like Peano’s
axiom posits only the first natural number, here the singleton observer is the
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base axiom and others are to be entailed by the framework.
First, let us explain exactly how the theory is intended to support other

observers from the perspective of the singleton observer. Their existence will
be evidence-derived rather than postulated. Other observers, if they exist, can
and will be derived by the singleton observer the same way any other facts are
investigated, by merely inspecting the experimental contributions and weighting
the evidence for them, and thus do not need to be postulated. Do we also need
to postulate rocks, trees, or bees — or can we accept that their existence will
be derived conditional upon the scientific evidence, and if so why not demand
the same in regards to evidence for other observers? Indeed, psychologically
and developmental-wise, this is what happens naturally as an infant matures
and over time develops a theory of the mind to assess the motivations and the
decision-making strategies of others — Infant solipsism (Piaget). Evidence for
other observers is identified by inspection of all available evidence and builds
over time and is the subject of the scientific method. To include other observers
via postulation would be to erase said developmental steps from the scientific
method, or at least eliminate the necessity of a laborious but insightful deriva-
tion thereof by virtue of having reduced them to mere postulation, and would
result in a representation of reality missing those essential parts.

Secondly, one must remember the role of axioms. Axioms are the logical
minimal required to derive a theory and are intended to be free of any redun-
dancy. They are not a collection of desiratas, nor are they designed to make the
world a better place than it is. Not only do we not need a plurality thereof to
complete the theory, if we made the world conditional upon multiple axiomatic
observers, the thesis becomes nonsensical:

• We would be claiming that at least two observers are needed to entail the
laws of physics... can an observer, when working alone, violate the laws
of physics, but can’t if working as a team... ?

Just like quantum theory should work for one or any number of particles, the
laws of physics should logically be definable against only one observer if need
be, or any other number, because they limit what each observer can individually
do or cannot do. Team work, although socially beneficial, does not in this case
prevail against the laws of physics.

Let us now discuss a relevant physics experiment. The Wigner’s friend ex-
periment suggests a paradox in which two observers appears to witness the
collapse of a wave-function at different times. The Wigner’s friend experiment
supposes that an observer F measures a wave-function |ψ〉 = α |φ1〉 + β |φ2〉 to
be in state |φ1〉 or |φ2〉, with probability |α|2 and |β|2 respectively, that F notes
the result somewhere in his laboratory, but refrains from advising another ob-
server W of the result. This other observer then understands the wave-function
of the laboratory in which F performed his measurement to retain the superpo-
sition of |ψ〉. Whether the system is or isn’t in a superposition appears to be
resolved at different times for each observer; F sees the collapse at the instant
of measure, but W sees it only after F choose to share his notes with him. This
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is the paradox. A commonly proposed resolution is that superposition does not
occur in macroscopic objects, and the reproduction of this experiment in a mi-
croscopic system would appear less paradoxical. In actuality however, as soon
as observer F notes then hides the result, F begins to act as a glorified hidden
variable theory with respect to W and this is ruled out by Bell’s inequality;
thus F cannot cause |ψ〉 to collapse at any time other than simultaneously for
all observers. In his original paper Wigner stated another possible resolution:
”All this is quite satisfactory: the theory of measurement, direct or indirect,
is logically consistent so long as I maintain my privileged position as ultimate
observer”. Historically, this has not been the preferred interpretation because of
the obvious resistance to adopting the notion of a universal observer in physics.
However in our system the observer is not assumed to be universal but merely
to be formulated as a singleton, and other observers can proclaim the same.
In our system, the problem dissipates because the wave-function will be formu-
lated from the perspective of a singleton observer; and since other observers are
derived by inspecting the gathered evidence associated with said wave-function,
they are obviously unable to support a different wave-function behaviour than
that observed by the singleton.

Finally, why did we present the singleton observer as an axiom, and not say,
as a definition? An axiom implies one could claim it to be false, and technically
speaking this is indeed possible. For instance, one simply has to state they do not
believe they exist as an observer, and as we would only have their proclamation
of such to go by since the singleton observer is postulated, the scientific method
would be powerless to prove the claim wrong. The question ”what if axiom 1 is
false” is answered amicably with ”then you are not an observer”, and we move
on. The other, slightly more challenging, formulation of the same question is
”what if axiom 1 is incorrect” (in the sense that the measure space definition of
the singleton observer is the wrong one to use, but the singleton observer might
still otherwise be the correct overall approach). In this case we would simply
get, proportionally to a how wrong our definition is, the wrong laws of physics,
which is why we claimed earlier that physics is also subject to falsification. We
do not exclude that, in principle, future experiments may confirm, or force us
to adjust, the mathematical structure of axiom 1. Consequently, our physical
theory of the observer makes predictions and is falsifiable.

3.2.3 Ontology of Quantum Physics

In the (Discussion — Science) section, we have stated that a scientific model is
entailed by knowledge, but that it does not itself entail knowledge. Phrasing it
like this however makes it sounds like models are vacuous... This is not the case
as they do provide value, but we do not call this value knowledge, rather we
call it insight. For instance, it is the case that natural selection is an insightful
model of bio-diversity, but does it give us knowledge of bio-diversity? — or,
it is knowledge of bio-diversity that gives us natural selection? Consider these
statements:

1. (The model of) natural selection entails knowledge of bio-diversity.
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2. Knowledge of bio-diversity entails (the model of) natural selection.

In our system, the entailment is always as follows:

Knowledge =⇒ Model (34)

Consequently, it is only the second statement that is correct.
Taking this perspective for all scientific models may in some case appear

exaggerated, but that is only an appearance; it is in fact necessary to insist. Let
us take a more counter-intuitive example:

1. (The model of) gravity entails knowledge of objects falling.

2. Knowledge of objects falling entails (the model of) gravity.

Here we are dealing with that is traditionally considered a law of physics
rather than a purely scientific theory, and thus some more easily confuse the
model with reality. It is very common to encounter the reflex to say that it is the
first that is true, and the second is ridiculous because gravity obviously causes
objects to fall. However, here as well, only the second one can be sustained. It is
knowledge of objects falling that caused Newton to produce the model of gravity
as a scientific theory. Gravity may be a logically equivalent representation of
the sum-total of all falling objects; but the world is not gravity, the world is the
sum-total of all falling objects.

It is in regards to the interpretation of quantum physics that understanding
and accepting the correct entailment pays the most unclaimed dividend. Now,
consider the following statements; which one is true?

1. Measuring a wave-function |ψ〉 = α |φ1〉 + β |φ1〉 caused it to collapse to
|φ1〉 or to |φ2〉.

2. Registering ’clicks’ such as |φ1〉 or |φ2〉 on an incidence counter causes us
to derive |ψ〉 = α |φ1〉+ β |ψ1〉 as a statistical model of the clicks.

As before, our system demands that the second be the correct entailment.
This constitutes the ontology of quantum mechanics within our system: ’clicks’
exists and the wave-function is derived. The world is not a wave-function nor it
is gravity, the world is a cloud of ’clicks’ and a sum-total of falling objects... Let
us now investigate in the following section the consequences of this distinction in
the context of the interpretation of quantum physics and on the wave-function
collapse problem.

3.2.4 Interpretation of Quantum Physics

In our main result we will see that maximizing the entropy of our definition
of the observer produces the wave-function along with the Born rule as the
measure. We elected to discuss the interpretation before the main result because
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our feedback was that it is too abstract without conceptual decorations. It is
probably beneficial for the reader to read this section twice; once right now, and
another time after reading the main result.

First let us review statistical mechanics which also maximizes its entropy to
obtain its measure. In statistical mechanics, constraints on the entropy are asso-
ciated to instruments acting on the system. For instance, an energy constraint
on the entropy:

E =
'

q∈Q
ρ(q)E(q) (35)

is interpreted physically as an energy-meter measuring the system and pro-
ducing a series of energy measurement E1, E2, . . . converging to an average value
E.

Another common constraint is that of the volume:

V =
'

q∈Q
ρ(q)V (q) (36)

associated to a volume-meter acting on the system and converging towards
an average volume value V , also by producing a sequence of measurements of
the volume V1, V2, . . . .

With these two constraints, the typical system of statistical mechanics is
obtained by maximizing the entropy using its corresponding Lagrange equation,
and the method of the Lagrange multipliers:

L = −kB
'

q∈Q
ρ(q) ln ρ(q) + λ

)

*1−
'

q∈Q
ρ(q)

+

,+ β

)

*E −
'

q∈Q
ρ(q)E(q)

+

,+ γ

)

*V −
'

q∈Q
ρ(q)V (q)

+

,

(37)

and then solving ∂L
∂ρ = 0 for ρ, we get the Gibbs measure is:

ρ(q,β, p) =
1

Z
exp

%
−βE(q) + γV (q)

&
(38)

=
1

Z
exp

%
−β(E(q) + pV (q))

&
(39)

We will now discuss an interpretation of quantum mechanics that paral-
lels statistical mechanics, but extended to account for the usage of the trace
and matrices; essentially the entropy is maximized under the constraint of
measurement-events collected by phase-invariant instruments, and this yields
the wave-function along with the Born rule automatically as the statistical
model. Using the trace follows the prescription of the main result in order
to define a measure over a space of tuples instead of sets.
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Instead of an energy-meter or a volume-meter, consider a phase-invariant
instrument, such that the constraint it induces on the entropy is given as follows:

tr

-
a −b

b a

.
=

'

q∈Q
ρ(q) tr

/
a(q) −b(q)
b(q) (a)

0
(40)

where

/
a(q) −b(q)
b(q) a(q)

0
∼= a(q) + ib(q)

Here, the purpose of the trace is to enforce the phase-invariance of the in-
strument. The corresponding Lagrangian equation to maximize the entropy in
this case will be:

L = −
'

q∈Q
ρ(q) ln(q) + α

)

*1−
'

q∈Q
ρ(q)

+

,+ τ

)

*tr

-
a −b
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a(q) −b(q)
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0+

,

(41)

Maximizing the entropy under these types of constraints does indeed pro-
duces the probability measure of the wave-function along with the Born rule.
But it is derived using the same technique as we would for any other system of
statistical mechanics. Solving ρ for ∂L

∂ρ(q) = 0 gives:

ρ(q) =
1

Z
exp tr τ

/
a(q) −b(q)
b(q) a(q)

0
(42)

=
1

Z
det exp τ

/
a(q) −b(q)
b(q) a(q)

0
(43)

∼= exp 2τa(q)| exp iτb(q)|2 Born rule (44)

In this scenario, the interpretation will simply become that of an instrument
performing a sequence of measurements on the system such that an average
value is obtained, but instead of the simpler scalar instruments typically used
in statistical mechanics, here we have a phase-invariant instrument. What is
an example of such a detector; quite simply an incidence-counter or a single-
photon detector would be one. Such an instrument produces a sequence of
incidences (’clicks’) as photons are detected and ”advanced features” such as an
interference pattern is a consequence of this phase-invariance.

