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Abstract

In modern theoretical physics, the laws of physics are directly repre-
sented with axioms (e.g., the Dirac–Von Neumann axioms, the Wightman
axioms, and Newton’s laws of motion). While the laws of physics are en-
tailed by measurements, in modern logic axioms are not; instead they hold
true merely by definition. Motivated by this dissimilarity, we introduce
a more suitable foundation than axioms to represent the laws of physics,
then makes the case for its supremacy. Measurements will now be the
axioms, and the laws of physics its theorems. Specifically, we introduce
an optimization problem on the entropy of all geometric measurements.
Its unique solution is an optimized version of a gravitized quantum the-
ory. Its principal symmetry is GL+(4,R) and it is found to break into a
gravitational theory part and into a quantum theory of the SU(2)xU(1)
and SU(3) groups. Remarkably, our optimization problem holds in a max-
imum of 4 dimensions, and becomes defective otherwise.

1 Introduction

The physical laws in modern theoretical physics are expressed as axioms (e.g.,
the Dirac–Von Neumann axioms, the Wightman axioms, and Newton’s laws
of motion). The theorems provable by these axioms are the predictions of the
theory. If laboratory measurements invalidate the predictions, the postulated
laws are deemed falsified, and new (and more appropriate) laws are postulated.

In this scenario, it is the theorems (predictions) of the theory that are used
(in concert with experiments) to invalidate its axioms (laws).

In logic, however, axioms define what is true in a theory. It follows obviously
that its theorems cannot invalidate them.

Thus, there is a dissimilarity between using axioms in physics versus their
use in logic.

Since the laws of physics require a more complex interplay between axioms,
theorems, and their invalidations than the unidirectional entailment between
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axioms and theorems found in logic, the question of using axioms to express the
laws of physics arises.

Motivated by this dissimilarity, we begun searching for a more appropriate
logical formulation of the laws of physics, than as brute axioms. We intend to
show that correcting the axiomatic entailment between the laws and measure-
ments yields a significantly superior and optimized formulation of fundamental
physics.

In our proposal, laboratory measurements entail the mathematical expres-
sion of those measurements, and it is this expression, not the laws of physics,
that will constitute the axioms of our system. The laws of physics will be de-
fined as the solution to a carefully crafted optimization problem on the entropy
of all measurements.

The solution to this optimization problem is a novel and optimized formu-
lation of fundamental physics. Its yields a gravitized quantum theory, whose
symmetry breaks into a theory of gravitation part and into an SU(2)xU(1) and
SU(3) quantum theory parts. Remarkably, no other solutions are possible, and
this solution only holds in 3+1 dimensions (3+1D). We interpret this tight con-
figuration as suggestive of the power and efficiency of defining the laws of physics
as the solution to a mathematical optimization problem, rather than as brute
axioms.

In essence, from laboratory measurements, it is easier to “guess” the correct
mathematical expression for all possible measurements than to “guess” the right
laws of physics. The distance one must travel in “guessing space” is much shorter
for the former than the later, and this reduces the risk of running astray. The
laws of physics are then simply obtained as the solution to an optimization
regarding the entropy of said measurements.

Our optimized formulation is unlikely to have been obtained by trial and
error or traditional methods, making our optimization problem a key step in
the derivation.

Corollaries that follow directly from our solution, such as the mathematical
origin of the Born rule, the proof of the axioms of quantum physics, an identi-
fication of the correct interpretation of quantum mechanics, and a deprecation
of the measurement/collapse problem, are also presented.

To define the problem rigorously, we first introduce the key structure that
makes our approach possible: the geometric constraint. Next, we present its
rationale.

The construction of a geometric constraint exploits the connection between
geometry and the probability theory via the trace. The trace of a matrix can
be understood as the expected eigenvalue multiplied by the vector space di-
mension and the eigenvalues as the ratios of the distortion of the geometric
transformation associated with the matrix[1].

The geometric constraint is defined as

trM =
󰁛

q∈Q
ρ(q) trM(q), (1)
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where M is an arbitrary n×n matrix, and Q is a statistical ensemble. trM
denotes the expectation value of the statistically weighted sum of the matrices
M(q) parameterized over the ensemble Q.

Alternatively (and preferably), we may use geometric algebra to define the
constraint as (the notation is explained in Section 2)

tru =
󰁛

q∈Q
ρ(q) tru(q), (2)

where u is an arbitrary multivector of the real geometric algebra G(Rn). Al-
though the constraints can be expressed by both approaches, using multivectors
instead of matrices highlights the geometric characteristics of the method.

Now, we discuss its rationale.
Constraints are used in statistical mechanics to derive the Gibbs measure

using Lagrange multipliers[2] by maximizing the entropy.
For instance, an energy constraint on the entropy is

E =
󰁛

q∈Q
ρ(q)E(q), (3)

which is associated with an energy meter that measures the system’s energy
and produces a series of energy measurements E1, E2, . . . , converging to an
expectation value E.

Another common constraint is related to the volume:

V =
󰁛

q∈Q
ρ(q)V (q), (4)

which is associated with a volume meter acting on a system and produces
a sequence of measured volumes V1, V2, . . . , converging to an expectation value
V .

Moreover, the sum over the statistical ensemble must equal 1, as follows:

1 =
󰁛

q∈Q
ρ(q) (5)

Using equations (3) and (5), a typical statistical mechanical system is ob-
tained by maximizing the entropy using the corresponding Lagrange equation.
The Lagrange multipliers method is expressed as

L = −kB
󰁛

q∈Q
ρ(q) ln ρ(q) + λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ β

󰀳

󰁃E −
󰁛

q∈Q
ρ(q)E(q)

󰀴

󰁄 , (6)
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where λ and β are the Lagrange multipliers.
Therefore, by solving ∂L

∂ρ = 0 for ρ, we obtain the Gibbs measure as

ρ(q,β) =
1

Z(β)
exp

󰀃
−βE(q)

󰀄
, (7)

where

Z(β) =
󰁛

q∈Q
exp

󰀃
−βE(q)

󰀄
. (8)

In our method, (3) is replaced with trM, and a geometric constraint is
obtained. Instead of energy or volume meters, we have protractors, and boost,
dilation, and shear meters.

By limiting the definition of constraints to scalar expressions, we believe that
statistical physics fails to capture all possible geometric measurements available
in nature.

Our geometric constraint represents the geometric measurements that are
possible in principle. Specifically, the constraint will support observing the
distortions of events produced by any geometric transformation. The resulting
probability measure will preserve the expectation value of these distortions up
to a phase or symmetry group.

Many of us are familiar with the Law of Instruments from Abraham Ka-
plan: ”If all one has is a hammer, everything looks like a nail”. This idea is
essentially geometrized as follows: If all one has are protractors, boost meters,
dilation meters, and shear meters, everything looks geometrically invariant. For
instance, based on our entropy maximization procedure, a statistical system
measured exclusively using a protractor will carry a local rotation symmetry in
the probability of the measured events.

Finally, we maximize the Shannon entropy in base e and not the Boltzmann
entropy. The difference is mostly conceptual. The resulting probability measure
quantifies the information associated with an observer’s receipt of a message of
measurements. The Shannon entropy does not change the mathematical equa-
tion for entropy (minus the Boltzmann constant); only the final interpretation
is changed (further details on the interpretation of quantum mechanics are pro-
vided in section 6).

The corresponding Lagrange equation is

L = −
󰁛

q∈Q
ρ(q) ln ρ(q) + λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ τ

󰀳

󰁃tru−
󰁛

q∈Q
ρ(q) tru(q)

󰀴

󰁄 , (9)

and is sufficient to solve ∂L
∂ρ = 0 for ρ to obtain the solution, which is our

main result.
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The manuscript is organized as follows. The Methods section introduces
tools using geometric algebra, based on the study by Lundholm et al. [3, 4].
Specifically, we use the notion of a determinant for multivectors and Clifford
conjugate for generalizing the complex conjugate. These tools enable the geo-
metric expression of the results.

The Results section presents two solutions for the Lagrange equation. The
first is the recovery of standard non-relativistic quantum mechanics when re-
ducing the matrix from an arbitrary matrix to a representation of the imaginary
number. The second is the general case with an arbitrary matrix or multivector.

We then develop our initial results into a geometric foundation for physics
in 2D and 3+1D, consistent with the general solution.

Finally, the Discussion section provides an interpretation of quantum me-
chanics consistent with its newly revealed origin, namely the metrological inter-
pretation. Central to this interpretation is the measure maximizing the Shannon
entropy and constrained by geometric measurements, which yields the wavefunc-
tion. This interpretation thus considers the entropy of measurements and asso-
ciated constraints more fundamental than the now entirely derivable wavefunc-
tion. The end product is a theory that deprecates the measurement problem,
supersedes it with a theory of instruments, and provides a plausible explanation
for the origin of quantum mechanics in nature, connecting it entirely to entropy
and geometry.

2 Methods

2.1 Notation

• Typography:

Sets are written using the blackboard bold typography (e.g., L, W, and
Q) unless a prior convention assigns it another symbol.

