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Abstract

In modern theoretical physics, the laws of physics are represented with
axioms (e.g., the Dirac–Von Neumann axioms, the Wightman axioms,
etc.). Although axioms in logic are held to be true merely by definition,
the laws of physics on the other hand are entailed by laboratory measure-
ments. This difference is sufficient to warrant a more appropriate mathe-
matical structure than axioms to represent the laws of physics. This paper
presents this structure and demonstrates its supremacy. Specifically, an
optimization problem based on the entropy of all possible measurements
will be introduced. As its solution yields the laws of physics, the en-
tailment from measurements to laws is respected. The solution not only
recovers the Dirac–Von Neumann axioms along with the Born rule, but
further improves upon them by automatically restricting the observables
to no more than the standard model group symmetry SU(3) x SU(2)
x U(1), while simultaneously extending the probability measure exactly
enough to support general relativity in the form of a general linear gauge
theory. Our approach further strengthens the foundation of physics, su-
perseding it with the group of all measurements as its new and sole ax-
iomatic foundation, and all “theoretical artefacts” (Born rule, probability
amplitude, Hilbert space, observables, etc.) are now promoted from ax-
ioms to theorems, thus providing a rigorous deductive account for their
previously postulated origin. Finally, as the solution to an optimization
problem, it is arguable that our solution constitutes, in this sense, physics’
optimal formulation.

Keywords: Gravity, quantum physics, standard model, geometric constraint

1 Introduction

In modern theoretical physics, physical laws are posited (as axioms), then they
are used to make predictions. If those predictions are later invalidated by lab-
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oratory measurements, the posited laws are deemed falsified and the exercise is
repeated.

This approach is of course still used to this day – it is known as scientific
falsification -, but as surprising as it might sound, it contains a subtle but fatal
technical error. In logic, axioms define what is true; however, in reality it is
not the laws, but the measurements that define what is true. This is why,
fundamentally, it is the measurements that falsify the laws!

Our thesis is that axioms are the wrong tool to use to define the laws of
physics; the laws should be theorems, and it is the measurements that should
be the axioms. We intend to show that reserving the axiomatic entailment
between laws and measurements yields a significantly superior formulation of
fundamental physics.

The framework we propose here corrects this entailment. An optimization
problem based on the entropy of all possible measurements will first be intro-
duced, then as our main result we solve it for the laws of physics.

Our proposal is not merely philosophical nor academic, as the solution to
our optimization problem yields a (previously unknown) optimized formulation
of the laws of physics.The optimized formulation carries numerous advantages
which translates into physicsas yielding no more than exactly the SU(3) x SU(2)
X U(1) group symmetry over the observables of the theory, and no less than
exactly general relativity in the form of a general linear gauge theory over the
evolution of the probability measure. We interpret this tight integration as
suggestive of the power and efficient of mathematical optimization!

Secondary results are also presented, such as the true origin of the Born rule,
axioms of quantum physics, correct interpretation of quantum mechanics, and
how the measurement/collapse problem is deprecated by this setup.

We believe it incredibly unlikely that this optimized formulation would have
been found by trial and error, making the use of our optimization problem
particularly relevant and useful.

To define the problem rigorously, we now introduce the key construction
which makes this project possible: the notion of a geometric constraint.

The construction of a geometric constraint exploits the connection between
geometry and the theory of probability via the trace. The trace of a matrix
can be understood as the expected eigenvalue times the dimension of the vector
space, and the eigenvalues are the ratios of the distortion of the geometric
transformation associated with the matrix[1].

The geometric constraint is defined as

trM =
!

q∈Q
ρ(q) trM(q), (1)

where M is an arbitrary n × n matrix, and Q is a statistical ensemble.
Here, trM denotes the expectation value of the statistically weighted sum of
the matrices M(q) parameterized over the ensemble Q.

Alternatively (and preferably), we may use the geometric algebra to define
the constraint as
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tru =
!

q∈Q
ρ(q) tru(q), (2)

where u is an arbitrary multivector of the real geometric algebra in n di-
mensions G(n,R). Although the constraints can be expressed by both the ap-
proaches, the use of multivectors instead of matrices highlights the geometric
character of the method. More details on geometric algebra (and the present
notation) are provided in the Methods section.

By using this equality as a constraint on the entropy, we presuppose that
we can observe the distortions produced by any geometric transformation in
nature (and up to a phase), and that the probability measure preserves the
expectation value of these distortions. For instance, a statistical system mea-
sured exclusively using a ruler, clock, and protractor will carry, following our
entropy maximization procedure, the Lorentz group symmetry in its associated
probability measure.

We note that this presupposition is subject to falsification, and consequently,
we are not exiting science with our proposal. Laboratory measurements can,
in principle, force us to extend or restrict, the generality of our geometric con-
straint.

In statistical mechanics, constraints are used to derive the Gibbs measure
using Lagrange multipliers[2] by maximizing the entropy.

For instance, an energy constraint on the entropy is

E =
!

q∈Q
ρ(q)E(q), (3)

which is associated with an energy meter that measures the system’s energy
and produces a series of energy measurements E1, E2, . . . , which converge to an
expectation value E.

Another common constraint is that of the volume

V =
!

q∈Q
ρ(q)V (q), (4)

which is associated with a volume meter acting on the system and produces a
sequence of measured volumes V1, V2, . . . , which also converges to an expectation
value V .

Moreover, the sum over the statistical ensemble must be equal to 1, as shown
below:

1 =
!

q∈Q
ρ(q) (5)
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Using equations (3) and (5), a typical statistical mechanical system is ob-
tained by maximizing the entropy using its corresponding Lagrange equation.
The Lagrange multipliers method is expressed as

L = −kB
!

q∈Q
ρ(q) ln ρ(q) + λ

"

#1−
!

q∈Q
ρ(q)

$

%+ β

"

#E −
!

q∈Q
ρ(q)E(q)

$

% , (6)

where λ and β are the Lagrange multipliers.
Therefore, by solving ∂L

∂ρ = 0 for ρ, we obtain the Gibbs measure as

ρ(q,β) =
1

Z(β)
exp(−βE(q)), (7)

where

Z(β) =
!

q∈Q
exp(−βE(q)). (8)

In our method, (3) is replaced with trM, and a geometric constraint is ob-
tained. Instead of energy or volume meters, we have rulers, clocks, protractors,
spin meters, dilation meters, and shear meters.

To connect our proposed method with quantum mechanics, the statistical
interpretation of entropy must be altered. In the modified interpretation, the
probability measure quantifies the information associated with the receipt of a
message of measurements. Therefore, we replace the Boltzmann entropy with
the Shannon entropy. This replacement does not change the form of the math-
ematical equation for entropy (minus the Boltzmann constant); only the final
interpretation is changed (further details are provided in section ??).

The corresponding Lagrange equation is

L = −
!

q∈Q
ρ(q) ln ρ(q) + λ

"

#1−
!

q∈Q
ρ(q)

$

%+ τ

"

#tru−
!

q∈Q
ρ(q) tru(q)

$

% , (9)

and this equation is now sufficient to solve ∂L
∂ρ = 0 for ρ to obtain the

solution.
The manuscript is organized as follows. In the Methods section, we introduce

a number of tools using geometric algebra, based on the reported study of
Lundholm et al. [3]. Specifically, we introduce the notion of a determinant
for multivectors as well as the notions of a Clifford conjugate generalizing the
complex conjugate. These tools enable us to express our results geometrically.

In the Results section, we present two solutions of the Lagrange equation.
The first is the recovery of the standard nonrelativistic quantum mechanics,
when the matrix is reduced from an arbitrary matrix to a representation of the
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imaginary number. The second is the general case with an arbitrary matrix or
multivector.

We then develop our initial results into a geometric foundation to physics,
both in 2D and 4D, consistent with the general solution. In 2D, the self-adjoint
observables are generalized to observables that are equal to their Clifford con-
jugate. Remarkably, in 4D, we obtain an even more sophisticated relation for
the observables pitting four terms, which together satisfy the SU(2) × U(1)
and SU(3) gauge symmetries. We also discuss the prospects of a gauge theory
of gravity, which exploits the flexibility of our probability measure to remain
invariant with respect to all the general linear transformations (and superpo-
sitions thereof), which we believe are required to accommodate gravity in 4D,
consistently with quantum mechanics.

