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Abstract

While there exist in the wild a process to derive the laws of physics
—namely, the practice of science— such has not been formalized in math-
ematics as of yet. Here, we understand this lack as an unrealized oppor-
tunity to investigate the relationship between experiments, science and
physics entirely formally, and to report key findings. The first step in the
program will be to eliminate all ambiguities from our language by express-
ing experiments using Turing complete languages and halting programs.
A listing of such experiments via a machine or algorithm is recursively
enumerable and, if understood as an incremental contribution to knowl-
edge, then serves as a formulation of mathematics that models the prac-
tice of science entirely. In turn this formulation leads to a definition of
the observer as the probability space over all experiments in nature, and
the laws of physics are found by solving an optimization problem on the
quantity of information required to produce a message from said space.
The final product is a comprehensive theory of physics formulated from
the perspective of the observer, optimized to be (and interpreted as) the
”least encumbering” model of its free participation in nature, void of all
informal physical and metaphysical language, and entirely sourced from
the (formalized) practice of science.
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1 Sketch

Before we go into details, let us first sketch the main ideas of the thesis, naturally
without making any claim to rigour.

This work is primarily motivated by our identification of a missed oppor-
tunity to formulate the laws of physics without ambiguities, without informal
physical or metaphysical language (sometimes called physical baggage — Max
Tegmark[1]), and to derive them as the result of a theorem of some formal
prescription, rather that having them be merely posited. The opportunity is
realized by formalizing the practice of science itself, and then capitalizing on
increased rigour and clarity. Ultimately, the program demystifies the origins of
the laws of physics.
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To support our main result, four systems will need to be introduced. The
last, being the formal derivation of the laws of physics, constitute the main
result. The systems are:

1. A Formal System of Knowledge

In this section, we select the appropriate mathematical tool to model
knowledge itself, and we justify the choice. Specifically, a unit of knowl-
edge will be modelled as a halting program. Then, each discovery of a
halting program will be taken as a contribution to the lexicon of knowl-
edge. The lexicon, as it includes all halting programs, is Turing complete,
and consequently will not be decidable, but rather recursively enumerable.
Furthermore, as it is Turing-complete, the lexicon is maximally expressive,
and on par with any other Turing complete language. Finally, we show
that the lexicon meets, exactly, the epistemological definition of knowl-
edge.

2. A Formal System of Science (used to ”map” knowledge)

Here, we introduce the notion of an experimental protocol, comprised of
an initial preparation along with a series of steps to be performed on
the preparation such that it terminates with a result. We then further
introduce the notion of a universal experimenter; a machine that can carry
out any experimental protocol in nature, and we find that it admits an
equivalent mathematical definition to that of a halting program or Turing
machine. Finally, we argue that any physical system can be described
equivalently, and without ambiguities, by a corresponding collection of
terminated experimental protocols (in lieu of, say, dynamical equations).

In this setup, a scientific method is defined as a function that recursively
enumerates experimental protocols. A specific listing of halting programs
or terminating experimental protocols produces an incremental contribu-
tion of mathematical or experimental knowledge, respectively, and such
can be used to validate or invalidate predictive models of knowledge. This
yields an epistemologically-complete formalization of the practice of sci-
ence that is entirely free of informal physical or metaphysical language.

3. A Formal Theory of the Observer (used to practice science)

Here, we mathematically define the object that practices science. We
attack the problem from this angle: If the observer deterministically pro-
duces a recursive enumeration of experiments, then it is merely a machine
and the physics it is subjected to is super-deterministic; If however, the
observer probabilistically produces a recursive enumeration of experiments,
then it is a probability space of experiments.

As the later case involves the use of probability and models the partici-
pation of the observer in nature, we give its corresponding measure the
interpretation of a model of experimenter freedom (a term borrowed from
its use as an assumption to the Bell inequality), or interchangeably as;
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’freedom of action’, ’free participation’ or ’free practice of science’. The
terms ’free’ and ’freedom’ are in this context to be interpreted similarly to
the strict sense given by Conway and Kochen[2] as freedom from being de-
termined by past history, thus allowing a probabilistic enumeration in the
present; and that of the Bell inequality as having the freedom to pick the
experiment (or equivalently its parameters), also undetermined by past
history. It is not meant to be interpreted in the metaphysical sense of free
will commonly used in philosophy.

The observer is then free, in this sense, to practice science in nature (rather
than be compelled to act by a Turing machine or deterministic algorithm),
and as we found it is in this context that the laws of physics are manifest
as the ”least encumbering” model of its free participation in nature.

4. A Formal Model of Physics (used to model what the observer can or cannot
do as it practices science).

Here, we find that fundamental physics is intimately connected to, and
ultimately derived from, this definition of the observer.

As a probability space over all experiments in nature, the ”experience” of
the observer will be given in the form of the production or receipt of a
message of incremental contributions to knowledge and will be constructed
from the elements of this space. But, since experiments are selected under
experimenter freedom (i.e. randomly), information is required to encode
the message. This information represents the sum total of all ”free exper-
imental choices” in nature.

As we found, the information that encodes the message is, in the context
of arbitrary experiments, not representable by bits, but rather by ’clicks’
(a term we borrowed from John A. Wheeler[3] regarding the recording
of an incidence by an incidence counter), and these ’clicks’ behave the
same as wave-function measurement collapses. Thus, in our system, the
fundamental experience of the observer is encoded as a specific sequence
of ’clicks’, or collapses, corresponding to a specific a selection of completed
experiments in nature.

From this, we found that optimizing these ’clicks’ is sufficient to uniquely
entail physics. In fact, applying the traditional machinery of statistical
mechanics to an ensemble of clicks, then maximizing the entropy, yields
very straightforwardly the wave-function and the Born rule in lieu of the
Gibbs measure, thereby providing an origin for concepts that were previ-
ously postulated. Furthermore, we found the machinery to be sufficiently
powerful to derive quantum field theory, general relativity, and up to and
including quantum gravity. This is because the structure of the ’clicks’
that we recover is in fact slightly more general than the collapses that are
manifest in standard quantum physics, and as it turned out, happen to
be just enough to admit the Einstein field equations (EFE) as the default
equation of motion of our quantum fields. We stress that the EFE does
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not need to be injected or imported into, and follows automatically from
the quantum theory.

If we interpret the production or receipt of a message of incremental con-
tribution as the result of the free participation of the observer in nature,
then the resulting model of physics, as it is optimized, is merely inter-
preted as the maximally permissive model of said participation. From
this, the inviolability of the laws of physics automatically follows, simply
because the observer logically cannot make a choice ’freer than freest’ and
that ’freest’ is used to define the laws of physics.

The endeavour thus appears to have narrowed the scope of the laws of
physics to its most fundamental expression (delimiting the freest possible
model of observer participation in nature), whilst nonetheless remaining
sufficiently comprehensive to account for not only the laws of physics and
their origins, but also for their uniqueness, universality and inviolability.

Finally, we present the following schematic equation:

Optimize(Experiments+Observer) = Physics (1)

and is meant to summarize the argument as a single line.
We pass now to the detailed and rigorous execution of the argument sketched

above.

2 The Formal System of Knowledge

Mathematics tends to be formulated on the backbone of theories of truth, for
instance propositional logic or first order logic, and their aim are to correctly
propagate truth from statement to statement; whereas in the sciences, we tend to
find theories of knowledge whose aim are to produce incremental contributions
to validate (or invalidate) an ever more complete model thereof.

Knowledge is similar to truth in many ways. For instance, both quanti-
tatively relate to a binary state: knowledge is either known (1) or unknown
(0), and truth is either true (1) or false (0). But, theories of truth tend to
view incompleteness as a weakness since it signals obscurities, whereas those
of knowledge seek it as it signals an opportunity for progress. Furthermore,
axiomatic theories formulated in terms of truth tend to clash with one another
(incompatible premises entail contradictions), whereas those formulated based
on knowledge contribute to one another (knowledge is closed under union).

We have a plurality of theories of truth in mathematics, but so far we have
not captured these differences and intuitions into a formal system of knowledge.

Let us begin by stating that attempts to find a complete logical basis for
truth have been made ad nauseam in the past but they failed for primarily two
reasons. First, they were attempted before Gödel-type theorems were known
and appreciated, and attempts were directed at constructing decidable logical
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bases for truth. Secondly, instead of directing efforts to recursively enumerable
bases following the discovery of said incompleteness theorems, efforts simply felt
out of favour as it was understood that any sufficiently expressive system of truth
would contain obscurities, and this made them philosophically unattractive. It
is however possible to construct recursively enumerable bases (provided they
are not decidable), and further the limitations of recursive enumeration ought to
instead be seen as an opportunity; in this case, to create a formal system to map
out knowledge, such that it may serve as the foundation to a formalization of
science. In this case, the theory challenges us to discover new knowledge, rather
than to merely fix truth definitionally only to bail out at the first obscurity, and
in this context we call it a theory of knowledge to distinguish it from a theory
of truth. Theories of knowledge, as recursively enumerable systems, are a more
general concept than theories of truth which are subsets thereof. Indeed, for all
statements that are either true (1) or false (0), it is the case that we can know
(1) its truth value; but if a statement is such that it is undecidable, a binary
state of knowledge still applies to it, in this case its truth value is unknown (0).

To help appreciate the utility and to fix the intuition, consider the follow-
ing ”amusing” construction which we will call rotting arithmetic. In logic we
are allowed to inject any sentence as a new axiom, and to investigate its con-
sequences. Rotting arithmetic will be defined as the union of the axioms of
Peano’s arithmetic and of the axiom of rot, which we define as follows:

Axiom of rot :=
!
22

82,589,933

− 1
"

is a prime (2)

Rotting Arithmetic := {Peano’s Arithmetic} ∪ {Axiom of rot} (3)

The axiom of rot claims that a very large is number is a prime. If it’s true,
then it has no effects on the system, but if it’s false, the system is inconsis-
tent. Comparatively, the largest known prime (at the time of this writing) is
282,589,933 − 1 which is orders of magnitude smaller than the number referenced
in the axiom of rot. Since we have used randomness to generate the axiom of
rot, odds are minuscules that it is a prime... or perhaps we did hit the jackpot
and it is a prime. A theory of knowledge can assign the state unknown (0) to
the axiom of rot until such a time as we find out if the proposed number is or
isn’t a prime; whereas a theory of truth expects true or false right now, as it’s
truth-value is fixed in principle.

It may be that it takes us a century until we find out if the axiom of rot is
or isn’t true, as our computing capacities may need to improve before we can
know. As time goes by the ”freshness” of the theory slowly diminishes, until
such a time as it is revealed to be rotten at which time it is discarded (or it
keeps perpetually fresh if we did hit the jackpot and the number is a prime).

The example of rotten arithmetic may appear convoluted or unnatural —
after-all why would we take the chance with an axiom of rot, when we can easily
do arithmetic without it —, but now consider what often happens in science.
For nearly a century before Einstein produced the theory of special relativity
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(Einstein, 20th century), the union of both classical mechanics (Newton, 17th
century) and electromagnetism (19th century) was ”fresh”:

Law of Inertia := F = ma (4)

Maxwells’ equation := ∇ ·E = ρ/ε0,∇ ·B = 0, ... (5)

Union := {F = ma} ∪ {Maxwells’ equation} (6)

The discovery of ”rot” in their union (Maxwell’s equations reports a constant
speed of light independently of the observer’s velocity, whereas velocities in
F=ma are additive) had to wait for nearly a century to be noticed and corrected.
In the mean time, most were happy to use both theories, and the problem
remained unnoticed. Similarly to the case of rotten arithmetic, the state of
knowledge of ”rot” in the union had to go from unknown (0) to known (1),
before a new model was to be produced.

Falsification in general can be manipulated in a similar fashion. But instead
of having two axiomatic theories, we have an empirical statement along with an
axiomatic theory:

Observation := Precession of Mercury’s orbit (7)

Law of Gravitation := F = GmM/r2 (8)

Falsification? := {P[...] of Mercury’s orbit} ∪ {F = GmM/r2} (9)

The statement ”Precession of Mercury’s orbit” would plausibly indicate a
sequence of measurements, observations or experiments, and falsification occurs
if they are not solutions to the law of gravitation.

So far, we have discussed the intuition only informally, and so the next step
is to ask what mathematical tools are the best to describe knowledge formally?
To find out we must be a bit more technical. Let us look at the philosophical
discipline that study knowledge: epistemology — What does it tell us about
knowledge, that we can use?

Epistemology, at least historically and dating all the way back to Plato, has
considered knowledge to be that which is a justified true belief. For instance ”I
know Bob is from Arkansas (as a justified true belief), because his driver’s license
is from Arkansas (justification), and he is from Arkansas (true)”. However, the
Gettier problem[4] is a well known objection to this definition. Essentially, if
the justification is not loophole free, there exists a case where one is right by
pure luck, even if the claim were true and believed to be justified. For instance,
if one glances at a field and sees a shape in the form of a dog, one might think
he or she is justified in the belief that there is a dog in the field. Now suppose
there is a dog elsewhere in the field, but hidden from view. The belief ”there is
a dog in the field” is justified and true, but it is a hard sale to call it knowledge
because it is only true by pure luck.

Richard Kirkham[5] proposed to add the criteria of infallibility to the jus-
tification. Knowledge, previously justified true belief, would now be infallible
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true belief. Merely seeing the shadow of a dog in a field would not be enough to
qualify as infallible true belief, as all claims will have to be exactly proportional
to the evidence. This is generally understood to eliminate the loophole, but it is
an unpopular solution because adding it is assumed to reduce knowledge to rad-
ical skepticism in which almost nothing is knowledge, thus rendering knowledge
non-comprehensive.

Here, we will adopt the insight of Kirkham regarding the requirement of
infallibility whilst resolving the non-comprehensiveness objection, and also re-
taining the intuitive characteristics of knowledge as we have described them in
this introduction. To do so, we will structure our statements such that they are
individually infallible, yet as a group form a Turing complete language.

Our tool of choice for this will be halting programs, and they will act as
the building blocks of knowledge in our system. Here, we understand halting
programs as a descriptive language, similar in expressive power to any other
Turing complete language, such as say english. But unlike english, using halting
programs makes the description of each unit of knowledge completely free of
ambiguities. And ambiguities are of course antithetical to knowledge. General
translations between all Turing languages exists, and so we do not lose any
expressive power by using them, over any other choice of language. For instance,
any mathematical problem can be reformulated as a statement regarding the
halting status of a program via the Curry–Howard correspondence.

The primary advantage in using a listing of halting programs to represent
our state of knowledge is that it will allow us to union all new discoveries of
knowledge with older ones, without any risk of the new ones invalidating the
previous ones, thus making knowledge closed under union. Indeed, if a program
is known to halt, then no other halting programs discovered afterwards can
contradict that. Rather, it will be explanatory models of knowledge that would
or could be invalidated (falsified) by new knowledge. Contributions of new
knowledge to a Turing-complete lexicon will thus be incremental by guarantee.

Halting programs are of course subject to the halting problem and this will
entail our system to be a trial and error system. Consequently, acquiring new
knowledge will be difficult, even arbitrarily difficulty, and may even contain
dead-ends (non-halting programs). This trial and error effect will in turn be-
come the basis of a formal model of science that is entirely formalized, yet
comprehensive.

Let us inform the reader that information regarding the connection between
mathematics, science and programs, is available in the seminal works of Gregory
Chaitin[6, 7, 8] which constitute a major source of inspiration for this work. A
familiarity with his work is assumed.

2.1 Halting Programs as Knowledge

How do we construct an infallible statement, so that it qualifies as an epistemic
statement in the sense of Kirkham?

Let us take the example of a statement that may appear as an obvious true
statement such as ”1+1 = 2”, but is in fact not infallible. Here, we will provide
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the definition of an infallible statement, but equally important, such that the set
of all such statements is Turing complete, thus forming a language of maximum
expressive power.

Specifically, the sentence ”1 + 1 = 2” halts on some Turing machine, but
not on others and thus is not infallible. Instead consider the sentence PA ⊢
[s(0)+s(0) = s(s(0))] to be read as ”Peano’s axioms prove that 1+1 = 2”. Such
a statement embeds as a prefix the set of axioms in which it is provable. One
can deny that 1+1 = 2 (for example, an adversary could claim binary numbers,
in which case 1+1 = 10), but if one specifies the exact axiomatic basis in which
the claim is provable, said adversary would find it harder to find a loophole to
fail the claim. Nonetheless, even with this improvement, an adversary can fail
the claim by providing a Turing machine for which PA ⊢ [s(0) + s(0) = s(s(0))]
does not halt.

The key is to structure the statement so that all context required to prove
the statement is provided along with the statement itself; then it is the claim
that the context entails the statement that is infallible. If we use the tools of
theoretical computer science we can produce statements free of all loopholes,
thus ensuring they are infallible. Those statements, which are mathematical
theorems, are also —via Curry–Howard correspondence— the halting programs.
The value in the knowledge acquired by knowing that a specific programs halts
is associated to the ”difficulty” of running the program until termination. Let
us now introduce a few definitions.

Let Σ be a set of symbols; called an alphabet. A word is a sequence of
symbols from Σ. The empty word is represented as ∅. The set of all finite
words is given as:

W :=

∞#

i=0

Σi (10)

Finally a language L is as a subset of W.
As an example, the sentences of the binary alphabet Σ = {0, 1} are the

binary words {∅, 0, 1, 00, 01, 10, 11, 000, . . . }.
There exists multiple models of computation, such a Turing machines, µ-

recursive functions, Lambda calculus, etc. Here, to retain generality we will use
computable functions without requiring a specific model.

Instead of a Turing machine, we will consider a Turing-computable function
and its definition is as follows:

A Turing machine Φ computes a partial function TM: W → W iff:

1. For each d ∈ Dom(TM), Φ(d) halts and equals TM(d).

2. For each d /∈ Dom(TM), Φ(d) never halts.

Then, TM is a Turing-computable function (or simply, a computable func-
tion). We denote TM as the set of all computable partial functions from
W → W.
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Likewise, and instead of a universal Turing machine as a specific implementa-
tion, we will prefer to use a universal Turing-computable partial function of two
inputs DM: W×W → W. To use the elements of TM in this function, we must
introduce a bijective function, which we call an interpreter, as: 〈·〉 : TM ↔ W
specific to the DM. Then, if forall TM ∈ TM and forall d ∈ Dom(TM), it is the
case that if DM(〈TM〉, d) ≃ TM(d), then DM is a universal function, and we
denote it as UTM.

Definition 1 (Halting Program). A halting program p is a pair TM×W:

p := (TM, d) (11)

such that TM(d) = r.

With this definition, d can be considered as the statement, TM is its context,
and if TM(d) halts, then both are paired as a context-free halting claim:

p = (TM, d); UTM(〈TM〉, d) halts (12)

Since a translation exists between universal Turing machine, a claim that
d halts on TM, if known, entails ”p halts” is verifiable on all universal Turing
machines, and requires no specific context for this to be verified.

For instance, the following (trivial) program halts:

fn one_plus_one_equals_two(){

if 1+1==2{

return;

}

loop{};

}

The claim ”p = (cargo run, one plus one equals two);UTM(p) halts” is a
unit of knowledge, and I can contribute it to the lexicon.

A less trivial example is shown in Annex C which presents a formal proof of
the commutativity of addition for natural numbers written in COQ[9]. Thus,
the claim ”p = (COQ, plus comm); UTM(p) halts” would be another unit of
knowledge.

The second objection is that the infallibility requirement is too demanding,
preventing knowledge from being comprehensive by making it able at most to
only tackle a handful of statements. However, the set of all halting programs
constitutes the entire domain of the universal Turing machine, and thus the
expressive power of halting programs must be on par with any Turing complete
language. Since there exists no greater expressive power for a formal language
than that of Turing completeness, then no reduction takes place. The resulting
construction is both element-wise infallible, and comprehensive as a set:
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Definition 2 (Lexicon (of Knowledge)). The set of all programs TM×W that
halts constitutes the lexicon of knowledge K.

• K constitute the set of all knowledge-bearing statements.