Statistical mechanics typically makes a distinction between a macroscopic
state and its possible microscopic states. For instance in a continuous classical
system, the possible positions and momentums of the molecules of air that
occupy the volume of a box each constitute a microscopic state, and the system
admits a macroscopic description in terms of a law of physics, or equation of state
— in the example of an ideal gas the equation of state is PV = nRT . Using
this conceptual basis, we would understand our observer to be a microscopic
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description of the state of the system; the observer knowns the microscopic state
(i.e. the results of measurements), and the laws of physics will be attributed
to the macroscopic description as an evolution of a superposition of possible
measurements. Specifically, the correspondence is as follows:

Statistical Mechanics Statistical System of ’clicks’

Entropy Boltzmann Shannon (45)

Measure Gibbs Born Rule on wave-function (46)

Micro-state Energy values Measurements results (’clicks’) (47)

Macro-state Equation of state Evolution of the wave-function (48)

Constraint Energy meter Phase-invariant instrument (49)

Hypothesis* Ergodic Single Message (50)

*The table shows the correspondence between the two theories, but the ele-
ments of the last entry are sufficiently different conceptually to discuss them: In
statistical mechanics it is often assumed that the system, say the molecules of air
in a box, permutes over the possible micro-states of the system (Ergodic hypoth-
esis); whereas here and using the Shannon entropy, there is no such permutation
— the observer ”experiences” the micro-state as a message of measurement re-
sults; the information gained by the observer from this message is equal and
opposite to that of the entropy of the system.

Had we used the Boltzmann entropy in lieu of the Shannon entropy, and the
ergodic hypothesis in lieu of the single message hypothesis, our interpretation
would have been very similar to the many-worlds interpretation, as in this case
the possible micro-states would correspond to a possible state of an observer
and would each associate to a possible measured world, but we didn’t — In
fact, our interpretation contains no unmeasurable redundancies. The observer
measures a single message, and this redundancy-free interpretation is consistent
with our experience.

Now, let us compare how the standard interpretations of quantum mechanics
addresses the measurement problem, versus our interpretation:

Standard: Measurement(wave-function1 23 4
Axiomatic

) =⇒ ’click’1 23 4
collapse problem?

(51)

Ours: Max-Entropy(’clicks’ + Experiments1 23 4
Axiomatic

) =⇒ wave-function1 23 4
derived

(52)

Our interpretation is the reverse of the standard quantum mechanical in-
terpretation. In our interpretation, we maximize the entropy of the clicks to
get the wave-function, whereas in the standard interpretations we measure the
wave-function to get the clicks. However, the measurement operation is prob-
lematic, and introduces the problem of the wave-function collapse; whereas the
maximization of entropy is a non-problematic operation. The ontology of our in-
terpretation matches that which is the given in nature (experiments + ’clicks’),
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and entails the model (wave-function). In our system, a wave-function collapse
is never encountered because the wave-function is always entailed from clicks.
The collapse problem is merely an artefact of an inverted axiomatic construc-
tion.

Some elements of our interpretation of quantum mechanics connects to the
ensemble interpretation of quantum mechanics, and other aspects appears very
similar to what John A. Wheeler had in mind when he wrote ”Information,
Physics, Quantum; The Search for Links.”, but he didn’t quite make it all the
way there. For instance, consider the following statement by him:

It from bit symbolizes the idea that every item of the physical
world has at bottom — at a very deep bottom, in most instances
— an immaterial source and explanation; that what we call real-
ity arises in the last analysis from the posing of yes-no questions
and the registering of equipment-evoked responses; in short, that
all things physical are information-theoretic in origin and this is a
participatory universe.

and also;

Three examples may illustrate the theme of it from bit. First,
the photon. With polarizer over the distant source and analyzer of
polarization over the photodetector under watch, we ask the yes or
no question, ”Did the counter register a click during the specified
second?” If yes, we often say, ”A photon did it.” We know perfectly
well that the photon existed neither before the emission nor after the
detection. However, we also have to recognize that any talk of the
photon ”existing” during the intermediate period is only a blown-up
version of the raw fact, a count

Raw fact; a count — in our scheme this is encoded in the form of axiomatic
information. The other part, also identified by Wheeler and necessary to com-
plete the description, is equipment-evoke response — in our scheme rather than
equipment we use the ambiguity-free notion of a terminating protocol along
with its preparation but the role is similar. The ’knowledge’ corresponds to the
steps required to construct an experiment in which photons are sent according
to a repeatable and well-defined preparation. When a ’click’ is registered, it
yields more than just a bit; it also associated to a unit of ’knowledge’ given in
the form of a protocol-preparation pair, and associated to the unitary transfor-
mations comprising the protocol applied to a given preparation.

Finally, let us state that in the main result we will actually obtain a gener-
alization of quantum mechanics to general linear transformations. In this case
the interpretation of quantum mechanics takes its simplest and visualizable in-
terpretation. The phase-invariant instruments are upgraded from a complex
phase to a general linear phase. The probability will now be associated with
a sequence of ’clicks’ recorded in space-time as events. Thus, the framework
describes reality as a sequence of space-time ’clicks’ (or events) which, under
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entropy maximization, are associated to a general linear wave-function in lieu
of the Gibbs ensemble. As we note, general relativity is primarily a theory of
events in space-time, and the extension to quantum theory assigns a probabil-
ity and an entropy to said events, such that the measure over said events is a
wave-function able to support the transformations required by general relativity
while preserving the invariance of the probability measure. This generalization
yields a quantum theory whose equations of motions are exactly the Einstein
field equations on a quantum mechanical background. Standard quantum field
theory will also be shown to be a special case of the presented quantum theory.

4 Main Result

Let us now use the definition of the observer (Axiom 1) to derive the fundamental
physics.

Our starting point will be the definition of the observer. We will then max-
imize the entropy of ρ using the method of the Lagrange multipliers. We recall
that our definition of the observer is:

O := (m,E, ρ : E → [0, 1]) (53)

where m is a n-tuple, E is a ”powertuple” and ρ is a (probability) measure
over E.

Note the similarity between our definition of the observer to that of a measure
space. Comparatively, the definition of a measure space is:

M := (X,Σ, µ(X)) (54)

where X is a set, Σ is (often) taken to be the powerset of X, and µ is
a measure over Σ. The difference with our measure is simply that sets have
been replaced by tuples. Consequently, we must adapt the standard definition
of a measure space from set to tuples. To do so, we will use the following
prescription:

1. We assign a non-negative number to each element of E.

2. We equip said numbers with the addition operation, converting the con-
struction to a vector space.

3. We maximize the entropy of a single element under the effect of con-
straints, by using the method of the Lagrange multipliers.

4. We prescribe that any and all constraints on said entropy must remain
invariant with respect to a change of basis of said vector space.

5. We use the tensor product n-times over said vector space to construct a
probability measure of n-tuples of halting programs.
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6. We use the direct sum to complete the measure over the whole of tuple-
space by combining the measures of different sizes as a single measure.

Explicitly, we maximize the entropy:

S = −
'

p∈m

ρ(p) ln ρ(p) (55)

subject to these constraints:

'

p∈m

ρ(p) = 1 (56)

'

p∈m

ρ(p) trM(p) = trM (57)

where the notation
5

p∈m designate a sum over the elements of the experi-
mental contributionm, whereM(p) are a matrix-valued maps from the elements
of m to Cn×n representing the linear transformations of the vector space and
where M is a element-by-element average matrix.

Usage of the trace of a matrix as a constraint imposes an invariance with
respect to a similarity transformation, accounting for all possible linear reorder-
ing of the elements of the tuples of the sum, thus allowing the creation of a
measure of a tuple or group of tuples from within a space of tuples, invariantly
with respect to the order of the elements of the tuples.

Similarity transformation invariance on the trace is the result of this identity:

trM = trBMB−1 (58)

We now use the Lagrange multiplier method to derive the expression for ρ
that maximizes the entropy, subject to the above mentioned constraints. Max-
imizing the following equation with respect to ρ yields the answer:

L = −kB
'

p∈m

ρ(p) ln(p) + α

)

*1−
'

p∈m

ρ(p)

+

,+ τ

)

*trM−
'

p∈m

ρ(p) trM(p)

+

,

(59)

where α and τ are the Lagrange multipliers. The explicit derivation is made
available in Annex B. Except for the presence of the trace and matrices, using the
Lagrangian multiplier method on the entropy is standard and shown in most
introductory textbooks of statistical mechanics to derive the Gibbs measure,
where the quantities are simple scalars. With the trace and matrices, the result
of the maximization process is:
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ρ(p, τ) =
1

Z(τ)
det exp

%
−τM(p)

&
(60)

where

Z(τ) =
'

p∈m

det exp
%
−τM(p)

&
(61)

Prior: A probability measure requires a prior. The prior, which accounts
for an arbitrary preparation of the ensemble, ought to be —for purposes of
preserving the scope of the theory— of the same kind as the elements of the
probability measure. Let us thus introduce the prior as the map P from the
elements of m to Cn×n and inject it into the probability measure as well as into
the partition function:

ρ(p) =
1

Z
det exp

%
P(p)

&
det exp

%
−τM(p)

&
(62)

where

Z =
'

p∈m

det exp
%
P(p)

&
det exp

%
−τM(p)

&
(63)

4.1 Completing the Measure over Halting Space

We have produced a measure over a sum of single experiments. Whereas the
measure we are after is a sum over the whole of the halting space of a given
experimental contribution, which contains all sub-tuples of the experimental
contribution. Completing the measure over said space will require us to sum
over differently-sized tuples. To do so, first, we will use the tensor product to
produce measures summing over multiple elements, and second, we will use the
direct sum to combine the differently-sized measures into a single final measure.

4.1.1 Split to Amplitude / Probability Rule

Before we are able to proceed with both the tensor product and the direct
sum, we must introduce a split over the mathematical operations present in the
measure.

We begin by splitting the probability measure into a first step, which is
linear with respect to a ’probability amplitude’, and a second which connects
the amplitude to the probability. We thus write the probability measure as:

ρ(p, τ) =
1

Z
detψ(p, τ) (64)
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where

ψ(p, τ) = exp
%
P(p)

&
exp

%
−τM(p)

&
(65)

Here, the determinant is interpreted as a generalization of the Born rule
and reduces to exactly it when M is the matrix representation of the complex
numbers (more on that in the physics section). In the general case where M
are arbitrary n× n matrices, ψ(p, τ) will be called the general linear probability
amplitude.