Finally, in the Discussion section, we introduce an interpretation of quantum
mechanics consistent with its newly revealed origin, as the measure maximiz-
ing the Shannon entropy constrained by geometric measurements, namely the
metrological interpretation. In this interpretation, the measurements and the
associated constraint on the entropy are considered more fundamental than the
wavefunction, which is now entirely derivable. The end product is a theory that
deprecates the measurement problem, superseding it with theory of instrumen-
tation, and provides a plausible explanation for the origin of quantum mechanics
in nature, thereby, tying it to the geometric measurements that are permissible.

2 Methods

2.1 Notation

• Typography: Sets are written using the blackboard bold typography (e.g.,
L, W, and Q), unless a prior convention assigns it another symbol. Matri-
ces are in bold uppercase (e.g., P and M), tuples, vectors, and multivec-
tors are in bold lowercase (e.g., u, v, and g), and most other constructions
(e.g., scalars and functions) have plain typography (e.g., a,A). The unit
pseudo-scalar (of geometric algebra), imaginary number, and identity ma-
trix are i, i, and I, respectively.

• Sets: The projection of a tuple p is proji(p). As an example, the elements
of R2 = R1 × R2 are denoted as p = (x, y). The projection operators
are proj1(p) = x and proj2(p) = y. If projected over a set, then the
corresponding results are proj1(R2) = R1 and proj2(R2) = R2. The size
of a set X is |X|.
The symbol ∼= indicates a group isomorphism relation between two sets.
The symbol ≃ indicates equality whether both terms are defined or unde-
fined.

• Analysis: The asterisk z† denotes the complex conjugate of z.
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• Matrix: The Dirac gamma matrices are γ0, γ1, γ2, and γ3. The Pauli
matrices are σx, σy, and σz. The dagger M† denotes the conjugate trans-
pose of M. The commutator is defined as [M,P] : MP − PM, and the
anti-commutator is defined as {M,P} : MP+PM.

• Geometric algebra: The elements of an arbitrary curvilinear geometric
basis are denoted as e0, e1, e2, . . . , en (such that eν · eµ = gµν), and
x̂0, x̂1, x̂2, . . . , x̂n (such that x̂µ · x̂ν = ηµν) if they are orthonormal. A
geometric algebra of m dimensions over a field F is denoted as G(m,F).
The grades of a multivector are denoted as 〈v〉k. Specifically, 〈v〉0 is a
scalar, 〈v〉1 is a vector, 〈v〉2 is a bivector, 〈v〉n−1 is a pseudo-vector, and
〈v〉n is a pseudo-scalar. A scalar and a vector such as 〈v〉0 + 〈v〉1 form a
para-vector, and a combination of even grades (〈v〉0+〈v〉2+〈v〉4+ . . . ) or
odd grades (〈v〉1+ 〈v〉3+ . . . ) form even or odd multivectors, respectively.

Let G(2,R) be the 2D geometric algebra over the real set. We can formu-
late a general multivector of G(2,R) as u = a+x+b, where a is a scalar,
x is a vector, and b is a pseudo-scalar.

Let G(4,R) be the 4D geometric algebra over the real set. In this case also,
a general multivector of G(4,R) can be formulated as u = a+x+f+v+b,
where a is a scalar, x is a vector, f is a bivector, v is a pseudo-vector, and
b is a pseudo-scalar.

2.2 Geometric constraints

Definition 1 (Geometric constraints). Let M be an n × n matrix and Q be a
statistical ensemble. Then, this equality constraint is given by

trM =
!

q∈Q
ρ(q) trM(q), (10)

which is called a geometric constraint.
The geometric constraint can also be represented using a multivector u of a

geometric algebra G(4,R)

tru =
!

q∈Q
ρ(q) tru(q), (11)

The trace trM or tru denotes the expectation value of the statistically
weighted sum of matrices M(q) or of multivectors u(q) parameterized over the
ensemble Q.

2.3 Geometric representation of matrices

2.3.1 Geometric representation of 2× 2 real matrices

Let G(2,R) be the 2D geometric algebra over the real set. We can write a
general multivector of G(2,R) as
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u = a+ x+ b, (12)

where a is a scalar, x is a vector, and b is a pseudo-scalar.
Each multivector has a structure-preserving (addition/multiplication) ma-

trix representation.

Definition 2 (2D geometric representation ).

a+ xx̂+ yŷ + bx̂ ∧ ŷ ∼=
&
a+ x −b+ y
b+ y a− x

'
(13)

The converse is also true; each 2×2 real matrix is represented as a multivector
of G(2,R).

We can define the determinant using constructs of geometric algebra[3]. Ac-
cordingly, the determinant of u is

Definition 3 (Geometric representation of the determinant 2D).

det : G(2,R) −→ R
u )−→ u‡u, (14)

where u‡ is

Definition 4 (Clifford conjugate 2D).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2. (15)

For example,

detu = (a− x− b)(a+ x+ b) (16)

= a2 − x2 − y2 + b2 (17)

= det

&
a+ x −b+ y
b+ y a− x

'
(18)

Finally, we defined the Clifford transpose.

Definition 5 (2D Clifford transpose). The Clifford transpose is the geometric
analogue to the conjugate transpose, which can be interpreted as a transpose fol-
lowed by an element-by-element application of the complex conjugate. Here, the
Clifford transpose is a transpose followed by an element-by-element application
of the Clifford conjugate.

(

)*
u00 . . . u0n

...
. . .

...
um0 . . . umn

+

,-

‡

=

(

)*
u‡
00 . . . u‡

m0
...

. . .
...

um0 . . . u‡
nm

+

,- (19)
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If applied to a vector, then

(

)*
v1

...
vm

+

,-

‡

=
.
v‡
1 . . .v‡

m

/
(20)

2.3.2 Geometric representation of 4x4 real matrices

Let G(4,R) be the 2D geometric algebra over the real set. We can write a
general multivector of G(4,R) as

u = a+ x+ f + v + b, (21)

where a is a scalar, x is a vector, f is a bivector, v is a pseudo-vector, and
b is a pseudo-scalar.

In this case also, each multivector has a structure-preserving (addition/multiplication)
matrix representation. The multivectors of G(4,R) are represented as follows:

Definition 6 (4D geometric representation).

a+ tγ0 + xγ1 + yγ2 + zγ3

+ f01γ0 ∧ γ1 + f02γ0 ∧ γ2 + f03γ0 ∧ γ3 + f23γ2 ∧ γ3 + f13γ1 ∧ γ3 + f12γ1 ∧ γ2

+ vtγ1 ∧ γ2 ∧ γ3 + vxγ0 ∧ γ2 ∧ γ3 + vyγ0 ∧ γ1 ∧ γ3 + vzγ0 ∧ γ1 ∧ γ2

+ bγ0 ∧ γ1 ∧ γ2 ∧ γ3

∼=

!

""#

a+ x0 − if12 − iv3 f13 − if23 + v2 − iv1 −ib+ x3 + f03 − iv0 x1 − ix2 + f01 − if02
−f13 − if23 − v2 − iv1 a+ x0 + if12 + iv3 x1 + ix2 + f01 + if02 −ib− x3 − f03 − iv0
−ib− x3 + f03 + iv0 −x1 + ix2 + f01 − if02 a− x0 − if12 + iv3 f13 − if23 − v2 + iv1

−x1 − ix2 + f01 + if02 −ib+ x3 − f03 + iv0 −f13 − if23 + v2 + iv1 a− x0 + if12 − iv3

$

%%&

(22)

In this case, the converse is not true; that is, only a subset of a 4 × 4
real matrix can be represented as a multivector of G(4,R). However, the 4D
multivector only includes a fraction of the 4 × 4 complex matrices. Moreover,
the 4 × 4 matrices as well as the multivectors of G(4,R) have 16 independent
variables and their determinants are real-valued; thus, they have similar group
properties.

