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Abstract

While there exists in the wild a process to derive the laws of physics
—mnamely, the practice of science— such does not currently benefit from
a purely formal construction. This lack necessarily leads to obscurities in
the development of physics. It is our present purpose to formalize the pro-
cess within a purely mathematical background that will eliminate these
obscurities. The first step in the program will be to eliminate all ambigu-
ities from our language. To do so, we will express arbitrary experiments
using Turing complete languages and halting programs. A listing of such
experiments is recursively enumerable and, if understood as an incremen-
tal contribution to knowledge, then serves as a formulation of mathematics
that models the practice of science entirely. In turn this formulation leads
to a definition of the observer as the probability space over all experiments
in nature, and physics as the solution to an optimization problem on the
production of a message from said space; interpreted, physics defines a
circumscription on the participation of the observer in nature. Finally,
we discuss our model of the observer and the relation to physics, in the
context of a comprehensive theory of reality.
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1 Introduction

It is intuitive for many to describe the laws of physics as a circumscription on
one’s own freedom of action. For instance, the following phrasing is commonly
heard: ”In nature, one can do anything except violate the laws of physics”, or
”The laws of physics are what one cannot violate in nature”. This is in contrast
to the modern formulation of the laws of physics as a characterization of the



behaviour of a substance external to oneself, such as the behaviour of the elec-
tron or the photon, which has historically been more amenable to mathematical
formalization.

Our present purpose will be to derive physics consistently with this intuition,
and then it will be to capitalize on the advantages of the new formulation.

To derive physics we must start at a level more fundamental than its axioms.
Four systems will be introduced to support this. The first, second and third
systems formalizes knowledge, the practice of science and the observer, respec-
tively, —and this is key— without reference to physics. Then, in the last system,
physics is recovered as the solution to an optimization problem circumscribing
the observer’s participation in nature.

Essentially, the model that formalizes the practice of science by the observer
in nature is both sufficiently sophisticated to entail physics, and sufficiently
fundamental to be prior to physics.

With this more fundamental starting point, results which previously eluded
the axiomatic formulation of physics will be manifest: the origin of the wave-
function and the Born rule (section 5.5), the purpose and mechanism of wave-
function collapses (section 5.4 and 5.6), a geometric theory of quantum physics
(section 7 and 8), a plausible unification of general relativity with quantum
mechanics (section 8.2), and of course the recovery of familiar quantum field
theory (section 8.1).

The model therefore completes modern theoretical physics with many of its
key missing parts.

How does the model work in the technical sense?

First, a sketch.

The four systems are:

1. A Formal System of Knowledge

We define knowledge and we select the appropriate mathematical tools to
model it. Specifically, a unit of knowledge will be modelled as a halting
program. Then, each discovery of a halting program will be taken as
a contribution to the lexicon of knowledge. The lexicon, as it includes
all halting programs, is Turing complete, and consequently will not be
decidable, but rather recursively enumerable. Furthermore, as it is Turing-
complete, the lexicon is maximally expressive, and on par with any other
Turing complete language. Finally, we show that the lexicon satisfies the
epistemological definition of knowledge.

2. A Formal System of Science (used to "map” knowledge)

We connect halting programs to a description of reality. To do so, we
introduce the notion of an experiment as an initial preparation along with
a protocol (i.e. a series of steps) to be performed on the preparation
such that it terminates with a result. We then further introduce the
notion of a universal experimenter as a machine that can carry out any
experiments in nature. We find that such admits equivalent mathematical
definitions to that of a halting program and that of a universal Turing



machine, respectively. Finally, we argue that any system can be described
equivalently, and without ambiguities, by a corresponding collection of
terminated experiments (in lieu of, say, dynamical equations).

From here, a scientific method will be defined as a function that recur-
sively enumerates experiments. A specific listing of halting programs or
experiments produces an incremental contribution of mathematical or ex-
perimental knowledge, respectively. Such can then be used to validate or
invalidate predictive models of knowledge.

This yields a formalization of the practice of science that is entirely free
of obscurities. Purely mathematical definitions for experimentations, pre-
dictions, falsification and other scientific notions are also made available.

. A Formal Theory of the Observer (used to practice science)

We define and model the object that practices science. We attack the
problem from this angle: If the observer deterministically produces a re-
cursive enumeration of experiments, then it is merely a machine and the
physics it is subjected to is super-deterministic; if however, the observer
probabilistically produces a recursive enumeration of experiments, then it
is a probability space of experiments.