We can write ψ(p, τ) as a column vector:

|ψ〉 :=

)

6666*

ψ(p1, τ)
ψ(p2, τ)

...
ψ(pn, τ)

+

7777,
=

)

6666*

ψ1

ψ2

...
ψn

+

7777,
(66)

4.1.2 Tensor Product

How do we extend the measure to experimental contributions containing multi-
ple experiments? We have to use a Cartesian product on the sets of experimental
images and a tensor product on the probability amplitudes. For instance, let us
consider the following sets of experiments:

M1 = {p1a, p1b} (67)

M2 = {p2a, p2b} (68)

The Cartesian product produces experimental images comprised of two ele-
ments:

m ∈ M1 ×M2 = {(p1a, p2a), (p1a, p2b), (p1b, p2a), (p1b, p2b)} (69)

At the level of the probability amplitude, the Cartesian product of sets
translates to the tensor product. For instance, we start with a column vector
where each entry is one experiment;

|ψ1〉 =
/
expP(p1a)
expP(p1b)

0
(70)

Adding a program-step via a linear transformation produces:

T |ψ1〉 =
/
T00 expP(p1a) + T01 expP(p1b)
T10 expP(p1a) + T11 expP(p1b)

0
(71)
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We then introduce another column vector:

|ψ2〉 =
/
expP(p2a)
expP(p2b)

0
(72)

along with a program-step:

T′ |ψ2〉 =
/
T ′
00 expP(p2a) + T ′

01 expP(p2b)
T ′
10 expP(p2a) + T ′

11 expP(p2b)

0
(73)

Then the tensor product of these states produces the probability measure of
an experimental contribution as follows:

T |ψ1〉 ⊗T′ |ψ2〉 =

)

66*

(T00 expP(p1a) + T01 expP(p1b))(T
′
00 expP(p2a) + T ′

01 expP(p2b))
(T00 expP(p1a) + T01 expP(p1b))(T

′
10 expP(p2a) + T ′

11 expP(p2b))
(T10 expP(p1a) + T11 expP(p1b))(T

′
00 expP(p2a) + T ′

01 expP(p2b))
(T10 expP(p1a) + T11 expP(p1b))(T

′
10 expP(p2a) + T ′

11 expP(p2b))

+

77,

(74)

Now, each element of the resulting vector is an experimental contribution
of two programs, but its probability is a sum over a path. One can repeat the
process n times.

4.1.3 Direct Sum

In the previous section, we have introduced a way to produce measures of fixed
sizes n by using the tensor product. Here, we wish to produce a measure with el-
ements of different sizes. Taking the direct sum of the measures of different sizes
(where each individual size is produced from the tensor product), accomplishes
the goal and yields an amplitude given has follows:

|ψ〉 = |ψ1〉 ⊕ (
88ψ′

1

9
⊗
88ψ′

2

9
)⊗ (

88ψ′′
1

9
⊗
88ψ′′

2

9
⊗
88ψ′′

3

9
)⊕ ... (75)

In quantum field theory, in the limiting case n → ∞ and when M(p) is
reduced to the complex field, these are the states of a Fock Space, which we have
obtained here simply my maximizing the entropy of the measure associated with
our simple definition of the observer (Axiom 1). In the case for the measure
space to be on all possible experiments, it requires n → ∞.

4.2 Discussion — Fock Space, Measures over Tuples

Some may consider it even more fundamental to interpret our result from the
angle of measure theory in the sense that an entropy-maximized measure over
the tuples of a tuple-space (as an extension to typical measure theory defined
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for the subsets of a set) induces a Fock Space, along with the appropriate prob-
ability rule (Born rule) for use in quantum mechanics. The measures used in
quantum mechanics would thus result quite intuitively from this simple exten-
sion of measure theory, previously defined for sets, to tuples, and then simply
maximizing the entropy.

We should mention that, although tuples can represent anything, in our
system Axiom 1 requires the tuples to represent experimental contributions (or
halted programs). But this is a minimal constraint, enforcing, while introducing
no other constraints, that all experimental preparations or protocols must be
describable in finitely many steps.

4.3 Connection to Computation

Let us begin by reviewing the basics of quantum computation. One starts with
a state vector:

|ψa〉 =

)

66*

0
...
n

+

77, (76)

Which evolves unitarily to a final state:

|ψb〉 = U0U1 . . . Um |ψa〉 (77)

Clever use of the unitary transformations, often arranged as simple ’gates’,
allows one to execute a program, but technically speaking any arrangements
of unitary transformations qualify abstractly as a program (without or without
gates). The input to the program is the state |ψa〉 and the output is the state
|ψb〉. One would note that, so defined and if the sequence of unitary transfor-
mation is finite, such a program must always halt, and thus its complexity must
be bounded. One can however get out of this predicament by taking the final
state |ψb〉 to instead be an intermediary state, and then to add more gates in
order continue with a computation:

step 1 |ψb〉 = U0U1 . . . Up |ψa〉 (78)

step 2 |ψc〉 = U ′
0U

′
1 . . . U

′
q |ψb〉 (79)

...

step k |ψk′〉 = U ′
0U

′
1 . . . U

′
v |ψk〉 (80)

...

For a quantum computation to simulate a universal Turing machine it must
be able to add more steps until a halting state is reached (or continue to add
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steps indefinitely if the program never halts). But note, that each step represents
a valid quantum mechanical state of nature and is itself a completed program.

Comparatively, the linear transformations T1,T2, . . . of our main result are
here interpreted in the same manner as those used in quantum computations,
but extended to the general linear group. Protocols are executed by chaining
transformations on a preparation:

|ψb〉1234
final state

= T1T2 . . .Tn1 23 4
protocol

|ψa〉1234
preparation

(81)

And quantum mechanical computations are recovered for unitary transfor-
mations:

|ψb〉1234
final state

= U1U2 . . .Un1 23 4
computing steps

|ψa〉1234
initial state

(82)

We are now ready to begin investigating the main result as a physical theory.

5 Foundation of Physics

Based on our main result, we will introduce an algebra of natural states and
we will use it to classify the linear transformations on said amplitude. We
will start with the 2D case, then the 4D case. In all cases, the probability
amplitude transforms linearly with respect to general linear transformations
and the probability measure, obtained from the determinant, is positive-definite.
We will see that the 2D case automatically reduces to standard non-relativistic
quantum mechanics when the general linear group is reduced to the spinor
group, and the 4D case reduces to relativistic quantum mechanics automatically
also when the general linear group is reduced to the spinor group. Finally, we will
show that the general linear wave-function entails the Einstein field equations
as its evolution equation.

5.0.1 Matrix-Valued Vector and Transformations

To work with the general linear probability amplitude, we will use vectors whose
elements are matrices. An example of such a vector is:

|ψ〉 =

)

66*

M1

...
Mm

+

77, (83)

Likewise a linear transformation of this space will expressed as a matrix of
matrices:

44



T =

)

66*

M00 . . . M0m

...
. . .

...
Mm0 . . . Mmm

+

77, (84)

Note: The scalar element of the vector space are given as:

a |ψ〉 =

)

66*

aM1

...
aMm

+

77, (85)

5.1 Algebra of Natural States, in 2D

The notation of our upcoming definitions will be significantly improved if we use
a geometric representation for matrices. Let us therefore introduce a geometric
representation of 2× 2 matrices.

5.1.1 Geometric Representation of 2× 2 matrices

Let G(2,R) be the two-dimensional geometric algebra over the reals. We can
write a general multi-vector of G(2,R) as follows:

u = A+X+B (86)

where A is a scalar, X is a vector andB is a pseudo-scalar. Each multi-vector
has a structure-preserving (addition/multiplication) matrix representation. Ex-
plicitly, the multi-vectors of G(2,R) are represented as follows:

Definition 21 (Geometric representation of a matrix (2× 2)).

A+Xx̂+ Y ŷ +Bx̂ ∧ ŷ ∼=
/
A+X −B + Y
B + Y A−X

0
(87)

And the converse is also true, each 2 × 2 real matrix is represented as a
multi-vector of G(2,R).

We can define the determinant solely using constructs of geometric algebra[10].

Definition 22 (Clifford conjugate (of a G(2,R) multi-vector)).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2 (88)

Then the determinant of u is:
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Definition 23 (Geometric representation of the determinant (of a 2 × 2 ma-
trix)).

det : G(2,R) −→ R
u /−→ u‡u

(89)

For example:

detu = (A−X−B)(A+X+B) (90)

= A2 −X2 − Y 2 +B2 (91)

= det

/
A+X −B + Y
B + Y A−X

0
(92)

Finally, we define the Clifford transpose:

Definition 24 (Clifford transpose (of a matrix of 2× 2 matrix elements)). The
Clifford transpose is the geometric analogue to the conjugate transpose. Like the
conjugate transpose can be interpreted as a transpose followed by an element-
by-element application of the complex conjugate, here the Clifford transpose is
a transpose, followed by an element-by-element application of the Clifford con-
jugate:

)

66*

u00 . . . u0n

...
. . .

...
um0 . . . umn

+

77,

‡

=

)

66*

u‡
00 . . . u‡

m0
...

. . .
...

um0 . . . u‡
nm

+

77, (93)

If applied to a vector, then:

)

66*

v1

...
vm

+

77,

‡

=
!
v‡
1 . . .v‡

m

"
(94)

5.1.2 Axiomatic Definition of the Algebra, in 2D

Let V be an m-dimensional vector space over G(2,R). A subset of vectors in V
forms an algebra of natural states A(V) iff the following holds:

1. ∀ψ ∈ A(V), the bilinear map:

〈·, ·〉 : V× V −→ G(2,R)
〈u,v〉 /−→ u‡v

(95)

is positive-definite:

〈ψ,ψ〉 ∈ R>0 (96)
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2. ∀ψ ∈ A(V), then for each element ψ(q) ∈ ψ, the function:

ρ(ψ(q),ψ) =
1

〈ψ,ψ〉ψ(q)
‡ψ(q) (97)

is positive-definite:

ρ(ψ(q),ψ) ∈ R>0 (98)

We note the following comments and definitions:

• From (1) and (2) it follows that ∀ψ ∈ A(V), the probabilities sum to
unity:

'

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (99)

• ψ is called a natural (or physical) state.

• 〈ψ,ψ〉 is called the partition function of ψ.

• ρ(q,ψ) is called the probability measure (or generalized Born rule) of ψ(q).

• The set of all matrices T acting on ψ, as Tψ → ψ′, which leaves the sum
of probabilities normalized (invariant):

'

ψ(q)∈ψ

ρ(ψ(q),Tψ) =
'

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (100)

are the natural transformations of ψ.

• A matrix O such that ∀u∀v ∈ A(V) :

〈Ou,v〉 = 〈u,Ov〉 (101)

is called an observable.

• The expectation value of an observable O is:

〈O〉 = 1

〈ψ,ψ〉 〈Oψ,ψ〉 (102)

5.1.3 Observable, in 2D — Self-Adjoint Operator

Let us now investigate the general case of an observable is 2D. A matrix O is
an observable iff it is a self-adjoint operator; defined as:

〈Oφ,ψ〉 = 〈φ,Oψ〉 (103)

∀u∀v ∈ V.
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Setup: Let O =

/
O00 O01

O10 O11

0
be an observable. Let φ and ψ be 2 two-state

vectors φ =

/
φ1

φ2

0
and ψ =

/
ψ1

ψ2

0
. Here, the components φ1, φ2, ψ1, ψ2, O00,

O01, O10, O11 are multi-vectors of G(2,R).