Matrices are in bold uppercase (e.g., P and M), tuples, vectors, and
multivectors are in bold lowercase (e.g., u, v, and g), and most other
constructions (e.g., scalars and functions) have plain typography (e.g.,
a, andA).

The unit pseudo-scalar (of geometric algebra), imaginary number, and
identity matrix are i, i, and I, respectively.

• Sets:

The projection of a tuple p is proji(p).

As an example, the elements of R2 = R1 × R2 are denoted as p = (x, y).

The projection operators are proj1(p) = x and proj2(p) = y;

if projected over a set, the corresponding results are proj1(R2) = R1 and
proj2(R2) = R2, respectively.

The size of a set X is |X|.
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The symbol ∼= indicates a homomorphism.

• Analysis:

The asterisk z† denotes the complex conjugate of z.

• Matrix:

The Dirac gamma matrices are γ0, γ1, γ2, and γ3.

The Pauli matrices are σx, σy, and σz.

The dagger M† denotes the conjugate transpose of M.

The commutator is defined as [M,P] : MP−PM, and the anti-commutator
is defined as {M,P} : MP+PM.

• Geometric algebra:

The elements of an arbitrary curvilinear geometric basis are denoted as
e0, e1, e2, . . . , en (such that eν · eµ = gµν), and x̂0, x̂1, x̂2, . . . , x̂n (such
that x̂µ · x̂ν = ηµν) if they are orthonormal.

A geometric algebra of m+ nD over field F is denoted as G(Fm,n).

The grades of a multivector are denoted as 〈v〉k.
Specifically, 〈v〉0 is a scalar, 〈v〉1 is a vector, 〈v〉2 is a bivector, 〈v〉n−1 is
a pseudo-vector, and 〈v〉n is a pseudo-scalar.

A scalar and vector such as 〈v〉0+ 〈v〉1 form a para-vector; a combination
of even grades (〈v〉0 + 〈v〉2 + 〈v〉4 + . . . ) or odd grades (〈v〉1 + 〈v〉3 + . . . )
form even or odd multivectors, respectively.

Let G(R2) be the 2D geometric algebra over the real set.

We can formulate a general multivector of G(R2) as u = a+ x+b, where
a is a scalar, x is a vector, and b is a pseudo-scalar.

Let G(R3,1) be the 3+1D geometric algebra over the real set.

Then, a general multivector of G(R3,1) can be formulated as u = a +
x + f + v + b, where a is a scalar, x is a vector, f is a bivector, v is a
pseudo-vector, and b is a pseudo-scalar.

2.2 Geometric representation of matrices

2.2.1 Geometric representation in 2D

Let G(R2) be the 2D geometric algebra over the real set.
A general multivector of G(R2) is given as

u = a+ x+ b, (10)

where a is a scalar, x is a vector, and b is a pseudo-scalar.
Each multivector has a structure-preserving (addition/multiplication) ma-

trix representation.
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Definition 1 (2D geometric representation ).

a+ xx̂+ yŷ + bx̂ ∧ ŷ ∼=
󰀗
a+ x −b+ y
b+ y a− x

󰀘
(11)

The converse is also true;
each 2× 2 real matrix is represented as a multivector of G(R2).
In geometric algebra, the determinant[4] of a multivector u can be defined

as

Definition 2 (Geometric representation of the determinant 2D).

det : G(R2) −→ R
u 󰀁−→ u‡u, (12)

where u‡ is

Definition 3 (Clifford conjugate 2D).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2. (13)

For example,

detu = (a− x− b)(a+ x+ b) (14)

= a2 − x2 − y2 + b2 (15)

= det

󰀗
a+ x −b+ y
b+ y a− x

󰀘
(16)

Finally, we define the Clifford transpose.

Definition 4 (2D Clifford transpose). The Clifford transpose is the geometric
analog to the conjugate transpose, interpreted as a transpose followed by an
element-by-element application of the complex conjugate. Thus, the Clifford
transpose is a transpose followed by an element-by-element application of the
Clifford conjugate.

󰀵

󰀹󰀹󰀷

u00 . . . u0n

...
. . .

...
um0 . . . umn

󰀶

󰀺󰀺󰀸

‡

=

󰀵

󰀹󰀹󰀷

u‡
00 . . . u‡

m0
...

. . .
...

um0 . . . u‡
nm

󰀶

󰀺󰀺󰀸 (17)

If applied to a vector, then

󰀵

󰀹󰀹󰀷

v1

...
vm

󰀶

󰀺󰀺󰀸

‡

=
󰁫
v‡
1 . . .v‡

m

󰁬
(18)
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2.2.2 Geometric representation in 3+1D

Let G(R3,1) be the 3+1D geometric algebra over the real set.
A general multivector of G(R3,1) can be written as

u = a+ x+ f + v + b, (19)

where a is a scalar, x is a vector, f is a bivector, v is a pseudo-vector, and
b is a pseudo-scalar.

Similarly, each multivector has a structure-preserving (addition/multiplication)
matrix representation.

The multivectors of G(R3,1) are represented as follows:

Definition 5 (4D geometric representation).

a+ tγ0 + xγ1 + yγ2 + zγ3

+ f01γ0 ∧ γ1 + f02γ0 ∧ γ2 + f03γ0 ∧ γ3 + f23γ2 ∧ γ3 + f13γ1 ∧ γ3 + f12γ1 ∧ γ2

+ vtγ1 ∧ γ2 ∧ γ3 + vxγ0 ∧ γ2 ∧ γ3 + vyγ0 ∧ γ1 ∧ γ3 + vzγ0 ∧ γ1 ∧ γ2

+ bγ0 ∧ γ1 ∧ γ2 ∧ γ3

∼=

󰀵

󰀹󰀹󰀹󰀷

a+ x0 − if12 − iv3 f13 − if23 + v2 − iv1 −ib+ x3 + f03 − iv0 x1 − ix2 + f01 − if02
−f13 − if23 − v2 − iv1 a+ x0 + if12 + iv3 x1 + ix2 + f01 + if02 −ib− x3 − f03 − iv0
−ib− x3 + f03 + iv0 −x1 + ix2 + f01 − if02 a− x0 − if12 + iv3 f13 − if23 − v2 + iv1

−x1 − ix2 + f01 + if02 −ib+ x3 − f03 + iv0 −f13 − if23 + v2 + iv1 a− x0 + if12 − iv3

󰀶

󰀺󰀺󰀺󰀸

(20)

In this case, the converse is not true; that is, only a subset of a 4×4 complex
matrices, namely, whose determinant is real-valued, can be represented as a
multivector of G(R3,1).

In 3+1D, we define the determinant solely using the constructs of geometric
algebra[4].

The determinant of u is

Definition 6 (3+1D geometric representation of determinant).

det : G(R3,1) −→ R (21)

u 󰀁−→ ⌊u‡u⌋3,4u‡u, (22)

where u‡ is

Definition 7 (3+1D Clifford conjugate).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2 + 〈u〉3 + 〈u〉4, (23)

and where ⌊u⌋{3,4} is the blade-conjugate of degrees three and four (the plus
sign is reversed to a minus sign for blades 3 and 4)

⌊u⌋{3,4} := 〈u〉0 + 〈u〉1 + 〈u〉2 − 〈u〉3 − 〈u〉4. (24)
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2.3 Geometric constraints

Definition 8 (Geometric constraints). Let M be an n × n matrix and Q be a
statistical ensemble.

The geometric constraint is

trM =
󰁛

q∈Q
ρ(q) trM(q), (25)

The geometric constraint can also be represented using a multivector u of a
geometric algebra G(Rm,n)

tru =
󰁛

q∈Q
ρ(q) tru(q), (26)

The trace trM or tru denotes the expectation value of the statistically
weighted sum of matrices M(q) or multivectors u(q), parameterized over en-
semble Q.

3 Result

3.1 Non-relativistic quantum mechanics

In this subsection, which serves as an introductory example, we recover non-
relativistic quantum mechanics using the Lagrange multiplier method and a
geometric constraint.

As previously mentioned, the Shannon entropy is applied instead of the
Boltzmann entropy to achieve the aforementioned goal.

S = −
󰁛

q∈Q
ρ(q) ln ρ(q) (27)

In statistical mechanics, we use ”scalar” constraints on the entropy, such
as energy and volume meters, which are sufficient for recovering the Gibbs
ensemble. However, applying such scalar constraints is insufficient to recover
quantum mechanics.

A complex geometric constraint, an invariant for a complex phase, is used to
overcome this limitation. It is defined as

tr

󰀥
0 −b

b 0

󰀦
=

󰁛

q∈Q
ρ(q) tr

󰀗
0 −b(q)

b(q) 0,

󰀘
(28)

where

󰀗
a(q) −b(q)
b(q) a(q)

󰀘
∼= a(q)+ ib(q) is the matrix representation of the com-

plex numbers.
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Similar to energy or volume meters, geometric instruments produce a se-
quence of measurements that converge to an expectation value but with a phase
invariance. In our framework, this phase invariance originates from the trace.

