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Abstract

In modern theoretical physics, the laws of physics are directly repre-
sented with axioms (e.g., the Dirac—Von Neumann axioms, the Wightman
axioms, Newton’s laws of motion). Although in logic axioms are held to
be true merely by definition, in physics the laws are entailed by labo-
ratory measurements. The existence of this entailment suggests a more
suitable logical structure than axioms to represent the laws of physics.
This paper introduces this logical structure and then demonstrates its
supremacy. Specifically, an optimization problem on the entropy of all
geometric measurements is introduced. Its solution is an optimized ver-
sion of the Dirac-Von Neumann axioms that automatically restricts its
observables to no more than the standard model group symmetry SU(3)
and SU(2) x U(1) while simultaneously extending its probability mea-
sure to the theory of general relativity (i.e., it is a “gravitized” standard
model). Remarkably, this result only holds in 4 dimensions.

1 Introduction

In modern theoretical physics, physical laws are expressed as axioms (e.g., the
Dirac—Von Neumann axioms, the Wightman axioms, Newton’s laws of motion).
The theorems provable by these axioms are the predictions of the theory. If the
predictions are invalidated by laboratory measurements, the postulated laws
are deemed falsified and new (and possibly more appropriate) laws are instead
postulated.

In this scenario, it is the theorems (predictions) of the theory that are used
(along with laboratory experimental data) to invalidate its axioms (laws).

In logic, however, axioms define what is true in a theory, and its theorems
cannot, of course, invalidate the axioms they depend on.

Thus, there is a dissimilarity between the use of axioms in physics versus
their use in logic.



Since the laws of physics require a more complex interplay between axioms,
theorems and their invalidations than merely the unidirectional entailment be-
tween axioms and theorems found in logic, the question of the applicability of
axioms to express the laws of physics arise.

We believe that axioms are in fact inappropriate as a logical tool to define
the laws of physics. We intend to show that correcting the axiomatic entail-
ment between the laws and the measurements yields a significantly superior
and optimized formulation of fundamental physics.

In our proposal, laboratory measurements entail the mathematical expres-
sion of those measurements and it is this expression, not the laws of physics,
that will constitute the axioms of our system. The laws of physics are defined
as the solution to a carefully crafted optimization problem on the entropy of all
measurements.

The solution to this optimization problem is a novel and optimized formula-
tion of fundamental physics. It yields the SU(3) and the SU(2)xU(1) group sym-
metry over the observables of the theory of the general relativity. Remarkably,
no other solutions are possible and this solution only holds in 341 dimensions.
We interpret this tight configuration as suggestive of the power and efficiency
of defining the laws of physics as the solution to a mathematical optimization
problem.

We believe that our optimized formulation is unlikely to have been obtained
by trial and error or by traditional methods, making our optimization problem
a key step in its derivation.

In essence, it is easier, from laboratory measurements, to “guess” the right
mathematical expression for all possible measurements, than it is to “guess” the
right laws of physics from those same measurements. The distance one must
travel in “guessing space” is much shorter in the former case than in the latter,
and this is beneficial.

Secondary results are also presented and follow directly from our solution,
such as the mathematical origin of the Born rule, the proof of the axioms of
quantum physics, the identification of the correct interpretation of quantum
mechanics, and the deprecation of the measurement /collapse problem.

To define the problem in full rigor, we first introduce the key structure
that makes our approach possible: the geometric constraint, then we give its
rationale.

The construction of a geometric constraint exploits the connection between
geometry and the theory of probability via the trace. The trace of a matrix can
be understood as the expected eigenvalue multiplied by the dimension of the
vector space, and the eigenvalues as the ratios of the distortion of the geometric
transformation associated with the matrix|[1].

The geometric constraint is defined as

rM =) p(q) trM(g), (1)

q€Q

where M is an arbitrary n X n matrix, and Q is a statistical ensemble.



Here, tr M denotes the expectation value of the statistically weighted sum
of the matrices M(q) parameterized over the ensemble Q.

Alternatively (and preferably), we may use geometric algebra to define the
constraint as (the notation is explained in section 2)

tru =Y p(q) tru(q), (2)

q€Q

where u is an arbitrary multivector of the real geometric algebra in n dimen-
sions G(n,R). Although the constraints can be expressed by both approaches,
the use of multivectors instead of matrices highlights the geometric character of
the method.

Now, we discuss its rationale.

Constraints are used in statistical mechanics to derive the Gibbs measure
using Lagrange multipliers[2] by maximizing the entropy.

For instance, an energy constraint on the entropy is

E=Y p(q)E(q), 3)

q€Q

which is associated with an energy meter that measures the system’s energy
and produces a series of energy measurements E1, Es, ..., which converge to an
expectation value E.

Another common constraint is that of the volume

V=> pgV(g, (4)

q€Q

which is associated with a volume meter acting on the system and produces a
sequence of measured volumes V7, V5, ..., which also converges to an expectation
value V.

Moreover, the sum over the statistical ensemble must be equal to 1, as shown
below:

1=>"p(q) (5)

q€Q

Using equations (3) and (5), a typical statistical mechanical system is ob-
tained by maximizing the entropy using its corresponding Lagrange equation.
The Lagrange multipliers method is expressed as

L=—kpY pl@hpl@+A|1=) pa)| +B8|E= r@)E@ ], (6

geQ q€Q q€Q



where A and 8 are the Lagrange multipliers.
Therefore, by solving % = 0 for p, we obtain the Gibbs measure as

p(0,8) = % exp(—BE(q), (7)

where

Z(B) =" _exp(—BE(q)). (8)

q€Q

In our method, (3) is replaced with tr M, and a geometric constraint is ob-
tained. Instead of energy or volume meters, we have protractors, boost meters,
dilation meters, and shear meters.

We believe that, by limiting its definition of constraints to scalar expressions,
statistical physics missed the opportunity to capture all possible geometric mea-
surements available in nature.

Our geometric constraint represents the set all geometric measurements we
believe are possible in nature. Specifically, the constraint will support observing
the distortions produced by any geometric transformation of events in nature,
and the resulting probability measure will preserve the expectation value of
these distortions up to a phase or symmetry group.

Many of us are familiar with the expression: ”If all one has is a hammer,
everything looks like a nail”. This idea is essentially geometrized: If all one has
are protractors, boost meters, dilation meters, and shear meters, then every-
thing looks geometrically invariant. For instance, a statistical system measured
exclusively with a protractor will carry, following our entropy maximization
procedure, the rotation symmetry in the probability measure of the events it
measured.

Finally, let us note that we will maximize the Shannon entropy and not
the Boltzmann entropy. In our interpretation, the resulting probability mea-
sure will quantify the information associated with the receipt of a message of
measurements by an observer. Using the Shannon entropy does not change the
form of the mathematical equation for entropy (minus the Boltzmann constant);
only the final interpretation is changed (further details on the interpretation of
quantum mechanics are provided in section 6).

The corresponding Lagrange equation is

L==> pl@hplg)+A (1= plq) | +7[tru—> plg)trulg) |, (9)

q€Q q€Q q€Q

and this equation is now sufficient to solve % = 0 for p to obtain the

solution, which is our main result.



The manuscript is organized as follows. In the Methods section, we introduce
a number of tools using geometric algebra, based on the reported study of
Lundholm et al. [3, 4]. Specifically, we utilize the notion of a determinant
for multivectors as well as the notions of a Clifford conjugate generalizing the
complex conjugate. These tools enable us to express our results geometrically.

In the Results section, we present two solutions of the Lagrange equation.
The first is the recovery of standard nonrelativistic quantum mechanics, when
the matrix is reduced from an arbitrary matrix to a representation of the imag-
inary number. The second is the general case with an arbitrary matrix or
multivector.

We then develop our initial results into a geometric foundation to physics,
both in two-dimensions (2D) and 3+1 dimensions (34+1D), consistent with the
general solution. Remarkably, in 3+1D, we obtain a sophisticated relation for
the transformation invariance, which together with the wavefunction satisfy
the SU(2) x U(1) and SU(3) gauge symmetries. We also obtain a gravitized
quantum theory which incorporates general relativity.