Derivation: 1. Let us now calculate 〈Oφ,ψ〉:

2〈Oφ,ψ〉 = (O00φ1 +O01φ2)
‡ψ1 + ψ‡

1(O00φ1 +O01φ2)

+ (O10φ1 +O11φ2)
‡ψ2 + ψ‡

2(O10φ1 +O11φ2) (104)

= φ‡
1O

‡
00ψ1 + φ‡

2O
‡
01ψ1 + ψ‡

1O00φ1 + ψ‡
1O01φ2

+ φ‡
1O

‡
10ψ2 + φ‡

2O
‡
11ψ2 + ψ‡

2O10φ1 + ψ‡
2O11φ2 (105)

2. Now, 〈φ,Oψ〉:

2〈φ,Oψ〉 = φ‡
1(O00ψ1 +O01v2) + (O00ψ1 +O01ψ2)

‡φ1

+ φ‡
2(O10ψ1 +O11ψ2) + (O10ψ1 +O11ψ2)

‡φ1 (106)

= φ‡
1O00ψ1 + φ‡

1O01ψ2 + ψ‡
1O

‡
00φ1 + ψ‡

2O
‡
01φ1

+ φ‡
2O10ψ1 + φ‡

2O11ψ2 + ψ‡
1O

‡
10φ1 + ψ‡

2O
‡
11φ1 (107)

For 〈Oφ,ψ〉 = 〈φ,Oψ〉 to be realized, it follows that these relations must
hold:

O‡
00 = O00 (108)

O‡
01 = O10 (109)

O‡
10 = O01 (110)

O‡
11 = O11 (111)

Therefore, it follows that it must be the case that O must be equal to its
own Clifford transpose. Thus, O is an observable iff:

O‡ = O (112)

which is the equivalent of the self-adjoint operator O† = O of complex
Hilbert spaces.

5.1.4 Observable, in 2D — Eigenvalues / Spectral Theorem

Let us show how the spectral theorem applies to O‡ = O, such that its eigen-
values are real. Consider:
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O =

/
a00 a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11

0
(113)

In this case, it follows that O‡ = O:

O‡ =

/
a00 a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11

0
(114)

This example is the most general 2 × 2 matrix O such that O‡ = O. The
eigenvalues are obtained as follows:

0 = det(O− λI) = det

/
a00 − λ a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11 − λ

0
(115)

implies:

0 = (a00 − λ)(a11 − λ)− (a− xe1 − ye2 − be12)(a+ xe1 + ye2 + be12 + a11)
(116)

0 = (a00 − λ)(a11 − λ)− (a2 − x2 − y2 + b2) (117)

finally:

λ = {1
2

!
a00 + a11 −

:
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

"
, (118)

1

2

!
a00 + a11 +

:
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

"
} (119)

We note that in the case where a00−a11 = 0, the roots would be complex iff
a2−x2−y2+b2 < 0, but we already stated that the determinant of real matrices
must be greater than zero because the exponential maps to the orientation-
preserving general linear group— therefore it is the case that a2−x2−y2+b2 ≥ 0,
as this expression is the determinant of the multi-vector. Consequently, O‡ = O
— implies, for orientation-preserving2 transformations, that its roots are real-
valued, and thus constitute a ’geometric’ observable in the traditional sense of
an observable whose eigenvalues are real-valued.

5.2 Algebra of Natural States, in 4D

We will now consider the general case for a vector space over 4× 4 matrices.

2We note the exception that a geometric observable may have real eigenvalues even in the
case of a transformation that reverses the orientation if the elements a00 − a11 are not zero
and up to a certain magnitude, whereas transformations in the natural orientation are not
bounded by a magnitude — thus creating an orientation-based asymmetry.
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5.2.1 Geometric Representation (in 4D)

The notation will be significantly improved if we use a geometric representation
of matrices. Let G(4,R) be the two-dimensional geometric algebra over the
reals. We can write a general multi-vector of G(4,R) as follows:

u = A+X+ F+V +B (120)

where A is a scalar, X is a vector, F is a bivector, V is a pseudo-vector,
and B is a pseudo-scalar. Each multi-vector has a structure-preserving (ad-
dition/multiplication) matrix representation. Explicitly, the multi-vectors of
G(4,R) are represented as follows:

Definition 25 (Geometric representation of a matrix (4× 4)).

A+ Tγ0 +Xγ1 + Y γ2 + Zγ3

+ F01γ0 ∧ γ1 + F02γ0 ∧ γ2 + F03γ0 ∧ γ3 + F23γ2 ∧ γ3 + F13γ1 ∧ γ3 + F12γ1 ∧ γ2

+ Vtγ1 ∧ γ2 ∧ γ3 + Vxγ0 ∧ γ2 ∧ γ3 + Vyγ0 ∧ γ1 ∧ γ3 + Vzγ0 ∧ γ1 ∧ γ2

+Bγ0 ∧ γ1 ∧ γ2 ∧ γ3

∼=

!

"""#

A+X0 − iF12 − iV3 F13 − iF23 + V2 − iV1 −iB +X3 + F03 − iV0 X1 − iX2 + F01 − iF02

−F13 − iF23 − V2 − iV1 A+X0 + iF12 + iV3 X1 + iX2 + F01 + iF02 −iB −X3 − F03 − iV0

−iB −X3 + F03 + iV0 −X1 + iX2 + F01 − iF02 A−X0 − iF12 + iV3 F13 − iF23 − V2 + iV1

−X1 − iX2 + F01 + iF02 −iB +X3 − F03 + iV0 −F13 − iF23 + V2 + iV1 A−X0 + iF12 − iV3

$

%%%&

(121)

And the converse is also true, each 4 × 4 real matrix is represented as a
multi-vector of G(4,R).

We can define the determinant solely using constructs of geometric algebra[10].

Definition 26 (Clifford conjugate (of a G(4,R) multi-vector)).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2 + 〈u〉3 + 〈u〉4 (122)

and ⌊m⌋{3,4} as the blade-conjugate of degree 3 and 4 (flipping the plus sign to
a minus sign for blade 3 and blade 4):

⌊u⌋{3,4} := 〈u〉0 + 〈u〉1 + 〈u〉2 − 〈u〉3 − 〈u〉4 (123)

Then, the determinant of u is:

Definition 27 (Geometric representation of the determinant (of a 4 × 4 ma-
trix)).

det : G(4,R) −→ R
u /−→ ⌊u‡u⌋3,4u‡u

(124)
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5.2.2 Axiomatic Definition of the Algebra, in 4D

Let V be a m-dimensional vector space over the 4 × 4 real matrices. A subset
of vectors in V forms an algebra of natural states A(V) iff the following holds:

1. ∀ψ ∈ A(V), the quadri-linear form:

〈·, ·, ·, ·〉 : V× V× V× V −→ G(4,R)
〈u,v,w,x〉 /−→ ⌊u‡v⌋3,4w‡x

(125)

is positive-definite:

〈ψ,ψ,ψ,ψ〉 ∈ R>0 (126)

2. ∀ψ ∈ A(V), then for each element ψ(q) ∈ ψ, the function:

ρ(ψ(q),ψ) =
1

〈ψ,ψ,ψ,ψ〉⌊ψ(q)
‡ψ(q)⌋3,4ψ(q)‡ψ(q) (127)

is positive-definite:

ρ(ψ(q),ψ) ∈ R>0 (128)

We note the following properties, features and comments:

• ψ is called a natural (or physical) state.

• 〈ψ,ψ,ψ,ψ〉 is called the partition function of ψ.

• ρ(ψ(q),ψ) is called the probability measure (or generalized Born rule) of
ψ(q).

• The set of all matrices T acting on ψ such as Tψ → ψ′ which leaves the
sum of probabilities normalized (invariant):

'

ψ(q)∈ψ

ρ(ψ(q),Tψ) =
'

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (129)

are the natural transformations of ψ.

• A matrix O such that ∀u∀v∀w∀x ∈ V :

〈Ou,v,w,x〉 = 〈u,Ov,w,x〉 = 〈u,v,Ow,x〉 = 〈u,v,w,Ox〉 (130)

is called an observable.

• The expectation value of an observable O is:

〈O〉 = 〈Oψ,ψ,ψ,ψ〉
〈ψ,ψ,ψ,ψ〉 (131)
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5.3 Probability-Preserving Transformation

5.3.1 Left Action in 2D

A left action on a wave-function : T |ψ〉, connects to the bilinear form as follows:
〈ψ|T‡T |ψ〉. The invariance requirement on T is as follows:

〈ψ|T‡T |ψ〉 = 〈ψ|ψ〉 (132)

We are thus interested in the group of matrices such that:

T‡T = I (133)

Let us consider a two-state system. A general transformation is:

T =

/
u v
w x

0
(134)

where u, v, w, x are multi-vectors of 2 dimensions. The expression G‡G is:

T‡T =

-
v‡ u‡

w‡ x‡

./
v w
u x

0
=

-
v‡v + u‡u v‡w + u‡x
w‡v + x‡u w‡w + x‡x

.
(135)

For the results to be the identity, it must be the case that:

v‡v + u‡u = 1 (136)

v‡w + u‡x = 0 (137)

w‡v + x‡u = 0 (138)

w‡w + x‡x = 1 (139)

This is the case if

T =
1√

v‡v + u‡u

-
v u

−eϕu‡ eϕv‡

.
(140)

where u, v are multi-vectors of 2 dimensions, and where eϕ is a unit multi-
vector. Comparatively, the unitary case is obtained with X → 0, and is:

U =
1:

|a|2 + |b|2

-
a b

−eiθb† eiθa†

.
(141)
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We can show that G‡G = I as follows:

=⇒ T‡T =
1

v‡v + u‡u

-
v‡ −e−ϕu
u‡ e−ϕv

.-
v u

−eϕu‡ eϕv‡

.
(142)

=
1

v‡v + u‡u

-
v‡v + u‡u v‡u− v‡u
u‡v − u‡v u‡u+ v‡v

.
(143)

= I (144)

In the case where T and |ψ〉 are n-dimensional, we can find an expression
for it starting from a diagonal matrix:

D =

-
ex1x̂+y1ŷ+ib1 0

0 ex2x̂+y2ŷ+ib2

.
(145)

where T = PDP−1. It follows quite easily that D‡D = I, because each
diagonal entry produces unity: e−x1x̂−y1ŷ−ib1ex1x̂+y1ŷ+ib1 = 1.