• K is non-computable, but is recursively enumerable.

• K contains countably infinitely many elements.

• We can definite K, we can also contribute to it, but we cannot complete
it.

• Unlike the hyperwebster[10] which includes all possible words from Σ re-
gardless of halting status and thus is without knowledge, here each entry
is a halting program and thus bears knowledge in its context.

Definition 3 (Translation (of K)). A translation T of K is a map from TM×W
to W × W such that the interpreter function 〈·〉 is applied to each element of
TM. Each translation of K corresponds to the domain of a universal Turing
machine UTM.

TUTM := Dom(UTM) (13)

And contains all pairs W×W that halt on UTM.

Theorem 1 (Incompleteness Theorem). Since a translation of K is the domain
of a UTM, then it is undecidable. The proof follows from the domain of a
universal Turing machine being undecidable. Finally, since 〈·〉 is bijective, it
follows that K is also undecidable.

The theorem implies that we will never run out of new knowledge to discover,
and can thus perpetually contribute to the lexicon.

Theorem 2 (K is recursively enumerable). We will list K by dovetailing.

Proof. First, let us recursively enumerate the translation T of K. Consider a
dovetail program scheduler which works as follows.

1. Sort the columns of W×W in shortlex:

d1 d2 d3 . . .

〈TM1〉 (〈TM1〉, d1) (〈TM1〉, d2) (〈TM1〉, d3) . . . (14)

〈TM2〉 (〈TM2〉, d1) (〈TM2〉, d2) (〈TM2〉, d3) . . . (15)

〈TM3〉 (〈TM3〉, d1) (〈TM3〉, d2) (〈TM3〉, d3) . . . (16)

...
...

...
...

. . .

then trace a line across the pairs starting at (〈TM1〉, d1) then (〈TM2〉, d1),
(〈TM1〉, d2), (〈TM2〉, d2), (〈TM3〉, d1) and so on. This produces an order
which grabs all pairs.
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2. Take the first element of the sort, DM(〈TM1〉, d1), then run it for one
iteration.

3. Take the second element of the sort, DM(〈TM2〉, d1), then run it for one
iteration.

4. Go back to the first element, then run it for one more iteration.

5. Take the third element of the sort, DM(〈TM1〉, d2), then run it for one
iteration.

6. Continue with the pattern, performing iterations one by one, with each
cycle adding a new element of the sort.

7. Make note of any pair (〈TMi〉, dj) which halts.

Finally, use the interpreter function to convert W×W to TM× L, yielding
the lexicon.

This scheduling strategy is called dovetailing and allows one to enumerate
the domain of a universal Turing machine recursively, without getting stuck by
any singular program that may not halt. Progress will eventually be made on
all programs... thus producing a recursive enumeration.

Definitionally, the domain of a recursively enumerable function is a set; how-
ever in practice and implemented as an algorithm, a dovetailer and other im-
plementations of recursive enumerations produces a sequence of incremental
contributions to knowledge, as each new element that halts gets added to a list;
the order of which depends on the implementation.

2.2 Incremental Contributions

We will now use the lexicon of knowledge and halting programs to redefine the
foundations of mathematics in terms of incremental contributions to knowledge,
replacing formal axiomatic systems.

In principle, one can use any Turing complete language to re-express math-
ematics. The task is not particularly difficult. One generally has to build
a translator between the two formulation, whose existence is interpreted as a
proof of equivalence. For instance, one can write all of mathematics using the
english language, or using set theory with arbitrary equipments, or using a com-
puter language such as c++, or using arithmetic with multiplication, etc. If the
language is Turing complete, then it is as expressive as any other Turing com-
plete language, and a translator is guaranteed to exist. So why pick a particular
system over another? This is often due to conveniences and constraints other
than pure expressive power. For instance, sets allow us to intuitively express a
very large class of mathematical problems quite conveniently. Typical selection
criterions are; can we express the problem at hand clearly?, elegantly?, are the
solutions also clear and easier to formulate, than in the alternative system?

Here we will use and introduce the incremental contribution formulation of
mathematics, and, as we will see, its advantages are stunning. An incremental
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contribution comprises a group of programs known to halt, and this group of
programs defines a specific instance of accumulated mathematical knowledge.

Definition 4 (Incremental Contribution (to Knowledge)). Let K be the lexicon
of knowledge. An incremental contribution m of n halting program is an element
of the n-fold Cartesian product of K:

m ∈ Kn (17)

The tuple, in principle, can be empty m := (), finite n ∈ N or countably
infinite n = ∞.

• Note on the notation: we will designate pi = (TMi, di) as an halting
program element of m, and proj1(pi) and proj2(pi) designate the first and
second projection of the pair pi, respectively. Thus proj1(pi) is the TMi

associated with pi, and proj2(pi) is the input di associated with pi. If
applied to a tuple or set of pairs, then proj1(m) returns the set of all TM
in m and proj2(m) returns the set of all inputs d in m.

The programs comprising the incremental contribution adopt the normal
role of both axioms and theorems and form a single verifiable atomic concept
constituting a unit of mathematical knowledge. Let us explicitly point out the
difference between the literature definition of a formal system and ours: for the
former, its theorems are a subset of the sentences of L provable from the axioms
— whereas for a sequence of incremental contributions, its elements are pairs of
TM×W which halts on a UTM.

Let us now explore some of the advantages of using incremental contribu-
tions versus formal axiomatic systems. Sequences of incremental contributions
are more conductive to a description of the scientific process, including the ac-
cumulation of experimental knowledge, than formal axiomatic systems are. Let
us take an example. Suppose we wish to represent in real-time, and with live
updates, the set of all knowledge produced by a group of, say 50,000 mathe-
maticians working in a decentralized manner (perhaps from their offices) over
the course of at least many decades, and perhaps even for an indefinite amount
of time into the future. Some of the work they produced may build on each
others’, but it will also be the case that part of their work is incompatible. For
instance, some might find contradictions in their assumptions and abandon large
segments of their work. As one learns primarily from his or her errors, we may
wish to catalogue these contradictions for posterity. Let us first try with formal
axiomatic systems. Finding the ’correct’ and singular formal axiomatic system
to describe the totality of what they have discovered, including abandoned work
and contradictions, will be quite a challenge. One challenge occurs whenever
a new contradiction is found, as one would need to further isolate it within
a wrapper of para-consistent logic, before inclusion within a formal axiomatic
system. Another challenge occurs when mathematicians invent new, possibly
more elegant, axiomatic basis outright. One would constantly need to adjust his
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or her proposed formal axiomatic system to account for new discoveries as they
are made. Such an axiomatic basis would eventually grow to an unmaintainable
level, not unlike the spaghetti codes of the early days of software engineering.
And we have not even mentioned the problems spawned by general incomplete-
ness theorems such as those of Gödel and Gregory Chaitin, and the negative
resolution to Hilbert’s second problem. What if someone proves a statement
(using a new axiomatic basis) that is not provable from the ”master” axiomatic
basis; in this case re-adjustments are perpetually necessary. As mathematicians
are a creative bunch, one would never be able to settle on a final axiomatic
system as they could always decide to explore a sector of mathematical space
not covered by the current system. Comparatively, using an incremental con-
tribution, the task is much easier: One simply need to push each new discovery
at the end of the sequence; no adjustment is ever required after insertion, we
never run out of space, and halting programs do not undermine each other even
if they internally represent a contradiction. An incremental contribution is the
equivalent of an empirical notebook of raw mathematical knowledge.

Formal axiomatic systems do not excel at pure description because they are
more akin to an interpretation of mathematical knowledge based on a prefer-
ence of some patterns or tools (we like sets, thus ZFC!, or we prefer categories,
thus category theory!). New knowledge and new problems will eventually force
one to challenge this preference. Not so with incremental contributions! Incre-
mental contributions are a true and final representation of pure unadulterated
mathematical knowledge.

2.3 Connection to Formal Axiomatic Systems

We can, of course, connect our incremental contributions formulation of math-
ematics to the standard formal axiomatic system (FAS) formulation:

Definition 5 (Enumerator (of a FAS)). Let FAS be a formal axiomatic system
and let s be a valid sentence of FAS. A function enumeratorFAS is an enumerator
for FAS if it recursively enumerates the theorems of FAS:

enumeratorFAS(s) =

$
1 FAS ⊢ s

∄/ does-not-halt otherwise
(18)

Definition 6 (Domain (of a FAS)). Let FAS be a formal axiomatic system and
let enumeratorFAS be a function which recursively enumerates the theorems of
FAS. Then the domain of FAS, denoted as Dom(FAS), is the set of all sentences
s ∈ L which halts for enumeratorFAS.

Definition 7 (Formal Axiomatic Representation (of a sequence of incremental
contributions)). Let FAS be a formal axiomatic system, let m be a sequence of
incremental contributions and let enumeratorFAS be a function which recursively
enumerates the theorems of FAS. Then FAS is a formal axiomatic representa-
tion of m iff:

15



Dom(FAS) = proj2(m) (19)

Definition 8 (Episto-morphism). Let FAS be the set of all formal axiomatic
systems; an episto-morphism is a map M : FAS → FAS such that ∀FAS ∈
FAS : Dom(FAS) = Dom(M(FAS)). Two formal axiomatic systems FAS1 and
FAS2 are said to be episto-morphic if and only if Dom(FAS1) = Dom(FAS2).

2.4 Discussion — The Mathematics of Knowledge

Each element of an incremental contribution is a program-input pair represent-
ing an algorithm which is known to halt. Let us see a few examples.

How does one know how to tie one’s shoes? One knows the algorithm re-
quired to produce a knot in the laces of the shoe. How does one train for a
new job? One learns the internal procedures of the shop, which are known to
produce the result expected by management. How does one impress manage-
ment? One learns additional skills outside of work and applies them at work
to produce results that exceed the expectation of management. How does one
create a state in which there is milk in the fridge? One ties his shoes, walks
to the store, pays for milk using the bonus from his or her job, then brings
the milk back home and finally places it in the fridge. How does a baby learn
about object permanence? One plays peak-a-boo repeatedly with a baby, until
it ceases to amuse the baby — at which point the algorithm which hides the
parent, then shows him or her again, is learned as knowledge. How does one
untie his shoes? One simply pulls on the tip of the laces. How does one untie
his shoes if, after partial pulling, the knot accidentally tangles itself preventing
further pulling? One uses his fingers or nails to untangle the knot, and then
tries pulling again.

Knowledge can also be in more abstract form — for instance in the form of
a definition that holds for a special case. How does one know that a specific
item fits a given definition of a chair? One iterates through all properties refer-
enced by the definition of the chair, each step confirming the item has the given
property — then if it does for all properties, it is known to be a chair according
to the given definition.

In all cases, knowledge is an algorithm along with an input, such that the
algorithm halts for it, lest it is not knowledge. The set of all known pairs form
an incremental contribution to knowledge.

Let us consider a few peculiar cases. What if a sequence contains both ”A”
and ”not A” as theorems? For instance, consider:

m :=
%
(TM1, A), (TM1,¬A)

&
(20)

Does such a contradiction create a problem? Should we add a few restric-
tions to avoid this unfortunate scenario? Let us try an experiment to see what
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happens — specifically, let me try to introduce A∧¬A into my personal knowl-
edge, and then we will evaluate the damage I have been subjected to by this
insertion. Consider the following implementation of TM1:

fn main(input: String){

if p=="A" {

return;

}

if p=="not A"{

return;

}

loop();

}

It thus appears that I can have knowledge that the above program halts for
both ”A” and ”not A” and still survive to tell the tale. A-priori, the sentences
”A” and ”not A” are just symbols. Our reflex to attribute the law of excluded
middle to these sentences requires the adoption of a deductive system. This
occurs one step further at the selection of a specific formal axiomatic represen-
tation of the sequence of incremental contributions, and not at the level of the
sequence itself.

The only inconsistency that would create problems for this framework would
be a proof that a given halting program both [HALTS] and [NOT HALTS] on a
UTM. By definition of a UTM, this cannot happen lest the machine was not a
UTM to begin with. Thus, we are expected to be safe from such contradictions.

Now, suppose one has a sizeable sequence of incremental contributions which
may contain a plurality of pairs:

m :=
%
(TM1, d1), (TM2,¬d1), (TM1, d2), (TM2, d1), (TM2,¬d3)

&
(21)

Here, the negation of some, but not all, is also present across the pairs: in this
instance, the theorems d1 and d3 are negated but for different premises. What
interpretation can we give to such elements of a sequence? For our example,
let us call the sentences d1, d2, d3 the various flavours of ice cream. It could be
that the Italians define ice cream in a certain way, and the British define it in
a slightly different way. Recall that halting programs are pairs which contain
a computable function and a premise. The computable function contains the
’definition’ under which the flavour qualifies as real ice cream. A flavour with
a large spread is considered real ice cream by most definitions (i.e. vanilla or
chocolate ice cream), and one with a tiny spread would be considered real ice
cream by only very few definitions (i.e. tofu-based ice cream). Then, within this
example, the presence of p1 and its negation associated with another definition,
simply means that tofu-based ice cream is ice cream according to one definition,
but not according to another.

Reality is of a complexity such that a one-size-fits-all definition does not
work for all concepts, and further competing definitions might exist: a chair
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may be a chair according to a certain definition, but not according to another.
The existence of many definitions for one concept is a part of reality, and a
mathematical framework which correctly describes it ought to be sufficiently
flexible to handle this, without itself exploding into a contradiction.

Even in the case where both A and its negation ¬A were to be theorems
of m while also having the same premise, is still knowledge. It means one has
verified that said premise is inconsistent. One has to prove to oneself that a
given definition is inconsistent by trying it out against multiple instances of a
concept, and those ’trials’ are each incremental contributions.

2.5 Axiomatic Information

Let us introduce axiomatic information. If any account for the elements of
any particular incremental contribution is relegated to having been ’randomly
picked’, according to a probability measure ρ, from the set of all possible halting
programs, then we can quantify the information of the pick using the entropy.

Definition 9 (Axiomatic Information). Let Q be a set of halting programs.
Then, let ρ : Q → [0, 1] be a probability measure that assigns a real in [0, 1]
to each program in Q. The axiomatic information of a single element of Q is
quantified as the entropy of ρ:

S = −
'

p∈Q
ρ(p) ln ρ(p) (22)

For instance, a well-known (non-computable) probability measure regarding
a sum of prefix-free programs is the Halting probability[11] of computer science:

Ω =
'

p∈Dom(UTM)

2−|p| =⇒ ρ(p) = 2−|p| (23)

The quantity of axiomatic information (and especially its optimization),
rather than any particular set of axioms, will be the primary quantity of in-
terest for the production of a meaningful theory in this framework. A strategy
to gather mathematical knowledge which picks halting programs according to
the probability measure which maximizes the entropy will be interpreted as the
”least encumbered” strategy.

3 The Formal System of Science

We now assign to our re-formulation of mathematics in terms of incremental
contributions, the interpretation of a purely mathematical system of science. As
hinted previously, the primary motivation for constructing a system of science
follows from the set of knowledge being recursively enumerable (as opposed to
decidable) making its enumeration subject to the non-halting problem. Notably,
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in the general case, halting programs can only be identified by trial and error
and this makes the approach irreducibly experimental.

At this point in the paper, I must now warn the reader that, based on my
previous experience, almost any of the definitions I choose to present next will
likely either quickly induce at least a feeling of uneasiness, or may even trigger
an aversion in some readers. First and foremost, let me state that the definitions
are, we believe, mathematically correct, scientifically insightful and productive,
and thus we elected to fight against this aversion, rather than to abandon the
project. This uneasiness would present itself to a similar intensity regardless
of which definition I now choose to present first, and so we might as well pick
the simplest one. For instance, let us take the relatively simple definition of the
scientific method, which will be:

Definition 10 (Scientific method). An algorithm which recursively enumerates
knowledge, or a subset thereof, is called a scientific method.

Mathematically speaking, this is a very simple definition. We have pre-
viously defined knowledge as halting programs (this made it comprehensible)
and it’s domain as that of a universal Turing-function (this made it compre-
hensive). Now we simply give a name, the scientific method, to any algorithm
which recursively enumerates its domain, or part thereof. The notion of the
scientific method, a previously informal construction, is now imported into pure
mathematics and as such we presume to have produced a net gain for science,
compared to not having it.

The features of the scientific method are found implicitly in the definition.
Indeed, implicit in said definition lies a requirement for the algorithm to verify
the input to be knowledge by running its corresponding program to completion,
and reporting success once proven to halt. That it may or may not halt is the
hypothesis, and the execution of the function is the ’experiment’ which verifies
the hypothesis. If an input runs for an abnormally long time, one may try a dif-
ferent hypothesis hoping to reach the conclusion differently. Since knowledge is
element-wise infallible, each terminating experiments are formally reproducible
as many times as one needs to, to be satisfied of its validity. All of the tenets
of the scientific method are implicit in the definition, and its domain is that of
knowledge itself, just as we would expect from the scientific method. Finally,
the domain of knowledge is arbitrarily complex and countably infinite, therefore
we never run out of new knowledge allowing for a perpetual and never ending
application of the scientific method. Mathematically, it is a remarkably simple
definition for such an otherwise rich concept.

But outside of mathematical land, the tone gets a bit more grim. Some
readers may need a few more definitions before they start feeling the full weight
induced by a total commitment to formalization on their worldview, but for
many this definition will mark that point. Let us give a few comments to illus-
trate the type and intensity of the aversions that can plausibly be experienced:

1. Those who previously believed, or even nurtured the hope that, reality ad-
mitted elements of knowledge that are outside the scientific method must
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now find a flaw, or correct their worldview. As scientific as most people
claim to be, a surprisingly large group seem to have an aversion to this.
The unbiased response is, rather, to appreciate that what they thought
was knowledge was in fact fallible (and thus simply a guess), whereas the
scientific method does not output guesses, it outputs knowledge (which is
infallible).

2. Those who nurture a worldview which is not ”reducible” to our definition
of knowledge in terms of halting program, must now argue that our defini-
tion contains gaps of knowledge, lest they have to correct their worldview.
But our definition is simply the unique logical construction of knowledge
with is both comprehensible and comprehensive. Thus, as comprehensive-
ness implies no gaps, their worldview is revealed to necessarily contain at
least some elements that are incurably ambiguous, or it would be reducible
to our definition.

3. The elimination of all naive concepts or notions (no more ”magic” or
”handwaving”) is now required. If one has a worldview that relies upon
a plurality of non-formalizable ambiguities, then one’s worldview will not
survive this formalization. For many, this is interpreted as killing the
”fun” or the ”imagination” from reality. It is unlikely that anyone’s pre-
existing worldview survives without some changes to accommodate total
formalization.

Does one even stand a chance at maintaining an informal worldview, when
facing such definitions? Many of our base definitions were carefully chosen to
merely match and rebrand pre-existing and well respected mathematical defi-
nitions, and this was a strategic choice to make it incredibly unlikely to find
fatal flaws. In our experience the battery of aversion we typically receive boils
down to an equivalent formulation of ”I can’t find a specific error, but it must
be wrong because [my worldview] requires [certain informal physical or meta-
physical language], and here there is no support for that”. The other possibility,
however, is that one could be simply wrong in assuming that the world needs
such informals to be defined. Furthermore, a fatal flaw has so far not been
identified otherwise we would either correct the source of the error if possible,
or immediately abandon the project altogether depending on the nature of the
error presented, and would clearly state so to avoid wasting anyone’s time.

Consider the alternative for a moment and let us try to be a crowd pleaser.
How could we leave room for ambiguities so that people to not feel constrained
by formalism, while remaining mathematically precise? Should we define the
scientific method as a function that recursively enumerates 95% of knowledge,
leaving a sympathetic 5% out for love, beauty and poetry? How would we
possibly justify this mathematically. Functions which recursively enumerate
one hundred percent of the domain do exists; should we just lie to ourselves
and pretend they don’t? Of course, we cannot. Whether a painting is or isn’t
beautiful, if not the result of an instantiation of infallible knowledge, is merely
a guess. The scientific method does not output guesses, it outputs knowledge.
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Now, there is a way to discuss, for instance, beauty scientifically: if one
actually works out a precise definition of beauty, such as:

fn is_beautiful(painting: Object) -> bool{

if (painting.colors.count()>=3){

return true;

}

return false;

}

Then congratulations, one now has a definition of beauty that is actually
comprehensible for the scientific method! The function returns true if the paint-
ing has 3 or more colours, otherwise it returns false. The scientific method can
now use this definition to output all objects which are ”beautiful” according to
said definition.