Finally, in the Discussion section, we introduce an interpretation of quantum
mechanics consistent with its newly revealed origin. It is the measure maximiz-
ing the Shannon entropy constrained by geometric measurements, namely the
metrological interpretation. In this interpretation, the measurements and as-
sociated constraint on the entropy are considered more fundamental than the
wavefunction, which is now entirely derivable. The end product is a theory that
deprecates the measurement problem, supersedes it with theory of instrumenta-
tion, and provides a plausible explanation for the origin of quantum mechanics
in nature, tying it entirely to its geometric measurability.

2 Methods

2.1 Notation

e Typography:
Sets are written using the blackboard bold typography (e.g., L, W, and
@), unless a prior convention assigns it another symbol.

Matrices are in bold uppercase (e.g., P and M), tuples, vectors, and
multivectors are in bold lowercase (e.g., u, v, and g), and most other
constructions (e.g., scalars and functions) have plain typography (e.g.,
a, A).

The unit pseudo-scalar (of geometric algebra), imaginary number, and
identity matrix are i, ¢, and I, respectively.
e Sets:
The projection of a tuple p is proj;(p).
As an example, the elements of R? = R; x Ry are denoted as p = (z,y).

The projection operators are proj; (p) = x and proj,(p) = y.



If projected over a set, then the corresponding results are proj; (R?) = Ry
and proj,(R?) = Ry.

The size of a set X is [X].

The symbol = indicates an homomorphism.
e Analysis:
The asterisk z' denotes the complex conjugate of z.

e Matrix:
The Dirac gamma matrices are 7y, 71, V2, and 3.
The Pauli matrices are o, 0y, and 0.
The dagger M denotes the conjugate transpose of M.
The commutator is defined as [M, P] : MP—PM, and the anti-commutator
is defined as {M, P} : MP + PM.

e Geometric algebra:

The elements of an arbitrary curvilinear geometric basis are denoted as
€, €1,€,...,e, (such that e, - e, = g, ), and Xo,%X1,Xa,...,X, (such
that X, - X, = ny,) if they are orthonormal.

A geometric algebra of m + n dimensions over a field F is denoted as
g(}Fm,n).

The grades of a multivector are denoted as (v)y.

Specifically, (v)g is a scalar, (v); is a vector, (v)s is a bivector, (v),_1 is
a pseudo-vector, and (v),, is a pseudo-scalar.

A scalar and a vector such as (v)o + (v); form a para-vector, and a

combination of even grades ((v)o + (V)2 + (v)a + ...) or odd grades
((v)1 + (v)3+...) form even or odd multivectors, respectively.

Let G(R?) be the 2D geometric algebra over the real set.

We can formulate a general multivector of G(R?) as u = a + x + b, where
a is a scalar, x is a vector, and b is a pseudo-scalar.

Let G(R®>!) be the 3+1D geometric algebra over the real set.

Similarly, a general multivector of G(R*1) can be formulated as u = a +
x + f 4+ v + b, where a is a scalar, x is a vector, f is a bivector, v is a
pseudo-vector, and b is a pseudo-scalar.

2.2 Geometric constraints

Definition 1 (Geometric constraints). Let M be an n x n matriz and Q be a
statistical ensemble.
The geometric constraint s



tr M =" p(q) tr M(g), (10)
q€Q

The geometric constraint can also be represented using a multivector u of a
geometric algebra G(R™™)

tria =Y _ p(q)tru(q), (11)

q€Q

The trace trt M or trU denotes the expectation value of the statistically
weighted sum of matrices M(q) or of multivectors u(q) parameterized over the
ensemble Q.

2.3 Geometric representation of matrices
2.3.1 Geometric representation in 2D

Let G(R?) be the 2D geometric algebra over the real set.
We can write a general multivector of G(R?) as

u=a+x+Db, (12)

where a is a scalar, x is a vector, and b is a pseudo-scalar.
Each multivector has a structure-preserving (addition/multiplication) ma-
trix representation.

Definition 2 (2D geometric representation ).

(13)

a+rR+yy+IRAY {a” _b+y]

b+y a-—=

The converse is also true;

each 2 x 2 real matrix is represented as a multivector of G(IR?).

In geometric algebra, the determinant[4] of a multivector u can be defined
as:

Definition 3 (Geometric representation of the determinant 2D).
det : GR?) —R
u— uty, (14)
where u' is

Definition 4 (Clifford conjugate 2D).

ut = (u)p — (u); — (u)s. (15)



For example,

detu=(a—x—b)la+x+Db) (16)
=a? -2 —y? +1° (17)
_ a+x —b4+y
—aa [y (13)

Finally, we define the Clifford transpose.

Definition 5 (2D Clifford transpose). The Clifford transpose is the geometric
analogue to the conjugate transpose, which can be interpreted as a transpose fol-
lowed by an element-by-element application of the complex conjugate. Here, the

Clifford transpose is a transpose followed by an element-by-element application
of the Clifford conjugate.

u w1 ; :
00 --- on uy, ... U,
=l (19)
Umo .- Umn Wmo - -- uﬁm
If applied to a vector, then
1
Vi
= {vf vfn} (20)
Vin
2.3.2 Geometric representation in 341D
Let G(R*!) be the 3+1D geometric algebra over the real set.
We can write a general multivector of G(R3!) as
u=a+x+f+v+b, (21)

where a is a scalar, x is a vector, f is a bivector, v is a pseudo-vector, and
b is a pseudo-scalar.

Similarly, each multivector has a structure-preserving (addition/multiplication)
matrix representation.

The multivectors of G(R31!) are represented as follows:
Definition 6 (4D geometric representation).
a+tyo + 271 +yy2 + 273
+ forvo Ay + foevo A2 + fosvo Avs + fazv2 Avs + fisvi Ays + fieyn Ae

+ vty Ay2 A3 + VYo A2 Ays +vyyo Ayr Az + vv0 Ay A2
+b0yv A1 Av2 A3



a+ xo —ifi2 —iv3 f1z3 —ifoz +v2 —iv1 —ib + 23 + fo3 — tvo

~ | =f13 —ifazs —v2 —ivy a+ xo +ifi2 +ivs z1 +ix2 + fo1 +ifo2
B —ib — x3 + fo3 + ivo —x1 +ix2 + for — ifo2 a—xo — ifi2 +ivs

—x1 —ix2 + for +ifoo  —ib+x3 — foz +ivo  —fi3 —ifes +v2 +int

(22)

In this case, the converse is not true; that is, only a subset of a 4 x 4 complex
matrices can be represented as a multivector of G(R*1); namely those whose
determinant is real-valued.

In 3+1D, we can define the determinant solely using the constructs of geo-
metric algebra[4].

The determinant of u is

Definition 7 (3+1D geometric representation of determinant).
det GR> — R (23)
u— [ufuzuty, (24)
where ut is

Definition 8 (3+1D Clifford conjugate).
ut = (u)o — (w1 — (w2 + (w)s + (u)a, (25)

and where |u]y3 43 is the blade-conjugate of degrees three and four (reversing
the plus sign to a minus sign for blades 3 and 4)

[uf 3,4y = (Wo + (W1 + (W2 — (W)3 — (W)4. (26)

3 Result

3.1 Non-relativistic quantum mechanics

In this subsection, which serves as an introductory example, we recover non-
relativistic quantum mechanics using the Lagrange multiplier method and a
geometric constraint.

As previously mentionned, the Shannon entropy is applied instead of the
Boltzmann entropy to achieve the aforementioned goal.

S==Y plq)np(q) (27)

q€Q

In statistical mechanics, we use ”scalar” constraints on the entropy, such
as energy and volume meters, which are sufficient for recovering the Gibbs

1 — w2 + for —ifo2
—ib — X3 — f03 — Z"Uo
fiz —ifoz —v2 +iv1
a—xo +if12 —ivs



ensemble. However, the application of such scalar constraints is insufficient to
recover quantum mechanics.

To overcome this limitation, a complexr geometric constraint, which is invari-
ant for a complex phase is used. It is defined as

tr [% _Ob] = nlg)tr [b(oq) "5@] (28)

q€Q

a(q) —b(CI)] ~ oo . .
where =~ a(q) +ib(q) is the matrix representation of the com-
[b(q) a(q) (Q) (Q) p

plex numbers.