The Lagrangian equation that maximizes the entropy subject to the complex
geometric constraint is

L = −
󰁛

q∈Q
ρ(q) ln(q) + α

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ τ

󰀳

󰁃tr

󰀥
0 −b

b 0

󰀦
−

󰁛

q∈Q
ρ(q) tr

󰀗
0 −b(q)

b(q) 0

󰀘󰀴

󰁄

(29)

This equation is maximized for ρ by imposing the condition ∂L
∂ρ(q) = 0. The

following results are obtained:

∂L
∂ρ(q)

= − ln ρ(q)− 1− α− τ tr

󰀗
0 −b(q)

b(q) 0

󰀘
(30)

0 = ln ρ(q) + 1 + α+ τ tr

󰀗
0 −b(q)

b(q) 0

󰀘
(31)

=⇒ ln ρ(q) = −1− α− τ tr

󰀗
0 −b(q)

b(q) 0

󰀘
(32)

=⇒ ρ(q) = exp(−1− α) exp

󰀣
−τ tr

󰀗
0 −b(q)

b(q) 0

󰀘󰀤
(33)

=
1

Z(τ)
det exp

󰀣
−τ

󰀗
0 −b(q)

b(q) 0

󰀘󰀤
, (34)

where Z(τ) is obtained as

1 =
󰁛

q∈Q
exp(−1− α) exp

󰀣
−τ tr

󰀗
0 −b(q)

b(q) 0

󰀘󰀤
(35)

=⇒
󰀃
exp(−1− α)

󰀄−1
=

󰁛

q∈Q
exp

󰀣
−τ tr

󰀗
0 −b(q)

b(q) 0

󰀘󰀤
(36)

Z(τ) :=
󰁛

q∈Q
det exp

󰀣
−τ

󰀗
0 −b(q)

b(q) 0.

󰀘󰀤
(37)

The exponential of the trace is equal to the determinant of the exponential
according to the relation det expA ≡ exp trA.

Finally, we obtain
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ρ(τ, q) =
1

Z(τ)
det exp

󰀣
−τ

󰀗
0 −b(q)

b(q) 0

󰀘󰀤
(38)

∼= | exp−iτb(q)|2 Born rule (39)

Renaming τ → t/󰄁 and b(q) → H(q) recovers the familiar form of

ρ(q) =
1

Z

󰀏󰀏󰀏exp
󰀃
−itH(q)/󰄁

󰀄󰀏󰀏󰀏
2

. (40)

or

ρ(q) =
1

Z

󰀏󰀏ψ(q)
󰀏󰀏2 , where ψ(q) = exp

󰀃
−itH(q)/󰄁

󰀄
. (41)

Thus, we can show that all three Dirac Von–Neumann axioms and the Born
rule are satisfied, revealing a possible origin of quantum mechanics as the solu-
tion to an optimization problem on entropy and geometry.

From (41), we can identify the wavefunction as a vector of some orthogonal
space (here, a complex Hilbert space) and partition function as its inner product,
expressed as

Z = 〈ψ|ψ〉 . (42)

As the result is automatically normalized by the entropy-maximization pro-
cedure, the physical states associates to the unit vectors, and the probability of
any particular state is given by

ρ(q) =
1

〈ψ|ψ〉 (ψ(q))
†ψ(q). (43)

Finally, any self-adjoint matrix, defined as 〈Oψ|φ〉 = 〈ψ|Oφ〉, will corre-
spond to a real-valued statistical mechanics observable, if measured in its eigen-
basis, thereby completing the equivalence.

3.2 Probability measure of all geometric measurements

Here, we explore the arbitrary geometric constraint in its full generality:

trM =
󰁛

q∈Q
ρ(q) trM(q), (44)

where M is the arbitrary n× n matrix.
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Notably, an arbitrary multivector u of G(Rm,n) can be used, instead of
matrix M. In both cases, the derivation remains the same.

The Lagrange equation used to maximize the entropy under this constraint
is expressed as

L = −
󰁛

q∈Q
ρ(q) ln(q) + α

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ τ

󰀳

󰁃trM−
󰁛

q∈Q
ρ(q) trM(q)

󰀴

󰁄 ,

(45)

where α and τ are the Lagrange multipliers.
Similarly, we maximize Equation (45) for ρ using the criterion ∂L

∂ρ(q) = 0 as

follows:

∂L
∂ρ(q)

= − ln ρ(q)− 1− α− τ trM(q) (46)

0 = ln ρ(q) + 1 + α+ τ trM(q) (47)

=⇒ ln ρ(q) = −1− α− τ trM(q) (48)

=⇒ ρ(q) = exp(−1− α) exp
󰀃
−τ trM(q)

󰀄
(49)

=
1

Z(τ)
det exp

󰀃
−τM(q)

󰀄
(50)

where Z(τ) is obtained as

1 =
󰁛

q∈Q
exp(−1− α) exp

󰀃
−τ trM(q)

󰀄
(51)

=⇒
󰀃
exp(−1− α)

󰀄−1
=

󰁛

q∈Q
exp

󰀃
−τ trM(q)

󰀄
(52)

Z(τ) :=
󰁛

q∈Q
det exp

󰀃
−τM(q)

󰀄
(53)

The resulting probability measure is

ρ(q, τ) =
1

Z(τ)
det exp

󰀃
−τM(q)

󰀄
, (54)

where

Z(τ) =
󰁛

q∈Q
det exp

󰀃
−τM(q)

󰀄
. (55)
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By defining ψ(q, τ) := exp
󰀃
−τM(q)

󰀄
, we can express ρ(q, τ) = detψ(q, τ),

where the determinant acts as a ”generalized Born rule,” connecting, in this
case, a general linear amplitude to a real-valued probability.

The sophistication of the general linear amplitude and determinant acting
as a ”generalized Born rule” will provide a platform to support fundamental
physics.

Finally, let us remark the existence of a more general case where a Lagrange
multiplier is assigned to each independent entry of matrix M(q). Then,

ρ(q, τ) =
1

Z(τ)
det exp

󰀃
−τ ·M(q)

󰀄
, (56)

where τ is an n× n matrix. The · operator assigns the first element of τ to
the first element of M(q), and so forth.

4 Analysis

This section analyses the main result as a general linear quantum theory. We
introduce the algebra of geometric observables applicable to the general linear
wavefunction.

An algebra of observables is introduced. The 2D definition of the algebra
constitutes a special case reminiscent of the definitions of ordinary quantum me-
chanics yet includes gravity. The 3+1D case is significantly more sophisticated
than the 2D case and is elucidated immediately after the 2D case analysis.

4.1 Axiomatic definition of the algebra in 2D

Let V be an mD vector space over G(R2).
A subset of vectors in V forms an algebra of observables A(V) if the following

holds:

A) ∀ψ ∈ A(V), the sesquilinear map

〈·, ·〉 : V× V −→ G(R2)

〈u,v〉 󰀁−→ u‡v (57)

is positive-definite for ψ, such that 〈ψ,ψ〉 > 0

B) ∀ψ ∈ A(V). Then, for each element ψ(q) ∈ ψ, the function

ρ(ψ(q),ψ) =
1

〈ψ,ψ〉ψ(q)
‡ψ(q) (58)

is positive-definite: ρ(ψ(q),ψ) > 0

13



We note the following comments and definitions:

• From A) and B), it follows that ∀ψ ∈ A(V), the probabilities sum up to
unity:

󰁛

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (59)

• ψ is called a natural (or physical) state.

• 〈ψ,ψ〉 is called the partition function of ψ.

• If 〈ψ,ψ〉 = 1, then ψ is called a unit vector.

• ρ(q,ψ) is called the probability measure (or generalized Born rule) of ψ(q).

• The set of all matrices T acting on ψ as Tψ → ψ′, such that the sum of
probabilities remains normalized.

󰁛

ψ(q)∈ψ

ρ(ψ(q),Tψ) =
󰁛

ψ(q)∈ψ

ρ(ψ(q),ψ) = 1 (60)

are the natural transformations of ψ.

• A matrix O such that ∀u ∈ V and ∀v ∈ V:

〈Ou,v〉 = 〈u,Ov〉 (61)

is called an observable.

• The expectation value of an observable O is

〈O〉 = 1

〈ψ,ψ〉 〈Oψ,ψ〉 (62)

4.2 Geometric self-adjoint operator in 2D

The general case of an observable in 2D is shown in this section. A matrix O is
observable if it is a self-adjoint operator defined as

〈Oφ,ψ〉 = 〈φ,Oψ〉 (63)

∀φ ∈ V and ∀ψ ∈ V.

14



Setup: Let O =

󰀗
o00 o01

o10 o11

󰀘
be an observable.

Let φ and ψ be two two-state multivectors φ =

󰀗
φ1

φ2

󰀘
and ψ =

󰀗
ψ1

ψ2

󰀘
. Here,

the components φ1, φ2, ψ1, ψ2, o00, o01, o10, o11 are multivectors of G(R2).