Furthermore, in 4D, we can define the determinant solely using the con-
structs of geometric algebra[3]. The determinant of u is

Definition 7 (4D geometric representation of determinant).

det : G(4,R) −→ R (23)

u )−→ ⌊u‡u⌋3,4u‡u, (24)

where u‡ is
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Definition 8 (4D Clifford conjugate).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2 + 〈u〉3 + 〈u〉4, (25)

where ⌊m⌋{3,4} is the blade-conjugate of degrees three and four (reversing
the plus sign to a minus sign for blades 3 and 4)

⌊u⌋{3,4} := 〈u〉0 + 〈u〉1 + 〈u〉2 − 〈u〉3 − 〈u〉4. (26)

2.4 Unitary gauge (Recap)

In quantum electrodynamics, the wavefunction is gauged with U(1). The U(1)
invariance results from the application of the complex norm in ordinary quantum
theory. A parameterization of ψ over a differentiable manifold is required to
support this derivation. Localizing the invariant group θ → θ(x) over the said
parameterization yields the corresponding covariant derivative, which is given
by

Dµ = ∂µ + iqAµ(x), (27)

where Aµ(x) is the gauge field.
If a gauge transformation is applied to ψ and Aµ, then

ψ → e−iqθ(x)ψ and Aµ → Aµ + ∂µθ(x). (28)

The covariant derivative is

Dµψ = ∂µψ + iqAµψ (29)

→ ∂µ(e
−iqθ(x)ψ) + iq(Aµ + ∂µθ(x))(e

−iqθ(x)ψ) (30)

= e−iqθ(x)Dµψ. (31)

Finally, the field is expressed as

Fµν = [Dµ,Dν ], (32)

where Dµ is the covariant derivative with respect to the potential one-form
Aµ = A α

µ Tα, and Tα are the generators of the lie algebra of U(1).

3 Result

3.1 Non-relativistic quantum mechanics

In this section, we elucidate the recovery of the non-relativistic quantum me-
chanics using the Lagrange multiplier method and a geometric constraint.
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As explained before, the Shannon entropy is applied instead of the Boltz-
mann entropy to achieve the aforementioned goal.

S = −
!

q∈Q
ρ(q) ln ρ(q) (33)

In statistical mechanics, we use ”scalar” constraints on the entropy, such
as energy and volume meters, which are sufficient for recovering the Gibbs
ensemble. However, the application of such scalar constraints is insufficient
to recover quantum mechanics. To overcome this limitation, a “specialized”
geometric constraint, which is invariant for a complex phase is used. It is defined
as

tr

&
0 −b

b 0

'
=

!

q∈Q
ρ(q) tr

&
0 −b(q)

b(q) 0,

'
(34)

where

&
a(q) −b(q)
b(q) a(q)

'
∼= a(q)+ ib(q) is the matrix representation of the com-

plex numbers. Similar to the energy or volume meters, geometric instruments
produce a sequence of measurements that converge to an expectation value, al-
though such measurements exhibit a phase invariance. This phase invariance
originates from the trace.

The Lagrangian equation that maximizes the entropy subject to the special-
ized geometric constraint, introduced earlier, is is

L = −
!

q∈Q
ρ(q) ln(q) + α

"

#1−
!

q∈Q
ρ(q)

$

%+ τ

"

#tr

&
0 −b

b 0

'
−

!

q∈Q
ρ(q) tr

&
0 −b(q)

b(q) 0

'$

%

(35)

This equation is maximized for ρ by imposing the condition ∂L
∂ρ(q) = 0, and

the following results are obtained

∂L
∂ρ(q)

= − ln ρ(q)− 1− α− τ tr

&
0 −b(q)

b(q) 0

'
(36)

0 = ln ρ(q) + 1 + α+ τ tr

&
0 −b(q)

b(q) 0

'
(37)

=⇒ ln ρ(q) = −1− α− τ tr

&
0 −b(q)

b(q) 0

'
(38)

=⇒ ρ(q) = exp(−1− α) exp

0
−τ tr

&
0 −b(q)

b(q) 0

'1
(39)

=
1

Z(τ)
det exp

0
−τ

&
0 −b(q)

b(q) 0

'1
, (40)
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where Z(τ) is obtained as

1 =
!

q∈Q
exp(−1− α) exp

0
−τ tr

&
0 −b(q)

b(q) 0

'1
(41)

=⇒ (exp(−1− α))
−1

=
!

q∈Q
exp

0
−τ tr

&
0 −b(q)

b(q) 0

'1
(42)

Z(τ) :=
!

q∈Q
det exp

0
−τ

&
0 −b(q)

b(q) 0.

'1
(43)

The exponential of the trace is equal to the determinant of the exponential
according to the relation det expA ≡ exp trA.

Finally, we obtain

ρ(τ, q) =
1

Z(τ)
det exp

0
−τ

&
0 −b(q)

b(q) 0

'1
(44)

∼= | exp−iτb(q)|2 Born rule (45)

Renaming τ → t/! and b(q) → H(q) recovers the familiar form of

ρ(q) =
1

Z
|exp(−itH(q)/!)|2 . (46)

or even a more familiar form of

ρ(q) =
1

Z
|ψ(q)|2 , where ψ(q) = exp(−itH(q)/!). (47)

With this, we can show that all the three Dirac Von–Neumann axioms as
well as the Born rule are satisfied, which reveals a possible origin of quantum
mechanics linked to entropy and geometry.

Indeed, from (47), we can identify the wavefunction as the vector of some
orthogonal space (in this case, a complex Hilbert space), and the partition
function as its inner product, expressed as

Z = 〈ψ|ψ〉 . (48)

After normalization, the physical states become its unit vectors, and the
probability of any particular state is given by

ρ(q) =
1

〈ψ|ψ〉 (ψ(q))
†ψ(q). (49)

Finally, any self-adjoint matrix, defined as 〈Oψ|ψ〉 = 〈ψ|Oψ〉, will corre-
spond to a real-valued statistical mechanics observable, if measured in its eigen-
basis, thereby completing the equivalence.
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3.2 Probability measure of all geometric measurements

Here, we explore the arbitrary geometric constraint

trM =
!

q∈Q
ρ(q) trM(q), (50)

where M is the arbitrary n× n matrix.
Notably, an arbitrary multivector u of G(4,R) can be used, instead of M.

In both these cases, the steps of the derivation remain the same.
In this case, the Lagrange equation used to maximize the entropy, under this

constraint, is expressed as

L = −
!

q∈Q
ρ(q) ln(q) + α

"

#1−
!

q∈Q
ρ(q)

$

%+ τ

"

#trM−
!

q∈Q
ρ(q) trM(q)

$

% ,

(51)

where α and τ are the Lagrange multipliers.
In this case as well, we maximize this equation for ρ using the criterion

∂L
∂ρ(q) = 0. This operation results in the following:

∂L
∂ρ(q)

= − ln ρ(q)− 1− α− τ trM(q) (52)

0 = ln ρ(q) + 1 + α+ τ trM(q) (53)

=⇒ ln ρ(q) = −1− α− τ trM(q) (54)

=⇒ ρ(q) = exp(−1− α) exp(−τ trM(q)) (55)

=
1

Z(τ)
det exp(−τM(q)) (56)

where Z(τ) is obtained as

1 =
!

q∈Q
exp(−1− α) exp(−τ trM(q)) (57)

=⇒ (exp(−1− α))
−1

=
!

q∈Q
exp(−τ trM(q)) (58)

Z(τ) :=
!

q∈Q
det exp(−τM(q)) (59)

The resulting probability measure is

ρ(q, τ) =
1

Z(τ)
det exp(−τM(q)), (60)
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where

Z(τ) =
!

q∈Q
det exp(−τM(q)). (61)

By defining ψ(q, τ) := exp(−τM(q)), we can express ρ(q, τ) = detψ(q, τ),
where the determinant acts as a ”generalized Born rule,” connecting, in this
case, a general linear amplitude to a real number representing a probability.

The sophistication of the general linear amplitude along with the determi-
nant acting as a ”generalized Born rule” provides a platform to support both
general relativity and the standard model, while behaving as a consistent physi-
cal system because of its origins being solidly anchored in the robust framework
of statistical mechanics.

4 Geometric foundation of physics

In this section, the analysis of the main result as a general linear quantum theory
is presented. In addition, we introduce the algebra of geometric observables
applicable to the general linear wavefunction.

The 2D definition of the algebra constitutes a special case that is reminiscent
of the definitions of ordinary quantum mechanics. The 4D case is significantly
more sophisticated than the 2D case and is elucidated immediately after the 2D
case analysis.

4.1 2D axiomatic definition of the algebra

Let V be an m-dimensional vector space over G(2,R). A subset of vectors in V
forms an algebra of observables A(V) if the following holds:

A) ∀ψ ∈ A(V), the sesquilinear map

〈·, ·〉 : V× V −→ G(2,R)
〈u,v〉 )−→ u‡v (62)

is positive-definite when u = v, that is 〈ψ,ψ〉 > 0

B) ∀ψ ∈ A(V). Then, for each element ψ(q) ∈ ψ, the function

ρ(ψ(q),ψ) =
1

〈ψ,ψ〉ψ(q)
‡ψ(q) (63)

is positive-definite: ρ(ψ(q),ψ) > 0

We note the following comments and definitions:
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• From A) and B), it follows that ∀ψ ∈ A(V), the probabilities sum up to
unity:

!