Similar to the energy or volume meters, geometric instruments produce a
sequence of measurements that converge to an expectation value, although such
measurements exhibit a phase invariance. In our framework, this phase invari-
ance originates from the trace.

The Lagrangian equation, introduced earlier, that maximizes the entropy
subject to the complex geometric constraint is

L==> p@)n(g)+a 1= plg) | +7|tr [% _OB] IOk {b((;) _%(q)

q€Q q€Q q€Q

(29)
This equation is maximized for p by imposing the condition %(Lq) =0, and
the following results are obtained:

%(Eq) =—Inp(g)—1—a—r7tr {b&) _bO(Q)} (30)
0=Inp(q) +1+a+7tr {b((;) _Ii)(q)] (31)
= Inp(¢g) =-1—a—71tr {b((i]) _b()(q)} (32)

= p(q) = exp(—1 — a)exp <—Ttr [b(?]) —l)()(q)}) (33)

- etexp [ —7 0 —blg)
=70) det p< {b(q) 0 ]) , (34)

where Z(7) is obtained as

10

|



1= exp(-1-a) exp(—Ttr[b(Oq ‘JD (35)
o'

q€Q
= (exp(—1-—a) Zexp (—Ttr [ ~blg ) (36)

q€Q
)= Zdet exp <—T [b(?]) 4(’)(‘])}) (37)

q€Q

The exponential of the trace is equal to the determinant of the exponential
according to the relation det exp A = exptr A.
Finally, we obtain

p(T,q) = Z(lT) det exp (—T {b&) _%@D (38)

>~ |exp —i7b(q)|? Born rule (39)

Renaming 7 — ¢/ and b(q) — H/(q) recovers the familiar form of

plq) = %‘exp(—itH (Q)/h)‘2~ (40)

or even a more familiar form of

? | where ¥(q) = exp(—itH(q)/h). (41)

= %W(Q)

With this, we can show that all three Dirac Von-Neumann axioms as well as
the Born rule are satisfied, which reveals a possible origin of quantum mechanics
linked to entropy and geometry.

Indeed, from (41), we can identify the wavefunction as the vector of some
orthogonal space (in this case, a complex Hilbert space), and the partition
function as its inner product, expressed as

= (¥[¥). (42)
After normalization, the physical states become its unit vectors, and

the probability of any particular state is given by

_ 1 i
p(q) = ) (¥(9)"¥(q). (43)

Finally, any self-adjoint matrix, defined as (Ov|¢) = (|O¢), will corre-

spond to a real-valued statistical mechanics observable, if measured in its eigen-
basis, thereby completing the equivalence.

11



3.2 Probability measure of all geometric measurements

Here, we explore the arbitrary geometric constraint in its full generality:

trM =" p(q) tr M(q (44)
q€Q

where M is the arbitrary n x n matrix.

Notably, an arbitrary multivector u of G(R™™) can be used, instead of a
matrix M. In both these cases, the steps of the derivation remain the same.

The Lagrange equation used to maximize the entropy, under this constraint,
is expressed as

Zp )+« 1—2/) + 7 trM—ZP(Q)trM(Q) )

q€Q q€Q q€Q
(45)

where o and 7 are the Lagrange multipliers.
Similarly, we maximize this equation for p using the criterion 5(2([31 y = 0. This
operation results in the following;:

aé =—lnp(qg) —1—a—T1trM(qg) (46)

)
0=Inp(q) +1+a+7trM(q) (47)
= 1np(q) —1—a—TtrM( ) (48)
pla) = ( 1 —a)exp(—7 trM(q)) (49)
(50)

= m det exp(—7M(q))

where Z(7) is obtained as

1= Z exp(—1 — a) exp(—7 tr M(q)) (51)

q€Q

= (exp(—-1-a)) Zexp —7trM(q)) (52)
q€Q

= Z det exp(—7M(q)) (53)
q€Q

The resulting probability measure is

plg,7) = Z(lT) det exp(—TM(q)), (54)

12



where

Z(r) =" detexp(—TM(q)). (55)

q€Q

By defining (¢, 7) := exp(—7M(q)), we can express p(q,7) = det1)(q,T),
where the determinant acts as a ”generalized Born rule,” connecting, in this
case, a general linear amplitude to a real-valued probability.

The sophistication of the general linear amplitude along with the determi-
nant acting as a ”generalized Born rule” will provide a platform for us to support
both fundamental physics.

Let us remark that a more general case exists; where a Lagrange multiplier
is assigned to each independent entry of the matrix M(q). In the case, the result
would be:

Z(7)

where 7 is now a n X n matrix, and where the - operator assigns the first
element of 7 to the first element of M(g), and so on.

plg,7) = det exp(—7 - M(q)), (56)

4 Analysis

In this section, the analysis of the main result as a general linear quantum theory
is presented. For this purpose, we introduce the algebra of geometric observables
applicable to the general linear wavefunction.

We begin by introducing new groups relevant to the derived probability
measurement, then we investigate our result in 2D and 4D.

The 2D definition of the algebra constitutes a special case that is reminiscent
of the definitions of ordinary quantum mechanics, yet includes gravity. The
341D case is significantly more sophisticated than the 2D case and is elucidated
immediately after the 2D case analysis.

4.1 Axiomatic definition of the algebra in 2D

Let V be an m-dimensional vector space over G(R?).
A subset of vectors in V forms an algebra of observables A(V) if the following
holds:

A) Y € A(V), the sesquilinear map

() V xV— G(R?)

(u,v) — utv (57)

is positive-definite for 1), such that (1) >0

13



B)

Vip € A(V). Then, for each element 1)(q) € 1, the function

_ t
p(¥(q),¥) = w@w(q) ¥(q) (58)

is positive-definite: p(¢(q),) >0

We note the following comments and definitions:

From A) and B), it follows that Vi € A(V), the probabilities sum up to
unity:

> ple),p) =1 (59)

Y(g)ey

1) is called a natural (or physical) state.

(1, 1) is called the partition function of 1.

If (1), 1)) = 1, then 1) is called a unit vector.

p(q, ) is called the probability measure (or generalized Born rule) of ¥(q).

The set of all matrices T acting on v as T4 — ', such that the sum of
probabilities remains normalized.

D pW(a), TY) = > pv(e)y) =1 (60)

P(q)EY P(q)€YP

are the natural transformations of .

A matrix O such that Vu € V and Vv € V:

(Ou,v) = (u,0v) (61)
is called an observable.

The expectation value of an observable O is

1
(¥, 9)

(0) = (09, 9) (62)

14



4.2 Geometric self-adjoint operator in 2D

The general case of an observable in 2D is shown in this section. A matrix O is
an observable if it is a self-adjoint operator. It is defined as

(09, 9) = (¢,09) (63)
Ve € V and Vap € V.

Setup: Let O = [000 001] be an observable.
010 O11

o
22

} . Here, the components ¢4, ¢, 11, V5, 000, 001, 010, 011 are multivectors

Let ¢ and % be two two-state vectors of multivectors ¢ = [ ] and ¢ =
|:'¢’1

2
of G(R?).

Derivation: 1. Calculate (O¢, v):

2(0¢, ) = (0g0¢; + 00165) 4, + ¢§(000¢1 + 001¢,)

+ (01001 + 011¢5) 9, + Y3 (01061 + O110,) (64)
= 1oy ¥ + Pr0p Y1 + plocd; + Y001y
+ Biolyth, + ¢hol ¥, + Phoid, + Piond, (65)

2. Now, (¢, Ov):

2(¢p, Ov) = ¢{(000¢’1 + 001%5) + (000%; + 001%5)

+ ¢§(0101/)1 +011%5) + (010%, + 011¢2)i¢1 (66)
= L0000t + PLo01, + Plob,d, + Phoh d,
+ ¢ho108, + Pro11v, + Plolody + phol by (67)

To realize (O¢, ) = (¢, Ov), the following relations must hold:

030 = 0qo (68)
051 =019 (69)
0§0 =001 (70)
01121 = 011. (71)

Therefore, O must be equal to its own Clifford transpose, indicating that O
is an observable iff

15



ot =0, (72)
which is the geometric generalization of the self-adjoint operator OT = O of

complex Hilbert spaces.