Derivation: 1. Calculate 〈Oφ,ψ〉:

2〈Oφ,ψ〉 = (o00φ1 + o01φ2)
‡ψ1 +ψ‡

1(o00φ1 + o01φ2)

+ (o10φ1 + o11φ2)
‡ψ2 +ψ‡

2(o10φ1 + o11φ2) (64)

= φ1
‡o‡

00ψ1 + φ‡
2o

‡
01ψ1 +ψ‡

1o00φ1 +ψ‡
1o01φ2

+ φ‡
1o

‡
10ψ2 + φ‡

2o
‡
11ψ2 +ψ‡

2o10φ1 +ψ‡
2o11φ2 (65)

2. Next, calculate 〈φ,Oψ〉:

2〈φ,Oψ〉 = φ‡
1(o00ψ1 + o01ψ2) + (o00ψ1 + o01ψ2)

‡φ1

+ φ‡
2(o10ψ1 + o11ψ2) + (o10ψ1 + o11ψ2)

‡φ1 (66)

= φ‡
1o00ψ1 + φ‡

1o01ψ2 +ψ‡
1o

‡
00φ1 +ψ‡

2o
‡
01φ1

+ φ‡
2o10ψ1 + φ‡

2o11ψ2 +ψ‡
1o

‡
10φ1 +ψ‡

2o
‡
11φ1 (67)

To realize 〈Oφ,ψ〉 = 〈φ,Oψ〉, the following relations must hold:

o‡
00 = o00 (68)

o‡
01 = o10 (69)

o‡
10 = o01 (70)

o‡
11 = o11. (71)

Therefore, O must be equal to its own Clifford transpose, indicating that O
is an observable if

O‡ = O, (72)

which is the geometric generalization of the self-adjoint operator O† = O of
complex Hilbert spaces.

4.3 Geometric spectral theorem in 2D

The application of the spectral theorem to O‡ = O such that its eigenvalues are
real is shown below:

15



Consider

O =

󰀗
a00 a− xx̂1 − yx̂2 − bx̂12

a+ xx̂1 + yx̂2 + bx̂12 a11

󰀘
, (73)

Then O‡ is

O‡ =

󰀗
a00 a− xx̂1 − yx̂2 − bx̂12

a+ xx̂1 + yx̂2 + bx̂12 a11

󰀘
, (74)

It follows that O‡ = O
This example is the most general 2× 2 matrix O such that O‡ = O.
The eigenvalues are obtained as

0 = det(O− λI) = det

󰀗
a00 − λ a− xx̂1 − yx̂2 − bx̂12

a+ xx̂1 + yx̂2 + bx̂12 a11 − λ

󰀘
, (75)

This implies that

0 = (a00 − λ)(a11 − λ)− (a− xx̂1 − yx̂2 − bx̂12)(a+ xx̂1 + yx̂2 + bx̂12 + a11)
(76)

0 = (a00 − λ)(a11 − λ)− (a2 − x2 − y2 + b2), (77)

Finally,

λ = {1
2

󰀓
a00 + a11 −

󰁳
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

󰀔
, (78)

1

2

󰀓
a00 + a11 +

󰁳
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

󰀔
} (79)

Notably, where a00−a11 = 0, the roots would be complex if a2−x2−y2+b2 <
0. Is this always the case? Note that the determinant of real matrices must
be greater than zero because of the exponential mapping to the orientation-
preserving general linear group:

expM(Rn) → GL+(n,R) (80)

Therefore, in this case, a2 − x2 − y2 + b2 > 0, which is the determinant of
the multivector.

Consequently, under the orientation-preserving transformations, O‡ = O
constitutes an observable with real-valued eigenvalues.
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4.4 Left action in 2D

A left action on the wavefunctionT |ψ〉 connects to the bilinear form as 〈ψ|T‡T |ψ〉.
The invariance requirement on T is

〈ψ|T‡T |ψ〉 = 〈ψ|ψ〉 . (81)

Therefore, we are interested in the group of matrices that follow

T‡T = I. (82)

Let us consider a two-state system, with a general transformation repre-
sented by

T =

󰀗
u v
w x

󰀘
, (83)

where u, v, w, x are the 2D multivectors.
The expression T‡T is

T‡T =

󰀥
v‡ u‡

w‡ x‡

󰀦 󰀗
v w
u x

󰀘
=

󰀥
v‡v + u‡u v‡w + u‡x
w‡v + x‡u w‡w + x‡x

󰀦
(84)

For T‡T = I , the following relations must hold:

v‡v + u‡u = 1 (85)

v‡w + u‡x = 0 (86)

w‡v + x‡u = 0 (87)

w‡w + x‡x = 1 (88)

This is the case if

T =
1√

v‡v + u‡u

󰀥
v u

−eϕu‡ eϕv‡

󰀦
, (89)

where u, v are the 2D multivectors, and eϕ is a unit multivector.
Comparatively, the unitary case is obtained when the vector part of the

multivector vanishes, i.e., x → 0, and we obtain

U =
1󰁳

|a|2 + |b|2

󰀥
a b

−eiθb† eiθa†

󰀦
. (90)

Here T is the geometric generalization of unitary transformations.
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4.5 Schrödinger equation of 2D geometry

First, the standard Schrödinger equation can be derived as follows.
In the bra-ket notation, we recall that a one-parameter group evolves as

follows:

exp(−itH)
󰀏󰀏ψ(0)

󰀎
=

󰀏󰀏ψ(t)
󰀎
. (91)

Thus, an infinitesimal displacement of t is obtained as follows:

exp(−iδtH)
󰀏󰀏ψ(τ)

󰀎
=

󰀏󰀏ψ(τ + δτ)
󰀎
. (92)

Now, we approximate the exponential into a power series as

exp(−iδtH)
󰀏󰀏ψ(τ)

󰀎
≈ 1− iδtH

󰀏󰀏ψ(t)
󰀎
. (93)

The process is continued as follows:

(1− iδtH)
󰀏󰀏ψ(t)

󰀎
=

󰀏󰀏ψ(t+ δt)
󰀎

(94)
󰀏󰀏ψ(τ)

󰀎
− iδtH

󰀏󰀏ψ(t)
󰀎
=

󰀏󰀏ψ(t+ δt)
󰀎

(95)

−iδtH
󰀏󰀏ψ(t)

󰀎
=

󰀏󰀏ψ(t+ δt)
󰀎
−
󰀏󰀏ψ(t)

󰀎
(96)

−iH
󰀏󰀏ψ(t)

󰀎
=

󰀏󰀏ψ(t+ δt)
󰀎
−
󰀏󰀏ψ(t)

󰀎

δt
(97)

−iH
󰀏󰀏ψ(t)

󰀎
=

d
󰀏󰀏ψ(t)

󰀎

dt
. (98)

which is the Schrödinger equation.
Returning to our result, we begin by eliminating the elements of u = a+x+b

by posing a → 0,x → 0:

u |a→0,x→0= b = ib (99)

This reduces GL+(2,R) to SO(2).
Then, the left action matrix T becomes valued in 〈G(R2)〉4, and the Stone

theorem on one-parameter groups applies. Consequently, we obtain

T(τ) |a→0,x→0= exp(iτO) (100)

where

(O‡ = O) |a→0,x→0 =⇒ O† = O (101)
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The end equation is mathematically similar to the Schrödinger equation (98):

−iO
󰀏󰀏ψ(τ)

󰀎
=

d
󰀏󰀏ψ(τ)

󰀎

dτ
, (102)

and the wavefunction is ψ(τ) = exp(−τ iO)
Compared to the Schrödinger equation, here i is not an imaginary unit but

a rotor in 2D. We recall that i = x̂1x̂2 and that rotors R = exp
󰀃
1
2θi

󰀄
are

exponentials of bivectors.
We thus arrived at a quantum theory of geometry, visualized as follows:

ψ‡(τ)x̂0ψ(τ) = exp(τ iB)x̂0 exp(−τ iB) (103)

= exp(τ x̂0x̂1B)x̂0 exp(−τ x̂0x̂1B) (104)

The expression exp(τ x̂0x̂1B)x̂0 exp(−τ x̂0x̂1B) maps x̂0 to a curvilinear ba-
sis e0 via the application of the rotor and its reverse:

exp(τ x̂0x̂1B)x̂0 exp(−τ x̂0x̂1B) = e0(τ) (105)

Here, we eliminated certain elements of GL+(2,R) reducing it to SO(2), and
found that the resulting geometry-valued Schrödinger equation is invariant in
the SO(2) group.

4.6 Gravity in 2D

Roger Penrose argued ”that the case for gravitizing quantum theory is at least
as strong as that for quantizing gravity” (stated in the abstract)[5].

We further stress that a theory that would succeed at gravitizing the quan-
tum does not need to quantify gravity (and vice-versa). Indeed, it seems rea-
sonable to expect any consistent singular theory to be at most either, but not
both.

Gravitizing the quantum (rather than quantizing gravity) is the approach of
this study. Indeed, we made no changes to general relativity. Instead, our en-
tropy maximization process produced a wavefunction valued in the orientation-
preserving general linear group, whose geometric flexibility exceeds the familiar
unitary wavefunction. It is within this extra flexibility that we will find gravity.

In the previous result, we bluntly eliminated elements a → 0 and x → 0 of
the group GL+(2,R), reducing it to SO(2). How important are the eliminated
terms? What if instead of eliminating them, we perform a structure reduction
thus, recovering the SO(2) group as before, but also the space resulting from a
quotient bundle?