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (64)

• ψ is called a natural (or physical) state.

• 〈ψ,ψ〉 is called the partition function of ψ.

• If 〈ψ,ψ〉 = 1, then ψ is called a unit vector.

• ρ(q,ψ) is called the probability measure (or generalized Born rule) of ψ(q).

• The set of all matrices T acting on ψ as Tψ → ψ′, such that the sum of
probabilities remains normalized.

!

ψ(q)∈ψ

ρ(ψ(q),Tψ) =
!

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (65)

are the natural transformations of ψ.

• A matrix O such that ∀u∀v ∈ A(V) :

〈Ou,v〉 = 〈u,Ov〉 (66)

is called an observable.

• The expectation value of an observable O is

〈O〉 = 1

〈ψ,ψ〉 〈Oψ,ψ〉 (67)

4.2 Observable in 2D self-adjoint operator

The general case of an observable in 2D is shown in this section. A matrix O is
an observable, if it is a self-adjoint operator, and is defined as

〈Oφ,ψ〉 = 〈φ,Oψ〉 (68)

∀u∀v ∈ V.

Setup: Let O =

&
o00 o01

o10 o11

'
be an observable. Let φ and ψ be two two-state

vectors of multivectors φ =

&
φ1

φ2

'
and ψ =

&
ψ1

ψ2

'
. Here, the components φ1,

φ2, ψ1, ψ2, o00, o01, o10, o11 are multivectors of G(2,R).
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Derivation: 1. Calculate 〈Oφ,ψ〉:

2〈Oφ,ψ〉 = (o00φ1 + o01φ2)
‡ψ1 +ψ‡

1(o00φ1 + o01φ2)

+ (o10φ1 + o11φ2)
‡ψ2 +ψ‡

2(o10φ1 + o11φ2) (69)

= φ1
‡o‡

00ψ1 + φ‡
2o

‡
01ψ1 +ψ‡

1o00φ1 +ψ‡
1o01φ2

+ φ‡
1o

‡
10ψ2 + φ‡

2o
‡
11ψ2 +ψ‡

2o10φ1 +ψ‡
2o11φ2 (70)

2. Now, 〈φ,Oψ〉:

2〈φ,Oψ〉 = φ‡
1(o00ψ1 + o01ψ2) + (o00ψ1 + o01ψ2)

‡φ1

+ φ‡
2(o10ψ1 + o11ψ2) + (o10ψ1 + o11ψ2)

‡φ1 (71)

= φ‡
1o00ψ1 + φ‡

1o01ψ2 +ψ‡
1o

‡
00φ1 +ψ‡

2o
‡
01φ1

+ φ‡
2o10ψ1 + φ‡

2o11ψ2 +ψ‡
1o

‡
10φ1 +ψ‡

2o
‡
11φ1 (72)

To realize 〈Oφ,ψ〉 = 〈φ,Oψ〉, the following relations must hold:

o‡
00 = o00 (73)

o‡
01 = o10 (74)

o‡
10 = o01 (75)

o‡
11 = o11. (76)

Therefore, O must be equal to its own Clifford transpose, indicating that O
is an observable iff

O‡ = O, (77)

which corresponds to the self-adjoint operator O† = O of complex Hilbert
spaces.

The geometric sophistication of this geometric observable allows the proba-
bility measure to remain invariant over a class of geometric transformations that
is larger than that of the unitary transformations. These transformations are
sufficiently flexible to support gravity while retaining valid observable statistics.

4.3 Observable in 2D eigenvalues/spectral theorem

The application of the spectral theorem to O‡ = O such that its eigenvalues are
real is shown below: Consider

O =

&
a00 a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11

'
, (78)
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It follows that O‡ = O

O‡ =

&
a00 a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11

'
, (79)

This example is the most general 2× 2 matrix O such that O‡ = O.
The eigenvalues are obtained as

0 = det(O− λI) = det

&
a00 − λ a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11 − λ

'
, (80)

This implies that

0 = (a00 − λ)(a11 − λ)− (a− xe1 − ye2 − be12)(a+ xe1 + ye2 + be12 + a11)
(81)

0 = (a00 − λ)(a11 − λ)− (a2 − x2 − y2 + b2), (82)

Finally,

λ = {1
2

2
a00 + a11 −

3
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

4
, (83)

1

2

2
a00 + a11 +

3
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

4
} (84)

Notably, in the case where a00 − a11 = 0, the roots would be complex if
a2 − x2 − y2 + b2 < 0. However, we already stated that the determinant
of real matrices must be greater than zero because of the exponential map-
ping to the orientation-preserving general linear group. Therefore, in this case,
a2−x2−y2+b2 > 0, because this expression is the determinant of the multivec-
tor. Consequently, under the orientation-preserving transformations, O‡ = O
implies that its roots are real-valued, thus constituting a “geometric” observable
in the traditional sense of an observable whose eigenvalues are real-valued.

4.4 2D left action

A left action on the wavefunctionT |ψ〉 connects to the bilinear form as 〈ψ|T‡T |ψ〉.
The invariance requirement on T is

〈ψ|T‡T |ψ〉 = 〈ψ|ψ〉 . (85)

Therefore, we are interested in the group of matrices that follow

T‡T = I. (86)
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Let us consider a two-state system. A general transformation of such a
system is represented by

T =

&
u v
w x

'
, (87)

where u, v, w, x are the 2D multivectors. The expression T‡T is

T‡T =

&
v‡ u‡

w‡ x‡

' &
v w
u x

'
=

&
v‡v + u‡u v‡w + u‡x
w‡v + x‡u w‡w + x‡x

'
(88)

For T‡T = I , the following relations must hold:

v‡v + u‡u = 1 (89)

v‡w + u‡x = 0 (90)

w‡v + x‡u = 0 (91)

w‡w + x‡x = 1 (92)

This is the case if

T =
1√

v‡v + u‡u

&
v u

−eϕu‡ eϕv‡

'
, (93)

where u, v are the 2D multivectors, and eϕ is a unit multivector. Compar-
atively, the unitary case is obtained when the vector part of the multivector
vanishes, i.e., x → 0, and we obtain

U =
13

|a|2 + |b|2

&
a b

−eiθb† eiθa†

'
. (94)

We can show that T‡T = I as follows:

=⇒ T‡T =
1

v‡v + u‡u

&
v‡ −e−ϕu
u‡ e−ϕv

' &
v u

−eϕu‡ eϕv‡

'
(95)

=
1

v‡v + u‡u

&
v‡v + u‡u v‡u− v‡u
u‡v − u‡v u‡u+ v‡v

'
(96)

= I. (97)

In the case where T and |ψ〉 are n-dimensional, we can identify its general
expression starting from a diagonal matrix.
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D =

&
ex1x̂+y1ŷ+ib1 0

0 ex2x̂+y2ŷ+ib2

'
, (98)

where T = PDP−1. It follows easily that D‡D = I, because each diagonal
entry produces unity: e−x1x̂−y1ŷ−ib1ex1x̂+y1ŷ+ib1 = 1.

An arbitrary matrix T, which yields T‡T = I, can be expressed as an
exponential as follows:

T = exp(−τA), (99)

where A‡ = −A. Then,

exp(−τA)
‡
exp(−τA) = exp(τA) exp(−τA) = I (100)

An example of a matrix A is

(

)*
x1 + b1 x3 + b3 . . .
x3 + b3 x2 + b2 . . .

...
...

. . .

+

,- (101)

In ordinary quantum mechanics, the equivalent relation is (eiH)†eiH =
e−iHeiH = I.