4.3 Geometric spectral theorem in 2D

The application of the spectral theorem to OF = O such that its eigenvalues are
real is shown below:

Consider
o apo a — LE)A(l — y)A(Q — b)A(12
0= {a + X1 + yXo + bX1o a11 ] ’ (73)
Then OF is
i apo a — 1‘)21 — y)A(Q — b)A(lg
o= [a + X1 + yXo + X120 a1 } ’ (74)

It follows that O = O
This example is the most general 2 x 2 matrix O such that O% = O.
The eigenvalues are obtained as

- . _ apo — A a — .I)A(l - y)A(g - bf(lg
0 = det(O — AI) = det L + 2% + yRa + bia 4 - A ] , (75)

This implies that

0= (aoo — )\)(au — )\) — (a — rX1 — y)A(Q — b)A(lg)(a + rx1 + y)ACQ + bx19 + a11)

(76)
0 = (ago — A)(ann —A) = ( 2—m2—y2+b2), (77)
Finally,
1
A= {5 (aoo +aj — \/((Loo — a11)2 =+ 4((12 —x2 - y2 + b2)) , (78)
1
3 (aoo + a1+ v/(ago — a11)? + 4(a? — 22 — y2 + 52))} (79)

Notably, in the case where agg — a11 = 0, the roots would be complex if
a? — 22 — y?2 + b? < 0. Is this possible? Note that the determinant of real
matrices must be greater than zero because of the exponential mapping to the
orientation-preserving general linear group:

16



exp M(R") — GL*(n,R) (80)

Therefore, in this case, a> — 22 — y? + b? > 0, because this expression is the
determinant of the multivector.

Consequently, under the orientation-preserving transformations, O = O
implies that its roots are real-valued, thus constituting an observable in the

typical sense of an observable whose eigenvalues are real-valued.

4.4 Left action in 2D

A left action on the wavefunction T [1) connects to the bilinear form as (v)| T+T |4)).
The invariance requirement on T is

(| THT [¢) = (Y[y). (81)

Therefore, we are interested in the group of matrices that follow

TIT =L (82)

Let us consider a two-state system.
A general transformation of such a system is represented by

T [;; ;}, (83)

where u, v, w, xz are the 2D multivectors.
The expression TT is

i i i 1 i 1
tm_ |UT ut| v w| _ |vvtutu vTw Uty
T = wh 1:1] [u x} T vt + ot whe + 2t (84)
For T#T =1, the following relations must hold:

vho +utu =1 (85)

vtw+utr =0 (86)

who +ztu =0 (87)

whw + otz =1 (88)

This is the case if
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1
- Voo +utu
where u, v are the 2D multivectors, and e¥ is a unit multivector.

Comparatively, the unitary case is obtained when the vector part of the
multivector vanishes, i.e., x — 0, and we obtain

—ePut  ePpl

[ u ] 7 (89)

B 1
Vlal? + (b

Here T is the geometric generalization of unitary transformations.

eaT

a b
_eifpt  oif ] (90)

4.5 The Schrodinger equation of 2D geometry

Let us first recall that the standard Schrodinger equation can be derived as
follows.

In the bra-ket notation, we recall that a one-parameter group evolves ac-
cording to the following equation:

exp(—itH) [¢(0)) = [4(t)) - (91)

and thus, an infinitesimal displacement of ¢ is:

exp(—idtH) |1/)(T)> = |¢(T + 5T)> . (92)

Now, we approximate the exponential into a power series as

exp(—i6tH) [¢(7)) ~ 1 — istH |1(t)) . (93)

The process is continued as follows

(1 —i6tH) [4(t)) = |(t + 1)) (94)
[o(7)) — i6tH [¢(t)) = [(t + 6t)) (95)
—i6tH (1)) = [¢(t + 0t)) — |¢(t)) (96)
—iH (1)) = (2 + ot 2 [$®)) (97)
i) = LA, (98)

which is the Schrodinger equation.
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Returning to our result, we now eliminated elements of u = a + x + b by
posing a — 0,x — 0:

u ‘a—>0,x—>0: b=1ib (99)

This reduces GL*(2,R) to SO(2).

With this elimination, the left action matrix T becomes valued in (G(R?)),,
and the Stone theorem on one-parameter groups applies. Consequently, we can
write

T(T) |a—>0,x—>0: eXP(iTO) (100)

where

(0F=0) |us0xs0 = OT=0 (101)

The end result is an equation that is mathematically similar to the Schrodinger
equation (98):

—i0 [y(7)) = w (102)
T

and the wavefunction is ¢(7) = exp(—7iO)

The difference with the Schrodinger equation is that here i is not the imag-
inary unit, but a rotor in 2D. We recall that i = x;X5 and that rotors R =
exp(%ﬂi) are exponentials of bivectors.

We have thus arrived at a quantum theory of geometry.

This can be visualized as follows:

V(1) %ot(1) = exp(TiB)%g exp(—7iB) (103)
= exp(TXoX1B)Xo exp(—7%X0%X1B) (104)

The expression exp(7Xo%1B)X exp(—7%X0%X;B) maps Xg to a curvilinear ba-
sis eg via the application of the rotor and its reverse:
exp(TXoX1B)%g exp(—7%X0%1B) = eg(7) (105)

Here, we have obtained a geometry-valued Schrodinger equation under an
elimination of the elements of GLT (2, R) reducing it to SO(2), and found that
it is invariant in the SO(2) group.
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4.5.1 Gravitizing the quantum in 2D

Roger Penrose argued ”"that the case for gravitizing quantum theory is at least
as strong as that for quantizing gravity”[5].

We further stress that a theory which would succeed at gravitizing the quan-
tum does not need to also quantize gravity (and vice-versa). Indeed, it seems
reasonable to expect that any consistent singular theory be at most either, but
not both.

It is the idea of gravitizing the quantum (rather than quantizing gravity)
that is in line with what we are doing here. Indeed, we have made no changes
to general relativity. Instead, our entropy maximization procedure produced a
wavefunction of the orientation preserving general linear group, whose geometric
flexibility exceeds the familiar unitary wavefunction. It is within this extra
flexibility that we will find gravity.

In the previous result we have bluntly eliminated elements of the group
GL™(2,R) reducing it to SO(2) by posing a — 0,x — 0. How important are
the terms we have eliminated? What if instead of eliminating them, we perform
a structure reduction thus, recovering the SO(2) group as before, but also the
space resulting from a quotient bundle?

Let us investigate.

First, we note that in the general case, our wavefunction is valued in curvi-
linear (arbitrary basis) multivectors u:

u=a+ xe; + yes + bejes (106)

Second, let X2 be a smooth orientable real-valued manifold in 2D.

We now equip the manifold X? with curvilinear u via the cross product: X2 x
exp(G(R?)). The crossing induces a frame-bundle FX on X?, whose structure
group is in GLT (2, R).

X? now has the minimal structure (an exponentiated arbitrary-basis mul-
tivector is assigned at every point) required for us to define our wavefunction
from the entropy-maximization of multivectors at every point on X?2.

The structure group in GLT(2,R) of FX can be reduced to SO(2) (yielding
the geometric quantum theory of rotations identified in the previous section),
then the global section of the quotient bundle FX/SO(2) is a Riemmanian metric
on X?2. The connection that preserves the structure SO(2) across the manifold
is the Levi-Civita connection.

The frame bundle is a natural bundle that admits general covariant trans-
formations, which are the symmetries of a gravitation theory on X?2.

We stress that the gravitized quantum theory holds before symmetry break-
ing (in the GLT(2,R) group), as well as after symmetry breaking (into gravity
+ quantum rotations in SO(2)).

We have now exhausted the full geometric expressiveness of theory in 2D.
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4.6 Gravitizing the quantum in 2D (another take)

David Hestenes [6] has formulated the wavefunction in the language of geometric
algebra in 3+1D.
The 2D version of the geometric algebra formulation of the wavefunction is

¥ = /pexp(ib) (107)
such that

Yt = /pexp(ib)y/pexp(~ib) = p (108)

It is obtained from our formalism by eliminating x from u by posing x — 0.
Thus, u |x—0= a + b.

The gravitational theory, in this case, would follow from this structure re-
ducition GL(2,R)/(R x SO(2)), yielding the Weyl connection as the connection
that preserves this structure, instead of the Levi-Civita connection.