Let us investigate.
First, let X2 be a smooth orientable real-valued manifold in 2D.
Second, we note that in the general case, our wavefunction is valued in

curvilinear (arbitrary basis) multivectors u:
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u = a+ xe1 + ye2 + be1e2 (106)

We now equipX2 with curvilinear u via the cross product: X2×exp
󰀃
G(R2)

󰀄
.

The crossing induces a frame-bundle FX on X2, whose structure group is in
GL+(2,R).

X2 now has the required structure (an exponentiated arbitrary-basis multi-
vector is assigned at every point) to define our wavefunction from the entropy-
maximization of multivectors at every point on X2.

The structure group in GL+(2,R) of FX can be reduced to SO(2) yielding
the geometric quantum theory of rotations identified in the previous section,
but also yielding the global section of the quotient bundle FX/SO(2) which is a
Riemmanian metric on X2. The connection that preserves the structure SO(2)
across the manifold is the Levi-Civita connection.

The frame bundle is a natural bundle that admits general covariant trans-
formations, which are the symmetries of the gravitation theory on X2[6].

We stress that the gravitized quantum theory holds before symmetry break-
ing (in the GL+(2,R) group) and after symmetry breaking into theory of gravity
part and a theory of local quantum rotations in SO(2)) part.

4.7 Gravity in 2D (another take)

David Hestenes [7] has formulated the wavefunction in the language of geometric
algebra in 3+1D.

The geometric algebra formulation of the wavefunction in 2D is

ψ =
√
ρ exp(ib) (107)

such that

ψψ‡ =
√
ρ exp(ib)

√
ρ exp(−ib) = ρ (108)

It is obtained from our formalism by eliminating x from u by posing x → 0.
Thus, u |x→0= a+ b.

The gravitational theory, in this case, would follow from this structure re-
duction GL+(2,R)/(R+ × SO(2)), yielding the Weyl+ connection to preserve
this structure instead of the Levi-Civita connection.

Here, ρ can be seen as the prior (or initial) probability, and the Weyl con-
nection preserves the weight of this prior (in addition to the rotation group)
along the manifold.

4.8 Algebra of geometric observables in 3+1D

In this section, the general case in 3+1D is presented.
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In 2D, the determinant can be expressed using only the product ψ‡ψ, which
can be interpreted as the inner product of two vectors. This form allowed us to
extend the complex Hilbert space to a geometric Hilbert space. We then found
that the familiar properties of the complex Hilbert spaces were transferable to
the geometric Hilbert space, eventually yielding a 2D gravitized quantum theory
in the language of geometric algebra.

Although a similar correspondence exists in 3+1D, it is less recognizable
because we need a quartic-inner-product (i.e., ρ = ⌊φ‡φ⌋3,4φ‡φ) to produce a
real-valued probability in 3+1D.

Thus, in 3+1D, we cannot produce a sesquilinear inner product form similar
to the 2D case. The absence of a satisfactory inner product indicates no Hilbert
space in the usual sense of a complete inner product vector space.

We aim to find a construction that supports the general linear wavefunction
in 3+1D.

To build the right construction, a quartic-inner-product of four terms is
devised, replacing the inner product in the Hilbert space, mapping any four
vectors to an element of G(R3,1), and yielding a complete quartic-inner-product
vector space.

The familiar quantum mechanical features (linear transformations, observ-
ables as matrix or operators, and linear superposition in the probability mea-
sure) will be supported in the construction.

Let V be an mD vector space over G(R3,1).
A subset of vectors in V forms an algebra of observables A(V) if the following

holds:

1. ∀φ ∈ A(V), the quartic-inner-product form

〈·, ·, ·, ·〉 : V× V× V× V −→ G(R3,1)

〈u,v,w, z〉 󰀁−→
m󰁛

i=1

⌊u‡
ivi⌋3,4w

‡
i zi (109)

is positive-definite when u = v = w = z; that is 〈φ,φ,φ,φ〉 > 0

2. ∀φ ∈ A(V), then for each element ψ(q) ∈ φ, the function

ρ(ψ(q),φ) =
1

〈φ,φ,φ,φ〉 detφ(q), (110)

is positive-definite: ρ(φ(q),φ) > 0

We note the following properties, features, and comments:

• From A) and B), it follows that, ∀φ ∈ A(V), and the probabilities sum to
unity.
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󰁛

φ(q)∈φ

ρ(φ(q),φ) = 1 (111)

• φ is called a natural (or physical) state.

• 〈φ,φ,φ,φ〉 is called the partition function of φ.

• If 〈φ,φ,φ,φ〉 = 1, then φ is called a unit vector.

• ρ(φ(q),φ) is called the probability measure (or generalized Born rule) of
φ(q).

• The set of all matrices T acting on φ such as Tφ → φ′ makes the sum of
probabilities normalized (invariant):

󰁛

φ(q)∈φ

ρ(φ(q),Tφ) =
󰁛

φ(q)∈φ

ρ(φ(q),φ) = 1 (112)

are the natural transformations of φ.

• A matrix O such that ∀u∀v∀w∀z ∈ V:

〈Ou,v,w, z〉 = 〈u,Ov,w, z〉 = 〈u,v,Ow, z〉 = 〈u,v,w,Oz〉 (113)

is called an observable.

• The expectation value of an observable O is

〈O〉 = 〈Oφ,φ,φ,φ〉
〈φ,φ,φ,φ〉 (114)

4.9 Geometric observables in 3+1D

In 4D, an observable must satisfy equation 113. For simplicity, let us take m in
equation 109 to be 1. Then,

⌊(Ou)‡v⌋3,4w‡z = ⌊u‡Ov⌋3,4w‡z = ⌊u‡v⌋3,4(Ow)‡z = ⌊u‡v⌋3,4w‡Oz (115)

where u1, v1, w1 and z1 are multivectors.
Let us investigate.
If O contained a vector, bivector, pseudo-vector, or pseudo-scalar, the equal-

ity would not be satisfied as these terms do not commune with the equality
multivectors and cannot be factored out. The equality is satisfied if O ∈ R.
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Indeed, as a real value, O commutes with all multivectors of equality and can
be factored out to satisfy the equality.

We thus find that the observables are real-valued in the general 3+1D case.
At first, this may seem restrictive; comparatively, the observables in the 2D

case were geometrically-valued O‡ = O and not merely real-valued. However,
the geometric expressivity of the observables in 3+1D expands when reducing
the structure (see Section 4.14).

4.10 Invariant transformations in 3+1D

We now identify the invariant transformations of probability measures (which
will be useful later).

⌊(Tu)‡Tv⌋3,4(Tw)‡Tz = ⌊u‡v⌋3,4w‡z (116)

=⇒ ⌊u‡T‡Tv⌋3,4w‡T‡Tz = ⌊u‡v⌋3,4w‡z (117)

The measure is invariant when

1. T‡T = I

2. T‡T ∈ Cn×n and (T‡T)†T‡T = I and x → 0,v → 0.

3. T ∈ Cn×n and T†T = I and x → 0,v → 0.

4.11 Geometric observables in 6D

Let us open a small parenthesis and investigates what happens in higher dimen-
sions.

The observables in 3+1D must satisfy a more constraining equality relation
than in 2D, reducing the geometric expressivity that such observables could
support. Specifically, the general observable relation was satisfied for O‡ = O
in 2D (capturing the full general linear geometry in 2D), and O ∈ R (with
structure reductions x → 0,v → 0 in 3+1D, yielding O† = O) which is a tiny
subset of the geometric potential in 4D.

What happens if we increase the dimensions even further to 6 and above?
At dimensions of 6 or above, the corresponding observable relation cannot

be satisfied. To see why, we look at the results[8] of Acus et al. regarding the
6-D multivector norm. They performed an exhaustive computer-assisted search
for the geometric algebra expression for the determinant in 6D; as conjectured,
they found no norm defined via self-products. However, the norm found was a
linear combination of self-products.

The system of linear equations is too long to list in its entirety; the author
gives this mockup:
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a40 − 2a20a
2
47 + b2a

2
0a

2
47p412p422 + 〈72 monomials〉 = 0 (118)

b1a
3
0a52 + 2b2a0a

2
47a52p412p422p432p442p452 + 〈72 monomials〉 = 0 (119)

〈74 monomials〉 = 0 (120)

〈74 monomials〉 = 0 (121)

The author then produces the special case of this norm that holds only for
a 6D multivector comprising a scalar and grade 4 element:

s(B) = b1Bf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) (122)

Even in this simplified special case, formulating a linear relationship for
observables is doomed to fail. Indeed, even the real portion of the observable
cannot be extracted from the equation. We find that for any function fi and
gi, the coefficient b1 and b2 will frustrate the equality:

b1OBf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) (123)

= b1Bf5(f4(B)f3(f2(B)f1(B))) + b2OBg5(g4(B)g3(g2(B)g1(B))) (124)

Equations 123 and 124 can only be equal if b1 = b2; however, the norm s(B)
requires both to be different. Consequently, the relation for observables in 6D
is unsatisfiable even by real numbers.