4.5 Dynamics in 2D

In this section, we chalk out the derivation of the relativistic dynamics in 2D,
starting with the following equation:

exp(−δτA) |ψ(τ)〉 = |ψ(τ + δτ)〉 . (102)

Now, we approximate the exponential into a power series as

exp(−δτA) |ψ(τ)〉 ≈ 1− δτA |ψ(τ)〉 . (103)

The process is continued as follows

(1− δτA) |ψ(τ)〉 = |ψ(τ + δτ)〉 (104)

|ψ(τ)〉 − δτA |ψ(τ)〉 = |ψ(τ + δτ)〉 (105)

−δτA |ψ(τ)〉 = |ψ(τ + δτ)〉 − |ψ(τ)〉 (106)

−A |ψ(τ)〉 = |ψ(τ + δτ)〉 − |ψ(τ)〉
δτ

(107)

−A |ψ(τ)〉 = d |ψ(τ)〉
dτ

. (108)
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When we consider x → 0 (this corresponds to a reduction of SL(2, R) to
SO(1,1)), A reduces to a matrix of pseudo-scalars, which can be written as
Ax→0 = iB. The corresponding equation is:

−iB |ψ(τ)〉 = d |ψ(τ)〉
dτ

, (109)

This equation is similar to the Schrödinger equation:

−iH |ψ(τ)〉 = d |ψ(τ)〉
dτ

, (110)

The wavefunction is the solution to this differential equation and is given by

ψ(τ) = exp(−τ iB+ a) (111)

Despite being nearly identical to the Schrödinger equation, our equation is
Lorentz invariant, because the pseudo-scalar is a geometric object. This can be
explained as follows:

ψ‡(τ)x̂0ψ(τ) = exp(−τ iB+ a)
‡
x̂0 exp(−τ iB+ a) (112)

= exp(τ iB+ a)x̂0 exp(−τ iB+ a) (113)

= exp(2a) exp(τ iB)x̂0 exp(−τ iB) (114)

= ρ exp(τ iB)x̂0 exp(−τ iB) (115)

Because i = x̂0x̂1, B is a bivector of G(4,R) it corresponds to a Lorentz
rotor SO(1,1).

ψ‡(τ)x̂0ψ(τ) = ρ exp(τ x̂0x̂1B)x̂0 exp(−τ x̂0x̂1B) (116)

The expression exp(τ x̂0x̂1B)x̂0 exp(−τ x̂0x̂1B) maps x̂0 to a curvilinear ba-
sis e0 via the application of the rotor and its reverse: exp(τ x̂0x̂1B) = R(τ) and

exp(−τ x̂0x̂1B) = 5R(τ)

R(τ)x̂0
5R(τ) = e0(τ) (117)

Therefore

ψ‡(τ)x̂0ψ(τ) = ρe0(τ) (118)

In the relativistic wavefunction formulation put forward by David Hestenes,
this is simply the Dirac current, where e0(τ) is interpreted as the velocity v0,
and ρv0 is the weighted probability that the particle has the given velocity.
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In the 1+1 spacetime, the other component of the current vector is

ψ‡(τ)x̂1ψ(τ) = ρe1(τ) (119)

David Hestenes[4] shows that this formulation in 4D is equivalent to the
other formulations of the relativistic wavefunction.

4.6 Algebra of geometric observables in 4D

In this section, the general case for a vector space over 4× 4 matrices is consid-
ered.

In 2D, we extended the complex Hilbert space to a ”geometric Hilbert space”
and found that the familiar properties of the complex Hilbert spaces were trans-
ferable to the geometry of the general linear group.

Although a similar correspondence exists in 4D, it is less recognizable because
in 4D, we need four multiplicands ⌊ψ‡ψ⌋3,4ψ‡ψ. By contrast, in the 2D case, the
determinant can be expressed using only two multiplicands ψ‡ψ, which can be
interpreted as an inner product of two vectors. Thus, in 4D, we cannot produce
a sesquilinear form of the inner product, similar to the 2D case, and the absence
of a satisfactory inner product indicates that there is no Hilbert space in the
usual sense of a complete inner product space.

Nevertheless, the quantum mechanical ”features” (linear transformations,
observables as matrix or operators, and interference patterns in the probability
measure) remain in the 4D case.

Our aim is to find the space that supports the general linear wavefunction
in 4D.

A four degree “inner product” extension to the Hilbert space can be cre-
ated to accommodate our structure. To construct such a Hilbert space for our
structure, a degree-four “inner product” is devised, which performs the role of
the inner product, mapping four vectors to an element of G(4,R). In this con-
struction, the typical concepts of quantum mechanics have equivalences, and the
sophistication of the degree-four “inner product” allows the wavefunction to ac-
commodate all transformations which we believe may be required to support the
complete quantum mechanical theory in 4D while retaining valid probabilities
for its observables.

Let V be a m-dimensional vector space over the 4×4 real matrices. A subset
of vectors in V forms an algebra of observables A(V) if the following holds:

1. ∀φ ∈ A(V), the quadri-sesquilinear form

〈·, ·, ·, ·〉 : V× V× V× V −→ G(4,R)

〈u,v,w,x〉 )−→
m!

i=1

⌊u‡
ivi⌋3,4w

‡
ixi (120)

is positive-definite when u = v = w = x; that is 〈φ,φ,φ,φ〉 > 0
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2. ∀φ ∈ A(V), then for each element ψ(q) ∈ φ, the function

ρ(ψ(q),φ) =
1

〈φ,φ,φ,φ〉 detφ(q), (121)

is positive-definite: ρ(φ(q),φ) > 0

We note the following properties, features, and comments:

• From A) and B), it follows that, ∀φ ∈ A(V), and the probabilities sum to
unity.

!

φ(q)∈φ

ρ(φ(q),φ) = 1 (122)

• φ is called a natural (or physical) state.

• 〈φ,φ,φ,φ〉 is called the partition function of φ.

• If 〈φ,φ,φ,φ〉 = 1, then φ is called a unit vector.

• ρ(φ(q),φ) is called the probability measure (or generalized Born rule) of
φ(q).

• The set of all matrices T acting on φ such as Tφ → φ′ makes the sum of
probabilities normalized (invariant):

!

φ(q)∈φ

ρ(φ(q),Tφ) =
!

φ(q)∈φ

ρ(φ(q),φ) = 1 (123)

are the natural transformations of φ.

• A matrix O such that ∀u∀v∀w∀x ∈ V:

〈Ou,v,w,x〉 = 〈u,Ov,w,x〉 = 〈u,v,Ow,x〉 = 〈u,v,w,Ox〉 (124)

is called an observable.

• The expectation value of an observable O is

〈O〉 = 〈Oφ,φ,φ,φ〉
〈φ,φ,φ,φ〉 (125)

4.6.1 Wavefunction

Here, we present a few comments on the wavefunction formulation.
In the David Hestenes’ notation[4], the wavefunction is expressed by

ψ =
3
ρeibR, (126)
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where ρ represents a scalar probability density, eib is a complex phase, and
R is a rotor expressed as the exponential of a bivector.

In our framework, the 4D probability measure is deduced from a degree-four
“inner-product,” unlike the two degree-two inner product of a Hilbert space. To
recover the David Hestenes’ formulation of the wavefunction, we must square
our wavefunction (we also eliminate the terms x → 0 and v → 0 from it to
reduce the general linear group to spinors) as

ψ = φ2|x→0,v→0 = e2a+2b+2f =
3
ρeibR (127)

Loosely, our wavefunction φ can be interpreted, within the context of the
probability measure, as the “square” or “double-copy” of an ordinary spinor
wavefunction. The additional geometric richness of the “double-copy” is re-
quired to support the general linear-group quantum mechanics. Finally, the
probability measure reduces to the familiar wavefunction form when the general
linear group is reduced to spinors, merely by squaring.

This measure now supports all the geometric measurements possible in na-
ture, and thus, the more sophisticated degree-four “inner product” facilitates
the inclusion of a larger chunk of modern physics under a single framework. To
highlight the potential of this measure to support all the geometric measure-
ments possible in nature, we examine the observables and gravity as well as
suggest falsifiable predictions.

4.6.2 Observables

In 4D, an observable must satisfy the equation 125:

⌊(Oψ)‡ψ⌋3,4ψ‡ψ = ⌊ψ‡Oψ⌋3,4ψ‡ψ = ⌊ψ‡ψ⌋3,4(Oψ)‡ψ = ⌊ψ‡ψ⌋3,4ψ‡Oψ
(128)

⌊ψ‡O‡ψ⌋3,4ψ‡ψ = ⌊ψ‡Oψ⌋3,4ψ‡ψ = ⌊ψ‡ψ⌋3,4ψ‡O‡ψ = ⌊ψ‡ψ⌋3,4ψ‡Oψ
(129)

Because the middle terms cancel ⌊ψ⌋3,4ψ‡ = 1, the relations can be simplified
as

e2a⌊ψ‡O‡⌋3,4ψ = e2a⌊ψ‡O⌋3,4ψ = e2a⌊ψ‡⌋3,4O‡ψ = e2a⌊ψ‡⌋3,4Oψ (130)

It follows that an observable must satisfy

⌊O‡⌋3,4 = ⌊O⌋3,4 = O‡ = O. (131)

This is readily satisfied in two cases, viz. the complex and bivector cases.
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1. In the first case, if O ∈ Cn×n, then the relations are satisfied when O is
self-adjoint O† = O. The corresponding invariant group of the evolution
of this observable is unitary, i.e., U†U = I.