As the later case involves the use of probabilities and since its domain is the
set of all experiments, we qualify it as a model of observer participation
under the assumption of experimenter freedom (a term borrowed from
its use as an assumption to the Bell inequality), or interchangeably as;
'freedom of action’, ’free participation’ or ’free practice of science’. The
terms ’free’ and ’freedom’ are in this context to be interpreted similarly
to the strict sense given by Conway and Kochen[1] as freedom from being
determined by past history, thus allowing a probabilistic enumeration in
the present; and that of the Bell inequality as having the freedom to pick
the experiment (or equivalently its parameters), also undetermined by past
history. It is not meant to be interpreted in the metaphysical sense of free
will commonly used in philosophy.

With the observer so defined, its ”experience” will be given in the form of
the production or receipt of a message (in the sense of the theory of infor-
mation of Claude Shannon) of experimental contributions. Furthermore,
since the elements of the message are selected according to a probability
measure, then a quantity of information will be associated to receiving or
producing it.

As we found, the unit of information associated with the message is, for
arbitrary experiments, not representable by bits, but rather by ’clicks’ (a
term we borrowed from John A. Wheeler[2] regarding the recording of an
incidence by an incidence counter). Thus, in our system, the fundamental
experience of the observer corresponds to a specific sequence of recorded
‘clicks’ representing a specific a selection of completed experiments in na-
ture. Essentially, these ’clicks’ define the ”"path” the observer takes in the
space of all experiments.



The observer is then an object that is free, in this sense, to practice sci-
ence in nature (rather than be compelled to act by a Turing machine or
deterministic algorithm), and as we found, it is in this context that the
laws of physics, in their familiar form, are manifest.

4. A Formal Model of Physics (derived by optimization as a circumscription
on the freedom of action of the observer).

We found that fundamental physics is derivable by solving an optimiza-
tion problem on the quantity of information associated with the receipt
(or production) of a message of experimental contributions. Interpreted,
physics defines the ’freest’ circumscription around observer participation.

Optimizing the information of the ’clicks’ will be sufficient to entail quan-
tum physics. This is because, quite remarkably, these ’clicks’ behave sim-
ilarly to wave-function measurement collapses. In fact, applying the tra-
ditional machinery of statistical mechanics to an ensemble of clicks, then
maximizing the entropy, yields very straightforwardly the wave-function
and the Born rule in lieu of the Gibbs measure, thereby providing an origin
for these concepts that were previously postulated.

Furthermore, we found the machinery to be sufficiently powerful to derive
quantum theory up to gravity in the form of a gauge-invariant general
linear wave-function. This is because the structure of the ’clicks’ that we
recover is in fact slightly more general than the collapses that are manifest
in standard quantum physics, and as it turned out, are exactly enough to
admit the Einstein field equations (EFE) as its equation of motion. We
stress that the EFE does not need to be imported into the quantum theory,
nor does it need to be reduced to its linearized form, and follows directly
from within.

If we interpret the production or receipt of a message of experimental
contributions as the result of the free participation of the observer in
nature, then the resulting model of physics, as it is optimized, is merely
interpreted as the maximally permissive model of said participation. From
this, the inviolability of the laws of physics automatically follows, simply
because the observer logically cannot make a choice ’freer than freest’ and
that ’freest’ is used to define the laws of physics.

We pass now to the detailed and rigorous execution of the argument sketched
above.

2 The Formal System of Knowledge

Mathematics tends to be formulated on the backbone of theories of truth, for
instance propositional logic or first order logic, and their aim are to correctly
propagate truth from statement to statement; whereas in the sciences, we tend to
find theories of knowledge whose aim are to produce incremental contributions
to validate (or invalidate) an ever more complete model thereof.



Knowledge is similar to truth in many ways. For instance, both quanti-
tatively relate to a binary state: knowledge is either known (1) or unknown
(0), and truth is either true (1) or false (0). But, theories of truth tend to
view incompleteness as a weakness since it signals obscurities, whereas those
of knowledge seek it as it signals an opportunity for progress. Furthermore,
axiomatic theories formulated in terms of truth tend to clash with one another
(incompatible premises entail contradictions), whereas those formulated based
on knowledge contribute to one another (knowledge is closed under union).

We have a plurality of theories of truth in mathematics, but so far we have
not captured these differences and intuitions into a formal system of knowledge.

Let us begin by stating that attempts to find a complete logical basis for
truth have been made ad nauseam in the past but they failed for primarily two
reasons. First, they were attempted before Godel-type theorems were known
and appreciated, and attempts were directed at constructing decidable logical
bases for truth. Second, instead of directing efforts to recursively enumerable
bases following the discovery of said incompleteness theorems, efforts simply felt
out of favour as it was understood that any sufficiently expressive system of truth
would contain obscurities, and this made them philosophically unattractive. It
is however possible to construct recursively enumerable bases (provided they
are not decidable), and further the limitations of recursive enumeration ought to
instead be seen as an opportunity; in this case, to create a formal system to map
out knowledge, such that it may serve as the foundation to a formalization of
science. In this case, the theory challenges us to discover new knowledge, rather
than to merely fix truth definitionally only to bail out at the first obscurity, and
in this context we call it a theory of knowledge to distinguish it from a theory
of truth. Theories of knowledge, as recursively enumerable systems, are a more
general concept than theories of truth which are subsets thereof. Indeed, for all
statements that are either true (1) or false (0), it is the case that we can know
(1) its truth value; but if a statement is such that it is undecidable, a binary
state of knowledge still applies to it: unknown (0).