Good luck getting everyone to agree to accept this definition as the be-all-
end-all of beauty. However, all hope is not lost: the set of all halting pro-
grams includes the totality of all possible comprehensible definitions of beauty
and therefore if a ’good-one’ does exists then by necessity of having them all
it must be in there, otherwise it simply means the concept is fundamentally
non-comprehensible. Picking the ’good-one’ from the set of all comprehensible
definitions of beauty could merely be a social convention based on what everyone
concept of beauty coalesces to. Even under this more challenging description,
which references a social convention, comprehensible definitions are still found
in the purview of the scientific method, as one can use a function such as this:

fn is_beautiful(painting: Object, people: Vec<Person>) -> bool{

for person in people{

if person.is_beautiful(painting)==true{

return true;

}

}

return false;

}

This function returns true if at least one person thinks it’s beautiful. In
this case, the scientific method ’polls’ every ’person’ in ’people’ and asks if
the painting is beautiful, and as soon as one says yes, then it returns true,
otherwise it returns false at the end of the loop. In this case the definition of
beauty is comprehensible provided that each ’person’ in ’people’ also produced
a comprehensible implementation of the function is beautiful. The scientific
method a-priori has no preference for which definition we end up agreeing (or
disagreeing) upon, it simply verifies that which can be verified comprehensibly.

The scientific method’s sole purpose is to convert comprehensible questions
or definitions into knowledge.

Let us return to our discussion on aversion. At the other end of the aver-
sion spectrum, we find some readers (it would be overly optimistic to expect it
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from all readers, but hopefully some) that accept and understand that the pro-
posed system induces what amounts to a checkmate position for informal (naive)
worldview. Of those readers, most will then condition themselves to accept a
re-adjustment of their worldview such that it becomes conductive to complete
formalization. For these readers, their desire for formalization is greater than
their attachment to an informal worldview, and they are willing to make the
necessary sacrifices to work completely formally.

Let us now reprise our more neutral tonality to introduce and complete the
formal system of science. Although the ”magic” is now gone, we hope that the
reader can find the will to smile again by immersing himself or herself in the
cheerful world of formal terminating protocols, in lieu of said ”magic”.

3.1 Terminating Protocols as Knowledge about Nature

Both Oxford Languages and the Collins dictionary defines a protocol as

[Protocol]: A procedure for carrying out a scientific experiment

Comparatively, Wikipedia, interestingly more insightful in this case, de-
scribes it as follows:

[Protocol]: In natural and social science research, a protocol is
most commonly a predefined procedural method in the design and
implementation of an experiment. Protocols are written whenever
it is desirable to standardize a laboratory method to ensure suc-
cessful replication of results by others in the same laboratory or by
other laboratories. Additionally, and by extension, protocols have
the advantage of facilitating the assessment of experimental results
through peer review.

The above description precisely hits all the right cords, making it especially
delightful as an introduction of the concept. We will now make the case for
a new description of nature, or natural processes, which is conductive to com-
plete formalization. Of course, as we did for knowledge, we will require this
description of nature to also be comprehensible and comprehensive in the same
mathematical sense.

The proposed description will essentially require that one describes nature
via the set of all protocols known to have terminated thus far. This type of de-
scription has a similar connotation to our previous formulation of mathematics
in terms of halting programs. In fact, the tools introduced for the former will
also be usable for the later. The proposed description is further similar to a
requirement well-known to peer-review, and should be already familiar to most
readers. In the peer-reviewed literature, the typical requirement regarding the
reproducibility of a protocol is that an expert of the field be able to reproduce
the experiment, and this is of course a much lower standard than formal repro-
ducibility which is a mathematically precise definition, but nonetheless serves
as a good entry-level example.
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Hinkelmann, Klaus and Kempthorne, Oscar in ’Design and Analysis of Ex-
periments, Introduction to Experimental Design’[12] note the following:

If two observers appear to be following the same protocol of mea-
surement and they get different results, then we conclude that the
specification of the protocol of measurement is incomplete and is sus-
ceptible to different implementation by different observers. [...] If a
protocol of measurement cannot be specified so that two trained ob-
servers cannot obtain essentially the same observation by following
the written protocol of measurement, then the measurement process
is not well-defined.

In practice it is tolerated to reference undefined, even informal, physical lan-
guage, as long as ’experts in the field’ understand each other. For instance, one
can say ”take a photon-beam emitter” or one can reference an ”electric wire”,
etc, without having to provide a formal definition of either of these concepts.
Those definitions of physical objects ultimately tie to a specific product ID, as
made by a specific manufacturer, and said ID is often required to be mentioned
in the research report explicitly. For the electric wire, a commonly used product,
it is perhaps sufficient that the local hardware store sells them, and for more
complex products, such as a specific laser or protein solutions, an exact ID from
the manufacturer will likely be required for the paper to pass peer-review. If we
attempted to explain to, say, an alien from another universe what an electric
wire is, we would struggle unless our neighbourhood chain of hardware stores
also as a local office in its universe for it to buy the same type of wire. In
computer language terms, we would say we pass the concept of the electric wire
to another expert by reference.

Appeal to the concept of ’expert’ is a way for us to introduce and to tolerate
informality into a protocol without loosing face; as that which is understood
by ’experts’ does not need to be specified. In a formal system of science we
will require a much higher standard of protocol repeatability than merely being
communicable to a fellow expert. We aim for mathematically precise definitions.
For a protocol to be completely well-defined, the protocol must specify all steps
of the experiment including the complete inner workings of any instrumentation
used for the experiment. The protocol must be described as an effective method
equivalent to an abstract computer program.

Let us now produce a thought experiment to help us understand how this
will be done.

3.2 The Universal Experimenter

Suppose that an industrialist, perhaps unsatisfied with the abysmal record of
irreproducible publications in the experimental sciences (i.e. replication crisis),
or for other motivations, were to construct what we would call a universal
experimenter ; that is, a machine able to execute in nature the steps specified
by any experimental protocol.
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A universal experimenter shares features with the universal constructor of
Von-Neumann, as well as some hint of constructor theory concepts, but will be
utilized from a different stand-point, making it particularly helpful as a tool
to formalize the practice of science and to investigate its scope and limitations
self-reflectively. Von-Neumann was particularly interested in the self-replicating
features of such a construction, but self-replication will here not be our primary
focus of interest. Rather, the knowledge producible by such a machine will be
our focus.

The Universal Constructor of Von-Neumann is a machine that is able to
construct any physical item that can be constructed, including copies of itself.
Whereas, a Universal Experimenter is a machine that can execute any scientific
protocol, and thus perform any scientific experiment. Of course, both machines
are subject to the halting problem, and thus a non-terminating protocols (or
an attempt to construct the non-constructible in the case of the Universal Con-
structor) will cause the machine to run forever.

Both the machine and the constructor can be seen as the equivalent of each
other. Indeed, it is the case that a Universal Constructor is also a Universal
Experimenter (as said constructor can build a laboratory in which an arbitrary
protocol is executed), and a Universal Experimenter is also a Universal Con-
structor (as a protocol could call for the construction of a Universal Constructor,
or even for a copy of itself, to experiment on).

Specifically, a Universal Experimenter produces a result if the protocol it is
instructed to follows terminates. A realization of such a machine would com-
prise possibly wheels or legs for movement, robotic arms and fingers for object
manipulation, a vision system and other robotic appendages suitable for both
microscopic and macroscopic manipulation. It must have memory in sufficient
quantity to hold a copy of the protocol and a computing unit able to work out
the steps and direct the appendages so that the protocol is realized in nature.
It must be able to construct a computer, or more abstractly a Turing machine,
and run computer simulation or other numerical calculation as may be specified
by the protocol. The machine can thus conduct computer simulations as well as
physical experiments. Finally, the machine must have the means to print out,
or otherwise communicate electronically, the result (if any) of the experiment.
Such result may be in the form of a numerical output, a series of measurements
or even binary data representing pictures where appropriate.

Toy models are easily able to implement an universal experimenter; for in-
stance Von Neumann, to define an implementation universal constructor, cre-
ated a 2-D grid ’universe’, allocated a state to each element of the grid, then
defined various simple rules of state-transformations, and showed that said rule
applied on said grid allowed for various initial grid setups in which a constructor
creates copies of itself. Popular games, such as Conway’s Game of Life are able
to support self-replication and even the implementation of a universal Turing
machine, and thus would admit specific implementations of a universal experi-
menter. In real life, the human body (along with its brain) is the closest machine
I can think of that could act as a general experimenter.

How would a theoretical physicist work with such a machine?
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To put the machine to good use, a theoretical physicist must first write a
protocol as a series of steps the machine can understand. For instance, the ma-
chine can include move instructions, using it to move its appendages in certain
ways as well as a capture instruction to take snapshots of its environment,
etc. In any case, the physicist will produce a sequence of instructions for the
machine to execute. The physicist would also specify an initial setup, known
as the preparation, such that the protocol is applied to a well-defined initial
condition. The initial condition is specified in the list of instructions, as such it
is created by the machine making the full experiment completely reproducible.
Finally, the physicist would then upload the protocol to the machine, and wait
for the output to be produced.

The mathematical definition of the protocol is as follows:

Definition 11 (Protocol). A protocol is defined as a partial computable func-
tion:

prot : W −→ W
prep 0−→ r

(24)

• The domain of the protocol Dom(prot) includes the set of all preparations
which terminates for it.

Let us now define the universal experimenter. A universal experimenter is
able to construct any preparation and execute any protocol on it. If a protocol
does not terminate, then the universal experimenter will run forever, hence it is
subject to the non-halting problem.

Definition 12 (Universal Experimenter). Let 〈prot〉 be the description of a
protocol prot interpreted into the language of a universal experimenter UE, and
prep, the preparation, both be sentences of a W, called the instructions. Then a
universal experimenter is defined as:

UE(〈prot〉, prep) ≃ prot(prep) (25)

for all protocols and all preparations.

Definition 13 (Experiment). Let PROT be the set of all protocols, and let W
be the set all preparations. An experiment p is a pair PROT×W:

p := (prot, prep) (26)

that terminates, such that prot(prep) = r.

Definition 14 (Domain of Science). We note D as the domain of science. The
domain of science is the set of all experiments.
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Definition 15 (Experimental Contribution (to Knowledge)). An experimental
contribution to knowledge is a tuple of n elements of D:

m := Dn (27)

• An experimental contribution to knowledge only contains protocol-preparation
pairs that have terminated.

• An experimental contribution to knowledge corresponds, intuitively, to a
sequence of related or unrelated experiments, that have been verified by a
universal experimenter.

• An experimental contribution to knowledge corresponds to an instance of
natural knowledge (knowledge about nature).

• Finally, as the set of knowledge is comprehensive, then all systems which
admits knowledge, physical or otherwise, can be represented in the form of
a specific experimental contribution associated to a specific experimenter,
and said contribution constitutes a complete representation of the knowl-
edge the machine has produced thus far for its operator.

For a universal experimenter to execute a protocol, both the protocol and its
preparation must be described without ambiguity. Physical language such as a
camera cannot be referenced informally in the specifications of the protocol, oth-
erwise the universal experimenter cannot construct it. If the protocol calls for
the usage of a camera, then the behaviour of the camera must also be specified
without ambiguity in formal terms within the instructions. Consequently, all
rules and/or physical laws which are required to be known, including any initial
conditions, must be precisely provided in the description, so that the universal
experimenter can construct the experiment. For some highly convoluted experi-
ments, such as : ”is this a good recipe for apple pie?”... the aphorism from Carl
Sagan ”If you wish to make an apple pie from scratch, you must first invent the
universe” is adopted quite literally by the universal experimenter. The univer-
sal experimenter must create (or at least simulate) the universe, let interstellar
matter accretes into stars, let biological evolution run its course, then finally
conduct the experiment once the required actors are in play by feeding them
apple pie. For a universal experimenter, certain protocols, due to their require-
ment for arbitrary complex contexts or general protocol complexity, cannot be
created more efficiently than from literal scratch and by going through the full
sequence of events until the end of the experiment.

3.3 Classification of Scientific Theories

Definition 16 (Scientific Theory). Let m be an experimental contribution by
UE, and let ST be a formal axiomatic system. If

proj2(m) ∩Dom(ST) ∕= ∅ (28)

then ST is a scientific theory of m.
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Definition 17 (Empirical Theory). Let m be an experimental contribution by
UE and let ST be a scientific theory. If

proj2(m) = Dom(ST) (29)

then ST is an empirical theory of m.

Definition 18 (Scientific Field). Let m be an experimental contribution by UE
and let ST be a scientific theory. If

Dom(ST) ⊂ proj2(m) (30)

then ST is a scientific field of m.

Definition 19 (Predictive Theory). Let m be an experimental contribution by
UE and let ST be a scientific theory. If

proj2(m) ⊂ Dom(ST) (31)

then ST is a predictive theory of m.
Specifically, the predictions of ST are given as follows:

S := Dom(ST) \ proj2(m) (32)

Scientific theories that are predictive theories are supported by experiments,
but may diverge outside of this support.

3.4 The Fundamental Theorem of Science

With these definitions we can prove, from first principle, that the possibility of
falsification is a necessary consequence of the scientific method.

Theorem 3 (The Fundamental Theorem of Science). Let m1 and m2 be two
experimental contributions to knowledge, such that the premises of the former
are a subset of the later: proj2(m1) ⊂ proj2(m2). If ET2 is an empirical theory
of m2, then it follows that ET2 is a predictive theory of m1. Finally, up to
episto-morphism, Dom(ET2) has measure 0 over the set of all distinct domains
spawned by the predictive theories of m2.

Proof. Dom(ET2) is unique. Yet, the number of distinct domains spawned by
the set of all possible predictive theories of m1 is infinite. Finally, the measure
of one element of an infinite set is 0.

Consequently, the fundamental theorem of science leads to the concept of
falsification, as commonly understood in the philosophy of science and as given
in the sense of Popper. It is almost certain (measure of 1) that a predictive
scientific theory will eventually be falsified.

Let us note that there exists a plurality of strategies to tame the effect of this
theorem. For instance, one can create scientific fields, whose aim are to prove
only a subpart of the experimental contribution. This allows one to qualify the
experimental contributions it is unable to prove as simply out of scope, rather
than to falsify the field.
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4 A Formal Theory of the Observer

Biology has the organism, microbiology the cell and chemistry the molecule,
but what about physics, what is its fundamental object of study? Is it the
planets (∼16th century), is it mechanics (17th century), is it thermodynamics
(18th century), is it electromagnetism (19th century), is it quantum mechanics
and special relativity (early 20th century) or is it general relativity, quantum
field theory, the standard model and cosmology (20th century). Is it broadly
what we haven’t figured out about nature yet? Or is it permissively anything
physicists do?

In our model of physics, it will be the observer, and specifically the optimized
limits of its free participation in nature, that will be the fundamental object of
study.

Let us first attempt to fix the intuition by taking the example of a generic
theory of the electron. To understand the electron, one must experiment on
the electron. For instance, in a lab, one could power electricity into a wire,
undertake spin measurements, perform double-slits experiments or magnetism
experiments, etc. All of these experiments build up the knowledge of the elec-
tron’s behaviour and properties. Eventually with enough accumulated knowl-
edge, one can formulate a theory of the electron, which describes its behaviour
and properties. The theory of the electron is considered a physical theory by
association, because it applies to the electron, which by definition is a physical
particle.

We now invite the reader to think of our theory of the observer along the
same lines, except we replace the word ’electron’ with the word ’observer’. In-
stead of experimenting on the electron, we experiment on the observer. Instead
of a few targeted experiment in the lab, we target all possible experiments
this observer could do in nature. Instead of recovering, say, the Schrödinger
equation which governs the behaviour of the electron, we get a comprehensive
theory of fundamental physics which governs the comprehensive participation
of the observer in nature.

But where the electron only knows a few tricks, the scope of possible observer
participation is a coalescence of three mathematically related but philosophically
distinct concepts: the universal Turing machine, the universal constructor and
the universal experimenter, and thus is able to account for all construction and
verification rules whether physical, simulated or mathematical and over any
possible systems.

4.1 The Experience of the Observer in Nature

We have so far reformulated mathematics in terms of an incremental contribu-
tion to knowledge, and this automatically produced an epistemological model
of the practice of science. But this is not yet the end of the story as the refor-
mulation is able to take it one step further.

For instance, let us consider a universal experimenter and recall that it is
able to produce any valid incremental contribution from the domain of science.
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To allow investigation of whole of domain, the model of investigation of said
experimenter must of course be Turing-complete, otherwise there will be gaps in
knowledge that cannot be investigated by it. Now, let us consider the collection
of all possible experimental contributions. Let us further consider that this
collection forms a ”space” which we call the ”investigable space”. It follows that,
whatever the experimenter does or doesn’t do, it will be confined to remain in
this space because producing experimental contributions is all the experimenter
can do. This ”confinement” bounds and delimits said investigative model; and
whatever rules may be required to enforce or support the confinement would
then automatically be perceived as inviolable laws by the experimenter.

For these inviolable laws to be the familiar laws of physics, we found that
the model of investigation must support a probability measure over the possible
incremental contributions, rather than merely be a deterministic implementa-
tion of a particular scientific method algorithm. In this case, we may qualify
said ability as the experimenter having the ”freedom” to investigate the space.
This property is reminiscent of (and ultimately connects to) the Bell inequal-
ity experimenter freedom in familiar quantum mechanics; and consequently, a
probability space of experiments along with a message of incremental contribu-
tions produced under the assumption of experimenter freedom will be used to
define the observer, and as we will see this corresponds to what we understand
an observer to be in physics.

4.2 Nature

The ”investigable space” of experimental contributions the observer is confined
to operate in will be called nature, and it will be defined as follows:

Definition 20 (Nature). Let m be an experimental contribution comprised of
n terminating protocols, and let Mm =

(n
i=1 proji(m) be the set comprised of

the elements of m. Then, Nature (Nm) is the ”powertuple” of m:

Nm :=

n#

i=0

(Mm)i (33)

• Conceptually, a powertuple is similar to a powerset where the notion of
the set is replaced by that of the tuple.

• Put simply, nature (Nm) is the set of all possible experimental contri-
butions (including the empty experimental contribution) that can be built
from m.

• All elements of nature are experimental contributions, and all ”sub-tuples”
of an experimental contributions are elements of nature.

4.3 Definition of the Observer

The departure here from typical practice and intuition is exceptional; let us note
that the observer in modern theoretical physics is considered by many to be the
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last element of quantum physics that is not yet mathematically integrated into
the formalism. Whereas here, is it the only axiom (of physics) that we define,
and is sufficient by itself to entail fundamental physics.

Axiom 1 (Observer). An observer, denoted as O, is the probability space over
all experiments in nature:

O := (m,Nm, ρ : Nm → [0, 1]) (34)

where ρ is a probability measure, m is an experimental contribution, and
Nm, nature, is the space of all experimental contributions over m, and where
the measure sums to one. We note that, unlike traditional measure theory in
mathematics, here our definition of the measure is over tuples rather than sets.
A prescription to tackle such a measure will be given in the main result section.

Just like we did earlier with a minimalistic definition of the scientific method
as a recursive enumeration of the domain of science, and then showed that the
richness of the concept was implicit in the relatively simple definition, here a
similar richness will be recovered for fundamental physics as a consequence of
this definition.