2. In the second case, if O is a bivector, then it is satisfied when O‡ = O.
The corresponding invariant group of the evolution of this observable is
F ‡F = I.

Under the condition that the evolution in each of these two cases preserve
the invariance of the Dirac current, the first and second cases correspond to the
SU(2) × U(1) and SU(3) groups, respectively.

4.6.3 SU(2)× U(1) group

Here, we show the first case that satisfies the 4D relation for the observables.
This corresponds to the case where the observables are self-adjoint O† = O and
where the evolution is unitary U†U = I. We will be looking for the most general
unitary transformation, expressed as a multivector of G(4,R) which leaves the
Dirac current invariant.

Let u = a+ x+ f + v + b be an arbitrary multivector of G(4,R), M be its
matrix representation, and ψ be the wavefunction.

We restrict the set of the multivectors eu to those that realize the Dirac
current and retain its invariance after the transformation. Specifically, we wish
to satisfy this relation

ψ‡γ0ψ = (euψ)‡γ0(e
uψ) (132)

Let us now investigate.
Notably, x and v anti-commute with γ0, and therefore, must be equal to 0 as

they would otherwise not cancel out. Furthermore, the bivectors of u have basis
γ0γ1, γ0γ2, γ0γ3, γ1γ2, γ1γ3, and γ2γ3. Among these, only γ1γ2, γ1γ3, and γ2γ3
commute with γ0; therefore, the rest must be equal to 0. Finally, the pseudo-
scalar anti-commutes with γ0, but this is fine as it must cancel in the Dirac
current. Therefore, the most general multivector that realizes the definition of
the Dirac current and retain its invariance is

u → a+ F12γ1γ2 + F13γ1γ3 + F23γ2γ3 + bγ0γ1γ2γ3 (133)

To see its physical significance, it is sufficient to note that γ1γ2 = Iσ3,
γ1γ3 = Iσ2 and γ2γ3 = Iσ1. The resulting multivector is unitary and is equal
to

U = eu = e
1
2 I(F23σ1+F13σ2+F12σ3+b). (134)

The terms F23σ1+F13σ2+F12σ3 and b are responsible for the SU(2) and U(1)
symmetries, respectively. The details of this identification process is available in
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[5, 6]. David Hestenes and later Lasenby constructed the electroweak sector (and
discussed the chromodynamics sector) using the geometric algebra associated
with such invariance conditions.

4.6.4 SU(3) group

In the second case, the observables are given by O‡ = O, and the evolution is
F ‡F = I.

Let f be a bivector:

f = F01γ0γ1 + F02γ2γ0 + F03γ0γ3 + F23γ2γ3 + F13γ1γ3 + F12γ1γ2. (135)

Alternatively, we can write f as

f = (F01 + iF23)γ0γ1 + (F02 + iF13)γ2γ0 + (F03 + iF12)γ0γ3, (136)

where i is the G(4,R) pseudo-scalar.
The current F ‡γ0F is

F ‡γ0F = −Fγ0F = (F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12)γ0 (137)

+ (−2F02F12 + 2F03F13)γ1 (138)

+ (−2F01F12 + 2F03F23)γ2 (139)

+ (−2F01F13 + 2F02E23)γ3 (140)

For F ‡γ0F to be make the Dirac current retain its invariance (Fψ)‡γ0Fψ =
ψ‡γ0ψ, the cross-product must vanish leaving only

F ‡γ0F = (F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12)γ0, (141)

which is the SU(3) group.
With the previous SU(2) × U(1) result (case 1) and SU(3) (case 2), the 4D

geometric observables produce the symmetry groups associated with modern
particle physics, while leaving minimal wiggle room (but probably not exactly
“no room”) for anything different.

Here, the SU(2) × U(1) and SU(3) groups are the result of ”casting” the
general degree-four probability measure into the definition of the Dirac current,
i.e., the invariance of the Dirac current should be preserved, which is associated
with a degree-two probability. The ”casting” reduces the set of all multivector
transformations ψ′ = uψ to only those that leave the Dirac current ψ‡γ0ψ
invariant. The resulting multivectors form the SU(2) × U(1) group in the first
satisfiable case of the observable, and the SU(3) group in the second.
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4.6.5 Gravity

We considered numerous options for gravity, including holographic forms of
gravity, gravity by quantum entanglement, gravity from entropy (à la Ted
Jacobson[7]), gravity by gauging [8, 9, 10, 11], and so on.

Among these, the gauge gravitation theory defined for (up to) the affine
gauge, yielding (up to) the metric-affine gravity, directly follows from our method
and requires no additions or modifications.

In our framework, the general linear gauge symmetry replaces and gener-
alizes the role of the U(1) gauge symmetry in ordinary quantum mechanics.
Indeed, the probability measure is invariant for the general linear gauge. Thus,
GL(n,F) is to detψ what U(1) is to ψ†ψ. With this gauge, gravity will be the
natural motion of all the fields and will couple to all the Lagrangians consistent
with our probability measure.Thus, GL(n,F) is to detψ what U(1) is to ψ†ψ.
With this gauge, gravity will be the natural motion of all the fields and will
couple to all the Lagrangians consistent with our probability measure.

The generality of the metric-affine gravity exceeds that of general relativ-
ity. This generality can be reduced, if needed, to accommodate multiple flavors
of gravity, from the Poincaré gauge theory (nonmetricity=0) to the Einstein–
Cartan variety and finally to standard general relativity (torsion=0). Our strat-
egy is to support the metric-affine theory of gravity in the general case and, only
if the appropriate physical evidence is eventually obtained, to reduce the extra
freedom in the final result.

How is the metric-affine theory of gravity realized?
The affine group is the result of supplementing the general linear group with

translation via the semidirect product A(4,R) = T (4) ⋊ GL(4,R). Thus, to
realize a gauge theory of this group, we have to handle both translations and
the general linear group. The general linear group is the default gauge of our
probability measure; therefore, this should be straightforward, but what about
the translations?

Thus far, we have parameterized our wavefunction using the elements q of
an arbitrary ensemble Q. The first step is to replace Q with a world manifold
M, and the elements q by the points x on the manifold. On such a manifold,
the introduction of a parameterization introduces transformational symmetries,
leading to gauge symmetries.

First, let us investigate the general linear group by interpreting the general
linear wavefunction as “living” in the tangent space at each point x of the world
manifold M. The geometric basis of the multivector (e0, e1, e2, e3) define the
tangent space of M.

A general linear transformation is given by

ψ′(x) → gψ(x)g−1, (142)

The determinant renders the probability measure of the wavefunction invari-
ant because
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det
6
gψ(x)g−1

7
= detψ(x). (143)

The gauge-covariant derivative associated with this transformation is

Dµψ = ∂µψ − [iqAµ,ψ]. (144)

Finally, the field is given as

Rµν = [Dµ, Dν ], (145)

where Rµν represents the curvature and allows the definition of the Riemann
tensor.

We now must support the second gauge, which are the translations. The
procedure we will use is standard in the literature and so we only provide a
brief sketch here. The best primer we have found is detailed in the following
reference[11].

To support the affine transformations, we enrich the tangent space TxM at
each point x of M by another point ox; this creates a tangent affine space AxM
whose elements are px = (ox, e0, e1, e2, e3). Translations act on ox and the
general linear group acts on e0, e1, e2, e3. We now want to transform a point px
from the tangent affine space AxM to a point px̃ in Ax̃M . A translation of a
point in AxM to a point in Ax̃M involves the use of a connection. Because we
can transform any point in AxM to any point Ax̃M , there is a gauge symmetry.
Finally, to connect px̃ in Ax̃M to its corresponding point x̃ in M, a soldering
form in employed. The end product is that parallel transport within the tangent
affine spaces on different points on the manifold corresponds to diffeomorphism
at the level of the manifold. This is the origin of gravity within the gauge-
theoretical setup.