5.3.2 Adjoint Action in 2D

The left action case can recover at most the special linear group. For the general
linear group itself, we require the adjoint action. Since the elements of |ψ〉 are
matrices, in the general case, the transformation is given by adjoint action:

T |ψ〉T−1 (146)

The bilinear form is:

(T |ψ〉T−1)‡(T |ψ〉T−1) = (T−1)‡ 〈ψ|T‡T |ψ〉T−1 (147)

and the invariance requirement on T is as follows:

(T−1)‡ 〈ψ|T‡T |ψ〉T−1 = 〈ψ|ψ〉 (148)

With a diagonal matrix, this occurs for general linear transformations:

D =

)

66*

ea1+x1x̂+y1ŷ+ib1 0 0
0 ea2+x2x̂+y2ŷ+ib2 0

0 0
. . .

+

77, (149)

where T = PDP−1.

53



Taking a single diagonal entry as an example, the reduction is:

e−a1+x1x̂+y1ŷ+ib1ψ‡
1e

a1−x1x̂−y1ŷ−ib1ea1+x1x̂+y1ŷ+ib1ψ1e
−a1−x1x̂−y1ŷ−ib1 (150)

= e−a1+x1x̂+y1ŷ+ib1ψ‡
1e

2a1ψ1e
−a1−x1x̂−y1ŷ−ib1 (151)

We note that ψ‡ψ is a scalar, therefore

= ψ‡
1ψ1e

2a1e−a1+x1x̂+y1ŷ+ib1e−a1−x1x̂−y1ŷ−ib1 (152)

= ψ‡
1ψ1e

2a1e−a1e−a1 = ψ‡
1ψ1 (153)

6 Applications

6.1 Dirac Current and the Bilinear Covariants

The general linear wave-function is:

ψ = exp(A+X+ F+V +B) (154)

We immediately take a group reduction from the general linear group to the
Spinor group. As such we pose X → 0 and V → 0. The wave-function becomes:

ψ = exp(A+ F+B) (155)

We recall that in 4D, the probability is given as follows:

detψ = ⌊ψ‡ψ⌋3,4ψ‡ψ = exp 4A = ρ (156)

but, since we eliminated X → 0 and V → 0, we can drop the blade inversion
of degree 3, and the rule reduces to:

detψ = (ψ‡)∗ψ∗ψ‡ψ = exp 4A = ρ (157)

Let us now recover the familiar Dirac theory.
First, we will expand the probability rule, while injecting γ0 and γµ as fol-

lows:

(ψ‡)∗γ0ψ
∗ψ‡γµψ = (eAe−Be−F)γ0(e

Ae−BeF)(eAeBe−F)γµ(e
AeBeF) (158)
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But before we continue, let us introduce the notation of David Hestenes. We
write eF = R, a rotor, and e−F = ;R, its reverse. The pseudo-scalar term will
also be written as eB = eib. Finally, we write e4A = ρ. Consequently, we obtain:

= ρ
1
4 e−ib ;Rγ0ρ

1
4 e−ibRρ

1
4 eib ;Rγµρ

1
4 eibR (159)

= ρe−ib ;Rγ0γµe
ibR (160)

= ρ ;Rγ0γµR (161)

= (ρ, *J) (162)

This is simply the Dirac current expressed with Tetrads. The Dirac equation
describes the dynamics which preserve this current. The base wave-function in
canonical form is:

ψ = ρ
1
4 eibR (163)

Comparatively, David Hestenes’ wave-function is ψ = ρ
1
2 eibR which is very

similar. To make the full Dirac theory standout, we can introduce an interme-
diary form of the wave-function, as follows:

(ψ‡)∗γ0ψ
∗ψ‡γµψ = ρ

1
4 e−ib ;Rγ0ρ

1
4 e−ibRρ

1
4 eib ;Rγµρ

1
4 eibR (164)

= ρ
1
2 e−ib ;Rγ01 23 4

φ̄

γµ ρ
1
2 eibR1 23 4
φ

(165)

Specifically,

φ̄ := ρ
1
2 e−ib ;Rγ0 (166)

φ := ρ
1
2 eibR (167)

and thus

detψ = (ψ‡)∗ψ∗ψ‡ψ = φ̄γ0φ = ρ (168)

The full list of bilinear covariants are:

Determinant φ-notation Standard Form Result

scalar (ψ‡)∗γ0ψ
∗ψ‡ψ φ̄φ

<
ψ̄
88ψ

9
e0ρ cos b

vector (ψ‡)∗γ0ψ
∗ψ‡γµψ φ̄γµφ

<
ψ̄
88 γµ |ψ〉 Jµ

bivector (ψ‡)∗γ0ψ
∗ψ‡Iγµγνψ φ̄Iγµγνφ

<
ψ̄
88 iγµγν |ψ〉 S

pseudo-vector (ψ‡)∗γ0ψ
∗ψ‡γµIψ φ̄γµIφ

<
ψ̄
88 γµγ5 |ψ〉 sµ

pseudo-scalar (ψ‡)∗γ0ψ
∗ψ‡Iψ φ̄Iφ

<
ψ̄
88 iγ5 |ψ〉 − e0ρ sin b

(169)
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One might have been sceptical that our extension from the Born rule on
complex-valued wave-functions to the determinant of matrices could yield any
relevance for physics, but this result along with the dynamical result for U(1)
and the physical interpretation in the next sections, show that it is equivalent
to the full Dirac theory, in 4D. We would argue, however, that our approach
conceptually much simpler... as it essentially only involves applying the determi-
nant to a sum of matrices and noting the emergence of the geometric elements
manifest in the geometric algebra representation of matrices. No import of
physical baggage is required as this result follows directly from Axiom 1.

6.2 Yang-Mills Theories - Unitary Gauge/Recap

The typical gauge theory in quantum electrodynamics is obtained by the pro-
duction of a gauge covariant derivative over a U(1) invariance associated with
the use of the complex norm in any probability measure of quantum mechanics.
A parametrization of ψ over a differentiable manifold is required to support the
derivation. Localizing the invariance group θ → θ(x), over said parametrization,
yields the corresponding covariant derivative:

Dµ = ∂µ + iqAµ(x) (170)

Where Aµ(x) is the gauge field. The U(1) invariance results from the usage
of the complex norm to construct a probability measure in a quantum theory,
and the presence of the derivative is the result of constructing said probabil-
ity measure as the Lagrangian of a Dirac field. If one then applies a gauge
transformation to ψ and Aµ:

ψ → e−iqθ(x)ψ and Aµ → Aµ + ∂µθ(x) (171)

Then, applies the covariant derivation, one gets:

Dµψ = ∂µψ + iqAµψ (172)

→ ∂µ(e
−iqθ(x)ψ) + iq(Aµ + ∂µθ(x))(e

−iqθ(x)ψ) (173)

= e−iqθ(x)Dµψ (174)

Finally, the field is given as follows:

Fµν = [Dµ,Dν ] (175)

where Dµ is the covariant derivative with respect to the potential one-form
Aµ = A α

µ Tα, and where Tα are the generators of the lie algebra of U(1).
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6.3 Quantum Gravity — General Linear Gauge

When our wave-function is extended to the general linear group (and the Born
rule to the determinant), then its fundamental invariance group is the orientation-
preserving general linear group GL+(4,R), rather than U(1).

Gauging the GL+(4,R) group is known to automatically entail the Einstein
field equations, as the resulting GL+(4,R)-valued field can be viewed as the
Christoffel symbols Γµ, and the commutator of the covariant derivatives as the
Riemann tensor. Expressing gravity via the general linear gauge is not a new
result: This is a result dating back from the 1956 with Utiyama[11], in 1961 with
Kibble[12], as well as the more recent work of David Hestenes[13] specifically
with geometric algebras.

A general linear transformation of ψ:

ψ′(x) → gψ(x)g−1 (176)

leaves the probability measure invariant.
The gauge-covariant derivative is:

Dµψ = ∂µψ − [iqAµ,ψ] (177)

Finally, the field is given as follows:

Rµν = [Dµ, Dν ] (178)

where Rµν is the Riemann tensor.
The Lagrangian is of course the Einstein-Hilbert action which, up to numer-

ical constant, is:

S =

=
εabcdR

ab ∧ ec ∧ ed =

=
d4 x

√
−gR (179)

Here we have an extra backbone to this gauge formulation of general rela-
tivity; specifically a quantum theory able to accommodate and normalize the
general linear group as a probability measure. Let us now discuss the physical
interpretation of quantum theory.

6.4 Physical Interpretation

Typically to insert gravity into a quantum field theory, one would take the
Einstein Field equation, then would linearize the metric: gµν = ηµν + hµν .
After expansion in powers of h, the Einstein-Hilbert action becomes:

/
S =

1

16πG

=
d4 x

√
−gR

8888
gµν→ηµν+hµν

→ 1

16πG

=
d4 x(∂h∂h+ h∂h∂h+ h2∂h∂h+ . . . )

(180)
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The indices on h has been dropped for brevity. The terms ∂h∂h are similar
in role to scalar field theory ∂φ∂φ, and the higher order terms are interaction
terms. Since the higher order terms cannot be normalized, and one must drop
the higher order terms from the theory yielding at best an approximation of
the full theory of quantum gravity to the first order approximation. Let us also
note that even if it were normalizable, the applicability of a power expansion to
the EFE is not certain to be appropriate.

Comparatively in our theory, the Einstein field equations are automatically
entailed by the theory as the equation of motion of the wave-function. They do
not have to be imported from general relativity, nor to they have to be made
linear to fit in.

Before we tackle the general linear case, let us first review the interpretation
of David Hestenes for the spinor case and in flat space-time. For this inter-
pretation, we pose X → 0,V → 0 and use the setting of flat spacetime. The
wave-function would be parametrized as follows:

ψ(x0, x1, x2, x3) = ρ(x0, x1, x2, x3)
1/4 exp

%
F(x0, x1, x2, x3) +B(x0, x1, x2, x3)

&

(181)

In this case the wave-function assigns a rotor R = exp(F), a probability
density ρ and a phase exp(B) to each point of R4. R as a rotor accounts for

a Lorentz rotation at each point: eµ = Rγu ;R. Thus, it assigns at each points
on the manifold an instruction to rotate in addition to giving it a statistical
weight and a phase. As argued by David Hestenes is his seminal paper[14], this
description is informationally complete, and equivalent, to other interpretations
of quantum physics; and is framed in terms of a relativistic kinematic theory of
fermions, such as that of the electron.