To obtain the laws of physics, in an exact formulation, we have found the sec-
ond and final step to be to optimize the information associated with the result
of the measure referenced in axiom 1, and this will be achieved by maximiz-
ing the entropy using the familiar tools of statistical mechanics. Fundamental
physics will consequently be a specialization of the definition of the observer, in
the sense that an observer is a probability space, and the laws of physics will
be its entropy-maximized version. Maximizing the entropy of a measure over
a power-tuple rather than a power-set requires a technical prescription which
is given in the main result section. As for the context, we will not think of
the entropy in terms of the typical notion common in introductory physics as a
’measure of disorder’, rather we will think of it as a quantification of information
in the sense of Claude Shannon. In this context, the information acquired by the
observer following a measure adopts the role of a message that fixes the newly
acquired knowledge into a new state describing the knowledge of the observer.

Furthermore, and as previously stated, the probability space, as it is both
random and relates to the participation of the observer in nature, represents the
mathematical definition of experimenter freedom, then maximizing its entropy
is further interpreted as minimizing the constraints on experimenter freedom.
Consequently, the fundamental physics is the model of free participation in
nature that is the ”least encumbering” for the observer.

Thesis 1 (Fundamental Physics). The probability measure that maximizes ex-
perimenter freedom in nature constitutes the fundamental physics, or simply ’the
laws of physics’.

We note that our definition of fundamental physics will entail a probability
measure. It is not given as a pre-formulated law such as F = ma. That is
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not to say that laws do not come into play; but when they do they are derived
from this measure, and not brutely postulated. Taking an example of statistical
mechanics, the ideal gas law PV = nRT can be derived from the Gibbs measure
as an equation of state under the appropriate energy and volume constraint on
entropy. In the present case, the derived laws become the logical equivalent of
a statement on what the observer can or cannot do while remaining consistent
with its own definition and state.

Let us also clarify that axiomatic information does not represent knowledge
itself, rather it encodes the state of knowledge of the observer. We distinguish
knowledge (which is infallible once known) from information (which encodes the
result of the measure).

5 Intermission

5.1 Science

To introduce falsification within a formal system of science, the notion of knowl-
edge being infallible is critical. It is the reason why we can be certain that
acquiring new knowledge does in fact necessarily falsify any conflicting models.
If our knowledge was uncertain, we would simply be perpetually juggling the
probabilistic weights of various hypotheses and models, and no model could ever
be falsified. With this in mind, let us correct a terminology error made by Karl
Popper. A core tenet of Karl Popper’s philosophy is that scientific knowledge
is always transitory, and so a scientific theory would be subject to falsification.
The correction is minor, but nonetheless leads to substantial clarifications. The
correction is on the usage of the term knowledge; knowledge is not transitory
rather it is the models that are. Models are entailed by knowledge, as such they
do not entail it in return. In fact, when acquiring new knowledge, if the model
conflicts with it, then the model always loses the tug of war because the former
is infallible while the later isn’t. The correct terminology is that scientific mod-
els (not knowledge) are transitory because knowledge (which isn’t transitory)
takes precedence over the conflicting model.

Karl Popper’s extended philosophy is correct in regards to scientific theories
(e.g. biology, economic science, psychology, etc.), but physics as it would is a
different beast altogether. The difference between the two stands out when we
investigate their relationship to our newly formalized observer. For instance, if
an observer ”violates” a scientific theory, then said theory is simply falsified.
This happens every once in a while, and other than perhaps a bruised ego, not
much harm is done. Whereas, if an observer were to violate the laws of physics,
presumably all hell would break loose. Why the difference? Of course, without a
formal system of science, we have historically constructed our laws of physics the
same way as any other scientific theory assuming they are of the same category,
and thus the difference was unnoticed, but with a formal system of science
we can pinpoint the difference. A scientific theory involves a choice of formal
axiomatic representation of an experimental contribution, and it is this choice
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that is falsified when facing conflicting knowledge. Whereas, the observer cannot
violate the fundamental physics without ceasing to be the probability space over
the experiments of nature, and thus violating its own definition. There is a ”self-
referential component” from the observer’s participation onto physics, which
is absent from mere scientific theories, that makes the fundamental physics
inviolable to the observer, whereas the scientific theory is only falsifiable to the
observer hence not inviolable.

In mathematics we typically welcome newfound clear-cut delimitations be-
tween previously overlapping concepts. For instance, chemistry overlaps with
physics significantly, and so does biology via bio-physics. What is the exact
split, if any, or is everything ultimately physics? With our system, we now
know the difference; scientific theories are entailed by knowledge, whereas fun-
damental physics is entailed by the definition of the observer as the maximally
permissive model of its participation. More precisely, a scientific theory explains
the knowledge acquired by the observer, and physics models the participation of
the observer in nature as it acquires knowledge. A word of caution however; in
practice one could always demand that we subject Axiom 1, and its predictions,
to the falsification process, and thus physics, via the (technical) definition of
the observer remains falsifiable and predictive despite being of a different class.
Thus and although they may appear as the same due to their many similarities,
physics is the unique member of a special class of falsifiable theories.

This difference carries over with respect to the techniques used to falsify
physics. Physics, although falsifiable as we just said, is not subject to the fun-
damental theorem of science which applies only to formal axiomatic represen-
tations of experimental contributions and is responsible for a common scientific
theory being falsifiable. For physics, a special falsification theorem must be
created, and such must start with the definition of the observer rather than
with the elements of the experimental contribution. The resulting falsification
theorem will be more challenging than the first, simply because the observer is
a probability space and this is a more challenging mathematical object to work
with than a mere enumeration. To falsify a common empirical theory via the
fundamental theorem of science, it suffices to identify a halting program within
the experimental contribution to knowledge that is not entailed by it. For in-
stance, J.B.S. Haldane one of the founders of evolutionary biology reportedly
stated that finding the fossils of a rabbit in the Precambrian would falsify the
theory of evolution. This is a binary yes/no type of falsification. Whereas, since
physics is entailed by a probability space, falsifying physics will involve the use
of probabilities. Specifically, we will find that repeat experiments over multi-
ple copies of identical preparations, such that a probability distribution can be
extracted from a plurality of similar measurements, will be required to test or
falsify physics by comparing it to the predicted expectation values.

5.2 The Observer

The reader will notice that Axiom 1 does not reference a plurality of observers,
rather it postulates what amounts to a singleton observer. The system is in-
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tended to be formulated from the perspective of the observer. This should be
less surprising than it tends to be as it avoids a battery of observer-related para-
doxes, and captures the philosophically safest possible foundation, but ouch if
the intent is misunderstood. Let us explain the term, and then we will dis-
cuss its motivation and attempt to address the concerns. The term singleton
is imported from software engineering, where the singleton pattern refers to a
design pattern of object-oriented programming in which a class can only be in-
stantiated once. Singleton does not mean that the program itself can only be
ran once, it only means that each running copy has only one instantiation of its
singleton variables within its memory. Our system supports the idea of ”run-
ning” multiple times in parallel, thus admitting multiple observers —or more
precisely formulated; it allows other observers to claim singleton status from
their perspective—, and the singleton observer axiom is not designed to prevent
that; it simply means that for each execution, the theory is formulated from
the perspective of its singleton observer. The singleton observer is ”I” from my
perspective, and ”you” from your perspective, and ”him” from his perspective,
etc. To be explicit, it is not a universal observer neither it is God — just you,
him, her or I. The singleton observer is a mathematical description of who ”I”
am that also conveniently formalizes the set of tools ”I” have access to in order
to understand or participate in nature.

First, let us explain exactly how the theory is intended to support other
observers from the perspective of the singleton observer. Their existence will
be evidence-derived rather than postulated. Other observers, if they exist, can
and will be derived by the singleton observer the same way any other facts are
investigated, by merely inspecting the experimental contributions and weighting
the evidence for them, and thus do not need to be postulated. Do we also need
to postulate rocks, trees, or bees — or can we accept that their existence will
be derived conditional upon the scientific evidence, and if so why not demand
the same in regards to evidence for other observers? Indeed, psychologically
and developmental-wise, this is what happens naturally as an infant matures
and over time develop a theory of the mind to assess the motivations and the
decision-making strategies of others — i.e. Infant solipsism (Piaget). Evidence
for other observers is identified by inspection of all available evidence and builds
over time and is the subject of the scientific method and to falsification. To
include other observers via postulation would be to erase said developmental
steps from the domain of the scientific method, or at least eliminate the necessity
of a laborious but insightful derivation thereof by virtue of having reduced them
to mere postulation, and would result in a representation of reality missing those
parts.

Let us further point out that if we find it reasonable to expect that physics
ought to work for any number of observers between 1 and infinity; then physics
must also work with just one — and just like Peano’s axiom posits only the
first natural number and the others are derived by the successor function, here
the singleton observer is the base axiom and others are to be entailed by the
framework.

Secondly, one must remember the role of axioms. Axioms are the logical
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minimal required to derive a theory and are intended to be free of any redun-
dancy. They are not a collection of desiratas, nor are they designed to make the
world a better place than it is. Not only do we not need a plurality thereof to
complete the theory, if we made the world conditional upon multiple axiomatic
observers, the thesis becomes nonsensical:

• We would be claiming that at least two observers are needed to entail the
laws of physics... can an observer, when working alone, violate the laws
of physics, but can’t if working as a team... ?

Just like quantum theory should work for one or any number of particles, the
laws of physics should logically be definable against only one observer if need
be, or any other number, because they limit what each observer can individually
do or cannot do. Team work, although perhaps socially beneficial, does not in
this case prevail against the laws of physics.

Let us now discuss the singleton observer within the context of a relevant
physics experiment. The Wigner’s friend experiment puts forward a paradox
in which two observers appears to witness the collapse of a wave-function at
different times. The Wigner’s friend experiment supposes that an observer F
measures a wave-function |ψ〉 = α |φ1〉+ β |φ2〉 to be in state |φ1〉 or |φ2〉, with
probability |α|2 and |β|2 respectively, that F notes the result somewhere in his
laboratory, but refrains from advising another observer W of the result. This
other observer then understands the wave-function of the laboratory in which
F performed his measurement to retain the superposition. Whether the system
is or isn’t in a superposition appears to be resolved at different times for each
observer; F sees the collapse at the instant of measure, but W sees it only
after F choose to share his notes with him. This difference in collapse timing
is the paradox. A commonly proposed resolution is that superposition does
not occur in macroscopic objects, and the reproduction of this experiment in a
microscopic system would appear less paradoxical. In actuality however, as soon
as observer F notes then hides the result, F begins to act as a glorified hidden
variable theory with respect to W and this is ruled out by Bell’s inequality;
thus F cannot cause |ψ〉 to collapse at any time other than simultaneously
for all observers. In his original paper Wigner focused on another possible
resolution: ”All this is quite satisfactory: the theory of measurement, direct or
indirect, is logically consistent so long as I maintain my privileged position as
ultimate observer”. Historically, this has not been the preferred interpretation
because of the obvious resistance to the connotation associated with a privileged
ultimate observer. In our system, the observer is not assumed to be ”privileged
ultimate” but merely to be formulated as a singleton, and other observers can
proclaim the same. Specifically, the wave-function will be formulated from the
perspective of a singleton observer; and since other observers are derived by
inspection of the evidence ”gathered” by said wave-function, they will obviously
be unable to support a different wave-function behaviour than that reported by
the singleton. Furthermore, as we said, other observers can proclaim the same,
and thus, symmetry oblige and as we found guaranteed by the laws of physics, all
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observers, singleton and evidence-derived, will observe the same wave-function
behaviour as each other.

Finally, why did we present the singleton observer as an axiom, and not say,
as a definition? An axiom implies one could claim it to be false, and technically
speaking this is indeed possible. For instance, one simply has to state they do not
believe they exist as an observer, and as we would only have their proclamation
of such to go by since the singleton observer is postulated, the scientific method
would be powerless to prove the claim wrong. The question ”what if axiom
1 is false” is answered amicably with ”then you are not an observer”, and we
move on. The other, slightly more challenging, reformulation of the question is
”what if axiom 1 is incorrect” (in the sense that our probability space definition
of the singleton observer is the wrong one to use, but the concepts we put
forward might still otherwise be the correct overall approach). In this case we
would simply get, proportionally to a how wrong our definition is, the wrong
laws of physics, which is why we claimed earlier that physics is also subject
to falsification. We do not exclude that, in principle, future experiments may
confirm, or force us to adjust, the mathematical form of axiom 1 along with its
accompanying entropy-maximization prescription. Consequently, our physical
theory of the observer is in principle falsifiable.

5.3 Ontology of Quantum Physics

In the (Discussion — Science) section, we have stated that a scientific model is
entailed by knowledge, but that it does not itself entail knowledge. Phrasing it
like this however makes it sounds like models are vacuous... This is not the case
as they do provide value, but we do not call this value knowledge, rather we
call it insight. For instance, it is the case that natural selection is an insightful
model of bio-diversity, but does it give us knowledge of bio-diversity? — or,
it is knowledge of bio-diversity that entails natural selection? Consider these
statements:

1. (The model of) natural selection entails knowledge of bio-diversity.

2. Knowledge of bio-diversity entails (the model of) natural selection.

In our system, the entailment is always as follows:

Knowledge =⇒ Model (35)

Consequently, it is only the second statement that is correct.
Our framework demands that one takes this perspective for all scientific

models. Let us take a more counter-intuitive example:

1. (The model of) gravity entails knowledge of objects falling.

2. Knowledge of objects falling entails (the model of) gravity.
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Here we are dealing with what is traditionally considered a law of physics
rather than a purely scientific theory, and thus some more easily confuse the
model with reality. It is very common to encounter the reflex to say that it
is the first that is true, and the second isn’t because gravity obviously causes
objects to fall. However, here as well, only the second one can be sustained.
It is knowledge of objects falling that caused Newton to produce the model of
gravity as a scientific theory. Gravity may appear as logically equivalent to the
sum-total of all falling objects; but nature is not gravity, rather nature is the
sum-total of all falling objects.

It is in regards to the interpretation of quantum physics that understanding
and accepting the correct entailment pays the most unrealized gains. Now,
consider the following statements; which one is true?

1. Measuring a wave-function |ψ〉 = α |φ1〉 + β |φ1〉 caused it to collapse to
|φ1〉 or to |φ2〉.

2. Registering ’clicks’ such as |φ1〉 or |φ2〉 on an incidence counter causes us
to derive |ψ〉 = α |φ1〉+ β |ψ1〉 as a statistical model of the clicks.

As before, our system demands that the second be the correct entailment.
This will in fact constitute the formulation of quantum mechanics within our
system: ’clicks’ are registered then the wave-function is derived. Let us now
investigate in the following section the consequences of this formulation.

5.4 Formulation of Quantum Physics

In our main result we will see that maximizing the entropy of our definition
of the observer produces (a generalization of) the wave-function along with the
Born rule as the measure, and further automatically yields the definition of a
quantum Turing machine as the model of computation. We elected to discuss
the interpretation before the main result because our feedback was that it is too
abstract without conceptual decorations. It is probably beneficial for the reader
to read this section twice; once right now, and another time after reading the
main result.

First let us review statistical mechanics which also maximizes its entropy to
obtain its measure. In statistical mechanics, constraints on the entropy are asso-
ciated to instruments acting on the system. For instance, an energy constraint
on the entropy:

E =
'

q∈Q
ρ(q)E(q) (36)

is interpreted physically as an energy-meter measuring the system and pro-
ducing a series of energy measurement E1, E2, . . . converging to an average value
E.

Another common constraint is that of the volume:
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V =
'

q∈Q
ρ(q)V (q) (37)

associated to a volume-meter acting on the system and converging towards
an average volume value V , also by producing a sequence of measurements of
the volume V1, V2, . . . .

With these two constraints, the typical system of statistical mechanics is
obtained by maximizing the entropy using its corresponding Lagrange equation,
and the method of the Lagrange multipliers:

L = −kB
'

q∈Q
ρ(q) ln ρ(q) + λ

)

*1−
'

q∈Q
ρ(q)

+

,+ β

)

*E −
'

q∈Q
ρ(q)E(q)

+

,+ γ

)

*V −
'

q∈Q
ρ(q)V (q)

+

,

(38)

and then solving ∂L
∂ρ = 0 for ρ, we get the Gibbs measure:

ρ(q,β, p) =
1

Z
exp

%
−βE(q) + γV (q)

&
(39)

=
1

Z
exp

%
−β(E(q) + pV (q))

&
(40)

We will now introduce a formulation of quantum mechanics produced by
extending statistical mechanics with a larger class of instruments. The entropy
will now be maximized under the constraint of measurement-events (or ’clicks’)
collected by phase-invariant instruments (or ’click’ recorders), and this will yield
the wave-function along with the Born rule automatically as the statistical model
of the ’clicks’.

Instead of an energy-meter or a volume-meter, consider a phase-invariant
instrument, such that the constraint it induces on the entropy is given as follows:

tr

-
a −b

b a

.
=

'

q∈Q
ρ(q) tr

/
a(q) −b(q)
b(q) (a)

0
(41)

where

/
a(q) −b(q)
b(q) a(q)

0
∼= a(q) + ib(q) is the matrix representation of the

complex numbers. Using the trace follows the prescription of the main result in
order to define a measure over a space of tuples instead of sets.

Here, the purpose of the trace is to enforce the phase-invariance of the in-
strument. The corresponding Lagrangian equation that maximizes the entropy
will in this case be:
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L = −
'

q∈Q
ρ(q) ln(q) + α

)

*1−
'

q∈Q
ρ(q)

+

,+ τ

)

*tr

-
a −b

b a

.
−

'

q∈Q
ρ(q) tr

/
a(q) −b(q)
b(q) a(q)

0+

,

(42)

Maximizing the entropy under such constraints does produce the probability
measure of the wave-function along with the Born rule. But here it is derived
using the same technique as we would for any other system of statistical me-
chanics, and thus we inherit its tools, interpretation and will be able to account
for the origin of the measure. Indeed, solving ρ for ∂L

∂ρ(q) = 0 gives:

ρ(q) =
1

Z
exp tr τ

/
a(q) −b(q)
b(q) a(q)

0
(43)

=
1

Z
det exp τ

/
a(q) −b(q)
b(q) a(q)

0
(44)

∼= exp 2τa(q)| exp iτb(q)|2 Born rule (45)

In this formulation, the interpretation of quantum mechanics will simply be-
come that of an instrument producing a sequence of measurements on a system
such that an average value is obtained, but instead of the simpler scalar instru-
ments typically used in statistical mechanics, here we have a phase-invariant
instrument; and maximizing its entropy yields the wave-function along with the
Born rule. What is an example of such a detector; quite simply an incidence-
counter or a single-photon detector would be one. Such an instrument produces
a sequence of incidences (’clicks’) as photons are detected and ”advanced fea-
tures” such as an interference pattern is a consequence of this phase-invariance.

Let us state that elements of this interpretation connect to the ensemble
interpretation of quantum mechanics, and others appear very similar to what
John A. Wheeler had in mind when he wrote ”Information, Physics, Quantum;
The Search for Links.”. For instance, consider the following statement by him:

It from bit symbolizes the idea that every item of the physical
world has at bottom — at a very deep bottom, in most instances
— an immaterial source and explanation; that what we call real-
ity arises in the last analysis from the posing of yes-no questions
and the registering of equipment-evoked responses; in short, that
all things physical are information-theoretic in origin and this is a
participatory universe.

and also;

Three examples may illustrate the theme of it from bit. First,
the photon. With polarizer over the distant source and analyzer of
polarization over the photodetector under watch, we ask the yes or
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no question, ”Did the counter register a click during the specified
second?” If yes, we often say, ”A photon did it.” We know perfectly
well that the photon existed neither before the emission nor after the
detection. However, we also have to recognize that any talk of the
photon ”existing” during the intermediate period is only a blown-up
version of the raw fact, a count

Raw fact; a count — in our scheme this is encoded in the form of axiomatic
information and relate to the phase-invariant ’clicks’ of instrumentation. The
other part, also identified by Wheeler and necessary to complete the description,
is equipment-evoke response — in our scheme rather than equipment we use the
ambiguity-free notion of a terminating protocol along with its preparation but
its role is similar. The ’knowledge’ corresponds to the steps required to construct
an experiment in which photons are sent according to a repeatable and well-
defined preparation. When a ’click’ is registered, it yields more than just a bit;
it is also associated to a unit of ’knowledge’ given in the form of a protocol-
preparation pair, and associated to the unitary transformations comprising the
protocol applied to a given preparation.