Here, p can be seen as the prior (or initial) probability, and the Weyl con-
nection preserves the weight of this prior (in addition to the rotation group)
along the manifold.

4.7 Algebra of geometric observables in 341D

In this section, the general case in 341D is presented.

In 2D, the determinant can be expressed using only the product ¥, which
can be interpreted as an inner product of two vectors. This form allowed us to
extend the complex Hilbert space to a geometric Hilbert space. We then found
that the familiar properties of the complex Hilbert spaces were transferable to
the geometric Hilbert space, eventually yielding a two-dimensional gravitized
quantum theory in the language of geometric algebra.

Although a similar correspondence exists in 3+1D, it is less recognizable
because we need a quartic-inner-product (i.e. p = |¢* ¢ |3 406*®) to produce a
real-valued probability in 3+1D.

Thus, in 341D, we cannot produce a sesquilinear form of the inner product
similar to the 2D case, and the absence of a satisfactory inner product indicates
that there is no Hilbert space in the usual sense of a complete inner product
vector space.

Our aim is to find a construction that supports the general linear wavefunc-
tion in 3+1D.

To build the right construction, a quartic-inner-product of four terms is
devised, which replaces the inner product in the Hilbert space, mapping any
four vectors to an element of G(R>!), and yielding a complete quartic-inner-
product vector space.

The familiar quantum mechanical features (linear transformations, observ-
ables as matrix or operators, and linear superposition in the probability mea-
sure) will be supported in the construction.
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Let V be a m-dimensional vector space over G(R>1).
A subset of vectors in V forms an algebra of observables A(V) if the following
holds:

1. V¢ € A(V), the quartic-inner-product form

(o) VxVxVxV— GR»)
(u,v, w,x) — > |ufv |5 awiz; (109)
=1

is positive-definite when u = v = w = x; that is (¢, ¢, ¢, ) > 0
2. V¢ € A(V), then for each element 1¥(q) € ¢, the function

p(¥(q), P) = det ¢(q), (110)

1
(. 0.0, D)
is positive-definite: p(¢(q), ¢) > 0
We note the following properties, features, and comments:

e From A) and B), it follows that, V¢ € A(V), and the probabilities sum to
unity:.

> p(dla),d) =1 (111)

#(q)ed
e ¢ is called a natural (or physical) state.
o (P, 0, P, @) is called the partition function of ¢.
o If (¢, d, P, d) =1, then ¢ is called a unit vector.

e p(p(q), @) is called the probability measure (or generalized Born rule) of
¢(q)-

e The set of all matrices T acting on ¢ such as T¢ — ¢’ makes the sum of
probabilities normalized (invariant):

> p6(a). To)= D p(dlq),d) =1 (112)

o(@)ED o(@)€ED

are the natural transformations of ¢.
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e A matrix O such that YuvVvVwVvx € V:

(Ou,v,w,x) = (u,0Ov,w,x) = (u,v,Ow,x) = (u,v,w,0x) (113)

is called an observable.

e The expectation value of an observable O is

(0. 6.6 8)
0)=76.6.6.9)

4.7.1 Geometric observables in 3+1D

(114)

In 4D, an observable must satisfy equation 113. For simplicity, let us take m in
equation 109 to be 1. Then explicitly, we have

|(Ou)tv |3 4wt = [utOv]3 4wtz = [utv]34(0w)r e = |utv]3 4wtOx  (115)

where u1,v1,w; and z; are multivectors.

Let us investigate.

If O contained a vector, a bivector, a pseudo-vector or a pseudo-scalar, the
equality would not satisfy as these terms do not commune with the multivectors
of the equality, and thus cannot be factored out. The equality is satisfied iff
O € R. Indeed, as a real value, O commutes with all multivectors of the equality,
and can be factored out to satisfy the equality.

We thus find in the general 3+1D case that observables are real-valued.

At a first encounter, this may seem restrictive; comparatively, the observ-
ables in the 2D case were geometrically-valued O = O. However, as we will
see, the geometric expressivity of the observables in 3+1D expands when we
reduce the structure.

Let us investigate the consequences of a structure reduction x — 0,v — 0 of
the multivectors of equation 115, and analyse O again. With such reduction, the
multivectors become of the form u = a 4 f + b. This increases the potential for
commutativity of Q. In fact, we find that O can now contain scalars and pseudo-
scalars, as both commutes with all elements a,f and b. And with this reduction
the observable equation reduces to Of = O, and this obviously contains more
geometry than O € R.

4.7.2 Invariant transformations in 3+1D

We now identify the invariant transformations of probability measure (which
will be useful later).
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|[(Tu) Tv|3.4(Tw) Tz = [vv]3 40t (116)
= (W T T3 40 T T = [vho 3 40t (117)
The measure is invariant when
L T'T =1
2. THT € C*" and (THT)'T*T =1 and x — 0,v — 0.
3. TeC™" and T'T =1 and x = 0,v — 0.

4.7.3 Geometric observables in 6D

As we have just noted, the observables in 3+1D must satisfy a more constraining
equality relation than in 2D, and this reduced the geometric expressivity that
such observable could support. Specifically, in 2D the general observable relation
was satisfied for O = O (this captured the full general linear geometry in 2D),
and in 341D the general case was satisfied only for O € R (with a structure
reductions x — 0,v — 0 yielding O = O) which is a tiny subset of the
geometric potential in 4D.

What happens if we increased the dimensions even further; to 6 and above?

In dimensions 6 or greater, the corresponding observable relation cannot
be satisfied at all. To see why, we have to look at the results[7] of Acus, A
et al regarding the 6-dimension multivector norm. In their paper, Acus, A et
al disclose having done a brute force computer assisted search for a geometric
algebra expression for the determinant in 6D dimension, then as conjectured,
found no norm defined only via self-products. The norm they found is a linear
combination of self-products. The following is a special case of this norm that
holds only for a 6D multivector comprised of a scalar and a grade 4 element:

s(B) = 01B f5(f4(B) f3(f2(B) f1(B))) + b2Bgs(94(B)gs(92(B)g1(B))) ~ (118)

Even in this simplified special case, we can see that attempting to formulate
a relation for observables for a linear equation is doomed to fail. Indeed, even
the real portion of the observable cannot be extracted out of the equation. We
find that for any of the functions f; and g;, the coefficient by and by will frustrate
the equality:

b1OB f5(f4(B) f3(f2(B)fi1(B))) + b2Bgs(9a(B)g3(g2(B)g:1(B)))  (119)
= b1 B fs5(fa(B) f3(f2(B)f1(B))) + b20Bgs(94(B)g3(92(B)g1(B)))  (120)

Equation 119 and 120 can only be equal if by = by, however the norm s(B)
requires by and by to be different in general. Consequently, the relation for
observables in 6D is unsatisfiable even by real numbers.

Thus, in our framework the geometry of 6D leads to the absence of observ-
ables. This result is likely to generalize to all dimensions above 6, as the norms
involve more sophisticated systems or linear equations as we go higher.
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4.7.4 Defective probability measure in 3D and 5D

We can also rule out the 3D and 5D cases.

The probability measure in these dimensions is not real-valued, but complex-
valued, and this makes them defective.

In G(R?), the matrix representation of a multivector

u=a-+x0,+yoy + 20, + qoy0, + 0050, + woy0y + boyo,0, (121)
is

u= q+zb+zw+.z zq—.v—l—‘x—zy (122)
iq+v+r+iy a+ib—iw—z

and the determinant is
detu=a® b+ ¢ + 02 +w? — 2% —y? — 2% + 2i(ab — qz + vy — wz) (123)

The result is a complex-valued probability. Since a probability must be
real-valued, the 3D case is defective in our framework and cannot be used.

In G(R*1), the algebra is isomorphic to G(C*') and to complex 4 x 4 matri-
ces. Consequently, the determinant is complex-valued. Hence, the probability
is also complex-valued. Consequently, this case is defective and cannot be used
in our framework.

4.7.5 Specialness of 4D

Our framework is non-defective only in:

1. 0D: This corresponds to the familiar (and classical) statistical mechan-
ics. The constraints are scalar £ = ° o p(q)E(g), and the probability
measure is the Gibbs measure.

2. 1D: This is the non-relativistic quantum mechanical case we recovered in
the results section, using the matrix representation of the complex num-
bers.