How does the general linear case compare? In this case, our wave-function
assigns an element of the GL+(4,R) group to each point on the manifold. The
wave-function, using the multi-vector notation, in this case would be parametrized
as follows:

ψ(x0, x1, x2, x3) =

ρ(x0, x1, x2, x3)
1/4 exp

%
X(x0, x1, x2, x3) + F(x0, x1, x2, x3) +V(x0, x1, x2, x3) +B(x0, x1, x2, x3)

&

(182)

where (x0, x1, x2, x3) ∈ M4.
In this case the wave-function dynamics are given by the complete Einstein

field equations, and the wave-function assigns an instruction to transform the
frame bundle at each point via a general linear transformation, and gives it
a statistical weight (instead of merely an instruction to rotate the comoving
frame of reference as in the case of electron kinematics). Finally, the general
linear wave-function can be extended to the Fock space via simple tensoring
and direct sums, and thus the interpretation is able to account for multiple
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general linear frame bundles transformations at each point on M4, as well as
superpositions thereof — while still easily connecting to a normalized probability
measure via the application of the determinant as a generalization of the Born
rule. The quantum theory works with general relativity as-is, without the need
to linearize it or modify it in any way, or even importing it from elsewhere (as it
is entailed from the theory directly), and gives a real valued-probability in 4D
for all superpositions or combinations of gravitational fields. In our framework
not only is gravity and quantum physics compatible; they are one and the same.

Testable predictions regarding general linear interference patterns are pro-
posed in the Annex.

6.5 Dimensional Investigation

Let us investigate the application of this system to dimensions other than 4.

6.5.1 Zero-dimension case

0. In 0D, the ”geometric algebra” is: ψ = expA, where A is a scalar. In our
system, this is equivalent to classical probabilities.

Obviously, there is no geometry in a 0D system.

6.5.2 Odd-dimension cases

1. In 1D, the geometric algebra is: ψ = expA + B, where A is a scalar
and B = e0B = IB ∼= iB is a pseudo-scalar. In 1D, the multi-vector
is a 1 × 1 matrix. The probability measure is given as the determinant
det

%
a+ ib

&
= a+ ib. This is not a real number, so naturally we eliminate

1D.

3. In 3D, the geometric algebra is ψ = expA + X + V + B, where A is a
scalar, X is a vector, V is a pseudo-vector and B is a pseudo-scalar. Here
the multi-vector is a representation of the complex 2× 2 matrices. Taking
the determinant produces a complex value and not a real, so naturally we
eliminate 3D for the same reason we eliminated 1D.

2n+1 In (2n+1)D, the same here happens as the 1D and 3D cases. We reject all
odd dimensions for the same reason: the determinant produces a complex
value instead of a real.

For all odd-dimension cases, the probability in our system maps to a complex
value instead of a real. We are not necessarily claiming that these are not
relevant for physics, but if they are then one needs a credible explanation to
account for complex probabilities (two probably measures required to describe
the whole space... ?)
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6.5.3 Even-dimension cases

2. In 2D, the geometric algebra is ψ = expA+X +B, where A is a scalar,
X is a vector and B is a pseudo-scalar. The probability normalizes to a
real value detψ = ψ‡ψ. As we did in the 4D case, let us now use spinors
(X → 0). We get:

ψ‡x̂ψ = eAe−Bx̂eAeB = e2AeBx̂e−B (183)

It supports a particle kinematics as we get one rotor: eµ = eBx̂µe
−B. The

2D theory also supports a gravity theory as it invariably admits the general
linear group. In 2D, since the determinant is a polynomial of degree 2
of ψ then the QFT and the quantum gravity are the same as they are
entailed from the same probability rule. This equivalence between QFT
and quantum gravity is a feature unique to 2D.

4. In 4D, we have recovered in the previous section the kinematic relativistic
theory of the electron that we are familiar with (or at least an interpre-
tation –David Hestenes’ interpretation– equivalent to it). But unlike the
2D case, the QFT is a sub-construction of the quantum gravity theory.
Specifically, the familiar QFT comes out with these replacements:

φ = ρ
1
2 e−ib ;Rγ0 (184)

φ = ρ
1
2 eibR (185)

Field theories over φ and φ do not capture the full invariance group of the
determinant. Trying to make quantum gravity fit on a φ and φ frame, that
is to say make quantum gravity a QFT, in 4D is bound to fail since the
φ and φ frame is a subconstruction of quantum gravity. Quantum gravity
requires the 4 degree polynomial ⌊ψ‡ψ⌋3,4ψ‡ψ to be defined in 4D.

6. In 6D, the wave-function is:

ψ = expA+X+ F+T+Q+V +B (186)

where A is a scalar, X is a vector, F is a bivector, T is a trivector, Q
is a quadrivector, V is a pseudo-vector and finally B is a pseudo-scalar.
Taking the even-sub-algebra, the spinor is:

ψ = expA+ F+Q+B (187)

The wave-function will produce a probability measure (after simplifica-
tions), and the transformation of the comoving frame would be as follows:

e6Ae−Fe−Qe−Bxµe
FeQeB (188)
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Here we have more than just the rotors eF as we also have the ”spin-
rotors” eQ. A typical QFT is extended to more dimensions than 4 by
adding the rotations instructions over the extra dimensions. However, in
6D the pure geometric interpretation in terms of rotations is not complete,
and the expected QFT construction requires the extra spin-rotation terms
eQ.

2n In even dimensions (2n > 6) the same happens as the 6D case, but with
even more extra terms.

The constraints of our probability measure are such that the rotors required
to produce a pure kinematical and geometric interpretation of the wave-function
only show up by themselves in 2D and 4D, and this seems to suggest that
a geometric interpretation purely in terms of a wave-function that assigns an
instruction to rotate at each point in space-time, is only appropriate for these
dimensions. In 6D or above, the formulation still admits structures that feel
similar enough to a QFT; but such formulation contains additional terms that
are not purely Lorentz rotation, thus making any geometric interpretation above
4D more challenging.

Even in 4D the geometric interpretation still contains the small increased
challenge of a spin around the pseudo-scalar I with parameter B, whereas in
the 2D version it is purely a rotor. Thus, one could argue that only the 2D case
is 100% geometric/rotational.

7 Discussion

Throughout the paper we have offered interpretations to subsets of our theory;
for instance, an interpretation of quantum mechanics, that of the measurement,
an interpretation of the singleton observer, of knowledge and of the science
method, etc..

To be manageable, these interpretations were intended to be presented as
independent and compartmentalized units. This was a pedagogical choice to
facilitate introduction into the framework. However, for a modest pedagogical
cost, they can be interpreted as a consistent whole. Once properly understood,
the whole is much more insightful than any of its components. Rather than
simply stating this interpretation, the paper has in fact been designed so that the
reader deduces the ”final” interpretation by himself or herself as the paper is read
section by section. And this is plausibly the only way it can be made palatable.
Some readers might have already understood it, or perhaps are already engaged
in imagining a way out of the system, but nonetheless to reach parity we will
make the intended interpretation here explicit.

To recap, we presented our framework pedagogically in four steps; each one
leading into the next:

1. A Formal System of Knowledge (used to describe reality)

2. A Formal System of Science (used to map out knowledge)
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3. A Formal Theory of the Observer (used to practice science)

4. A Formal Model of Physics (used to model what the observer can or cannot
do as it practices science in reality).

It took us more than five years of trials and errors, asking for feedback
and doing revisions to the presentation of the theory; gauging what people are
receptive to and what they immediately reject when they hear it, to produce
this explanation, that we consider (and hope for) to be completely intelligible
and palatable to the majority. This introduction is palatable but it doesn’t
answer the real reason why this framework was created.

So, why would someone create such a contraption? Why not simply posit a
few axioms (or equations) on a napkin, then amicably request our time of day
in the experimental falsification machinery (LHC, LIGO, Telescopes, etc.) to
test what we wrote on said napkin? Why did we begin by re-formulating the
entirety of mathematics as step one.

The goal can be devised as an attempt to create a ”super-tautology”[15].
The term super-tautology refers to a theory of reality constructed in a matter
to guarantee that it is true. Here the lexicon of knowledge, a construction which
is both Turing complete and element-wise infallible, along with its entailment
of the fundamental physics, is an attempt to formulate a super-tautology. More
precisely, the system re-formulates mathematics into an elaborate observer-trap
such that if one attempts to escape the construction, one would eventually
understand that they cannot do so, as the contraption models the observer via
Turing-complete participatory freedom. One’s inability to imagine a way out
of this construction is the primary reason why the construction sustains an
isomorphism with what we understand as reality, and why the laws of physics
are self-reflectively entailed as the rules of what the observer can or cannot do.
No other proposal is constructed in such a manner, and thus no other proposal
can claim itself to be a complete description of reality to this degree. In fact, for
any formal axiomatic systems, one can escape it by simply positing some of its
axioms to be false. Hence why, mathematics had to be reformulated to support
a super-tautology.

Within that setting we can now construct the argument, which explain re-
ality as follows:

1. Mathematics, formulated as a system of knowledge or as sequences of
incremental contributions, is a Turing-complete super-tautology.

(a) The super-tautology is not decidable but is recursively enumerable.

2. A recursive enumeration of the super-tautology is a message (i.e. Claude
Shannon) that describe what I see/understand reality as.

3. Maximizing the entropy of this message entails the fundamental physics
as the maximally informative model of said message.
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(a) The information which fixes the pick of the message from the super-
tautology acquires automatically the probabilistic structure of the
laws of physics (i.e. a wave-function and a Born rule) and the ge-
ometry is entailed simply as a consequence of the scope of this new
enlarged Born rule.

Finally, let us the state the one line summary of our proposal.

”Behind it all is surely an idea so simple, so beautiful, that when
we grasp it - in a decade, a century, or a millennium - we will all say
to each other, how could it have been otherwise?” (Wheeler, J. A.,
1986, p. 304)

The laws of physics are the measure that maximizes the quantity of information
produced by the observer’s participation in nature

7.1 Agnostic by Design

We will very briefly touch upon open philosophical questions such as the Hard
problem of consciousness, the problem of the mind of others, the question of
realism vs. anti-realism, and solipsism vs. objective reality, free-will vs. deter-
minism, as it is naturally expected that a comprehensive theory of the observer
would provide some progress... so, does it?

Our system is somewhat counterintuitive when it comes to these questions.
In fact, to achieve progress, our system must remain agnostic with respect to all
unresolvable problems. When facing these problems, our system would rather
dissolve the questions which lead to these problems, rather attempt to solve
them. This is seen as strengthening the system. Recall how we dissolved the
wave-function collapse problem by identifying the ontology as the information
(cloud of clicks) which fixes the pick of an incremental contribution from the
lexicon, and found that maximizing its entropy entailed the wave-function (thus,
no collapse ever happens). The collapse problem is thus dissolved, revealed to
be an artefact of incorrect ontology. As we will see, there exists a perspective
on all of these open questions for which the problem dissolves itself. And that
occurs in the present system.