5.5 The Measurement Problem

In our system, we have crossed through the measurement problem but from the
other side. Indeed, we started with a singular incremental contribution describ-
ing the participation of the observer in nature and then we have derived the
wave-function (which supports a plurality, or superposition, of measurement re-
sults) by having used the Lagrange-multiplier equation to maximize the entropy
of a measure constrained by ’click’ recorders. This is the opposite direction of
the standard formulation which applies a measurement to the wave-function to
get the ’clicks’:

Standard: Measurement(wave-function1 23 4
Axiomatic

) =⇒ ’click’1 23 4
collapse problem?

(46)

Ours: Max-Entropy( ’clicks’1 23 4
Axiomatic

) =⇒ wave-function1 23 4
derived

(47)

Let us investigate the distinction in more details.
All statistical systems, classical or quantum, admit two formulations; a pre-

facto and a post-facto construction, or sometimes referred to as, a frequentist
or a bayesian formulation. Our formulation of quantum mechanics from sta-
tistical mechanics is entirely frequentist, whereas the standard formulation mix
and match elements of both the bayesian and the frequentist schools and specif-
ically, the wave-function collapse in the standard formulation is treated using
the bayesian school. Specifically, the standard formulation assumes a prior (the
wave-function) and updates it with the result of each measurement as it oc-
curs, but the bayesian update (the collapse) is not physically understood and
constitute what is known as the wave-function collapse problem.
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To better understand how the formulations differ and to illustrate the nature
of problem, let us now consider the archetypical example of a fair coin toss with
50%/50% probability of landing on either head or tail, as the distinction is
clearer in this simple model. We can produce each of the two formulations by
picking different points in the history of the system as the origin; either before
or after the coin lands:

1. If formulated before the coin lands:

If we are to formulate the statistical model before the coin lands, we would
first posit a probability measure 50% head /50% tail (bayesian prior), then
we would find that sampling the system (throwing the coin) yields either
head or tail whenever it lands (this is the bayesian update). In this case,
the statistical model, if it were proclaimed to be the complete physical
description of the system, would be insufficient to support, as a mere
probability measure, a physical mechanism for the bayesian update. This
is similar to how quantum mechanics is typically formulated.

2. If formulated after the coin lands:

Now, consider the discovery of a coin on the floor with head facing up.
To work with probabilities, we must first assume an appropriate history
for this coin making the present result due to chance; and specifically the
choice will be that the coin landed as a result of fair coin toss. Unlike
the previous case, we did not witness this history. We merely assumed it
following the discovery of the coin on the floor, and theoretically speaking,
we could be wrong about our assumption (someone could have just de-
posited it carefully on the ground face up). This is the post-facto formula-
tion. Then, under the fair coin toss history assumption, we can construct
a probability measure to account for the state the coin was discovered
in. The probability measure assigns a 50/50 probability to each outcome:
head or tail. We end up with the same statistical model as the previous
case, but no sampling of the probability measure has occurred and the
probability interpretation is readily understood to merely be a plausible
model of the history of the system. We no longer have to look for a phys-
ical mechanism to account for the bayesian update, as there are no such
updates.

Likewise, in our system, the wave-function along with the Born rule are no
longer fundamental, but derived like any other measures of statistical mechanics,
and following the registration of ’clicks’. It is a post-facto formulation. The
wave-function in our system is the optimized model used to understand reality
as the sequence of all ”free experimental choices”; it is not a physical object
that is acted on by an observer.

Another angle that may help understanding the value of the post-facto for-
mulation is to say that it catches interpretational errors at compile time, rather
than at runtime. For instance, it tells us explicitly and in no uncertain terms
that the assumption of a random history is in fact an assumption. Consequently,
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it has to be posited (Axiom 1) before progress is allowed. Whereas in the pre-
facto formulation, this hint is not available at compile time. In the pre-facto
formulation, the wave-function is first postulated, then it is only when we try
to apply the model to nature that we encounter a ”runtime error”; and to re-
dress its applicability to reality, such is corrected by postulating the Born rule
(yielding a real probability) and the measurement collapse (yielding an bayesian
update).

In our interpretation, we maximize the entropy to get the wave-function from
the clicks, whereas in the standard interpretations we measure the wave-function
to get the clicks. However, the measurement operation is problematic, and
introduces the problem of the wave-function collapse; whereas the maximization
of entropy is a non-problematic operation. The ontology of our interpretation
matches that which actually occurs in nature: it is indeed the case that we
first register the ’clicks’, then we derive the measure to be a wave-function.
Likewise, if we register no clicks, we assume no wave-function. Since we cannot
have knowledge of the existence of a wave-function (the prior) before a click is
registered (the update), then it turns out the update always predates the prior,
and consequently the bayesian formulation cannot be appropriate.

Some may have the impression that this may be too simple to be the solution,
but let us reassure the reader that this is not the case. This interpretation was
not conductive before our main result relating statistical mechanics (and phase-
invariant instruments) to the wave-function, as its origin was otherwise too
obscure to support this interpretation.

So, if clicks are not caused by measuring a wave-function, then what causes
them, and why do they occur? Let us now investigate the model of reality
further.

5.6 The Model of Reality

Our system admits the following correspondence with statistical mechanics:

Statistical Mechanics Statistical System of ’clicks’

Entropy Boltzmann Shannon (48)

Measure Gibbs Born Rule (49)

Constraint Energy meter Phase-invariant instrument (50)

Micro-state Energy values Sub-Contributions (51)

Macro-state Equation of state Evolution of the wave-function (52)

Experience Ergodic Message (53)

Let us recall that N (nature) is the power tuple of m (the incremental
contribution), and therefore comprises multiple elements. Let us now call the
elements of N the possible sub-contributions. These elements will be the micro-
states of our system. As for the macroscopic state, it will acquire the form of the
laws of physics (via the entropy maximization prescription of the main result),
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and they will describe the evolution of the possible micro-states (as the evolution
of the wave-function). Finally, the message connects to the macro-state via a
specific sequence of registered ’clicks’, and this is quantified by entropy.

In statistical mechanics it is often assumed that the system, say the molecules
of air in a box, permute over the possible micro-states of the system (i.e. er-
godic hypothesis); whereas in our system as we use the Shannon entropy, there
is no such permutation — how the observer experiences the system is in the
form of a message fixing the realized incremental contribution from the possi-
ble sub-contributions available in nature. And the information gained by the
observer from this message is equal and opposite to that of the entropy of the
system. Thus, our formulation contains no unmeasurable redundancies. There
is no many-worlds; only a unique message of incremental contributions that the
observer experiences as reality.

Here, it is the experience that is considered real and foundational, and it
serves as the justification for the rest of the framework. In our system, the
experience is defined under the assumption of an observer with experimenter
freedom (Axiom 1) receiving or producing a message as an incremental contri-
bution: the observer could have produced a different incremental contribution
but it so happen to have produced this particular one, and the difference be-
tween what is and what could have been constitutes entropy and is encoded
as clicks. As for the rest of the table, it simply follows from (maximizing the
quantity of information/entropy of, or generally to optimize the information of)
the experience.

Finally, new contributions by the observer resulting from its continued par-
ticipation in nature, will automatically trigger new ’clicks’ to be registered in
the system so as to preserve the general form of the experience as a message
and to do so consistently over the addition of those new contributions. The
clicks are therefore directly produced by observer participation in nature and
serves as evidence of experimenter freedom, and this is more fundamental than
the wave-function which is derived afterwards as a statistical model entailed by
the registered clicks.

The interpretation connects with elements of Conway and Kochen[2], where
they describe ”new bits of information coming into existence in the universe”
as a result of experimenter freedom. They say:

...there will be a time t0 after x, y, z are chosen with the property
that for each time t < t0 no such bit is available, but for every t > t0
some such bit is available.

But in this case the universe has taken a free decision at time
t0, because the information about it after t0 is, by definition, not a
function of the information available before t0!

In our work, we have taken it a step further and revealed that the unit of
information of experimenter freedom is not the bit but actually the ’click’, and
that unlike the bit, the ’click’ contains enough complexity and flexibility (and
as we found; even geometry) to encode the experience of the observer such that
its maximized freedom of action is precisely delimited by the laws of physics.
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Finally, as a disclaimer we state that the term freedom is to be interpreted
similarly to the strict sense given by Conway and Kochen[2] as freedom from
being determined by past history, thus allowing a probabilistic enumeration in
the present; and in the sense of the Bell inequality, as freedom to pick the
experiments (or its parameters) undetermined by past history. It is not meant
to be interpreted in the metaphysical sense of free will in philosophy.

5.7 Generalization

In the main result we will actually obtain a generalization of quantum mechan-
ics to support general linear transformations. In this case the interpretation
of quantum mechanics takes its simplest and most visualizable interpretation.
The phase-invariant instruments are upgraded from a complex phase to a general
linear phase, and the geometry will automatically follow. The probability will
now be associated with a sequence of ’clicks’ recorded in space-time as events.
Thus, the framework describes reality as a sequence of space-time ’clicks’ (or
events) which, under entropy maximization, are associated to a general linear
wave-function in lieu of the Gibbs ensemble. As we note, general relativity is
primarily a theory of events in space-time, and the extension to quantum theory
assigns a probability and an entropy to said events, such that the measure over
said events is a wave-function able to support the transformations required by
general relativity while preserving the invariance of the probability measure.
This generalization yields a quantum theory of gravity whose equations of mo-
tions are exactly the Einstein field equations. Standard quantum field theory
will also be shown to be a special case of the presented quantum theory.

5.8 Context

Finally, let us address a common concern:

Surely there is more to reality than simply ’clicks’ — what about
objects such as chairs or kitchen tables, what about colours or liter-
ature?

Here we give a ”first-approximation answer”. It is not designed to be a
complete answer, but merely to guide the intuition.

This is where context sneaks in. Each halting program contains the context
to the claim it makes. An observer with a brain will be influenced by biological
evolution and other environmental factors, and will pick a preferred context to
clarify the set of halting program it knows (this could be colours instead of
wavelength, or set theory instead of quantum Turing machine programs). The
mind understands reality as a collection of scientific fields, which are choices of
formal axiomatic bases, formulated in a matter it finds efficient or convenient;
each representing a falsifiable choice of context. Why we think of a particular
cloud of ’clicks’ as a chair, or another cloud as a wood club which is a potential
weapon, is simply the result of natural selection influencing these contextual
choices and committing them to the biological wiring of the brain.
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The laws of physics, however, are without context and this is required for
them to be universal. The lack of context to the laws of physics relegates them
to a ”fraction” of all reality (the dynamics of ‘clicks’), and the ”rest” of reality
is relegated to scientific theories which are contextual.

6 Main Result

Let us now use the definition of the observer (Axiom 1) to derive the fundamental
physics.

Our starting point will be the definition of the observer. We will then max-
imize the entropy of ρ using the method of the Lagrange multipliers. We recall
that our definition of the observer is:

O := (m,N , ρ : N → [0, 1]) (54)

where m is a n-tuple, N is a ”powertuple” and ρ is a (probability) measure
over N .

Note the similarity between our definition of the observer to that of a measure
space in mathematics. Comparatively, the definition of a measure space is:

M := (X,Σ, µ(X)) (55)

where X is a set, Σ is (often) taken to be the powerset of X, and µ is
a measure over Σ. The difference with our measure is simply that sets have
been replaced by tuples. Consequently, we must adapt the standard definition
of a measure space from set to tuples. To do so, we will use the following
prescription:

1. We assign a non-negative number to each element of N .

2. We equip said numbers with the addition operation, converting the con-
struction to a vector space.

3. We maximize the entropy of a single element under the effect of con-
straints, by using the method of the Lagrange multipliers.

4. We prescribe that any and all constraints on said entropy must remain
invariant with respect to a change of basis of said vector space.

5. We use the tensor product n-times over said vector space to construct a
probability measure of n-tuples of halting programs.

6. We use the direct sum to complete the measure over the whole of tuple-
space by combining the measures of different sizes as a single measure.
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Explicitly, we maximize the entropy:

S = −
'

p∈m

ρ(p) ln ρ(p) (56)

subject to these constraints:

'

p∈m

ρ(p) = 1 (57)

'

p∈m

ρ(p) trM(p) = trM (58)

where the notation
5

p∈m designates a sum over the elements of the experi-
mental contributionm, whereM(p) are a matrix-valued maps from the elements
of m to Cn×n representing the linear transformations of the vector space and
where M is a element-by-element average matrix.

Usage of the trace of a matrix as a constraint imposes an invariance with
respect to a similarity transformation, accounting for all possible linear reorder-
ing of the elements of the tuples of the sum, thus allowing the creation of a
measure of a tuple or group of tuples from within a space of tuples, invariantly
with respect to the order of the elements of the tuples.

Similarity transformation invariance on the trace is the result of this identity:

trM = trBMB−1 (59)

We now use the Lagrange multiplier method to derive the expression for ρ
that maximizes the entropy, subject to the above mentioned constraints. Max-
imizing the following equation with respect to ρ yields the answer:

L = −kB
'

p∈m

ρ(p) ln(p) + α

)

*1−
'

p∈m

ρ(p)

+

,+ τ

)

*trM−
'

p∈m

ρ(p) trM(p)

+

,

(60)

where α and τ are the Lagrange multipliers. The explicit derivation is made
available in Annex B. Except for the presence of the trace and matrices, using the
Lagrangian multiplier method on the entropy is standard and shown in most
introductory textbooks of statistical mechanics to derive the Gibbs measure,
where the quantities are simple scalars. With the trace and matrices, the result
of the maximization process is:

ρ(p, τ) =
1

Z(τ)
det exp

%
−τM(p)

&
(61)
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where

Z(τ) =
'

p∈m

det exp
%
−τM(p)

&
(62)

Prior: A probability measure requires a prior. The prior, which accounts
for an arbitrary preparation of the ensemble, ought to be —for purposes of
preserving the scope of the theory— of the same kind as the elements of the
probability measure. Let us thus introduce the prior as the map P from the
elements of m to Cn×n and inject it into the probability measure as well as into
the partition function:

ρ(p) =
1

Z
det exp

%
P(p)

&
det exp

%
−τM(p)

&
(63)

where

Z =
'

p∈m

det exp
%
P(p)

&
det exp

%
−τM(p)

&
(64)

6.1 Completing the Measure

We have produced a measure over a sum of single experiments. Whereas the
measure we are after is a sum over the whole space of experiments spawned by
an experimental contribution, which contains all sub-tuples of the experimental
contribution. Completing the measure over said space will require us to sum
over differently-sized tuples. To do so, first, we will use the tensor product to
produce measures summing over multiple elements, and second, we will use the
direct sum to combine the differently-sized measures into a single final measure.

6.1.1 Split to Amplitude / Probability Rule

Before we are able to proceed with both the tensor product and the direct sum,
it helps with familiarity to split the measure into two operations.

We begin by splitting the probability measure into a first step, which is
linear with respect to a ’probability amplitude’, and a second which connects
the amplitude to the probability. We thus write the probability measure as:

ρ(p, τ) =
1

Z
detψ(p, τ) (65)

where

ψ(p, τ) = exp
%
P(p)

&
exp

%
−τM(p)

&
(66)
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Here, the determinant is interpreted as a generalization of the Born rule
and reduces to exactly it when M is the matrix representation of the complex
numbers. In the general case where M are arbitrary n×n matrices, ψ(p, τ) will
be called the general linear probability amplitude.

We can write ψ(p, τ) as a column vector:

|ψ〉 :=

)

6666*

ψ(p1, τ)
ψ(p2, τ)

...
ψ(pn, τ)

+

7777,
=

)

6666*

ψ1

ψ2

...
ψn

+

7777,
(67)

6.1.2 Tensor Product

How do we extend the measure to experimental contributions containing multi-
ple experiments? We have to use a Cartesian product on the sets of experimental
images and a tensor product on the probability amplitudes. For instance, let us
consider the following sets of experiments:

M1 = {p1a, p1b} (68)

M2 = {p2a, p2b} (69)

The Cartesian product produces experimental images comprised of two ele-
ments:

m ∈ M1 ×M2 = {(p1a, p2a), (p1a, p2b), (p1b, p2a), (p1b, p2b)} (70)

At the level of the probability amplitude, the Cartesian product of sets
translates to the tensor product. For instance, we start with a column vector
where each entry is one experiment;

|ψ1〉 =
/
expP(p1a)
expP(p1b)

0
(71)

Adding a program-step via a linear transformation produces:

T |ψ1〉 =
/
T00 expP(p1a) + T01 expP(p1b)
T10 expP(p1a) + T11 expP(p1b)

0
(72)

We then introduce another column vector:

|ψ2〉 =
/
expP(p2a)
expP(p2b)

0
(73)
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along with a program-step:

T′ |ψ2〉 =
/
T ′
00 expP(p2a) + T ′

01 expP(p2b)
T ′
10 expP(p2a) + T ′

11 expP(p2b)

0
(74)

Then the tensor product of these states produces the probability measure of
an experimental contribution as follows:

T |ψ1〉 ⊗T′ |ψ2〉 =

)

66*

(T00 expP(p1a) + T01 expP(p1b))(T
′
00 expP(p2a) + T ′

01 expP(p2b))
(T00 expP(p1a) + T01 expP(p1b))(T

′
10 expP(p2a) + T ′

11 expP(p2b))
(T10 expP(p1a) + T11 expP(p1b))(T

′
00 expP(p2a) + T ′

01 expP(p2b))
(T10 expP(p1a) + T11 expP(p1b))(T

′
10 expP(p2a) + T ′

11 expP(p2b))

+

77,

(75)

Now, each element of the resulting vector is an experimental contribution
of two programs, but its probability is a sum over a path. One can repeat the
process n times.

6.1.3 Direct Sum

In the previous section, we have introduced a way to produce measures of fixed
sizes n by using the tensor product. Here, we wish to produce a measure with el-
ements of different sizes. Taking the direct sum of the measures of different sizes
(where each individual size is produced from the tensor product), accomplishes
the goal and yields an amplitude given has follows:

|ψ〉 = |ψ1〉 ⊕ (
88ψ′

1

9
⊗
88ψ′

2

9
)⊗ (

88ψ′′
1

9
⊗
88ψ′′

2

9
⊗
88ψ′′

3

9
)⊕ ... (76)

In quantum field theory, in the limiting case n → ∞ and when M(p) is
reduced to the complex field, these are the states of a Fock Space, which we have
obtained here simply my maximizing the entropy of the measure associated with
our simple definition of the observer (Axiom 1). In the case for the measure
space to be on all possible experiments, it requires n → ∞.

6.2 Discussion — Fock Spaces as Measures over Tuples

Some may consider our result from the angle of measure theory in the sense
that an entropy-maximized measure over the tuples of a tuple-space (as an
extension to typical measure theory defined for the subsets of a set) induces
a Fock Space, along with the appropriate probability rule (Born rule) for use
in quantum mechanics. The measures used in quantum mechanics would thus
result quite intuitively from this simple extension of measure theory, previously
defined for sets, to tuples, and then simply maximizing the entropy.

We should mention that, although tuples can represent anything, in our
system Axiom 1 requires the tuples to represent experimental contributions (or
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halted programs). But this is a minimal constraint, enforcing, while introducing
no other constraints, that all experimental preparations or protocols must be
describable using computable steps, and thus be comprehensible to the scientific
method.

6.3 Connection to Computation

In the section on the formal system of knowledge, we have stated that our defi-
nitions will reference the concept of the computable function, and that such will
hold irrespectively of the underlaying model of computation. Can we now say
more? Here, we will see that having maximized the entropy of the measure space
over tuples has automatically generated the underlaying model of computation.