In the usual metric-affine theory of gravitation, translations corresponds to
torsion T , and the general linear group to curvature R (and non-metricity Q).
In this interpretation, the general linear wavefunction is intimately connected
to the curvature (and non-metricity).

5 Step toward falsifiable predictions

A number of falsifiable predictions is listed below.
The main idea is that a general linear wavefunction would allow a larger class

of interference patterns, compared to complex interference. The general linear
interference pattern includes all the ways in which space–time can interfere with
itself, including those resulting from rotations, boosts, shear, torsion, and so on.

It is plausible that an Aharonov–Bohm effect experiment on gravity[12] could
detect the general linear phase and patterns identified in this section.
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An interference pattern follows from a linear combination of u and v, and
the application of the determinant:

det(u+ v) = detu+ detv + extra-terms (146)

The sum of the probability is (detu+detv), and the “extra terms” represents
the interference term.

We use the extra terms to define a bilinear form using the dot product
notation.

· : G(2n,R)×G(2n,R) −→ R (147)

u · v )−→ 1

2
(det(u+ v)− detu− detv) (148)

For example, in 2D, we have

u = a1 + x1e1 + y1e2 + b1e12 (149)

v = a2 + x2e1 + y2e2 + b2e12 (150)

=⇒ u · v = a1a2 + b1b2 − x1x2 − y1y2. (151)

If detu > 0 and detv > 0, then u · v is always positive, thereby qual-
ifying as a positive-definite inner product, but not greater than either detu
or detv(whichever is greater). Therefore, it also satisfies the conditions of an
interference term.

• In 2D, the dot product is equivalent to the form

1

2
(det(u+ v)− detu− detv) =

1

2

6
(u+ v)‡(u+ v)− u‡u− v‡v

7

(152)

= u‡u+ u‡v + v‡u+ v‡v − u‡u− v‡v
(153)

= u‡v + v‡u (154)

• In 4D, it is substantially more complex:

1

2
(det(u+ v)− detu− detv) (155)

=
1

2

6
⌊(u+ v)‡(u+ v)⌋3,4(u+ v)‡(u+ v)− ⌊u‡u⌋3,4u‡u− ⌊v‡v⌋3,4v‡v

7

(156)

=
1

2

6
⌊u‡u+ u‡v + v‡u+ v‡v⌋3,4(u‡u+ u‡v + v‡u+ v‡v)− . . .

7

(157)
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= ⌊u‡u⌋3,4u‡u+ ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u+ ⌊v‡v⌋3,4v‡v − . . .
(158)

= ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u (159)

A simpler version of this interference pattern is possible when the general
linear group is reduced.

Complex interference:
In 2D, a reduction of the general linear group to the circle group reduces the

interference pattern to a complex interference.

|ψ1 + ψ2|2 = |ψ1|2 + |ψ2|2 + 2|ψ1||ψ2| cos (φ1 − φ2) (160)

Deep spinor interference:
A reduction to the spinor group reduces the interference pattern to a ”deep

spinor rotation.”
Consider a two-state wavefunction (we note that [f ,b] = 0)).

ψ = ψ1 + ψ2 = ea1ef1eb1 + ea2ef2eb2 (161)

The geometric interference pattern for a full general linear transformation
in 4D is given by

⌊ψ‡ψ⌋3,4ψ‡ψ. (162)

Starting with the sub-product

ψ‡ψ = (ea1e−f1eb1 + ea2e−f2eb2)(ea1ef1eb1 + ea2ef2eb2) (163)

= ea1e−f1eb1ea1ef1eb1 + ea1e−f1eb1ea2ef2eb2

+ ea2e−f2eb2ea1ef1eb1 + ea2e−f2eb2ea2ef2eb2 (164)

= e2a1e2b1 + e2a2e2b2 + ea1+a2eb1+b2(e−f1ef2 + e−f2ef1) (165)

The full product is expressed as
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⌊ψ‡ψ⌋3,4ψ‡ψ =
6
e2a1e−2b1 + e2a2e−2b2 + ea1+a2e−b1−b2(e−f1ef2 + e−f2ef1)

7

×
6
e2a1e2b1 + e2a2e2b2 + ea1+a2eb1+b2(e−f1ef2 + e−f2ef1

7

(166)

= e2a1e−2b1e2a1e2b1 + e2a1e−2b1e2a2e2b2 + e2a1e−2b1ea1+a2eb1+b2(e−f1ef2 + e−f2ef1)

+ e2a2e−2b2e2a1e2b1 + e2a2e−2b2e2a2e2b2 + e2a2e−2b2ea1+a2eb1+b2(e−f1ef2 + e−f2ef1)

+ ea1+a2e−b1−b2(e−f1ef2 + e−f2ef1)e2a1e2b1

+ ea1+a2e−b1−b2(e−f1ef2 + e−f2ef1)e2a2e2b2

+ ea1+a2e−b1−b2(e−f1ef2 + e−f2ef1)ea1+a2eb1+b2(e−f1ef2 + e−f2ef1)
(167)

= e4a1 + e4a2 + 2e2a1+2a2 cos(2b1 − 2b2) (168)

+ ea1+a2(e−f1ef2 + e−f2ef1)( (169)

e2a1(e−b1+b2 + eb1−b2) (170)

+ e2a2(eb1−b2 + e−b1+b2)) (171)

+ e2a1+2a2(e−f1ef2 + e−f2ef1)2 (172)

= e4a1 + e4a2

8 9: ;
sum

+2e2a1+2a2 cos(2b1 − 2b2)8 9: ;
complex interference

+ 2ea1+a2(e2a1 + e2a2)(e−f1ef2 + e−f2ef1)(cos(B1 −B2)) + e2A1+2A2(e−f1ef2 + e−f2ef1)28 9: ;
deep spinor interference

(173)

6 Discussion

We have recovered the foundations of quantum mechanics using the tools of
statistical mechanics to maximize the entropy, and a geometric constraint. In
doing so we have replaced the Boltzmann entropy with the Shannon entropy,
and this has an impact on the resulting interpretation.

In contrast to the multiple interpretations of quantum mechanics, the inter-
pretation of statistical mechanics is singular, free of paradoxes and obviously
devoid of any measurement problem; remarkably, this will carry over to our
interpretation of quantum mechanics.

Definition 9 (Metrological interpretation). There exist instruments that record
sequences of measurements on systems. These measurements are unique up to a
geometric phase, and the Born rule (including its geometric generalization to the
determinant) is the entropy-maximizing measure constrained by the expectation
value of these measurements.

The Lagrange multiplier method, used to maximize the entropy subject to
geometric constraints, is the mathematical backbone of this interpretation.
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Let us now discuss the definition of the measuring apparatus entailed by this
interpretation.

Integrating formally into physics the notion of an instrument or measuring
apparatus has been a long standing difficulty. One of the pitfalls is to attribute
too much “detailing” to this instrument (for instance defining the instrument as
a macroscopic system which amplifies quantum information), as this increases
the risk of capturing only a fraction of all possible instruments in nature. Frac-
tional capture is to be avoided because the instruments are our only “eyes into
nature”; consequently the generality of their definition must be on part with
the laws of physics themselves.

Do we have any physical theory which already admits a satisfactory definition
of the measuring apparatus?

In statistical mechanics, instruments and their effects on systems are in-
corporated into the mathematical formalism. For instance, an energy meter or
volume meter can produce a sequence of measurements whose average converges
towards an expectation value, and this constitutes a constraint on the entropy.
However, the generality (and generalizability) of this definition to all physical
system (including quantum and geometrical) was overlooked. In this study, we
have capitalized on this definition and we have extended it appropriately.

The instrument is defined as follows:

Definition 10 (Instrument/Measuring Apparatus). An instrument, or measur-
ing apparatus, is a device that constrains the entropy to an expectation value; or
more precisely, an instrument is described by an equality which constrains the
entropy to a given exception value.

Nature allows geometrically richer measurements and instrumentations, which
are not possible to express with simple “scalar” or “phase-less” instruments.
For instance, a ruler, clock, and protractor also admit numerical measurements;
however, they contain geometric phase invariances, such as the Lorentz invari-
ance.

In the metrological interpretation, the existence of such instruments, not
the wavefunction, is taken as axiomatic. Essentially, the interpretation adopts
the belief that the laws of physics are entirely determined by the geometrical
richness (invariance) of the instruments that are available in nature.