Thus, in our framework, the 6D geometry leads to the absence of observables.
This result is likely generalizable to all dimensions above 6. The norms involve
more sophisticated systems of linear equations at higher dimensions.

4.12 Defective probability measure in 3D and 5D

We can also rule out the 3D and 5D cases because the probability measure in
these dimensions is not real but complex-valued, making them defective.

In G(R3), the matrix representation of a multivector

u = a+ xσx + yσy + zσz + qσyσz + vσxσz + wσxσy + bσxσyσz (125)

is

u ∼=
󰀗
a+ ib+ iw + z iq − v + x− iy
iq + v + x+ iy a+ ib− iw − z

󰀘
(126)

and the determinant is

detu = a2 − b2 + q2 + v2 + w2 − x2 − y2 − z2 + 2i(ab− qx+ vy − wz) (127)

The result is a complex-valued probability. Since a probability must be
real-valued, the 3D case is defective in our framework and cannot be used.

In G(R4,1), the algebra is isomorphic to G(C3,1) and complex 4 × 4 matri-
ces. Consequently, the determinant and probability are complex-valued. Con-
sequently, this case is also defective and cannot be used in our framework.
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4.13 Specialness of 4D

Our framework is non-defective only in the following dimensions:

1. 0D: corresponds to the familiar (and classical) statistical mechanics. The
constraints are scalar E =

󰁓
q∈Q ρ(q)E(q), and the probability measure is

the Gibbs measure.

2. 1D: the non-relativistic quantum mechanical case we recovered in the re-
sults section, using the matrix representation of the complex numbers.

3. 2D: the geometric quantum theory discussed earlier. Gravity exhausted
all geometric freedom of the theory, and thus only gravity exists in 2D.
There is no leftover geometry for internal gauges.

4. 4D: the case investigated in this subsection. The gravitization contains
leftover geometry used to define particle physics.

In contrast, our framework is defective in the following dimensions:

1. 3D and 5D: the probability measure is complex-valued.

2. 6D and above: no observables satisfy the corresponding observable equa-
tion, in general.

Based on our model, the surprise that the geometry of our universe is 4D
should vanish; 4D is simply the largest spacetime that captures all non-defective
cases.

4.14 Wavefunction

We now return to 4D.
In the David Hestenes’ notation[7], the 3+1D wavefunction is expressed as

ψ =
󰁳
ρeibR, (128)

where ρ represents a scalar probability density, eib is a complex phase, and
R is a rotor expressed as the exponential of a bivector.

To recover David Hestenes’ formulation of the wavefunction, it suffices to
square our wavefunction and eliminate the terms x → 0 and v → 0:

ψ = φ2 |x→0,v→0= e2a+2f+2b =
󰁳
ρeibR (129)

More rigorously, we can obtain this wavefunction via a reduction of the
quartic-inner-product form (Equation 109). We perform the following replace-
ments:
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v → u‡ (130)

u → u (131)

z → w (132)

w → w‡ (133)

Consequently, the quartic-inner-product form becomes a two-form (inner
product). Since the multivectors are here reduced (x → 0,v → 0), the blade-
3,4 conjugate is also reduced to the blade-4 conjugate.

〈u,v,w,x〉 → 〈u,u‡,w‡,w〉 ∼= 〈u,w〉 =
m󰁛

i=1

((u2
i )

‡)†w2
i (134)

With the association ψ = φ2, this shows that the wavefunction is a statistical
sub-ensemble of our general 3+1D ensemble, whose norm is

〈ψ,ψ〉 = (ψ‡)†ψ = ρ (135)

In this case the observables are satisfied when

(O‡)† = O (136)

This relation captures the full geometry 3+1D has to offer (for the group
reduction given by x → 0,v → 0). Comparatively, in the full 3+1D case the
observables satisfied Equation 115 only if real-valued. We thus arrive at the
conclusion that the wavefunction is the largest statistical structure in 3+1D
that is entirely observable geometrically.

We also notice that although the wavefunction lives in 4D it is a ”2D-like sta-
tistical object”; that is, its statistical norm is given by an inner-product rather
than a quartic-inner-form. We believe working in an inner-product framework,
rather than a quartic-inner-form framework, is one of the key reason quantum
theory resists gravitization (Section 4.15).

Let us analyze the symmetry group of this wavefunction.
First, we observed that the terms a and b commute with f and with each

other. Thus, they can be factored out as

e2a+2f+2b = e2a+2be2f (137)

Second, the term f can be understood as the exponential map from the
so(3, 1) lie algebra to the Spin(3, 1) group.

Consequently, the wavefunction represents the exponential map of the fol-
lowing lie algebra
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R⊕ so(3, 1)⊕ u(1) (138)

which associates to the following group

(R+ × Spin(3, 1)×U(1))/Z2
∼= R+ × Spinc(3, 1) (139)

as well as its double cover

R+ × Spin(3, 1)×U(1) (140)

4.15 Gravity in 3+1D

The gravitational theory in 3+1D is defined in a manner to similar to the 2D
csae.

We begin by crossing a world manifold X4 with an exponentiated arbitrary
curvilinear multivector. This induces a frame bundle LX on X4, allowing us
to define our wavefunction on X4. The structure reduction GL+(4,R)/SO(3, 1)
entails a pseudo-Riemmanian metric in the global section of the quotient bun-
dle. When followed by a structure lift to Spinc(3, 1) it is then entailed a U(1)-
preserving spinlike connection.

If a prior is used, the structure is reduced to R+ × SO(3, 1) then lifted to
R+ × Spinc(3, 1). In this case, the associated spinlike connection preserves the
R+ structure associated with the statistical prior, as well as the U(1) structure.

4.16 Dirac current

David Hestenes defines the Dirac current in the language of geometric algebra
as

j = ψ‡γ0ψ (141)

This definition holds in our formulation. We now have all the tools required
to construct particle physics by exhausting the remaining geometric freedom of
our framework.

4.17 SU(2) × U(1) group

Our wavefunction transforms as a group ψ1ψ2 = ψ. The most general transfor-
mation that our framework supports is multiplication by the exponentiation of
a reduced multivector (i.e., x → 0,v → 0):

eu = exp(a+ f + b) (142)
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We now ask, what is the most general multivector eu which leaves the Dirac
current invariant?

ψ‡(eu)‡γ0e
uψ = ψ‡γ0ψ ⇐⇒ (eu)‡γ0e

u = γ0 (143)

When is this satisfied?
The bases of the bivector part f of u are γ0γ1, γ0γ2, γ0γ3, γ1γ2, γ1γ3, and

γ2γ3. Among these, only γ1γ2, γ1γ3, and γ2γ3 commute with γ0, and the rest
anti-commute; therefore, the rest must be made equal to 0. Finally, the base
γ0γ1γ2γ3 anti-commutes with γ0 and cancels out.

Consequently, the most general exponential multivector of the form eu where
u = f + b which preserves the Dirac current is

eu = exp(F12γ1γ2 + F13γ1γ3 + F23γ2γ3 + b) (144)

We can rewrite the bivector basis with the Pauli matrices

γ2γ3 = iσx (145)

γ1γ3 = iσy (146)

γ1γ2 = iσz (147)

b = ib (148)

After replacements, we obtain

eu = exp i(F12σz + F13σy + F23σx + b) (149)

The terms F23σx +F13σy +F12σz and b are responsible for SU(2) and U(1)
symmetries, respectively. The details of this identification process are available
in [9, 10].

4.18 SU(3) group

The invariance identified by equation 117 is T‡T = I. The identified evolution
was bivectorial rather than unitary.

As we did for the SU(2) × U(1) case, we ask, in this case, what is the most
general bivectorial evolution which leaves the Dirac current invariant?

f‡γ0f = γ0 (150)

where f is a bivector:

f = F01γ0γ1 + F02γ0γ2 + F03γ0γ3 + F23γ2γ3 + F13γ1γ3 + F12γ1γ2 (151)
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Explicitly, the expression f‡γ0f is

f‡γ0f = −fγ0f = (F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12)γ0 (152)

+ (−2F02F12 + 2F03F13)γ1 (153)

+ (−2F01F12 + 2F03F23)γ2 (154)

+ (−2F01F13 + 2F02F23)γ3 (155)

For the Dirac current to remain invariant, the cross-product must vanish:

−2F02F12 + 2F03F13 = 0 (156)

−2F01F12 + 2F03F23 = 0 (157)

−2F01F13 + 2F02F23 = 0 (158)

leaving only

f‡γ0f = (F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12)γ0. (159)

Finally, F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12 must equal 1.
We note that we can re-write f as a 3-vector with complex components:

f = (F01 + iF23)γ0γ1 + (F02 + iF13)γ0γ2 + (F03 + iF12)γ0γ3 (160)

Then, with the nullification of the cross-product, and equating F 2
01 + F 2

02 +
F 2
03+F 2

13+F 2
23+F 2

12 to unity, we can understand the bivectorial evolution when
constrained by the Dirac current to be a realization of the SU(3) group.

The other invariance of equation 117 is unitary invariance, which was sup-
ported in equation 139.