Let us begin by reviewing the basics of quantum computation. One starts
with a state vector:

|ψa〉 =

)

66*

0
...
n

+

77, (77)

Which evolves unitarily to a final state:

|ψb〉 = U0U1 . . . Um |ψa〉 (78)

Clever use of the unitary transformations, often arranged as simple ’gates’,
allows one to execute a program, but technically speaking any arrangements
of unitary transformations qualify abstractly as a program (without or without
gates). The input to the program is the state |ψa〉 and the output is the state
|ψb〉. One would note that, so defined and if the sequence of unitary transfor-
mation is finite, such a program must always halt, and thus its complexity must
be bounded. One can however get out of this predicament by taking the final
state |ψb〉 to instead be an intermediary state, and then to add more gates in
order continue with a computation:

step 1 |ψb〉 = U0U1 . . . Up |ψa〉 (79)

step 2 |ψc〉 = U ′
0U

′
1 . . . U

′
q |ψb〉 (80)

...

step k |ψk′〉 = U ′
0U

′
1 . . . U

′
v |ψk〉 (81)

...

For a quantum computation to simulate a universal Turing machine it must
be able to add more steps until a halting state is reached (or continue to add
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steps indefinitely if the program never halts). But note, that each step represents
a valid quantum mechanical state of nature and is itself a completed program.

Comparatively, the linear transformations T1,T2, . . . of our main result are
here interpreted in the same manner as those used in quantum computations,
but extended to the general linear group. Protocols are executed by chaining
transformations on a preparation:

|ψb〉1234
final state

= T1T2 . . .Tn1 23 4
protocol

|ψa〉1234
preparation

(82)

And a quantum computation involves a sequence of unitary transformations
on the unit vectors of a complex Hilbert space:

|ψb〉1234
final state

= U1U2 . . .Un1 23 4
computing steps

|ψa〉1234
initial state

(83)

We are now ready to begin investigating the main result as a general linear
quantum theory.

7 Foundation of Physics

Based on our main result, we will now introduce an algebra of natural states
and we will use it to classify the linear transformations on said amplitude.
We will start with the 2D case, then the 4D case. In all cases, the probability
amplitude transforms linearly with respect to general linear transformations and
the probability measure, obtained from the determinant, is positive-definite. In
the application section, we will then see that the 4D case automatically reduces
to the Dirac theory of relativistic quantum mechanics when the general linear
group is reduced to the spinor group. Finally, we will show that the general
linear wave-function entails the Einstein field equations as its evolution equation
in the general case.

7.1 Matrix-Valued Vector and Transformations

To work with the general linear probability amplitude, we will use vectors whose
elements are matrices. An example of such a vector is:

|ψ〉 =

)

66*

M1

...
Mm

+

77, (84)

Likewise a linear transformation of this space will expressed as a matrix of
matrices:
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T =

)

66*

M00 . . . M0m

...
. . .

...
Mm0 . . . Mmm

+

77, (85)

Note: The scalar element of the vector space are given as:

a |ψ〉 =

)

66*

aM1

...
aMm

+

77, (86)

7.2 Algebra of Natural States, in 2D

The notation of our upcoming definitions will be significantly improved if we use
a geometric representation for matrices. Let us therefore introduce a geometric
representation of 2× 2 matrices.

7.2.1 Geometric Representation of 2× 2 matrices

Let G(2,R) be the two-dimensional geometric algebra over the reals. We can
write a general multi-vector of G(2,R) as follows:

u = A+X+B (87)

where A is a scalar, X is a vector andB is a pseudo-scalar. Each multi-vector
has a structure-preserving (addition/multiplication) matrix representation. Ex-
plicitly, the multi-vectors of G(2,R) are represented as follows:

Definition 21 (Geometric representation of a matrix (2× 2)).

A+Xx̂+ Y ŷ +Bx̂ ∧ ŷ ∼=
/
A+X −B + Y
B + Y A−X

0
(88)

And the converse is also true, each 2 × 2 real matrix is represented as a
multi-vector of G(2,R).

We can define the determinant solely using constructs of geometric algebra[13].

Definition 22 (Clifford conjugate (of a G(2,R) multi-vector)).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2 (89)

Then the determinant of u is:
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Definition 23 (Geometric representation of the determinant (of a 2 × 2 ma-
trix)).

det : G(2,R) −→ R
u 0−→ u‡u

(90)

For example:

detu = (A−X−B)(A+X+B) (91)

= A2 −X2 − Y 2 +B2 (92)

= det

/
A+X −B + Y
B + Y A−X

0
(93)

Finally, we define the Clifford transpose:

Definition 24 (Clifford transpose (of a matrix of 2× 2 matrix elements)). The
Clifford transpose is the geometric analogue to the conjugate transpose. Like the
conjugate transpose can be interpreted as a transpose followed by an element-
by-element application of the complex conjugate, here the Clifford transpose is
a transpose, followed by an element-by-element application of the Clifford con-
jugate:

)

66*

u00 . . . u0n

...
. . .

...
um0 . . . umn

+

77,

‡

=

)

66*

u‡
00 . . . u‡

m0
...

. . .
...

um0 . . . u‡
nm

+

77, (94)

If applied to a vector, then:

)

66*

v1

...
vm

+

77,

‡

=
!
v‡
1 . . .v‡

m

"
(95)

7.2.2 Axiomatic Definition of the Algebra, in 2D

Let V be an m-dimensional vector space over G(2,R). A subset of vectors in V
forms an algebra of natural states A(V) iff the following holds:

1. ∀ψ ∈ A(V), the bilinear map:

〈·, ·〉 : V× V −→ G(2,R)
〈u,v〉 0−→ u‡v

(96)

is positive-definite:

〈ψ,ψ〉 ∈ R>0 (97)
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2. ∀ψ ∈ A(V), then for each element ψ(q) ∈ ψ, the function:

ρ(ψ(q),ψ) =
1

〈ψ,ψ〉ψ(q)
‡ψ(q) (98)

is positive-definite:

ρ(ψ(q),ψ) ∈ R>0 (99)

We note the following comments and definitions:

• From (1) and (2) it follows that ∀ψ ∈ A(V), the probabilities sum to
unity:

'

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (100)

• ψ is called a natural (or physical) state.

• 〈ψ,ψ〉 is called the partition function of ψ.

• ρ(q,ψ) is called the probability measure (or generalized Born rule) of ψ(q).

• The set of all matrices T acting on ψ, as Tψ → ψ′, which leaves the sum
of probabilities normalized (invariant):

'

ψ(q)∈ψ

ρ(ψ(q),Tψ) =
'

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (101)

are the natural transformations of ψ.

• A matrix O such that ∀u∀v ∈ A(V) :

〈Ou,v〉 = 〈u,Ov〉 (102)

is called an observable.

• The expectation value of an observable O is:

〈O〉 = 1

〈ψ,ψ〉 〈Oψ,ψ〉 (103)

7.2.3 Observable, in 2D — Self-Adjoint Operator

Let us now investigate the general case of an observable is 2D. A matrix O is
an observable iff it is a self-adjoint operator; defined as:

〈Oφ,ψ〉 = 〈φ,Oψ〉 (104)

∀u∀v ∈ V.
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Setup: Let O =

/
O00 O01

O10 O11

0
be an observable. Let φ and ψ be 2 two-state

vectors φ =

/
φ1

φ2

0
and ψ =

/
ψ1

ψ2

0
. Here, the components φ1, φ2, ψ1, ψ2, O00,

O01, O10, O11 are multi-vectors of G(2,R).

Derivation: 1. Let us now calculate 〈Oφ,ψ〉:

2〈Oφ,ψ〉 = (O00φ1 +O01φ2)
‡ψ1 + ψ‡

1(O00φ1 +O01φ2)

+ (O10φ1 +O11φ2)
‡ψ2 + ψ‡

2(O10φ1 +O11φ2) (105)

= φ‡
1O

‡
00ψ1 + φ‡

2O
‡
01ψ1 + ψ‡

1O00φ1 + ψ‡
1O01φ2

+ φ‡
1O

‡
10ψ2 + φ‡

2O
‡
11ψ2 + ψ‡

2O10φ1 + ψ‡
2O11φ2 (106)

2. Now, 〈φ,Oψ〉:

2〈φ,Oψ〉 = φ‡
1(O00ψ1 +O01v2) + (O00ψ1 +O01ψ2)

‡φ1

+ φ‡
2(O10ψ1 +O11ψ2) + (O10ψ1 +O11ψ2)

‡φ1 (107)

= φ‡
1O00ψ1 + φ‡

1O01ψ2 + ψ‡
1O

‡
00φ1 + ψ‡

2O
‡
01φ1

+ φ‡
2O10ψ1 + φ‡

2O11ψ2 + ψ‡
1O

‡
10φ1 + ψ‡

2O
‡
11φ1 (108)

For 〈Oφ,ψ〉 = 〈φ,Oψ〉 to be realized, it follows that these relations must
hold:

O‡
00 = O00 (109)

O‡
01 = O10 (110)

O‡
10 = O01 (111)

O‡
11 = O11 (112)

Therefore, it follows that it must be the case that O must be equal to its
own Clifford transpose. Thus, O is an observable iff:

O‡ = O (113)

which is the equivalent of the self-adjoint operator O† = O of complex
Hilbert spaces.

7.2.4 Observable, in 2D — Eigenvalues / Spectral Theorem

Let us show how the spectral theorem applies to O‡ = O, such that its eigen-
values are real. Consider:
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O =

/
a00 a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11

0
(114)

In this case, it follows that O‡ = O:

O‡ =

/
a00 a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11

0
(115)

This example is the most general 2 × 2 matrix O such that O‡ = O. The
eigenvalues are obtained as follows:

0 = det(O− λI) = det

/
a00 − λ a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11 − λ

0
(116)

implies:

0 = (a00 − λ)(a11 − λ)− (a− xe1 − ye2 − be12)(a+ xe1 + ye2 + be12 + a11)
(117)

0 = (a00 − λ)(a11 − λ)− (a2 − x2 − y2 + b2) (118)

finally:

λ = {1
2

!
a00 + a11 −

:
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

"
, (119)

1

2

!
a00 + a11 +

:
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

"
} (120)

We note that in the case where a00−a11 = 0, the roots would be complex iff
a2−x2−y2+b2 < 0, but we already stated that the determinant of real matrices
must be greater than zero because the exponential maps to the orientation-
preserving general linear group— therefore it is the case that a2−x2−y2+b2 ≥ 0,
as this expression is the determinant of the multi-vector. Consequently, O‡ = O
— implies, for orientation-preserving1 transformations, that its roots are real-
valued, and thus constitute a ’geometric’ observable in the traditional sense of
an observable whose eigenvalues are real-valued.

7.3 Algebra of Natural States, in 4D

We will now consider the general case for a vector space over 4× 4 matrices.

1We note the exception that a geometric observable may have real eigenvalues even in the
case of a transformation that reverses the orientation if the elements a00 − a11 are not zero
and up to a certain magnitude, whereas transformations in the natural orientation are not
bounded by a magnitude — thus creating an orientation-based asymmetry.
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7.3.1 Geometric Representation (in 4D)

The notation will be significantly improved if we use a geometric representation
of matrices. Let G(4,R) be the two-dimensional geometric algebra over the
reals. We can write a general multi-vector of G(4,R) as follows:

u = A+X+ F+V +B (121)

where A is a scalar, X is a vector, F is a bivector, V is a pseudo-vector,
and B is a pseudo-scalar. Each multi-vector has a structure-preserving (ad-
dition/multiplication) matrix representation. Explicitly, the multi-vectors of
G(4,R) are represented as follows:

Definition 25 (Geometric representation of a matrix (4× 4)).

A+ Tγ0 +Xγ1 + Y γ2 + Zγ3

+ F01γ0 ∧ γ1 + F02γ0 ∧ γ2 + F03γ0 ∧ γ3 + F23γ2 ∧ γ3 + F13γ1 ∧ γ3 + F12γ1 ∧ γ2

+ Vtγ1 ∧ γ2 ∧ γ3 + Vxγ0 ∧ γ2 ∧ γ3 + Vyγ0 ∧ γ1 ∧ γ3 + Vzγ0 ∧ γ1 ∧ γ2

+Bγ0 ∧ γ1 ∧ γ2 ∧ γ3

∼=

!

"""#

A+X0 − iF12 − iV3 F13 − iF23 + V2 − iV1 −iB +X3 + F03 − iV0 X1 − iX2 + F01 − iF02

−F13 − iF23 − V2 − iV1 A+X0 + iF12 + iV3 X1 + iX2 + F01 + iF02 −iB −X3 − F03 − iV0

−iB −X3 + F03 + iV0 −X1 + iX2 + F01 − iF02 A−X0 − iF12 + iV3 F13 − iF23 − V2 + iV1

−X1 − iX2 + F01 + iF02 −iB +X3 − F03 + iV0 −F13 − iF23 + V2 + iV1 A−X0 + iF12 − iV3

$

%%%&

(122)

And the converse is also true, each 4 × 4 real matrix is represented as a
multi-vector of G(4,R).

We can define the determinant solely using constructs of geometric algebra[13].

Definition 26 (Clifford conjugate (of a G(4,R) multi-vector)).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2 + 〈u〉3 + 〈u〉4 (123)

and ⌊m⌋{3,4} as the blade-conjugate of degree 3 and 4 (flipping the plus sign to
a minus sign for blade 3 and blade 4):

⌊u⌋{3,4} := 〈u〉0 + 〈u〉1 + 〈u〉2 − 〈u〉3 − 〈u〉4 (124)

Then, the determinant of u is:

Definition 27 (Geometric representation of the determinant (of a 4 × 4 ma-
trix)).

det : G(4,R) −→ R
u 0−→ ⌊u‡u⌋3,4u‡u

(125)
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7.3.2 Axiomatic Definition of the Algebra, in 4D

Let V be a m-dimensional vector space over the 4 × 4 real matrices. A subset
of vectors in V forms an algebra of natural states A(V) iff the following holds:

1. ∀ψ ∈ A(V), the quadri-linear form:

〈·, ·, ·, ·〉 : V× V× V× V −→ G(4,R)
〈u,v,w,x〉 0−→ ⌊u‡v⌋3,4w‡x

(126)

is positive-definite:

〈ψ,ψ,ψ,ψ〉 ∈ R>0 (127)

2. ∀ψ ∈ A(V), then for each element ψ(q) ∈ ψ, the function:

ρ(ψ(q),ψ) =
1

〈ψ,ψ,ψ,ψ〉⌊ψ(q)
‡ψ(q)⌋3,4ψ(q)‡ψ(q) (128)

is positive-definite:

ρ(ψ(q),ψ) ∈ R>0 (129)

We note the following properties, features and comments:

• ψ is called a natural (or physical) state.

• 〈ψ,ψ,ψ,ψ〉 is called the partition function of ψ.

• ρ(ψ(q),ψ) is called the probability measure (or generalized Born rule) of
ψ(q).

• The set of all matrices T acting on ψ such as Tψ → ψ′ which leaves the
sum of probabilities normalized (invariant):

'

ψ(q)∈ψ

ρ(ψ(q),Tψ) =
'

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (130)

are the natural transformations of ψ.

• A matrix O such that ∀u∀v∀w∀x ∈ V :

〈Ou,v,w,x〉 = 〈u,Ov,w,x〉 = 〈u,v,Ow,x〉 = 〈u,v,w,Ox〉 (131)

is called an observable.

• The expectation value of an observable O is:

〈O〉 = 〈Oψ,ψ,ψ,ψ〉
〈ψ,ψ,ψ,ψ〉 (132)
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7.4 Probability-Preserving Transformation

7.4.1 Left Action in 2D

A left action on a wave-function : T |ψ〉, connects to the bilinear form as follows:
〈ψ|T‡T |ψ〉. The invariance requirement on T is as follows:

〈ψ|T‡T |ψ〉 = 〈ψ|ψ〉 (133)

We are thus interested in the group of matrices such that:

T‡T = I (134)

Let us consider a two-state system. A general transformation is:

T =

/
u v
w x

0
(135)

where u, v, w, x are multi-vectors of 2 dimensions. The expression G‡G is:

T‡T =

-
v‡ u‡

w‡ x‡

./
v w
u x

0
=

-
v‡v + u‡u v‡w + u‡x
w‡v + x‡u w‡w + x‡x

.
(136)

For the results to be the identity, it must be the case that:

v‡v + u‡u = 1 (137)

v‡w + u‡x = 0 (138)

w‡v + x‡u = 0 (139)

w‡w + x‡x = 1 (140)

This is the case if

T =
1√

v‡v + u‡u

-
v u

−eϕu‡ eϕv‡

.
(141)

where u, v are multi-vectors of 2 dimensions, and where eϕ is a unit multi-
vector. Comparatively, the unitary case is obtained with X → 0, and is:

U =
1:

|a|2 + |b|2

-
a b

−eiθb† eiθa†

.
(142)
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We can show that G‡G = I as follows:

=⇒ T‡T =
1

v‡v + u‡u

-
v‡ −e−ϕu
u‡ e−ϕv

.-
v u

−eϕu‡ eϕv‡

.
(143)

=
1

v‡v + u‡u

-
v‡v + u‡u v‡u− v‡u
u‡v − u‡v u‡u+ v‡v

.
(144)

= I (145)

In the case where T and |ψ〉 are n-dimensional, we can find an expression
for it starting from a diagonal matrix:

D =

-
ex1x̂+y1ŷ+ib1 0

0 ex2x̂+y2ŷ+ib2

.
(146)

where T = PDP−1. It follows quite easily that D‡D = I, because each
diagonal entry produces unity: e−x1x̂−y1ŷ−ib1ex1x̂+y1ŷ+ib1 = 1.

7.4.2 Adjoint Action in 2D

The left action case can recover at most the special linear group. For the general
linear group itself, we require the adjoint action. Since the elements of |ψ〉 are
matrices, in the general case, the transformation is given by adjoint action:

T |ψ〉T−1 (147)

The bilinear form is:

(T |ψ〉T−1)‡(T |ψ〉T−1) = (T−1)‡ 〈ψ|T‡T |ψ〉T−1 (148)

and the invariance requirement on T is as follows:

(T−1)‡ 〈ψ|T‡T |ψ〉T−1 = 〈ψ|ψ〉 (149)

With a diagonal matrix, this occurs for general linear transformations:

D =

)

66*

ea1+x1x̂+y1ŷ+ib1 0 0
0 ea2+x2x̂+y2ŷ+ib2 0

0 0
. . .