In this study, we interpreted the trace as the expectation value of the eigen-
values of a matrix transformation times the dimension of the vector space. Max-
imizing the entropy under the constraint of this expectation value introduces
various phase invariances into the resulting probability measure, consistent with
the available measuring apparatuses. Specifically, the constraint

tr

&
0 −b

b 0

'
=

!

q∈Q
tr ρ(q)

&
0 −b(q)

b(q) 0

'
(174)

induces a complex phase invariance into the probability measure ρ(q) =
| exp(−iτb(q))|2, which gives rise to the Born rule and wavefunction. Moreover,
the constraint
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trM =
!

q∈Q
tr ρ(q)M(q) (175)

induces a general linear phase invariance in the probability measure ρ(q) =
det exp (−τM(q)), giving rise to a probability measure supporting multiple
gauges and observables commonly used in modern physics, specifically, those
of general relativity and the standard model. In each case, we can interpret the
constraint as an instrument acting on the system.

In the complex phase, we associate the constraint to an incidence counter
measuring a particle or photon. Moreover, in the general linear case, we asso-
ciate the constraint to a measure that is invariant with respect to all coordinate
changes in the general linear phase, such as measurements of the geometry of
space–time.

The complete correspondence between an ordinary system of statistical me-
chanics and ours is as follows.

Table 1: Correspondence

Concept Statistical Mechanics Geometric Constraint (Ours)

Entropy Boltzmann Shannon
Measure Gibbs Born rule on wavefunction
Constraint Energy meter Phase-invariant instrument
Micro-state Energy values Possible measurements
Macro-state Equation of state Evolution of the wavefunction
Experience Ergodic Message of measurements

In the correspondence, the usage of the Shannon entropy instead of the
Boltzmann entropy changes the experience from ergodic to a message (in the
sense of the theory of communication of Claude Shannon[13]) of measurements.
The receipt of such a message by say, an observer, carries information; it is
interpreted as the registration of a “click”[14] on a screen or other detecting
instrument. Using the Shannon entropy, quantum physics can be interpreted
as the probability measure resulting from the maximization of the entropy of a
message of geometrically invariant measurements received by an observer.

The probabilistic interpretation of the wavefunction via the Born rule is
inherited from statistical mechanics and results from the maximization of the
entropy under geometric constraints. The wavefunction is also entailed, and
hence, not considered axiomatic either. Instead, the receipt of a message of the
measurements taken by an instrument, along with the geometric constraints on
the corresponding entropy, is axiomatic.

The axioms of quantum mechanics are recoverable as theorems from the
solution ∂L

∂ρ = 0 for ρ, where
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L = −
!

q∈Q
ρ(q) ln ρ(q) + λ

"

#1−
!

q∈Q
ρ(q)

$

%+ τ

"

#trM−
!

q∈Q
ρ(q) trM(q)

$

% .

(176)

Now, let us discuss the wavefunction collapse problem:
Specifically, the mathematical foundation of quantum mechanics contains

the following axiom: If the measurement of a quantity O on ψ gives the result
on, then the state immediately after the measurement is given by the normalized
projection of ψ onto the eigensubspace of on as

ψ =⇒ Pn |ψ〉3
〈ψ|Pn |ψ〉

(177)

The measurement-collapse problem is superseded as follows: Before the
wavefunction is derived, measurements are assumed to have already been reg-
istered by an instrument and are associated with a geometric constraint, which
is axiomatic. Registering new measurements in this case does not mean that a
wavefunction has collapsed but implies that we need to adjust the constraints
and derive a new wavefunction consistent with new measurements. Because the
wavefunction is derived by maximizing the entropy constrained by the registered
measurements, it never updates from an uncollapsed state to a collapsed state.
The collapse problem is a symptom of attributing an ontology to the wavefunc-
tion; however, the ontology belongs to the instruments and their measurements
— not the wavefunction.

For instance, we can deduce a probability measure by throwing multiple
coins into air and noting that about half of these coins land on head and the
other half on tail. Such a probability measure cannot be used to derive the result
of the next flip, but only its expectation value. Likewise, here, the expectation
value of the measurements is used to derive the wavefunction. The present
derivation of the wavefunction as a solution to a maximization problem on the
entropy under a geometric constraint (themselves related to expectation values)
is mathematically consistent with this understanding.

Finally, this formulation is consistent with physics being a purely empirical
science. Indeed, as all knowledge of nature comes from the instruments that can
be constructed, postulating these instruments (rather than the wavefunction)
to be the axioms of physics, and then using their definition to derive the wave-
function, makes the mathematics of physics entirely consistent with it being an
empirical science., and then using their definition to derive the wavefunction,
makes the mathematics of physics entirely consistent with it being an empirical
science.

The full correspondence is also consistent with the general intuition that
random information ought to be axiomatic, as by definition it cannot be derived
from any earlier principles. Ultimately, it is viable to consider the message of
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random measurements, rather than the wavefunction (which is a precise and
deterministic mathematical equation), to be the axiomatic foundation of the
theory. As shown, the latter can be derived from the former, but not vice versa,
which is suggested by the lack of a satisfactory mechanism for the wavefunction
collapse in the usual interpretation.

6.1 Axioms of Physics

We propose that the laws of physics are ultimately entailed only and entirely
by the following minimal axioms related to measurements.

Let q be the elements of a statistical ensemble Q and ∀q ∈ Q : m(q) ∈ R be
an observable of Q.

Axiom 1 (Observability). The experience of the observer in nature is defined
as the receipt of a message m ∈ Rn of n measurements performed on n identical
copies of Q.

Axiom 2 (Representativeness). Observations are representative in the limit:
when |m| → ∞, then m ∈ R (i.e., the average of these measurements converges
towards a well-defined expectation value).

Axiom 3 (Comprehensiveness). Observations are comprehensive in the limit:
when |m| → ∞, then Q is well-defined (i.e., all the elements in Q are identified).

Conjecture 1 (Geometricity). The geometric constraint is sufficiently sophis-
ticated to represent all the possible measurements in nature:

trM =
!

q∈Q
ρ(q) trM(q) (178)

where trM(q) = m(q) is a possible measurement, and M corresponds to a
matrix or multivector.

Conjecture 2 (Geometric Totality). The geometric constraint is sufficiently
restrictive to represent only the measurements that are possible in nature.

Theorem 1 (Physics). Maximizing the entropy of the elements constituting a
message of measurement yields, under the geometric constraint, the model of
physics consistent with these measurements:

L = −
!

q∈Q
ρ(q) ln ρ(q) + λ

"

#1−
!

q∈Q
ρ(q)

$

%+ τ

"

#trM−
!

q∈Q
ρ(q) trM(q)

$

% .

(179)

Solving for ∂L/∂ρ = 0 implies

ρ(q, τ) =
1

Z(τ)
det exp(−τM(q)), (180)
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where

Z(τ) =
!

q∈Q
det exp(−τM(q)). (181)

where the Lagrange multiplier τ represents the one-parameter group evo-
lution of, in the general case, the orientation preserving general linear group
GL+(n,R) (which corresponds to the structure group of a world manifold when
Q is equated to M, and along with the wavefunction and the standard model
gauges, comprises the results presented in this study).

7 Conclusion

In this paper, we proposed a geometric constraint, which is used to maximize
the Shannon entropy. This geometric constraint allows us to derive a probability
measure that supports a geometry richer than that commonly available, and this
substantially extends the opportunity to capture all the modern physics phe-
nomena within a single framework. To accommodate all the possible geometric
measurements, the wavefunction of the general linear group is derived, and the
Born rule is extended to the determinant. A gauge theory of the affine group
emerges following the parameterization of the wavefunction in a world mani-
fold. Evidently, “casting” the general linear wavefunction into the definition of
the Dirac current reduces the theory to the SU(2)× U(1) and SU(3) groups for
the first and second satisfying cases of the 4D observable, respectively. Finally,
an interpretation of quantum mechanics, viz. the metrological interpretation,
is proposed; the existence of instruments and the measurements they produce
acquire the foundational role, and the wavefunction is derived as a theorem. In
this interpretation, it is considered that an observer receives a message (theory
of communication/Shannon entropy) of phase-invariant measurements and that
the probability measure, which maximizes the information of this message, is
the wavefunction accompanied by the Born rule.

Other aspects, such as the renormalization potential of the gravitational
theory or the interaction picture, constitutes possible avenues to be investigated
in future studies.
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