We have now consumed the full geometric expressivity of our framework in
3+1D, to produce the SU(2)×U(1) gauge, the SU(3) gauge, and the gravita-
tional theory, excluding anything else. Our model is a gravitized quantum theory
in the unbroken GL+(4,R) symmetry, whose symmetry breaks into two parts:
a classical theory of gravity part, and a quantum theory of the SU(2)xU(1) and
SU(3) part.

5 A Step toward falsifiable predictions

Several falsifiable predictions are listed below.
The main idea is that a general linear wavefunction would allow a larger class

of interference patterns than complex interference. The general linear interfer-
ence pattern includes ways in which the orientation-preserving general linear
group can produce interfere under a linear transformation, including interfer-
ence from from rotations, boosts, shear, and dilations.
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It is plausible that an Aharonov–Bohm effect experiment on gravity[11] could
detect up to the general linear phase and patterns identified in this section.

These patterns hold in the unbroken GL+(4,R) and GL+(2,R) symmetries.
An interference pattern follows from a linear combination of u and v, and

the application of the determinant:

det(u+ v) = detu+ detv + extra-terms (161)

The sum of the probability is (detu+ detv). The “extra terms” represents
the interference term.

We use the extra terms to define a bilinear form using the dot product
notation.

· : G(Rm,n)× G(Rm,n) −→ R (162)

u · v 󰀁−→ 1

2
(det(u+ v)− detu− detv) (163)

For example, in 2D, we have

u = a1 + x1e1 + y1e2 + b1e12 (164)

v = a2 + x2e1 + y2e2 + b2e12 (165)

=⇒ u · v = a1a2 + b1b2 − x1x2 − y1y2. (166)

If detu > 0 and detv > 0, then u · v is always positive, thereby qual-
ifying as a positive-definite inner product, but not greater than either detu
or detv(whichever is greater). Therefore, it also satisfies the conditions of an
interference term.

• In 2D, the dot product is equivalent to the form

1

2
(det(u+ v)− detu− detv) =

1

2

󰀓
(u+ v)‡(u+ v)− u‡u− v‡v

󰀔

(167)

= u‡u+ u‡v + v‡u+ v‡v − u‡u− v‡v
(168)

= u‡v + v‡u (169)

• In 3+1D, it is substantially more complex:
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1

2
(det(u+ v)− detu− detv) (170)

=
1

2

󰀓
⌊(u+ v)‡(u+ v)⌋3,4(u+ v)‡(u+ v)− ⌊u‡u⌋3,4u‡u− ⌊v‡v⌋3,4v‡v

󰀔

(171)

=
1

2

󰀓
⌊u‡u+ u‡v + v‡u+ v‡v⌋3,4(u‡u+ u‡v + v‡u+ v‡v)− . . .

󰀔

(172)

= ⌊u‡u⌋3,4u‡u+ ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u+ ⌊v‡v⌋3,4v‡v − . . .
(173)

= ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u (174)

A simpler version of this interference pattern is possible when the general
linear group is reduced.

Complex interference:
In 2D, reducing the general linear group to the circle group reduces the

interference pattern to a complex interference.

|ψ1 + ψ2|2 = |ψ1|2 + |ψ2|2 + 2|ψ1||ψ2| cos (φ1 − φ2) (175)

Deep spinor interference:
Reducing to the spinor group reduces the interference pattern to a ”deep

spinor rotation.”
Consider a two-state wavefunction (we note that [f ,b] = 0)).

ψ = ψ1 + ψ2 = ea1ef1eb1 + ea2ef2eb2 (176)

The geometric interference pattern for a full general linear transformation
in 4D is given by

⌊ψ‡ψ⌋3,4ψ‡ψ. (177)
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Starting with the sub-product

ψ‡ψ = (ea1e−f1eb1 + ea2e−f2eb2)(ea1ef1eb1 + ea2ef2eb2) (178)

= ea1e−f1eb1ea1ef1eb1 + ea1e−f1eb1ea2ef2eb2

+ ea2e−f2eb2ea1ef1eb1 + ea2e−f2eb2ea2ef2eb2 (179)

= e2a1e2b1 + e2a2e2b2 + ea1+a2eb1+b2(e−f1ef2 + e−f2ef1) (180)

The full product is expressed as

⌊ψ‡ψ⌋3,4ψ‡ψ =
󰀓
e2a1e−2b1 + e2a2e−2b2 + ea1+a2e−b1−b2(e−f1ef2 + e−f2ef1)

󰀔

×
󰀓
e2a1e2b1 + e2a2e2b2 + ea1+a2eb1+b2(e−f1ef2 + e−f2ef1

󰀔

(181)

= e2a1e−2b1e2a1e2b1 + e2a1e−2b1e2a2e2b2 + e2a1e−2b1ea1+a2eb1+b2(e−f1ef2 + e−f2ef1)

+ e2a2e−2b2e2a1e2b1 + e2a2e−2b2e2a2e2b2 + e2a2e−2b2ea1+a2eb1+b2(e−f1ef2 + e−f2ef1)

+ ea1+a2e−b1−b2(e−f1ef2 + e−f2ef1)e2a1e2b1

+ ea1+a2e−b1−b2(e−f1ef2 + e−f2ef1)e2a2e2b2

+ ea1+a2e−b1−b2(e−f1ef2 + e−f2ef1)ea1+a2eb1+b2(e−f1ef2 + e−f2ef1)
(182)

= e4a1 + e4a2 + 2e2a1+2a2 cos(2b1 − 2b2) (183)

+ ea1+a2(e−f1ef2 + e−f2ef1)( (184)

e2a1(e−b1+b2 + eb1−b2) (185)

+ e2a2(eb1−b2 + e−b1+b2)) (186)

+ e2a1+2a2(e−f1ef2 + e−f2ef1)2 (187)

= e4a1 + e4a2

󰁿 󰁾󰁽 󰂀
sum

+2e2a1+2a2 cos(2b1 − 2b2)󰁿 󰁾󰁽 󰂀
complex interference

+ 2ea1+a2(e2a1 + e2a2)(e−f1ef2 + e−f2ef1)(cos(B1 −B2)) + e2A1+2A2(e−f1ef2 + e−f2ef1)2󰁿 󰁾󰁽 󰂀
deep spinor interference

(188)

5.1 A model of GL+(2,R) that lives in R+ × Spinc(3, 1)

Observing the interference patterns in the section above in 3+1D may pose a
challenge, because they require the GL+(4,R) symmetry to be unbroken.

An easier challenge, may be to realize an injection between GL+(2,R) and
R+ × Spinc(3, 1), and then to witness the 2D version of the gravitized quantum
theory.

Consider a wavefunction in 3+1D of this form
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ψ = eA+F01γ0γ1+F02γ0γ2+F03γ0γ3+F12γ1γ2+F13γ1γ3+F23γ2γ3+Bγ0γ1γ2γ3 (189)

The following eliminations

F03 → 0 (190)

F12 → 0 (191)

F13 → 0 (192)

F23 → 0 (193)

along with the associations γ0γ1 → σx, and γ0γ2 → σy causes ψ to be
isomorphic to GL+(2,R).

ψ = eA+F01σx+F02σy+Bγ0γ1γ2γ3 (194)

We recall that in 2D we were using the representation of the GL+(2,R)
group using the multivector u = exp

󰀃
a+ xσx + yσy + bσxσy

󰀄
.

Using the reduced 3+1D norm (Equation 134), the observables of the injec-
tion satisfy (O‡)† = O which, in this case, is isomorphic to the same in 2D. The
transformations are given as (T‡)†T = I which, in this case, are also isomorphic
to the same in 2D. Finally, the interference pattern is also isomorphic to the 2D
case.

Consequently, it should be possible to construct a wavefunction with a prior
(R+), with a pseudo-scalar (U(1)), select a 2D structure (e.g. thin crystal, etc),
and observe the unbroken GL+(2,R) wavefunction behaviour.

6 Discussion

We recovered the foundations of quantum mechanics using the tools of statistical
mechanics to maximize the entropy under the effect of a geometric constraint.
We also replaced the Boltzmann entropy with the Shannon entropy. We will
now discuss the interpretation of our model in more details.

Contrary to multiple interpretations of quantum mechanics, the interpre-
tation of statistical mechanics is singular, free of paradoxes, and without any
measurement problem; remarkably, this will carry over to our interpretation of
quantum mechanics.

Definition 9 (Metrological interpretation). There exist instruments that record
sequences of measurements on systems. These measurements are unique up to a
geometric phase, and the Born rule (including its geometric generalization to the
determinant) is the entropy-maximizing measure constrained by the expectation
value of these measurements.
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The Lagrange multiplier method, which maximizes the entropy subject to
geometric constraints, is the mathematical backbone of this interpretation.

We now discuss the definition of the measuring apparatus entailed by this
interpretation.

Integrating formally into physics the notion of an instrument or measuring
apparatus has been a long-standing difficulty. One of the pitfalls is attributing
too much “detailing” to this instrument (for instance, defining the instrument as
a macroscopic system that amplifies quantum information), which increases the
risk of capturing only a fraction of all possible instruments in nature. Fractional
capture is to be avoided because the instruments are our only “eyes into nature”;
consequently, the generality of their definition must be on a level similar to the
laws of physics.