+

77, (150)

where T = PDP−1.
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Taking a single diagonal entry as an example, the reduction is:

e−a1+x1x̂+y1ŷ+ib1ψ‡
1e

a1−x1x̂−y1ŷ−ib1ea1+x1x̂+y1ŷ+ib1ψ1e
−a1−x1x̂−y1ŷ−ib1 (151)

= e−a1+x1x̂+y1ŷ+ib1ψ‡
1e

2a1ψ1e
−a1−x1x̂−y1ŷ−ib1 (152)

We note that ψ‡ψ is a scalar, therefore

= ψ‡
1ψ1e

2a1e−a1+x1x̂+y1ŷ+ib1e−a1−x1x̂−y1ŷ−ib1 (153)

= ψ‡
1ψ1e

2a1e−a1e−a1 = ψ‡
1ψ1 (154)

8 Applications

8.1 Dirac Current and the Bilinear Covariants

The general linear wave-function is:

ψ = exp(A+X+ F+V +B) (155)

In this application, let us take a group reduction from the general linear
group to the spinor group. As such we pose X → 0 and V → 0. The wave-
function becomes:

ψ = exp(A+ F+B) (156)

We recall that in 4D, the probability is given as follows:

detψ = ⌊ψ‡ψ⌋3,4ψ‡ψ = exp 4A = ρ (157)

but, since we eliminated X → 0 and V → 0, we can drop the blade inversion
of degree 3, and the rule reduces to:

detψ = (ψ‡)∗ψ∗ψ‡ψ = exp 4A = ρ (158)

Let us now recover the familiar Dirac theory.
First, we will expand the probability rule, while injecting γ0 and γµ as fol-

lows:

(ψ‡)∗γ0ψ
∗ψ‡γµψ = (eAe−Be−F)γ0(e

Ae−BeF)(eAeBe−F)γµ(e
AeBeF) (159)
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But before we continue, let us introduce the notation of David Hestenes. We
write eF = R, a rotor, and e−F = ;R, its reverse. The pseudo-scalar term will
also be written as eB = eib. Finally, we write e4A = ρ. Consequently, we obtain:

= ρ
1
4 e−ib ;Rγ0ρ

1
4 e−ibRρ

1
4 eib ;Rγµρ

1
4 eibR (160)

= ρe−ib ;Rγ0γµe
ibR (161)

= ρ ;Rγ0γµR (162)

= (ρ, *J) (163)

This is simply the Dirac current expressed with Tetrads. The Dirac equation
describes the dynamics which preserve this current. The base wave-function in
canonical form is:

ψ = ρ
1
4 eibR (164)

Comparatively, David Hestenes’ wave-function is ψ = ρ
1
2 eibR which is very

similar. To make the full Dirac theory standout, we can introduce an interme-
diary form of the wave-function, as follows:

(ψ‡)∗γ0ψ
∗ψ‡γµψ = ρ

1
4 e−ib ;Rγ0ρ

1
4 e−ibRρ

1
4 eib ;Rγµρ

1
4 eibR (165)

= ρ
1
2 e−ib ;Rγ01 23 4

φ̄

γµ ρ
1
2 eibR1 23 4
φ

(166)

Specifically,

φ̄ := ρ
1
2 e−ib ;Rγ0 (167)

φ := ρ
1
2 eibR (168)

and thus

detψ = (ψ‡)∗ψ∗ψ‡ψ = φ̄γ0φ = ρ (169)

The full list of bilinear covariants are:

Determinant φ-notation Standard Form Result

scalar (ψ‡)∗γ0ψ
∗ψ‡ψ φ̄φ

<
ψ̄
88ψ

9
e0ρ cos b

vector (ψ‡)∗γ0ψ
∗ψ‡γµψ φ̄γµφ

<
ψ̄
88 γµ |ψ〉 Jµ

bivector (ψ‡)∗γ0ψ
∗ψ‡Iγµγνψ φ̄Iγµγνφ

<
ψ̄
88 iγµγν |ψ〉 S

pseudo-vector (ψ‡)∗γ0ψ
∗ψ‡γµIψ φ̄γµIφ

<
ψ̄
88 γµγ5 |ψ〉 sµ

pseudo-scalar (ψ‡)∗γ0ψ
∗ψ‡Iψ φ̄Iφ

<
ψ̄
88 iγ5 |ψ〉 − e0ρ sin b

(170)
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One might have been sceptical that our extension from the Born rule on
complex-valued wave-functions to the determinant of matrices could yield any
relevance for physics, but this result along with the dynamical result for U(1)
and the physical interpretation in the next sections, show that it is equivalent
to the full Dirac theory, in 4D. We would argue, however, that our approach
conceptually much simpler... as it essentially only involves applying the deter-
minant to a sum of matrices and noting the emergence of the geometric elements
manifest in the geometric algebra representation of matrices. No import of phys-
ical language is required to get the Dirac theory, as this result follows directly
from our prescription.

8.2 Yang-Mills Theories — Unitary Gauge/Recap

The typical gauge theory in quantum electrodynamics is obtained by the pro-
duction of a gauge covariant derivative over a U(1) invariance associated with
the use of the complex norm in any probability measure of quantum mechanics.
A parametrization of ψ over a differentiable manifold is required to support the
derivation. Localizing the invariance group θ → θ(x), over said parametrization,
yields the corresponding covariant derivative:

Dµ = ∂µ + iqAµ(x) (171)

Where Aµ(x) is the gauge field. The U(1) invariance results from the usage
of the complex norm to construct a probability measure in a quantum theory,
and the presence of the derivative is the result of constructing said probabil-
ity measure as the Lagrangian of a Dirac field. If one then applies a gauge
transformation to ψ and Aµ:

ψ → e−iqθ(x)ψ and Aµ → Aµ + ∂µθ(x) (172)

Then, applies the covariant derivation, one gets:

Dµψ = ∂µψ + iqAµψ (173)

→ ∂µ(e
−iqθ(x)ψ) + iq(Aµ + ∂µθ(x))(e

−iqθ(x)ψ) (174)

= e−iqθ(x)Dµψ (175)

Finally, the field is given as follows:

Fµν = [Dµ,Dν ] (176)

where Dµ is the covariant derivative with respect to the potential one-form
Aµ = A α

µ Tα, and where Tα are the generators of the lie algebra of U(1).
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8.3 Quantum Gravity — General Linear Gauge

When our wave-function is extended to the general linear group (and the Born
rule to the determinant), then its fundamental invariance group is the orientation-
preserving general linear group GL+(4,R), rather than U(1).

Gauging the GL+(4,R) group is known to automatically entail the Einstein
field equations, as the resulting GL+(4,R)-valued field can be viewed as the
Christoffel symbols Γµ, and the commutator of the covariant derivatives as the
Riemann tensor. Expressing gravity via the general linear gauge is not a new
result: This is a result dating back from the 1956 with Utiyama[14], in 1961 with
Kibble[15], as well as the more recent work of David Hestenes[16] specifically
with geometric algebras.

A general linear transformation of ψ:

ψ′(x) → gψ(x)g−1 (177)

leaves the probability measure invariant.
The gauge-covariant derivative is:

Dµψ = ∂µψ − [iqAµ,ψ] (178)

Finally, the field is given as follows:

Rµν = [Dµ, Dν ] (179)

where Rµν is the Riemann tensor.
The Lagrangian is of course the Einstein-Hilbert action which, up to numer-

ical constant, is:

S =

=
εabcdR

ab ∧ ec ∧ ed =

=
d4 x

√
−gR (180)

Here we have an extra backbone to this gauge formulation of general rela-
tivity; specifically a quantum theory able to accommodate and normalize the
general linear group as a probability measure. Let us now discuss the physical
interpretation of quantum theory.

8.4 Physical Interpretation

Typically to insert gravity into a quantum field theory, one would take the
Einstein Field equation, then would linearize the metric: gµν = ηµν + hµν .
After expansion in powers of h, the Einstein-Hilbert action becomes:

/
S =

1

16πG

=
d4 x

√
−gR

8888
gµν→ηµν+hµν

→ 1

16πG

=
d4 x(∂h∂h+ h∂h∂h+ h2∂h∂h+ . . . )

(181)
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The indices on h has been dropped for brevity. The terms ∂h∂h are similar
in role to scalar field theory ∂φ∂φ, and the higher order terms are interaction
terms. Since the higher order terms cannot be normalized, and one typically
drops the higher order terms from the theory yielding at best an approximation
of the full theory of quantum gravity to the first order approximation.

Comparatively in our theory, the Einstein field equations are automatically
entailed by the theory as the equation of motion of the wave-function. They do
not have to be imported from general relativity, nor to they have to be made
linear to fit in.

Before we tackle the general linear case, let us first review the interpretation
of David Hestenes for the spinor case and in flat space-time. For this inter-
pretation, we pose X → 0,V → 0 and use the setting of flat spacetime. The
wave-function would be parametrized as follows:

ψ(x0, x1, x2, x3) = ρ(x0, x1, x2, x3)
1/4 exp

%
F(x0, x1, x2, x3) +B(x0, x1, x2, x3)

&

(182)

In this case the wave-function assigns a rotor R = exp(F), a probability
density ρ and a phase exp(B) to each point of R4. R as a rotor accounts for

a Lorentz rotation at each point: eµ = Rγu ;R. Thus, it assigns at each points
on the manifold an instruction to rotate in addition to giving it a statistical
weight and a phase. As argued by David Hestenes is his seminal paper[17], this
description is informationally complete, and equivalent, to other interpretations
of quantum physics; and is framed in terms of a relativistic kinematic theory of
fermions, such as that of the electron.

How does the general linear case compare? In this case, our wave-function
assigns an element of the GL+(4,R) group to each point on the manifold. The
wave-function, using the multi-vector notation, in this case would be parametrized
as follows:

ψ(x0, x1, x2, x3) =

ρ(x0, x1, x2, x3)
1/4 exp

%
X(x0, x1, x2, x3) + F(x0, x1, x2, x3) +V(x0, x1, x2, x3) +B(x0, x1, x2, x3)

&

(183)

where (x0, x1, x2, x3) ∈ M4.
In this case the wave-function dynamics are given by the complete Einstein

field equations, and the wave-function assigns an instruction to transform the
frame bundle at each point via a general linear transformation, and gives it a
statistical weight (instead of merely an instruction to rotate the comoving frame
of reference as in the case of electron kinematics above). Finally, the general
linear wave-function can be extended to the Fock space via simple tensoring
and direct sums, and thus the interpretation is able to account for multiple
general linear frame bundles transformations at each point on M4, as well as
superpositions thereof — while still easily connecting to a normalized probability
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measure via the application of the determinant as a generalization of the Born
rule. The quantum theory works with general relativity as-is, without the need
to linearize it or modify it in any way, or even importing it from elsewhere (as it
is entailed from the theory directly), and gives a real valued-probability in 4D
for all superpositions or combinations of gravitational fields. In our framework
not only is gravity and quantum physics compatible; they are the same.

Testable predictions regarding general linear interference patterns are pro-
posed in the Annex.

8.5 The General Linear Probability Amplitude in Other
Dimensions

Let us investigate the application of this system to dimensions other than 4. In
this section, we simply list various observations and do not reach any conclu-
sions.

8.5.1 Zero-dimension case

0. In 0D, the ”geometric algebra” is: ψ = expA, where A is a scalar. In our
system, this is equivalent to classical probabilities.

Obviously, there is no geometry in a 0D system.

8.5.2 Odd-dimension cases

1. In 1D, the geometric algebra is: ψ = expA + B, where A is a scalar
and B = e0B = IB ∼= iB is a pseudo-scalar. In 1D, the multi-vector
is a 1 × 1 matrix. The probability measure is given as the determinant
det

%
a+ ib

&
= a + ib. This is not a real number, so naturally we flag the

1D case.

3. In 3D, the geometric algebra is ψ = expA + X + V + B, where A is a
scalar, X is a vector, V is a pseudo-vector and B is a pseudo-scalar. Here
the multi-vector is a representation of the complex 2× 2 matrices. Taking
the determinant produces a complex value and not a real, so naturally we
flag 3D for the same reason we flagged 1D.

2n+1 In (2n+1)D, the same here happens as the 1D and 3D cases. We flag all
odd dimensions for the same reason: the determinant produces a complex
value instead of a real.

For all odd-dimension cases, the probability in our system maps to a complex
value instead of a real. We are not necessarily claiming that these are not
relevant for physics, but if they are then one needs an explanation to account
for complex probabilities (two probably measures required to describe the whole
space... ?)
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8.5.3 Even-dimension cases

2. In 2D, the geometric algebra is ψ = expA+X +B, where A is a scalar,
X is a vector and B is a pseudo-scalar. The probability normalizes to a
real value detψ = ψ‡ψ. As we did in the 4D case, let us now use spinors
(X → 0). We get:

ψ‡x̂ψ = eAe−Bx̂eAeB = e2AeBx̂e−B (184)

It supports a particle kinematics as we get one rotor: eµ = eBx̂µe
−B. The

2D theory also supports a gravity theory as it invariably admits the general
linear group. In 2D, since the determinant is a polynomial of degree 2
of ψ then the QFT and the quantum gravity are the same as they are
entailed from the same probability rule. This equivalence between QFT
and quantum gravity is a feature unique to 2D.

4. In 4D, we have recovered in the previous section the kinematic relativistic
theory of the electron that we are familiar with (or at least an interpre-
tation –David Hestenes’ interpretation– equivalent to it). But unlike the
2D case, the QFT is a sub-construction of the quantum gravity theory.
Specifically, the familiar QFT comes out with these replacements:

φ = ρ
1
2 e−ib ;Rγ0 (185)

φ = ρ
1
2 eibR (186)

Field theories over φ and φ do not capture the full invariance group of the
determinant. Trying to make quantum gravity fit on a φ and φ frame, that
is to say make quantum gravity a QFT, in 4D is bound to fail since the
φ and φ frame is a subconstruction of quantum gravity. Quantum gravity
requires the 4 degree polynomial ⌊ψ‡ψ⌋3,4ψ‡ψ to be defined in 4D.

6. In 6D, the wave-function is:

ψ = expA+X+ F+T+Q+V +B (187)

where A is a scalar, X is a vector, F is a bivector, T is a trivector, Q
is a quadrivector, V is a pseudo-vector and finally B is a pseudo-scalar.
Taking the even-sub-algebra, the spinor is:

ψ = expA+ F+Q+B (188)

The wave-function will produce a probability measure (after simplifica-
tions), and the transformation of the comoving frame would be as follows:

e6Ae−Fe−Qe−Bxµe
FeQeB (189)
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Here we have more than just the rotors eF as we also have the ”spin-
rotors” eQ. A typical QFT is extended to more dimensions than 4 by
adding the rotations instructions over the extra dimensions. However, in
6D the pure geometric interpretation in terms of rotations is not complete,
and the expected QFT construction requires the extra spin-rotation terms
eQ.

2n In even dimensions (2n > 6) the same happens as the 6D case, but with
even more extra terms for the spinors.

The constraints of our probability measure are such that the rotors required
to produce a pure kinematical and geometric interpretation of the wave-function
only show up by themselves in 2D and 4D, and this seems to suggest that
a geometric interpretation purely in terms of a wave-function that assigns an
instruction to rotate at each point in space-time, is only appropriate for these
dimensions. In 6D or above, the formulation still admits structures that feel
similar enough to a QFT; but such formulation contains additional terms that
are not purely Lorentz rotation, thus making any geometric interpretation above
4D more challenging.

Even in 4D the geometric interpretation still contains the small increased
challenge of a spin around the pseudo-scalar I with parameter B, whereas in
the 2D version it is purely a rotor. Only the 2D version is therefore purely
geometric and without spin.

9 Discussion

In 1543, Copernicus published De revolutionibus orbium coelestium in which
he proposed the heliocentric model as a replacement for Ptolemy’s geocentric
model. The geocentric model required a plurality of ”circles within circles” to be
accurate, and was significantly more complicated than the heliocentric model.
Copernicus’ publication was mostly ignored by the Church until 1616 when it
was added to the ”Index”; a list of banned publications. Yet, interestingly
and despite the ban, the Church did not object to the use of the theory by
others provided it was presented as merely a mathematical device to simplify
the calculations of planetary motions.

Here, we have presented our framework in four steps; each one leading into
the next:

1. A Formal System of Knowledge

2. A Formal System of Science (used to map out knowledge)

3. A Formal Theory of the Observer (used to practice science)

4. A Formal Model of Physics (used to model what the observer can or cannot
do as it practices science).
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This breakdown is our attempt to present our theory as a typical physical
theory of some physical object; in this case the observer. This breakdown is
the result of trial and errors, asking for feedback and doing revisions to the
presentation of the theory; gauging what people are receptive to and what they
are not, to produce this explanation that we hope to be palatable to the majority.

However, although palatable, this breakdown does not provide the real rea-
son this framework has been created, and neither does it address the main
novelty. The peculiarity of our system is to be constructed as an introspective
model of the observer. Although we presented our system abstractly as a model
of the observer, it is better qualified as a model of ”I” or ”you” due to said intro-
spective formulation. And, in this domain, having retained full mathematical
rigour, comprehensiveness and relevance for physics, is quite notable. In fact,
axiom 1 is as close as we could get to a mathematical definition of the observer
as ”I [do], therefore I am” (therefore grabbing the safest possible philosophical
starting point), while still retaining a minimal degree of generality and preci-
sion sufficient to entail fundamental physics. As we will now argue, it is in
this context that a mathematical device that cures reality of its interpretative
difficulties and paradoxes, is obtained.

9.1 Modelling The Self-Reflective Observer

Quite notably, the observer that we wish to model is also the one that creates
the model.

This self-reflectivity effect induces significant constraints on the type of mod-
els that are satisfactory for a complete description of the observer. This effect
is in fact the reason why it is insufficient to merely pick an axiomatic basis to
model ourselves. Indeed, as we have the freedom to investigate any section of
mathematical space, we can step outside any axiomatic basis by merely enu-
merating a section not covered by it. To successfully model ourselves, we must
construct a model that we cannot step out of.

For instance, assume that the ultimate theory of everything, once and if
discovered, will be formulated as a formal axiomatic system with either finitely
many axioms, or perhaps via one or more axiom schema. Let us call this formal
axiomatic system the ToE. This ToE would have a domain, Dom(ToE), that
comprises the set of all sentences provable from it. Now, unless the ToE is able
to prove every sentences (e.g. explosive inconsistency), then there will exist
sentences that it cannot prove. Furthermore, as I presumably am a product of
this ToE (i.e. I am an element of nature), then it follows that I should not be
able to falsify it via my actions. However, I can! In fact, I can prove some (and
perhaps all) of those ”missing” sentences by picking an appropriate axiomatic
basis (changing the context), or by constructing its Gödel sentence, G(ToE),
and proving it within the extension ToE ∧ Con(ToE) ⊢ G(ToE). Then, as per
the fundamental theorem of science, as I have proved a sentence that cannot
be proven from ToE, while demanding that I am a product of this ToE, I have
hence falsified the ToE as the complete model of reality (i.e. I would be outside
of it). Since I can apply this argument to any formal axiomatic systems, then it
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follows that any ToE, if constructed as a formal axiomatic system, is falsifiable
by my actions. Consequently, no formal axiomatic system can completely model
my actions, and to do so we must look at something else.

Does that mean we have to abandon mathematics? No! Consider instead
that I am using the incremental contribution of mathematics we have intro-
duced. In such a formulation, anything I think or do simply becomes an ele-
ment of an incremental contribution, and is thus absorbed into the framework
automatically. The sentence ToE ∧ Con(ToE) ⊢ G(ToE) simply become a word
of the lexicon, and the framework has resisted falsification by my actions.

”Behind it all is surely an idea so simple, [...], that when we
grasp it [...] we will all say to each other, how could it have been
otherwise?”

Wheeler, J. A., 1986, p. 304

That our mathematical system absorbs any possible action is the primary
reason why it sustains an equivalence with what we understand as reality, and
why in turn the laws of physics are self-reflectively entailed as the rules of
what ”I” or ”you” can or cannot do from these actions. Our formulation is
designed to entrap the ”mind” in such a manner that, even under the benefit
of Turing completeness and support for ”freest” or ”least encumbered” action,
it is powerless to escape the construction; thus guaranteeing itself to be the
complete model of reality.

Based on our results, we suggest that the primary aim of physics is not to
explain, say, how the electron or the planets behave, as these are incidental to
its main objective — that is, physics is not a theory extrinsic to the observer.
Rather, physics is the model that describes my experience as an observer in
nature, and the mathematics must be completely consistent and coherent with
this representation. This experience admits a formal definition in terms of the
production or receipt of a message of incremental contributions taken from a
probability space over all experiments in nature, and we understand it as a
model that maximizes experimenter freedom in nature. Then, as the laws of
physics are derived as the result of maximizing experimenter freedom in nature,
I thus perceive the laws of physics as inviolable because they represent the limits
of my freedom of action in nature.

Specifically, the fundamental formulation of physics is given as follows:

1. (Reformulation) Mathematics, re-formulated as an incremental contribu-
tion of knowledge, is automatically an epistemological model of the prac-
tice of science. It contains no informal physical or metaphysical language
and no axioms (yet).

2. (Axiom) A recursive enumeration of knowledge is a message (i.e. Claude
Shannon’s theory of information) that describe the reality I see as the
result of my observation or participation in it. The production or receipt
of said message defines my experience of reality.
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3. (Optimization) Maximizing the entropy of this message entails the funda-
mental physics as the maximally permissive model of said ”experience”.
The measure and information which fixes the pick of the message from
nature acquires automatically the probabilistic structure of the laws of
physics (i.e. a wave-function, the Born rule, and an enlargement thereof)
and the geometry is entailed simply as a consequence of the scope of this
new larger Born rule.