Let us take the problem of the minds of others. Now, it is the case that
others could have a subjective experience, or they could be a philosophical
zombie. Therefore, the question subjective-experience vs. philosophical-zombie
remains open to this date, and we believe it likely that it will remain open
forever. If our system would have postulated multiple observers, then it would
be making a claim that the philosophical zombie hypothesis is false. Would
that be progress? Absolutely not, it would simply have introduced a weakness
into an otherwise undefeatable construction — for example, an adversary could
always catch us by surprise by saying ”You need multiple axiomatic observers,
right? What if others are .... philosophical zombies? Gotcha.”; thus escaping
the construction. But by constructing the system as a singleton observer, and
having other observers be evidence-derived, we now challenge this adversary
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to first find a proof of such before admitting the claim; and if such a proof
would ever be found, then the framework would simply absorb the proof and
imbue evidence-derived observers with the property of subjective experience by
reference to said proof. The framework remains undefeated regardless of the
successes or failures of said adversary.

The same goes with solipsism vs. objective reality. The system can easily
accommodate the notion that observers are physical objects that are modelled
by a theory of the observer just like an electron is a physical object that is
modelled by a theory of the electron; or alternatively, one can understand the
framework as a ”Cartesian-type meditation” where one deduces the limits of
Turing-complete participatory freedom to entail the laws of physics as the model
of this participation, without ever having to look outside the window. In either
cases the math is the same. Progress has been made while retaining the agnostic
position with respect to the open question. Both the solipsist and the objectivist
deduced the same model of physics, each from a different perspective compatible
with their own beliefs.

Likewise, the same dissolution happens with free will vs. determinism. The
framework places no constraints upon the decision making choices of the ob-
server; choices could be random, they could determined, they could be incoher-
ent (free-will). The framework requires only that an incremental contribution
be produced, and that the observer can presumably imagine all possible alter-
natives to his or her action so as to define a measure by maximizing the entropy
over these alternatives. There is no requirement that those alternatives be real
alternatives, as merey imagining them is sufficient to yield the same equations.
In this case, the two interpretations are that if the observer has participatory
freedom in principle, then each alternatives was a real choice (in this case the
laws of physics are equally real), and if not then the laws of physics are a
qualia of experience produced by the observer’s belief in its own participatory
freedom... perhaps a bit more elaborate to, but not fundamentally unlike, the
qualia of associating a colour to a certain wavelength of light.

The framework allows for philosophical progress without having to weaken
itself to achieve it, precisely because it entails the same equations while remain-
ing maximally agnostic.

8 Conclusion

We believe the formal system of science here-in presented to be a more powerful
formulation of fundamental physics as it is automatically entailed from the min-
imalist definition of the singleton observer itself, whose existence is guaranteed
by basic philosophical arguments. Amongst its key results are; to identify the
wave-function as a special form of the Gibbs ensemble, to provide an account
for the origin of the Born rule, to produce an interpretation of quantum physics
closely resembling that of statistical mechanics such that the ontology of mea-
surement events takes precedence over the derived measure; thus dissolving the
collapse problem. Finally, a generalization of the Born rule to the determinant,
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as recovered by the framework, supports both the familiar quantum field theo-
ries as well as the theory of general relativity; formalized within a general linear
quantum theory.
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A Notation

Sets, unless a prior convention assigns it another symbol, will be written us-
ing the blackboard bold typography (ex: L,W,Q, etc.). Matrices will be in
bold upper case (ex: A,B), whereas tuples, vectors and multi-vectors will be
in bold lower case (ex: u,v,g) and most other constructions (ex.: scalars,
functions) will have plain typography (ex. a,A). The identity matrix is I,
the unit pseudo-scalar (of geometric algebra) is I and the imaginary number
is i. The Dirac gamma matrices are γ0, γ1, γ2, γ3 and the Pauli matrices are
σx,σy,σz. The basis elements of an arbitrary curvilinear geometric basis will
be denoted e0, e1, e2, . . . , en (such that eν · eµ = gµν) and if they are orthonor-
mal as x̂0, x̂1, x̂2, . . . , x̂n (such that x̂µ · x̂ν = ηµν). The asterisk z∗ denotes
the complex conjugate of z, and the dagger A† denotes the conjugate trans-
pose of A. A geometric algebra of m dimensions over a field F is noted as
G(m,F). The grades of a multi-vector will be denoted as 〈v〉k. Specifically,
〈v〉0 is a scalar, 〈v〉1 is a vector, 〈v〉2 is a bi-vector, 〈v〉n−1 is a pseudo-vector
and 〈v〉n is a pseudo-scalar. Furthermore, a scalar and a vector 〈v〉0 + 〈v〉1
is a para-vector, and a combination of even grades (〈v〉0 + 〈v〉2 + 〈v〉4 + . . . )
or odd grades (〈v〉1 + 〈v〉3 + . . . ) are even-multi-vectors or odd-multi-vectors,
respectively. The commutator is defined as [A,B] := AB −BA and the anti-
commutator as {A,B} := AB +BA. We use the symbol ∼= to relate two sets
that are related by a group isomorphism. We use the symbol ≃ to relate two
expressions that are equal if defined, or both undefined otherwise. We denote
the Hadamard product, or element-wise multiplication, of two matrices using
⊙, and is written for instance as M ⊙ P, and for a multivector as u ⊙ v; for
instance: (a0 + x0x̂+ y0ŷ+ b0x̂∧ ŷ)⊙ (a1 + x1x̂+ y1ŷ+ b01x̂∧ ŷ) would equal
a0a1 + x0x1x̂+ y0y1ŷ + b0b1x̂ ∧ ŷ.

B Lagrange equation

The Lagrangian equation to maximize is:

L(ρ,α, τ) = −kB
'

q∈Q
ρ(q) ln ρ(q) + α

)

*1−
'

q∈Q
ρ(q)

+

,+ τ tr

)

*M−
'

q∈Q
ρ(q)M(q)

+

,

(189)

where α and τ are the Lagrange multipliers. We note the usage of the
trace operator for the geometric constraint such that a scalar-valued equation is
maximized. Maximizing this equation for ρ by posing ∂L

∂ρ(p) = 0, where p ∈ Q,

we obtain:
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∂L
∂ρ(p) = −kB ln ρ(p)− kB − α− τ trM(p) (190)

0 = kB ln ρ(p) + kB + α+ τ trM(p) (191)

=⇒ ln ρ(p) =
1

kB

%
−kB − α− τ trM(p)

&
(192)

=⇒ ρ(p) = exp

/
−kB − α

kB

0
exp

/
− τ

kB
trM(p)

0
(193)

=
1

Z
det exp

/
− τ

kB
M(p)

0
(194)

where Z is obtained as follows:

1 =
'

q∈Q
exp

/
−kB − α

kB

0
exp

/
− τ

kB
trM(q)

0
(195)

=⇒
-
exp

/
−kB − α

kB

0.−1

=
'

q∈Q
exp

/
− τ

kB
trM(q)

0
(196)

Z :=
'

q∈Q
det exp

/
− τ

kB
M(q)

0
(197)

We note that the Trace in the exponential drops down to a determinant, via
the relation det expA ≡ exp trA.

B.1 Multiple constraints

Consider a set of constraints:

M1 =
'

q∈Q
ρ(q)M1(q) (198)

...

Mn =
'

q∈Q
ρ(q)Mn(q) (199)

Then the Lagrange equation becomes:

L = −kB
'

q∈Q
ρ(q) ln ρ(q) + α

)

*1−
'

q∈Q
ρ(q)

+

,+ τ1 tr

)

*M1 −
'

q∈Q
ρ(q)M1(q)

+

,+ . . .

+τn tr

)

*Mn −
'

q∈Q
ρ(q)Mn(q)

+

,

(200)
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and the measure references all n constraints:

ρ(q) =
1

Z
det exp

/
− τ1
kB

M1(q)− · · ·− τn
kB

Mn(q)

0
(201)

B.2 Multiple constraints - General Case

In the general case of a multi-constraint system, each entry of the matrix cor-
responds to a constraint:

M00

-
1 ... 0
...
. . .

...
0 ... 0

.
=

'

q∈Q
ρ(q)M00(q)

-
1 ... 0
...
. . .

...
0 ... 0

.
(202)

...

M01

-
0 1 ... 0
...
...
. . .

...
0 0 ... 0

.
=

'

q∈Q
ρ(q)M01(q)

-
0 1 ... 0
...
...
. . .

...
0 0 ... 0

.
(203)

...

Mnn

-
0 ... 0
...
. . .

...
0 ... 1

.
=

'

q∈Q
ρ(q)Mnn(q)

-
0 ... 0
...
. . .

...
0 ... 1

.
(204)

For a n× n matrix, there are n2 constraints.
The probability measure which maximizes the entropy is as follows:

ρ(q) =
1

Z
det exp

/
− 1

kB
τ ⊙M(q)

0
(205)

where τ is a matrix of Lagrange multipliers, and ⊙, the element-wise multi-
plication, assigns the corresponding Lagrange multiplier to each constraint.

C A Step Towards Testable Predictions (Space-
time interference)

Certain transformations of the wave-function in quantum gravity, under the
general linear group or some of its subgroups, would produce richer interference
patterns than what is possible merely with complex interference in standard
QFT. This offer a difference in predictions between ordinary QFT and our
system, that can be used to test our system. The possibility of interference
patterns resulting from geometric algebra representation of the wave-function
has been proposed before; specifically, I note the work of B. I. Lev.[16] which
suggests (theoretically) the possibility of an interference pattern associated with
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the David Hestenes form of the relativistic wave-function and for the subset of
rotors.

Here we derive a number of these possible interference patterns.
In the case of the general linear group, the interference pattern is much

more complicated than the simple cosine of the standard Born rule, but that
is to be expected as it comprises the full general linear group and not just the
unitary group. It accounts for the group of all geometric transformations which
preserves the probability distribution ρ for a two-state general linear system.

General linear interference can be understood as a generalization of complex
interference, which is recovered under a ”shallow” phase rotation in 4D and
under just a plain normal phase rotation in 2D. Furthermore, when all elements
of the odd-sub-algebra are eliminated (by posing X → 0, V → 0), then the
wave-function reduces to the geometric algebra form of the relativistic wave-
function identified by David Hestenes, in terms of a spinor field.

Such reductions entails a series of interference patterns of decreasing com-
plexity, and as such they provide a method to experimentally identify which
group of geometric transformations physical reality allows in the most general
case of quantum gravity, using interference experiments as the identification
tool. Identification of the full general linear interference pattern (with all the el-
ements A,X,F,V,B) in a lab experiment would suggest a general linear gauge,
whereas identification of a reduced interference pattern (produced by A,F,B)
and subsequently showing a failure to observe the full general linear interfer-
ence (X → 0,V → 0) would suggest the Lorentz gauge instead of full quantum
gravity.

Let us start by introducing a notation for a dot product, then we will list
the various possible interference patterns.