In statistical mechanics, instruments and their effects on systems are in-
corporated into mathematical formalism. For instance, an energy or volume
meter can produce a sequence of measurements whose average converges to-
wards an expectation value, constituting a constraint on the entropy. However,
the generalizability of this definition to all physical systems (including quantum
and geometrical) was overlooked. This study capitalized on this definition and
extended it appropriately.

The instrument is defined as follows:

Definition 10 (Instrument/Measuring Apparatus). An instrument, or mea-
suring apparatus, is a device that constrains the entropy of a message of mea-
surements to an expectation value.

Nature allows geometrically richer measurements and instrumentations, which
cannot be expressed with simple “scalar” or “phase-less” instruments. For in-
stance, a protractor or boost meter also admit numerical measurements; how-
ever, they also contain geometric phase invariances, such as the rotational or
Lorentz invariance, respectively. These invariances must be absorbed within the
associated probability measure.

In the metrological interpretation, the existence of such instruments, not the
wavefunction, is taken as axiomatic. The laws of physics are determined by the
geometrical richness (invariance) of the instruments in nature.

This study interpreted the trace as the expectation value of the eigenvalues of
a matrix transformation multiplied by the dimension of the vector space. Max-
imizing the entropy under the constraint of this expectation value introduces
various phase invariances into the resulting probability measure, consistent with
the available measuring apparatuses.

As we have seen, the constraint

tr

󰀥
0 −b

b 0

󰀦
=

󰁛

q∈Q
tr ρ(q)

󰀗
0 −b(q)

b(q) 0

󰀘
(195)

induces a complex phase invariance into the probability measure ρ(q) =󰀏󰀏󰀏exp
󰀃
−iτb(q)

󰀄󰀏󰀏󰀏
2

, which gives rise to the Born rule and wavefunction.
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Moreover, the constraint

trM =
󰁛

q∈Q
tr ρ(q)M(q) (196)

induces a general linear phase invariance in the probability measure ρ(q) =
det exp

󰀃
−τM(q)

󰀄
. The resulting probability measure supporting a gravitized

quantum theory.
In each case, we can interpret the constraint as an instrument acting on the

system.
In the complex phase, we associate the constraint with an incidence counter

measuring a particle or photon. Moreover, in the general linear case, we asso-
ciate the constraint to a measure invariant with respect to natural transforma-
tions, such as measurements of the geometry of spacetime events.

The complete correspondence between an ordinary system of statistical me-
chanics and ours is as follows.

Table 1: Correspondence

Concept Statistical Mechanics Geometric Constraint (Ours)

Entropy Boltzmann Shannon
Measure Gibbs Born rule on wavefunction
Constraint Energy meter Phase-invariant instrument
Micro-state Energy values Possible measurements
Macro-state Equation of state Evolution of the wavefunction
Experience Ergodic Message of measurements

In the correspondence, using the Shannon entropy instead of the Boltzmann
entropy changes the experience from ergodic to a message (in the sense of the
communication theory of Claude Shannon[12]) of measurements.

The receipt of such a message by, say, an observer carries information; it is
interpreted as registering a “click”[13] on a screen or other detecting instrument.

Using the Shannon entropy, quantum physics can be interpreted as the prob-
ability measure resulting from the entropy maximization of a message of geo-
metrically invariant measurements an observer receives.

The probabilistic interpretation of the wavefunction via the Born rule is
inherited from statistical mechanics and results from maximizing the entropy
under geometric constraints.

The wavefunction is also entailed, and not considered axiomatic either. In-
stead, receiving a message of the measurements by an instrument, along with
the geometric constraints on the corresponding entropy, is axiomatic.

The axioms of quantum mechanics are recoverable as theorems from the
solution ∂L

∂ρ = 0 for ρ, where
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L = −
󰁛

q∈Q
ρ(q) ln ρ(q) + λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ τ

󰀳

󰁃trM−
󰁛

q∈Q
ρ(q) trM(q)

󰀴

󰁄 .

(197)

Now, let us discuss the wavefunction collapse problem:
Specifically, the mathematical foundation of quantum mechanics contains

the following axiom: If the measurement of a quantity O on ψ gives the result
on, then the state immediately after the measurement is given by the normalized
projection of ψ onto the eigensubspace of on as

ψ =⇒ Pn |ψ〉󰁳
〈ψ|Pn |ψ〉

(198)

The measurement-collapse problem is, in our framework, superseded as fol-
lows: Before deriving the wavefunction, measurements are assumed to have been
registered by an instrument and associated with a geometric constraint, which
is axiomatic. Registering new measurements, in this case, does not mean that
a wavefunction has collapsed but implies that we need to adjust the constraints
and derive a new wavefunction consistent with new measurements. Because the
wavefunction is derived by maximizing the entropy constrained by the registered
measurements, it never updates from an uncollapsed to a collapsed state. The
collapse problem is a symptom of attributing an ontology to the wavefunction;
however, the ontology belongs to the instruments and their measurements —
not the wavefunction.

Since our knowledge of nature comes from the available instruments, pos-
tulating these instruments (rather than the wavefunction) to be the axioms of
physics makes the mathematics of physics entirely consistent with it being an
empirical science.

The full correspondence is also consistent with the general intuition that
random information must be axiomatic, as, by definition, it cannot be derived
from any earlier principles. Ultimately, it is viable to consider the message of
random measurements, rather than the wavefunction (a precise and determin-
istic mathematical equation), to be the axiomatic foundation of the theory. As
shown, the latter can be derived from the former, but not vice versa, as sug-
gested by the lack of a satisfactory mechanism for the wavefunction collapse in
the usual interpretation.

6.1 Axioms of Physics

We propose that the laws of physics are ultimately entailed only and entirely
by the following minimal axioms related to measurements.

Context 1 (Observability). Let q be the elements of a statistical ensemble Q.
Then m : Q → R is an observable of Q. Then Q is observable.

36



Context 2 (Comprehensibility). The experience of the observer in nature is
defined as the receipt of a message m ∈ (m(Q))n of n measurements performed
on n identical copies of Q.

Context 3 (Representativeness). Observations are representative of the limit:
when |m| → ∞, then m ∈ R (i.e., the average of these measurements converges
towards a well-defined expectation value).

Context 4 (Comprehensiveness). Observations are comprehensive in the limit:
when |m| → ∞, then Q is well-defined (i.e., all the elements in Q are identified).

Axiom 1 (Geometricity). A geometric measuring device constrains the entropy
of a message of measurement as follows:

trM =
󰁛

q∈Q
ρ(q) trM(q) (199)

where m(q) := trM(q) is a possible measurement, and M corresponds to a
matrix or multivector.

Conjecture 1 (Geometric Closure). The geometric constraint is sufficiently
restrictive to represent only the measurements that are possible in nature, yet
sufficiently descriptive to represent all such measurements.

Theorem 1 (Laws of Physics as a Theorem). Maximizing the entropy of a
message of measurements constrained by a geometric measuring device yields a
model of physics that maximizes the information acquired from said measure-
ments:

L = −
󰁛

q∈Q
ρ(q) ln ρ(q) + λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ τ

󰀳

󰁃trM−
󰁛

q∈Q
ρ(q) trM(q)

󰀴

󰁄 .

(200)

Solving for ∂L/∂ρ = 0 implies

ρ(q, τ) =
1

Z(τ)
det exp

󰀃
−τM(q)

󰀄
, (201)

where

Z(τ) =
󰁛

q∈Q
det exp

󰀃
−τM(q)

󰀄
. (202)

where the Lagrange multiplier τ represents the one-parameter group evo-
lution of, in the general case, the orientation preserving general linear group
GL+(n,R).

As shown this corresponds to a gravitated quantum theory.
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7 Conclusion

We proposed a geometric constraint to maximize the Shannon entropy. It is
used to derive a probability measure that supports a geometry richer than what
was previously used in statistical physics or quantum mechanics. It substan-
tially extends the opportunity to capture all the modern physics phenomena
within a single framework. The wavefunction of the general linear group is de-
rived to accommodate all the possible geometric measurements, and the Born
rule is extended to the determinant. The framework produces a non-defective
model for 0D, 1D, 2D, and 4D. 4D stands out as the largest space that includes
all non-defective variations. A gravitational theory results from the GL+(4,R)
group undergoing symmetry breaking to the Spinc(3, 1) group. Breaking the
symmetry of the general linear wavefunction into the Spinc(3, 1) group reduces
the quantum theory to the SU(2)× U(1) and SU(3) for its invariant transfor-
mations. Finally, an interpretation of quantum mechanics, i.e., the metrological
interpretation, is proposed; the existence of instruments and measurements they
produce acquire the foundational role, and the wavefunction is derived as a the-
orem. In this interpretation, it is considered that an observer receives a message
(theory of communication/Shannon entropy) of phase-invariant measurements,
and the probability measure, maximizing the information of this message, is the
(general linear) wavefunction accompanied by the (general linear) Born rule.

Constructing the full field theoretical version of this theory constitutes an
avenue of future research for this framework.
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