Specifically (1) is an ”introspective” and participatory formulation of math-
ematics (i.e. it centres around the production of an incremental contribution),
(2) is the assumption of experimenter freedom (as the model of said participa-
tion) and (3) is the maximally permissive version of said participatory model.
The observer is thus an introspectively formulated model of experimenter free-
dom in nature, and the laws of physics constitute its maximally permissive
representation.

10 Conclusion

We believe the proposed definition of the observer as a probability space over
all experiments in nature to be a more powerful formulation of fundamental
physics as it is automatically entailed from a mere reformulation of mathemat-
ics sufficient to make it coherent and complete with respect to the experience of
the observer in nature. It is a self-evident, self-sufficient, and ”philosophically
safest” construction that straightforwardly organizes itself into a model of fun-
damental physics as the ”least encumbering” model of observer participation.
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A Notation

Sets, unless a prior convention assigns it another symbol, will be written us-
ing the blackboard bold typography (ex: L,W,Q, etc.). Matrices will be in
bold upper case (ex: A,B), whereas tuples, vectors and multi-vectors will be
in bold lower case (ex: u,v,g) and most other constructions (ex.: scalars,
functions) will have plain typography (ex. a,A). The identity matrix is I,
the unit pseudo-scalar (of geometric algebra) is I and the imaginary number
is i. The Dirac gamma matrices are γ0, γ1, γ2, γ3 and the Pauli matrices are
σx,σy,σz. The basis elements of an arbitrary curvilinear geometric basis will
be denoted e0, e1, e2, . . . , en (such that eν · eµ = gµν) and if they are orthonor-
mal as x̂0, x̂1, x̂2, . . . , x̂n (such that x̂µ · x̂ν = ηµν). The asterisk z∗ denotes
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the complex conjugate of z, and the dagger A† denotes the conjugate trans-
pose of A. A geometric algebra of m dimensions over a field F is noted as
G(m,F). The grades of a multi-vector will be denoted as 〈v〉k. Specifically,
〈v〉0 is a scalar, 〈v〉1 is a vector, 〈v〉2 is a bi-vector, 〈v〉n−1 is a pseudo-vector
and 〈v〉n is a pseudo-scalar. Furthermore, a scalar and a vector 〈v〉0 + 〈v〉1
is a para-vector, and a combination of even grades (〈v〉0 + 〈v〉2 + 〈v〉4 + . . . )
or odd grades (〈v〉1 + 〈v〉3 + . . . ) are even-multi-vectors or odd-multi-vectors,
respectively. The commutator is defined as [A,B] := AB −BA and the anti-
commutator as {A,B} := AB +BA. We use the symbol ∼= to relate two sets
that are related by a group isomorphism. We use the symbol ≃ to relate two
expressions that are equal if defined, or both undefined otherwise. We denote
the Hadamard product, or element-wise multiplication, of two matrices using
⊙, and is written for instance as M ⊙ P, and for a multivector as u ⊙ v; for
instance: (a0 + x0x̂+ y0ŷ+ b0x̂∧ ŷ)⊙ (a1 + x1x̂+ y1ŷ+ b01x̂∧ ŷ) would equal
a0a1 + x0x1x̂+ y0y1ŷ + b0b1x̂ ∧ ŷ.

B Lagrange equation

The Lagrangian equation to maximize is:

L(ρ,α, τ) = −kB
'

q∈Q
ρ(q) ln ρ(q) + α

)

*1−
'

q∈Q
ρ(q)

+

,+ τ tr

)

*M−
'

q∈Q
ρ(q)M(q)

+

,

(190)

where α and τ are the Lagrange multipliers. We note the usage of the
trace operator for the geometric constraint such that a scalar-valued equation is
maximized. Maximizing this equation for ρ by posing ∂L

∂ρ(p) = 0, where p ∈ Q,

we obtain:

∂L
∂ρ(p) = −kB ln ρ(p)− kB − α− τ trM(p) (191)

0 = kB ln ρ(p) + kB + α+ τ trM(p) (192)

=⇒ ln ρ(p) =
1

kB

%
−kB − α− τ trM(p)

&
(193)

=⇒ ρ(p) = exp

/
−kB − α

kB

0
exp

/
− τ

kB
trM(p)

0
(194)

=
1

Z
det exp

/
− τ

kB
M(p)

0
(195)

where Z is obtained as follows:
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1 =
'

q∈Q
exp

/
−kB − α

kB

0
exp

/
− τ

kB
trM(q)

0
(196)

=⇒
-
exp

/
−kB − α

kB

0.−1

=
'

q∈Q
exp

/
− τ

kB
trM(q)

0
(197)

Z :=
'

q∈Q
det exp

/
− τ

kB
M(q)

0
(198)

We note that the Trace in the exponential drops down to a determinant, via
the relation det expA ≡ exp trA.

B.1 Multiple constraints

Consider a set of constraints:

M1 =
'

q∈Q
ρ(q)M1(q) (199)

...

Mn =
'

q∈Q
ρ(q)Mn(q) (200)

Then the Lagrange equation becomes:

L = −kB
'

q∈Q
ρ(q) ln ρ(q) + α

)

*1−
'

q∈Q
ρ(q)

+

,+ τ1 tr

)

*M1 −
'

q∈Q
ρ(q)M1(q)

+

,+ . . .

+τn tr

)

*Mn −
'

q∈Q
ρ(q)Mn(q)

+

,

(201)

and the measure references all n constraints:

ρ(q) =
1

Z
det exp

/
− τ1
kB

M1(q)− · · ·− τn
kB

Mn(q)

0
(202)

B.2 Multiple constraints - General Case

In the general case of a multi-constraint system, each entry of the matrix cor-
responds to a constraint:
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M00

-
1 ... 0
...
. . .

...
0 ... 0

.
=

'

q∈Q
ρ(q)M00(q)

-
1 ... 0
...
. . .

...
0 ... 0

.
(203)

...

M01

-
0 1 ... 0
...
...
. . .

...
0 0 ... 0

.
=

'

q∈Q
ρ(q)M01(q)

-
0 1 ... 0
...
...
. . .

...
0 0 ... 0

.
(204)

...

Mnn

-
0 ... 0
...
. . .

...
0 ... 1

.
=

'

q∈Q
ρ(q)Mnn(q)

-
0 ... 0
...
. . .

...
0 ... 1

.
(205)

For a n× n matrix, there are n2 constraints.
The probability measure which maximizes the entropy is as follows:

ρ(q) =
1

Z
det exp

/
− 1

kB
τ ⊙M(q)

0
(206)

where τ is a matrix of Lagrange multipliers, and ⊙, the element-wise multi-
plication, assigns the corresponding Lagrange multiplier to each constraint.

C Formal Proof (Example)

The following program[9] is a formal proof of the commutativity of addition for
natural numbers written in COQ:

plus_comm =

fun n m : nat =>

nat_ind (fun n0 : nat => n0 + m = m + n0)

(plus_n_0 m)

(fun (y : nat) (H : y + m = m + y) =>

eq_ind (S (m + y))

(fun n0 : nat => S (y + m) = n0)

(f_equal S H)

(m + S y)

(plus_n_Sm m y)) n

: forall n m : nat, n + m = m + n

D A Step Towards Testable Predictions (Space-
time interference)

Certain transformations of the wave-function in quantum gravity, under the
general linear group or some of its subgroups, would produce richer interference
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patterns than what is possible merely with complex interference in standard
QFT. This offer a difference in predictions between ordinary QFT and our
system, that can be used to test our system. The possibility of interference
patterns resulting from geometric algebra representation of the wave-function
has been proposed before; specifically, I note the work of B. I. Lev.[18] which
suggests (theoretically) the possibility of an interference pattern associated with
the David Hestenes form of the relativistic wave-function and for the subset of
rotors.

Here we derive a number of these possible interference patterns.
In the case of the general linear group, the interference pattern is much

more complicated than the simple cosine of the standard Born rule, but that
is to be expected as it comprises the full general linear group and not just the
unitary group. It accounts for the group of all geometric transformations which
preserves the probability distribution ρ for a two-state general linear system.

General linear interference can be understood as a generalization of complex
interference, which is recovered under a ”shallow” phase rotation in 4D and
under just a plain normal phase rotation in 2D. Furthermore, when all elements
of the odd-sub-algebra are eliminated (by posing X → 0, V → 0), then the
wave-function reduces to the geometric algebra form of the relativistic wave-
function identified by David Hestenes, in terms of a spinor field.

Such reductions entails a series of interference patterns of decreasing com-
plexity, and as such they provide a method to experimentally identify which
group of geometric transformations physical reality allows in the most general
case of quantum gravity, using interference experiments as the identification
tool. Identification of the full general linear interference pattern (with all the el-
ements A,X,F,V,B) in a lab experiment would suggest a general linear gauge,
whereas identification of a reduced interference pattern (produced by A,F,B)
and subsequently showing a failure to observe the full general linear interfer-
ence (X → 0,V → 0) would suggest the Lorentz gauge instead of full quantum
gravity.

Let us start by introducing a notation for a dot product, then we will list
the various possible interference patterns.

D.1 Geometric Algebra Dot Product

Let us introduce a notation. We will define a bilinear form using the dot product
notation, as follows:

· : G(2n,R)×G(2n,R) −→ R
u · v 0−→ 1

2 (det(u+ v)− detu− detv)
(207)

For example,
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u = A1 +X1e1 + Y1e2 +B1e12 (208)

v = A2 +X2e1 + Y2e2 +B2e12 (209)

=⇒ u · v = A1A2 +B1B2 −X1X2 − Y1Y2 (210)

Iff detu > 0 and detv > 0 then u · v is always positive, and therefore
qualifies as a positive inner product (over the positive determinant group), but
no greater than either detu or detv, whichever is larger. This definition of the
dot product extends to multi-vectors of 4 dimensions.

2D: In 2D the dot product is equivalent to this form:

1

2
(det(u+ v)− detu− detv) =

1

2

!
(u+ v)‡(u+ v)− u‡u− v‡v

"
(211)

= u‡u+ u‡v + v‡u+ v‡v − u‡u− v‡v (212)

= u‡v + v‡u (213)

4D: In 4D it is substantially more verbose:

1

2
(det(u+ v)− detu− detv) (214)

=
1

2

!
⌊(u+ v)‡(u+ v)⌋3,4(u+ v)‡(u+ v)− ⌊u‡u⌋3,4u‡u− ⌊v‡v⌋3,4v‡v

"

(215)

=
1

2

!
⌊u‡u+ u‡v + v‡u+ v‡v⌋3,4(u‡u+ u‡v + v‡u+ v‡v)− . . .

"
(216)

= ⌊u‡u⌋3,4u‡u+ ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u+ ⌊v‡v⌋3,4v‡v − . . . (217)

= ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u (218)

D.2 Geometric Interference (General Form)

A multi-vector can be written as u = a + s, where a is a scalar and s is the
multi-vectorial part. In general, the exponential expu equals exp a exp s because
a commutes with s.
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One can thus write a general two-state system as follows:

ψ = ψ1 + ψ2 = eA1eS1 + eA2eS2 (219)

(220)

The general interference pattern will be of the following form:

detψ1 + ψ2 = detψ1 + detψ2 + ψ1 · ψ2 (221)

= enA1 + enA2 + ψ1 · ψ2 (222)

where detψ1 + detψ2 is a sum of probabilities and where ψ1 · ψ2 is the
interference pattern, and where n is the number of dimensions of the geometric
algebra.

D.3 Complex Interference (Recall)

Consider a two-state wave-function:

ψ = ψ1 + ψ2 = eA1eB1 + eA2eB2 (223)

The interference pattern familiar to quantum mechanics is the result of the
complex norm:

ψ†ψ = ψ†
1ψ1 + ψ†

2ψ2 + ψ†
1ψ2 + ψ†

2ψ1 (224)

= eA1e−B1eA1eB1 + eA2e−B2eA2eB2 + eA1e−B1eA2eB2 + eA2e−B2eA1eB1

(225)

= e2A1 + e2A2 + eA1+A2(e−B1+B2 + e−(−B1+B2)) (226)

= e2A1 + e2A2

1 23 4
sum

+2eA1+A2 cos(B1 −B2)1 23 4
interference

(227)

D.4 Geometric Interference in 2D

Consider a two-state wave-function:

ψ = ψ1 + ψ2 = eA1eX1+B1 + eA2eX2+B2 (228)

To lighten the notation we will write it as follows:

ψ = ψ1 + ψ2 = eA1eS1 + eA2eS2 (229)

where

S = X+B (230)
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The interference pattern for a full general linear transformation on a two-
state wave-function in 2D is:

ψ†ψ = ψ†
1ψ1 + ψ†

2ψ2 + ψ†
1ψ2 + ψ†

2ψ1 (231)

= eA1(eS1)‡eA1eS1 + eA2(eS2)‡eA2eS2 + eA1(eS1)‡eA2eS2 + eA2(eS2)‡eA1eS1

(232)

= e2A1 + e2A2 + eA1+A2((eS1)‡eS2 + (eS2)‡eS1) (233)

= e2A1 + e2A2

1 23 4
sum

+ eA1+A2(e−X1−B1eX2+B2 + e−X2−B2eX1+B1)1 23 4
interference

(234)

D.5 Geometric Interference in 4D

Consider a two-state wave-function:

ψ = ψ1 + ψ2 = eA1eX1+F1+V1+B1 + eA2eX2+F2+V2+B2 (235)

To lighten the notation we will write it as follows:

ψ = ψ1 + ψ2 = eA1eS1 + eA2eS2 (236)

where

S = X+ F+V +B (237)

The geometric interference patterns for a full general linear transformation
in 4D is given by the product:

⌊ψ‡ψ⌋3,4ψ‡ψ = ⌊ψ‡
1ψ1⌋3,4ψ‡

1ψ1 + ⌊ψ‡
2ψ2⌋3,4ψ‡

2ψ2 + ψ1 · ψ2 (238)

= e4A1 + e4A2 +
!
eA1eS1

"
·
!
eA2eS2

"
(239)

In many cases of interest, the pattern simplifies. Let us see some of these
cases now.

D.6 Geometric Interference in 4D (Shallow Phase Rota-
tion)

If we consider a sub-algebra in 4D comprised of even-multi-vector products ψ‡ψ,
then a two-state system is given as:

ψ = ψ1 + ψ2 (240)
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where

ψ1 = (eA1eF1eB1)‡(eA1eF1eB1) = e2A1e2B1 (241)

ψ2 = (eA2eF2eB2)‡(eA2eF2eB2) = e2A2e2B2 (242)

Thus

ψ = e2A1e2B1 + e2A2e2B2 (243)

The quadri-linear map becomes a bilinear map:

ψ†ψ = (e2A1e−2B1 + e2A2e−2B2)(e2A1e2B1 + e2A2e2B2) (244)

= e2A1e−2B1e2A1e2B1 + e2A1e−2B1e2A2e2B2 + e2A2e−2B2e2A1e2B1 + e2A2e−2B2e2A2e2B2

(245)

= e4A1 + e4A2

1 23 4
sum

+2e2A1+2A2 cos(2B1 − 2B2)1 23 4
complex interference

(246)

D.7 Geometric Interference in 4D (Deep Phase Rotation)

A phase rotation on the base algebra (rather than the sub-algebra) produces a
difference interference pattern. Consider a two-state wave-function:

ψ = ψ1 + ψ2 = eA1eB1 + eA2eB2 (247)

The sub-product part is:

ψ‡ψ = (eA1eB1 + eA2eB2)(eA1eB1 + eA2eB2) (248)

= eA1eB1eA1eB1 + eA1eB1eA2eB2 + eA2eB2eA1eB1 + eA2eB2eA2eB2 (249)

= e2A1e2B1 + e2A2e2B2 + 2eA1+A2eB1+B2 (250)

The final product is:
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⌊ψ‡ψ⌋3,4ψ‡ψ = (e2A1e−2B1 + e2A2e−2B2 + 2eA1+A2e−B1−B2)

× (e2A1e2B1 + e2A2e2B2 + 2eA1+A2eB1+B2) (251)

= e2A1e−2B1e2A1e2B1 + e2A1e−2B1e2A2e2B2 + e2A1e−2B12eA1+A2eB1+B2

+ e2A2e−2B2e2A1e2B1 + e2A2e−2B2e2A2e2B2 + e2A2e−2B22eA1+A2eB1+B2

+ 2eA1+A2e−B1−B2e2A1e2B1

+ 2eA1+A2e−B1−B2e2A2e2B2

+ 2eA1+A2e−B1−B22eA1+A2eB1+B2 (252)

= e4A1 + e4A2 + 2e2A1+2A2 cos(2B1 − 2B2)

+ e2A1e−2B12eA1+A2eB1+B2

+ e2A2e−2B22eA1+A2eB1+B2

+ 2eA1+A2e−B1−B2e2A1e2B1

+ 2eA1+A2e−B1−B2e2A2e2B2

+ 4e2A1+2A2 (253)

= e4A1 + e4A2

1 23 4
sum

+2e2A1+2A2 cos(2B1 − 2B2)1 23 4
complex interference

+2eA1+A2(e2A1 + e2A2) cos(B1 −B2) + 4e2A1+2A2

1 23 4
deep phase interference

(254)

D.8 Geometric Interference in 4D (Deep Spinor Rotation)

Consider a two-state wave-function (we note that [F,B] = 0):

ψ = ψ1 + ψ2 = eA1eF1eB1 + eA2eF2eB2 (255)

The geometric interference pattern for a full general linear transformation
in 4D is given by the product:

⌊ψ‡ψ⌋3,4ψ‡ψ (256)

Let us start with the sub-product:

ψ‡ψ = (eA1e−F1eB1 + eA2e−F2eB2)(eA1eF1eB1 + eA2eF2eB2) (257)

= eA1e−F1eB1eA1eF1eB1 + eA1e−F1eB1eA2eF2eB2

+ eA2e−F2eB2eA1eF1eB1 + eA2e−F2eB2eA2eF2eB2 (258)

= e2A1e2B1 + e2A2e2B2 + eA1+A2eB1+B2(e−F1eF2 + e−F2eF1) (259)

= e2A1e2B1 + e2A2e2B2 + eA1+A2eB1+B2(R̃1R2 + R̃2R1) (260)
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where R = eF, and where R̃ = e−F.
The full product is:

⌊ψ‡ψ⌋3,4ψ‡ψ =
!
e2A1e−2B1 + e2A2e−2B2 + eA1+A2e−B1−B2(R̃1R2 + R̃2R1)

"

×
!
e2A1e2B1 + e2A2e2B2 + eA1+A2eB1+B2(R̃1R2 + R̃2R1)

"

(261)

= e2A1e−2B1e2A1e2B1 + e2A1e−2B1e2A2e2B2 + e2A1e−2B1eA1+A2eB1+B2(R̃1R2 + R̃2R1)

+ e2A2e−2B2e2A1e2B1 + e2A2e−2B2e2A2e2B2 + e2A2e−2B2eA1+A2eB1+B2(R̃1R2 + R̃2R1)

+ eA1+A2e−B1−B2(R̃1R2 + R̃2R1)e
2A1e2B1

+ eA1+A2e−B1−B2(R̃1R2 + R̃2R1)e
2A2e2B2

+ eA1+A2e−B1−B2(R̃1R2 + R̃2R1)e
A1+A2eB1+B2(R̃1R2 + R̃2R1)

(262)

= e4A1 + e4A2 + 2e2A1+2A2 cos(2B1 − 2B2) (263)

+ eA1+A2(R̃1R2 + R̃2R1)( (264)

e2A1(e−B1+B2 + eB1−B2) (265)

+ e2A2(eB1−B2 + e−B1+B2)) (266)

+ e2A1+2A2(R̃1R2 + R̃2R1)
2 (267)

= e4A1 + e4A2

1 23 4
sum

+2e2A1+2A2 cos(2B1 − 2B2)1 23 4
complex interference

+ 2eA1+A2(e2A1 + e2A2)(R̃1R2 + R̃2R1)(cos(B1 −B2)) + e2A1+2A2(R̃1R2 + R̃2R1)
2

1 23 4
deep spinor interference

(268)
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