C.1 Geometric Algebra Dot Product

Let us introduce a notation. We will define a bilinear form using the dot product
notation, as follows:

· : G(2n,R)×G(2n,R) −→ R
u · v /−→ 1

2 (det(u+ v)− detu− detv)
(206)

For example,

u = A1 +X1e1 + Y1e2 +B1e12 (207)

v = A2 +X2e1 + Y2e2 +B2e12 (208)

=⇒ u · v = A1A2 +B1B2 −X1X2 − Y1Y2 (209)

Iff detu > 0 and detv > 0 then u · v is always positive, and therefore
qualifies as a positive inner product (over the positive determinant group), but
no greater than either detu or detv, whichever is larger. This definition of the
dot product extends to multi-vectors of 4 dimensions.
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2D: In 2D the dot product is equivalent to this form:

1

2
(det(u+ v)− detu− detv) =

1

2

!
(u+ v)‡(u+ v)− u‡u− v‡v

"
(210)

= u‡u+ u‡v + v‡u+ v‡v − u‡u− v‡v (211)

= u‡v + v‡u (212)

4D: In 4D it is substantially more verbose:

1

2
(det(u+ v)− detu− detv) (213)

=
1

2

!
⌊(u+ v)‡(u+ v)⌋3,4(u+ v)‡(u+ v)− ⌊u‡u⌋3,4u‡u− ⌊v‡v⌋3,4v‡v

"

(214)

=
1

2

!
⌊u‡u+ u‡v + v‡u+ v‡v⌋3,4(u‡u+ u‡v + v‡u+ v‡v)− . . .

"
(215)

= ⌊u‡u⌋3,4u‡u+ ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u+ ⌊v‡v⌋3,4v‡v − . . . (216)

= ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u (217)

C.2 Geometric Interference (General Form)

A multi-vector can be written as u = a + s, where a is a scalar and s is the
multi-vectorial part. In general, the exponential expu equals exp a exp s because
a commutes with s.

One can thus write a general two-state system as follows:

ψ = ψ1 + ψ2 = eA1eS1 + eA2eS2 (218)

(219)

The general interference pattern will be of the following form:

detψ1 + ψ2 = detψ1 + detψ2 + ψ1 · ψ2 (220)

= enA1 + enA2 + ψ1 · ψ2 (221)
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where detψ1 + detψ2 is a sum of probabilities and where ψ1 · ψ2 is the
interference pattern, and where n is the number of dimensions of the geometric
algebra.

C.3 Complex Interference (Recall)

Consider a two-state wave-function:

ψ = ψ1 + ψ2 = eA1eB1 + eA2eB2 (222)

The interference pattern familiar to quantum mechanics is the result of the
complex norm:

ψ†ψ = ψ†
1ψ1 + ψ†

2ψ2 + ψ†
1ψ2 + ψ†

2ψ1 (223)

= eA1e−B1eA1eB1 + eA2e−B2eA2eB2 + eA1e−B1eA2eB2 + eA2e−B2eA1eB1

(224)

= e2A1 + e2A2 + eA1+A2(e−B1+B2 + e−(−B1+B2)) (225)

= e2A1 + e2A2

1 23 4
sum

+2eA1+A2 cos(B1 −B2)1 23 4
interference

(226)

C.4 Geometric Interference in 2D

Consider a two-state wave-function:

ψ = ψ1 + ψ2 = eA1eX1+B1 + eA2eX2+B2 (227)

To lighten the notation we will write it as follows:

ψ = ψ1 + ψ2 = eA1eS1 + eA2eS2 (228)

where

S = X+B (229)

The interference pattern for a full general linear transformation on a two-
state wave-function in 2D is:

ψ†ψ = ψ†
1ψ1 + ψ†

2ψ2 + ψ†
1ψ2 + ψ†

2ψ1 (230)

= eA1(eS1)‡eA1eS1 + eA2(eS2)‡eA2eS2 + eA1(eS1)‡eA2eS2 + eA2(eS2)‡eA1eS1

(231)

= e2A1 + e2A2 + eA1+A2((eS1)‡eS2 + (eS2)‡eS1) (232)

= e2A1 + e2A2

1 23 4
sum

+ eA1+A2(e−X1−B1eX2+B2 + e−X2−B2eX1+B1)1 23 4
interference

(233)
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C.5 Geometric Interference in 4D

Consider a two-state wave-function:

ψ = ψ1 + ψ2 = eA1eX1+F1+V1+B1 + eA2eX2+F2+V2+B2 (234)

To lighten the notation we will write it as follows:

ψ = ψ1 + ψ2 = eA1eS1 + eA2eS2 (235)

where

S = X+ F+V +B (236)

The geometric interference patterns for a full general linear transformation
in 4D is given by the product:

⌊ψ‡ψ⌋3,4ψ‡ψ = ⌊ψ‡
1ψ1⌋3,4ψ‡

1ψ1 + ⌊ψ‡
2ψ2⌋3,4ψ‡

2ψ2 + ψ1 · ψ2 (237)

= e4A1 + e4A2 +
!
eA1eS1

"
·
!
eA2eS2

"
(238)

In many cases of interest, the pattern simplifies. Let us see some of these
cases now.

C.6 Geometric Interference in 4D (Shallow Phase Rota-
tion)

If we consider a sub-algebra in 4D comprised of even-multi-vector products ψ‡ψ,
then a two-state system is given as:

ψ = ψ1 + ψ2 (239)

where

ψ1 = (eA1eF1eB1)‡(eA1eF1eB1) = e2A1e2B1 (240)

ψ2 = (eA2eF2eB2)‡(eA2eF2eB2) = e2A2e2B2 (241)

Thus

ψ = e2A1e2B1 + e2A2e2B2 (242)

The quadri-linear map becomes a bilinear map:

ψ†ψ = (e2A1e−2B1 + e2A2e−2B2)(e2A1e2B1 + e2A2e2B2) (243)

= e2A1e−2B1e2A1e2B1 + e2A1e−2B1e2A2e2B2 + e2A2e−2B2e2A1e2B1 + e2A2e−2B2e2A2e2B2

(244)

= e4A1 + e4A2

1 23 4
sum

+2e2A1+2A2 cos(2B1 − 2B2)1 23 4
complex interference

(245)

72



C.7 Geometric Interference in 4D (Deep Phase Rotation)

A phase rotation on the base algebra (rather than the sub-algebra) produces a
difference interference pattern. Consider a two-state wave-function:

ψ = ψ1 + ψ2 = eA1eB1 + eA2eB2 (246)

The sub-product part is:

ψ‡ψ = (eA1eB1 + eA2eB2)(eA1eB1 + eA2eB2) (247)

= eA1eB1eA1eB1 + eA1eB1eA2eB2 + eA2eB2eA1eB1 + eA2eB2eA2eB2 (248)

= e2A1e2B1 + e2A2e2B2 + 2eA1+A2eB1+B2 (249)

The final product is:

⌊ψ‡ψ⌋3,4ψ‡ψ = (e2A1e−2B1 + e2A2e−2B2 + 2eA1+A2e−B1−B2)

× (e2A1e2B1 + e2A2e2B2 + 2eA1+A2eB1+B2) (250)

= e2A1e−2B1e2A1e2B1 + e2A1e−2B1e2A2e2B2 + e2A1e−2B12eA1+A2eB1+B2

+ e2A2e−2B2e2A1e2B1 + e2A2e−2B2e2A2e2B2 + e2A2e−2B22eA1+A2eB1+B2

+ 2eA1+A2e−B1−B2e2A1e2B1

+ 2eA1+A2e−B1−B2e2A2e2B2

+ 2eA1+A2e−B1−B22eA1+A2eB1+B2 (251)

= e4A1 + e4A2 + 2e2A1+2A2 cos(2B1 − 2B2)

+ e2A1e−2B12eA1+A2eB1+B2

+ e2A2e−2B22eA1+A2eB1+B2

+ 2eA1+A2e−B1−B2e2A1e2B1

+ 2eA1+A2e−B1−B2e2A2e2B2

+ 4e2A1+2A2 (252)

= e4A1 + e4A2

1 23 4
sum

+2e2A1+2A2 cos(2B1 − 2B2)1 23 4
complex interference

+2eA1+A2(e2A1 + e2A2) cos(B1 −B2) + 4e2A1+2A2

1 23 4
deep phase interference

(253)

C.8 Geometric Interference in 4D (Deep Spinor Rotation)

Consider a two-state wave-function (we note that [F,B] = 0):

ψ = ψ1 + ψ2 = eA1eF1eB1 + eA2eF2eB2 (254)
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The geometric interference pattern for a full general linear transformation
in 4D is given by the product:

⌊ψ‡ψ⌋3,4ψ‡ψ (255)

Let us start with the sub-product:

ψ‡ψ = (eA1e−F1eB1 + eA2e−F2eB2)(eA1eF1eB1 + eA2eF2eB2) (256)

= eA1e−F1eB1eA1eF1eB1 + eA1e−F1eB1eA2eF2eB2

+ eA2e−F2eB2eA1eF1eB1 + eA2e−F2eB2eA2eF2eB2 (257)

= e2A1e2B1 + e2A2e2B2 + eA1+A2eB1+B2(e−F1eF2 + e−F2eF1) (258)

= e2A1e2B1 + e2A2e2B2 + eA1+A2eB1+B2(R̃1R2 + R̃2R1) (259)

where R = eF, and where R̃ = e−F.
The full product is:

⌊ψ‡ψ⌋3,4ψ‡ψ =
!
e2A1e−2B1 + e2A2e−2B2 + eA1+A2e−B1−B2(R̃1R2 + R̃2R1)

"

×
!
e2A1e2B1 + e2A2e2B2 + eA1+A2eB1+B2(R̃1R2 + R̃2R1)

"

(260)

= e2A1e−2B1e2A1e2B1 + e2A1e−2B1e2A2e2B2 + e2A1e−2B1eA1+A2eB1+B2(R̃1R2 + R̃2R1)

+ e2A2e−2B2e2A1e2B1 + e2A2e−2B2e2A2e2B2 + e2A2e−2B2eA1+A2eB1+B2(R̃1R2 + R̃2R1)

+ eA1+A2e−B1−B2(R̃1R2 + R̃2R1)e
2A1e2B1

+ eA1+A2e−B1−B2(R̃1R2 + R̃2R1)e
2A2e2B2

+ eA1+A2e−B1−B2(R̃1R2 + R̃2R1)e
A1+A2eB1+B2(R̃1R2 + R̃2R1)

(261)

= e4A1 + e4A2 + 2e2A1+2A2 cos(2B1 − 2B2) (262)

+ eA1+A2(R̃1R2 + R̃2R1)( (263)

e2A1(e−B1+B2 + eB1−B2) (264)

+ e2A2(eB1−B2 + e−B1+B2)) (265)

+ e2A1+2A2(R̃1R2 + R̃2R1)
2 (266)

= e4A1 + e4A2

1 23 4
sum

+2e2A1+2A2 cos(2B1 − 2B2)1 23 4
complex interference

+ 2eA1+A2(e2A1 + e2A2)(R̃1R2 + R̃2R1)(cos(B1 −B2)) + e2A1+2A2(R̃1R2 + R̃2R1)
2

1 23 4
deep spinor interference

(267)
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