3. 2D: This is the geometric quantum theory we have discussed earlier. Grav-
ity exhausted all geometric freedom of the theory, and thus only gravity
exists in 2D. There is no leftover geometry for internal gauges.

4. 4D: This is the case we are investigating here. As we will soon see, the
gravitization contains leftover geometry which can be used to define a
particle physics.

And is defective in:

1. 3D and 5D: the probability measure is complex-valued.
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2. 6D and above: no observables satisfy the corresponds observable equation,
in the general case.

Based on our model, it should come with little surprise that the geometry of
our universe is four-dimensional. 341D is simply the largest spacetime which
captures all non-defective cases.

4.7.6 Wavefunction

In the David Hestenes’ notation[6], the 3+1D wavefunction is expressed as

¥ = \/peR, (124)
where p represents a scalar probability density, e?
R is a rotor expressed as the exponential of a bivector.
To recover the David Hestenes’ formulation of the wavefunction, it suffises

to square our wavefunction and to eliminate the terms x — 0 and v — 0:

is a complex phase, and

= ¢ |xmovmo= 2T = \/peib R (125)

Let us analyse this wavefunction.
First, we can see that the terms a and b commute with f and with each
other. Thus, they can be factored out as

62a+2f+2b — 62a+2b62f (126)

Second, the term f can be understood as the exponential map from the
50(3,1) lie algebra to the Spin(3,1) group; the double covering being realized
from the squaring of our wavefunction allowing R and —R to map to the same
rotation.

Consequently, the wavefunction represents the exponential map of the foloow-
ing lie algebra

R®so(3,1) du(l) (127)

which associates to the following group

R x Spin(3,1) x U(1) = R x Spin“(3,1) (128)

The gravitational theory follows the same way it did in 2D. We cross a
world manifold X* with an exponentiated arbitrary curvilinear multivector.
This induces a frame bundle LX on X*, allowing us to define our wavefunction
on X*. The structure reduction GL*(4,R)/SO(3, 1) followed by a structure lift

26



to Spin©(3, 1) entails a U(1)-preserving spin connection as the connection that
preserves the structure of the wavefunction on the manifold.

If a prior is used, the structure is reduced to SO(3,1) then lifted to R x
Spin®(3, 1) and the associated spin connection also preserves R x U(1).

Our models holds in unified form in the unbroken general linear symmetry,
and after the symmetry is broken down into two parts: a classical gravity and
a unitary quantum theory.

4.7.7 Dirac current

David Hestenes defines the Dirac current in the language of geometric algebra
as

j=vM00 (129)

This definition holds in our formulation. We now have all the tools to ex-
haust the remaining geometric freedom of our framework to construct a particle
physics.

4.7.8 SU(2) x U(1) group

Our wavefunction transforms as a group 112 = 1. The most general trans-
formation of this type that our framework supports is multiplication by the
exponentiation of a reduced multivector (i.e. x — 0,v — 0):

e" =exp(a+f+Db) (130)

We now simply ask, what is the most general multivector e" which leaves
the Dirac current invariant:

PEe™) ey = Piyoy <= (") ye” =70 (131)

When is this satisfied?

The bases of the bivector part f of u are vov1, Y072, Y073, 7172, 7173, and
Y27v3. Among these, only 7172, 7173, and Y273 commute with 7y, and the rest
anti-commute; therefore, the rest must be made equal to 0 lest they won’t cancel.
Finally, the base vyy17y273 anti-commutes with ~y thus cancels out.

Consequently, the most general exponential multivector of the form e" where
u = f + b which preserves the Dirac current is

e = exp(Fiam1y2 + Fi3y173 + Fagyeys + b) (132)

We can rewrite the bivector basis with the pauli matrices
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Yory3 = io, (133)
Y173 = oy (134)
MY =0 (135)

b = ib (136)

With the replacements, we obtain

e" :eXpi(F12Uz+F130'y+F230'm+b) (137)

The terms Fy30, + Fi30, + Fi20, and b are responsible for the SU(2) and
U(1) symmetries, respectively. The details of this identification process is avail-
able in [8, 9]. David Hestenes and later Lasenby constructed the electroweak
sector using the geometric algebra associated with such invariance conditions.

4.7.9 SU(3) group

The invariance identified by equation 117 is T*T = I. The identified evolution
was bivectorial rather than unitary.

As we did for the SU(2) x U(1) case, we will ask, in this case, what is the
most general bivectorial evolution which leaves the Dirac current invariant:

y0f =0 (138)

where f is a bivector:

f = Fo1vov1 + Fo2vov2 + Foszyovs + Fasveys + Fismivs + Fienie (139)

Explicitly, the expression fivyf is

fryof = —fy0f = (Fy + Fop + Fos + Fis + Fos + Fiy) %0 (140)
+ (=2Fp2F12 + 2Fo3Fi3)m (141)
+ (—2F01 F12 + 2Fp3F53) 70 (142)
+ (—2Fo1 Fi3 + 2Fp2Fa3) 73 (143)

For the Dirac current to remain invariant, the cross-product must vanish

—2Fy2F1g + 2Fy3F13 =0 (144)
—2Fy1 Fip + 2Fp3F53 =0 (145)
—2Fy1 Fi3 + 2F52Fo3 = 0 (146)
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leaving only

fiyof = (Fy + Fop + Fos + Fis + F3s + Fiy )0, (147)

Finally, F$ + F% + F& + F4 + F + F2 must equal 1.
We note that we can re-write f as a 3-vector with complex components:

f = (Fo1 + iFa3)y0m + (Foz2 + iF13)y0v2 + (Fosz + iF12)7073 (148)

Then, with the nullification of the cross-product, and the equality of F3; +
F3+ Fy+ Fi+ Fiy + F to unity, we can understand the bivectorial evolution
when constrained by the Dirac current to be a realization of the SU(3) group.

The other invariance of equation 117 is unitary invariance, which was already
supported in equation 128.

We have now consumed the geometric expressivity of our framework in
3+1D, to produce the SU(2)xU(1) gauge, the SU(3) gauge and the gravita-
tional theory, leaving no room for anything else.

5 Step toward falsifiable predictions

A number of falsifiable predictions is listed below.

The main idea is that a general linear wavefunction would allow a larger class
of interference patterns, compared to complex interference. The general linear
interference pattern includes all the ways in which space-time can interfere with
itself, including those resulting from rotations, boosts, shear, and torsion.

It is plausible that an Aharonov—Bohm effect experiment on gravity[10] could
detect the general linear phase and patterns identified in this section.

An interference pattern follows from a linear combination of u and v, and
the application of the determinant:

det(u + v) = det u + det v + extra-terms (149)
The sum of the probability is (det u+det v), and the “extra terms” represents
the interference term.
We use the extra terms to define a bilinear form using the dot product
notation.
GR™™) x GR™") — R (150)

1
u-vi— §(det(u+v) — detu — detv) (151)

For example, in 2D, we have
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u=a; +xe; +yies + bier (152)

V = ap + To€1 + yoes + boeqs (153)

= u-v=ajas+ bi1bs — T1T2 — Y1Y2. (154)

If detu > 0 and detv > 0, then u - v is always positive, thereby qualify-
ing as a positive-definite inner product, but not greater than either detu or

det v(whichever is greater).
Therefore, it also satisfies the conditions of an interference term.

e In 2D, the dot product is equivalent to the form

1 1
i(det(u +v)—detu—detv) = 3 <(u +v) (u+v)—utu - viv)
(155)
=utu + utv + viu + viv —utu — viv
(156)
=ulv +viu (157)
e In 341D, it is substantially more complex:
1
§(det(u +v) —detu—detv) (158)
1 : t : ; t :
=3 (L(u—}—v) (u+v)|ga(u+v) (u+v) — [utu]zutu — [Viv]34v v)
(159)
1
=5 (Luiu +utv + viu+ viv]z s (utu + utv + viu+ viv) — )
(160)
= LuiuJ374uiu + LuiuJ3,4uiv + LuiuJ374viu + LuiuJ374V¢v
+ Lu¢VJ3,4uiu + LuiVJ374uiV + Luivj374viu + LuiVJ374viv
+ \_viunguiu—{— LviuJ374uiv + LviuJ374viu+ LviuJ374viv
+ \_vivJ374uiu + LvivJ3’4uiv + LvivJ3,4viu + LVIVJ3’4VIV — ...
(161)

= |[utu|3 4utv + [utulz gviu + [utuz aviv
u VJ3,4uiu + LUIVJ3,4UIV + LUIVJ3,4VIU + LUIVJ3,4VIV

+ [uf
+ I_VillJ3 qufu+ LviuJ3,4u¢v + LviuJ3,4viu + LviuJ3,4viv
+ [viv]zautu 4 [ viv]zutv + [ viv]zavia (162)
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A simpler version of this interference pattern is possible when the general
linear group is reduced.

Complex interference:

In 2D, a reduction of the general linear group to the circle group reduces the
interference pattern to a complex interference.

91 + al* = [91]* + [1h2]® + 2[¢b1 [[9ha]| cos (¢1 — ¢2) (163)

Deep spinor interference:

A reduction to the spinor group reduces the interference pattern to a ”deep
spinor rotation.”

Consider a two-state wavefunction (we note that [f, b] = 0)).

) =1hy + 1hy = eMef1ePt 4 ea2ef2eP2 (164)

The geometric interference pattern for a full general linear transformation
in 4D is given by

[ 5,400 (165)

Starting with the sub-product

Y = (eMe hePr 4 227 eP2)(ef1 b1 | o320f2¢P2) (166)
= Mg fiePienipfight | pa1p—higbigaz oz b2

4 e2ef2eP2a10f1gP1 | pa2o—fa b2 gaz ofz ob2 (167)

— (2a1e2P1 | (2a2p%ba | paitazebitb(o—fiofa | —faoh) (168)

The full product is expressed as

31



Lwin 3741/)11)& — <62a1672b1 + €2a2672b2 + ea1+a267b17b2 (e*fl efz + e*erfl))

% (€2a1€2b1 + 62a262b2 + ea1+a2€b1+b2 (e—fl ef2 _|_ 6_f26f1>
(169)
— 62a16—2b1 62a162b1 _|_ 62a16_2b1 62a2€2b2 _|_ 62a16_2b1 ea1+a2 eb1+b2 (e—fl efz + e—fz efl)

+ e?age*ng 62111 e2b1 + eQage*ng 62a262b2 + eQage*ng ea1+a2 eb1+b2 (€7f1 efz + €7f2 efl)
+ ea1+a26—b17b2 (67& ef2 + €7f2 efl )e2a162b1
+ 6a1+age—b1—b2 (e—fl 6f2 + 6—f2 efl )e2a2 e2b2
+ ed1taz ,—bi—bs (e—fl ef2 + e f2001 )ea1+a2 eP11b2 (e—fl ef2 + e f2001 )
(170)
= et 4 192 | 926201202 005 (2h) — 2by) (171)
4 entaz(gfigfs 4 o=fapfi)( (172)
e2a1 (e—b1+b2 + ebl_b2) (173)
4 e2a2(eP17P2 | g=b1¥b2)) (174)
=+ 62a1+2a2 (e—fl efg + e—f2€f1>2 (175)

— ela + elaz + 9e2a1t2a2 COS(2b1 - 2b2)
~———

sum complex interference

4 26a1+a2 (620'1 + €2a2)(€_f1€f2 + €_f26f1>(COS(Bl _ B2>> 4 €2A1+2A2 (€_f1€f2 + e—f26f1)2

deep spinor interference

(176)

6 Discussion

We have recovered the foundations of quantum mechanics using the tools of
statistical mechanics to maximize the entropy under the effect of a geometric
constraint. We have replaced the Boltzmann entropy with the Shannon entropy,
and this has an impact on the resulting interpretation, which we will now discuss.

In contrast to the multiple interpretations of quantum mechanics, the in-
terpretation of statistical mechanics is singular, free of paradoxes and clearly
devoid of any measurement problem; remarkably, this will carry over to our
interpretation of quantum mechanics.

Definition 9 (Metrological interpretation). There exist instruments that record
sequences of measurements on systems. These measurements are unique up to a
geometric phase, and the Born rule (including its geometric generalization to the
determinant) is the entropy-mazimizing measure constrained by the expectation
value of these measurements.

The Lagrange multiplier method, used to maximize the entropy subject to
geometric constraints, is the mathematical backbone of this interpretation.
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Let us now discuss the definition of the measuring apparatus entailed by this
interpretation.

Integrating formally into physics the notion of an instrument or measuring
apparatus has been a long-standing difficulty. One of the pitfalls is to attribute
too much “detailing” to this instrument (for instance defining the instrument as
a macroscopic system which amplifies quantum information), as this increases
the risk of capturing only a fraction of all possible instruments in nature. Frac-
tional capture is to be avoided because the instruments are our only “eyes into
nature”; consequently, the generality of their definition must be on a level similar
to the laws of physics themselves.

In statistical mechanics, instruments and their effects on systems are in-
corporated into the mathematical formalism. For instance, an energy meter or
volume meter can produce a sequence of measurements whose average converges
towards an expectation value, and this constitutes a constraint on the entropy.
However, the generality (and generalizability) of this definition to all physical
system (including quantum and geometrical) was overlooked. In this study, we
have capitalized on this definition and we have extended it appropriately.

The instrument is defined as follows:

Definition 10 (Instrument/Measuring Apparatus). An instrument, or mea-
suring apparatus, is a device that constrains the entropy of a message of mea-
surements to an expectation value; or more mathematically, an instrument is
described by an equality which constrains the entropy to a given exception value.

Nature allows geometrically richer measurements and instrumentations, which
are not possible to express with simple “scalar” or “phase-less” instruments.
For instance, a protractor, a boost meter or shear meter also admit numerical
measurements; however, they contain geometric phase invariances, such as the
Lorentz invariance.

In the metrological interpretation, the existence of such instruments, not
the wavefunction, is taken as axiomatic. Essentially, the interpretation adopts
the belief that the laws of physics are entirely determined by the geometrical
richness (invariance) of the instruments that are available in nature.

In this study, we interpreted the trace as the expectation value of the eigen-
values of a matrix transformation multiplied by the dimension of the vector
space. Maximizing the entropy under the constraint of this expectation value
introduces various phase invariances into the resulting probability measure, con-
sistent with the available measuring apparatuses.

As we have seen, the constraint

tr [g _05] = Ztrp(q) {b((;) —lz)(q)] (177)

q€Q
induces a complex phase invariance into the probability measure p(q) =

2
)exp(—in(q)) , which gives rise to the Born rule and wavefunction.
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Moreover, the constraint

trM =" tr p(q)M(g) (178)
q€Q

induces a general linear phase invariance in the probability measure p(q) =
detexp (—7M(g)), giving rise to a probability measure supporting multiple
gauges and observables commonly used in modern physics, specifically, those
of general relativity and the standard model.

In each case, we can interpret the constraint as an instrument acting on the
system.

In the complex phase, we associate the constraint to an incidence counter
measuring a particle or photon. Moreover, in the general linear case, we asso-
ciate the constraint to a measure that is invariant with respect to all coordinate
changes in the general linear phase, such as measurements of the geometry of
spacetime events.

The complete correspondence between an ordinary system of statistical me-
chanics and ours is as follows.

Table 1: Correspondence

Concept Statistical Mechanics ~Geometric Constraint (Ours)
Entropy Boltzmann Shannon

Measure Gibbs Born rule on wavefunction
Constraint Energy meter Phase-invariant instrument
Micro-state  Energy values Possible measurements
Macro-state  Equation of state Evolution of the wavefunction
Experience  Ergodic Message of measurements

In the correspondence, the usage of the Shannon entropy instead of the
Boltzmann entropy changes the experience from ergodic to a message (in the
sense of the theory of communication of Claude Shannon[11]) of measurements.

The receipt of such a message by say, an observer, carries information; it
is interpreted as the registration of a “click”[12] on a screen or other detecting
instrument.

Using the Shannon entropy, quantum physics can be interpreted as the prob-
ability measure resulting from the maximization of the entropy of a message of
geometrically invariant measurements received by an observer.

The probabilistic interpretation of the wavefunction via the Born rule is
inherited from statistical mechanics and results from the maximization of the
entropy under geometric constraints.

The wavefunction is also entailed, and hence not considered axiomatic either.
Instead, the receipt of a message of the measurements taken by an instrument,
along with the geometric constraints on the corresponding entropy, is axiomatic.
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The axioms of quantum mechanics are recoverable as theorems from the

solution % = 0 for p, where

L==> p@plg)+A|1=> pla) | +7 [ trM—=>_ p(q) trM(g)
q€Q q€Q q€Q
(179)

Now, let us discuss the wavefunction collapse problem:

Specifically, the mathematical foundation of quantum mechanics contains
the following axiom: If the measurement of a quantity O on v gives the result
0n, then the state immediately after the measurement is given by the normalized
projection of 1 onto the eigensubspace of o,, as

P 1)
(Y] Pr [4)

The measurement-collapse problem is, in our framework, superseded as fol-
lows: Before the wavefunction is derived, measurements are assumed to have
already been registered by an instrument and are associated with a geometric
constraint, which is axiomatic. Registering new measurements in this case does
not mean that a wavefunction has collapsed but implies that we need to adjust
the constraints and derive a new wavefunction consistent with new measure-
ments. Because the wavefunction is derived by maximizing the entropy con-
strained by the registered measurements, it never updates from an uncollapsed
state to a collapsed state. The collapse problem is a symptom of attributing an
ontology to the wavefunction; however, the ontology belongs to the instruments
and their measurements — not the wavefunction.

For instance, we can deduce a probability measure by throwing multiple coins
into air and noting that about half of these coins land on head and the other half
on tail. Such a probability measure cannot be used to derive the result of the
next flip, but only its expectation value. Likewise, here, the expectation value of
the measurements is used to derive the wavefunction. The present derivation of
the wavefunction as a solution to a maximization problem on the entropy under
a geometric constraint is mathematically consistent with this understanding.

Finally, as all knowledge of nature comes from the instruments that can be
constructed, postulating these instruments (rather than the wavefunction) to
be the axioms of physics and using their definition to derive the wavefunction
makes the mathematics of physics entirely consistent with it being an empirical
science.

The full correspondence is also consistent with the general intuition that
random information ought to be axiomatic, as by definition it cannot be derived
from any earlier principles. Ultimately, it is viable to consider the message of
random measurements, rather than the wavefunction (which is a precise and
deterministic mathematical equation), to be the axiomatic foundation of the

P = (180)
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theory. As shown, the latter can be derived from the former, but not vice versa,
which is suggested by the lack of a satisfactory mechanism for the wavefunction
collapse in the usual interpretation.

6.1 Axioms of Physics

We propose that the laws of physics are ultimately entailed only and entirely
by the following minimal axioms related to measurements.

Context 1 (Observability). Let ¢ be the elements of a statistical ensemble Q.
Then m : Q — R is an observable of Q.

Context 2 (Comprehensibility). The experience of the observer in nature is
defined as the receipt of a message m € (m(Q))™ of n measurements performed
on n identical copies of Q.

Context 3 (Representativeness). Observations are representative of the limit:
when |m| — oo, then T € R (i.e., the average of these measurements converges
towards a well-defined expectation value).

Context 4 (Comprehensiveness). Observations are comprehensive in the limit:
when|m| — oo, then Q is well-defined (i.e., all the elements in Q are identified).

Axiom 1 (Geometricity). A geometric measuring device constrains the entropy
of a message of measurement according to the following equality:

trM =" p(q) tr M(g) (181)
q€Q

where m(q) := tr M(q) is a possible measurement, and M corresponds to a
matriz or multivector.

Conjecture 1 (Geometric Totality). The geometric constraint is sufficiently
restrictive to represent only the measurements that are possible in nature, yet
sufficiently descriptive to represent all such measurements.

Theorem 1 (The Laws of Physics as a Theorem). Mazimizing the entropy
of a message of measurements constrained by a geometric measuring device,
yields the model of physics that mazimizes the information acquired from said
measurements:

L==> pla)nplg)+ X |1= pla) | +7 (M= p(q) tr M(q)
q€Q q€Q q€Q
(182)

Solving for OL/0p = 0 implies
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plg,7) = % det exp(—7M(g)), (183)

where

Z(1) = Zdet exp(—7M(q)). (184)

q€Q

Here, the Lagrange multiplier T represents the one-parameter group evo-
lution of, in the general case, the orientation preserving gemeral linear group
GL*(n,R).

Our framework work only in 0, 1, 2 and 4 dimensions, otherwise either
the probability measure is complez-valued or geometric observables fail to exist.
Gravity is manifest from the GLT (n,R) group undergoing symmetry breaking
to the Lorentz group SO(n —1,1) in 2D or Spim°(3,1) group in 4D, yielding a
gravitational theory from the Levi-Civita or Spin connection. Furthermore, in
the 4D case the invariant evolution must satisfy the Dirac current, yielding the
local gauges of the standard model.

The setup is able to accommodate as a quantum theory the full unbroken
GL™ (n,R) group, as well as its symmetry breaking into the gravitational field
and the local gauges of the standard model.

7 Conclusion

In this paper, we proposed a geometric constraint, which is used to maximize
the Shannon entropy. This geometric constraint allows us to derive a probabil-
ity measure that supports a geometry richer than what was previously used in
statistical physics. This substantially extends the opportunity to capture all the
modern physics phenomena within a single framework. To accommodate all the
possible geometric measurements, the wavefunction of the general linear group
is derived, and the Born rule is extended to the determinant. The framework
produces a non-defective model for the 0D, 1D, 2D and 4D. 4D stands out as the
space which is large enough to include all non-defect variations. A gravitational
theory results from the GL™ (4, R) group undergoing symmetry breaking to the
Spin‘(3,1) group. Breaking the symmetry of the general linear wavefunction
into the Spin®(3,1) group reduces the quantum theory to the SU(2)x U(1) and
SU(3) for its invariant transformations. Finally, an interpretation of quantum
mechanics, i.e., the metrological interpretation, is proposed; the existence of
instruments and the measurements they produce acquire the foundational role,
and the wavefunction is derived as a theorem. In this interpretation, it is con-
sidered that an observer receives a message (theory of communication/Shannon
entropy) of phase-invariant measurements and that the probability measure,
which maximizes the information of this message, is the (general linear) wave-
function accompanied by the (general linear) Born rule.

37



8

Statements and Declarations

The author declares no competing interests. The authors did not receive support
from any organization for the submitted work.

References

[1]

[10]

[11]

[12]

Makoto Yamashita (https://mathoverflow.net/users/9942/makoto ya-
mashita). Geometric interpretation of trace. MathOverflow.
URL:https://mathoverflow.net/q/46447 (version: 2016-05-17).

Frederick Reif. Fundamentals of statistical and thermal physics. Waveland
Press, 2009.

Douglas Lundholm. Geometric (clifford) algebra and its applications. arXiv
preprint math/0605280, 2006.

Douglas Lundholm and Lars Svensson. Clifford algebra, geometric algebra,
and applications. arXiv preprint arXiw:0907.5356, 2009.

Roger Penrose. On the gravitization of quantum mechanics 1: Quantum
state reduction. Foundations of Physics, 44:557-575, 2014.

David Hestenes. Spacetime physics with geometric algebra. American
Journal of Physics, 71(7):691-714, 2003.

A Acus and A Dargys. Inverse of multivector: Beyond p+ gq= 5 threshold.
arXw preprint arXiw:1712.05204, 2017.

David Hestenes. Space-time structure of weak and electromagnetic inter-
actions. Foundations of Physics, 12(2):153-168, 1982.

Anthony Lasenby. Some recent results for su(3) and octonions within the
geometric algebra approach to the fundamental forces of nature. arXiv
preprint arXiw:2202.06733, 2022.

Chris Overstreet, Peter Asenbaum, Joseph Curti, Minjeong Kim, and
Mark A Kasevich. Observation of a gravitational aharonov-bohm effect.
Science, 375(6577):226-229, 2022.

Claude Elwood Shannon. A mathematical theory of communication. Bell
system technical journal, 27(3):379-423, 1948.

John A Wheeler. Information, physics, quantum: The search for links.
Complezity, entropy, and the physics of information, 8, 1990.

38