To help appreciate the utility and to fix the intuition, consider the follow-
ing "amusing” construction which we will call rotting arithmetic. In logic we
are allowed to inject any sentence as a new axiom, and to investigate its con-
sequences. Rotting arithmetic will be defined as the union of the axioms of
Peano’s arithmetic and of the axiom of rot, which we define as follows:

Axiom of rot := (2282’589’933 - 1) is a prime (1)
Rotting Arithmetic := {Peano’s Arithmetic} U {Axiom of rot}  (2)

The axiom of rot claims that a very large is number is a prime. If it’s true,
then it has no effects on the system, but if it’s false, the system is inconsis-
tent. Comparatively, the largest known prime (at the time of this writing) is
282,589,933 __ 1 which is orders of magnitude smaller than the number referenced
in the axiom of rot. Since we have used randomness to generate the axiom of
rot, odds are minuscules that it is a prime... or perhaps we did hit the jackpot



and it is a prime. A theory of knowledge can assign the state unknown (0) to
the axiom of rot until such a time as we find out if the proposed number is or
isn’t a prime; whereas a theory of truth expects true or false right now, as it’s
truth-value is fixed in principle.

It may be that it takes us a century until we find out if the axiom of rot is or
isn’t true, as our computing capacities may need to improve before we can know.
As time goes by, the ”freshness” of the theory slowly diminishes, until such a
time as it is revealed to be rotten at which time it is discarded (or alternatively
it keeps perpetually fresh if we did hit the jackpot and the number is a prime).

Rotting arithmetic is ”threatened” by falsification, but contrary to what we
might expect for falsification to be possible, in this case the threat contains no
references to nature. It is purely a mathematical effect due to the limits of our
computing power.

The example of rotten arithmetic may appear convoluted or unnatural —
after-all why would we take the chance with an axiom of rot, when we can easily
do arithmetic without it —, but now consider what often happens in science.
For nearly a century before Einstein produced the theory of special relativity
(Einstein, 20th century), the union of both classical mechanics (Newton, 17th
century) and electromagnetism (19th century) was ”fresh”:

Law of Inertia : F =ma (3)
V-E=p/e,V-B=0,... (4)

{F = ma} U {Maxwells’ equation} (5)

Maxwells’ equation :

Union :

The discovery of "rot” in their union (Maxwell’s equations reports a constant
speed of light independently of the observer’s velocity, whereas velocities in
F=ma are additive) had to wait for nearly a century to be noticed and corrected.
In the mean time, most were happy to use both theories, and the problem
remained unnoticed. Similarly to the case of rotten arithmetic, the state of
knowledge of "rot” in the union had to go from unknown (0) to known (1),
before a new model was to be produced.

Falsification in general can be manipulated in a similar fashion. Instead of
having two axiomatic theories, we have an empirical statement along with an
axiomatic theory:

Observation : Precession of Mercury’s orbit  (6)
F=GmM/r* (7)

Falsification? :=  {P[...] of Mercury’s orbit} U {F = GmM/r*} (8)

Law of Gravitation :

The statement ”Precession of Mercury’s orbit” would plausibly indicate a
sequence of measurements, observations or experiments, and falsification occurs
if they are not solutions to the law of gravitation.

The next step is to develop the mathematical tools that are appropriate to
describe a theory of knowledge formally. To realize this we must be a bit more



technical. Let us look at the philosophical discipline that studies knowledge,
epistemology, and distill it for usable insights.

Epistemology, at least historically and dating all the way back to Plato, has
considered knowledge to be that which is a justified true belief. For instance 71
know Bill is from Arkansas (as a justified true belief), because his driver’s license
is from Arkansas (justification), and he is from Arkansas (true)”. However, the
Gettier problem[3] is a well known objection to this definition. Essentially, if
the justification is not loophole free, there exists a case where one is right by
pure luck, even if the claim were true and believed to be justified. For instance,
if one glances at a field and sees a shape in the form of a dog, one might think
he or she is justified in the belief that there is a dog in the field. Now suppose
there is a dog elsewhere in the field, but hidden from view. The belief ”there is
a dog in the field” is justified and true, but it is a hard sale to call it knowledge
because it is only true by pure luck.

Richard Kirkham[4] proposed to add the criteria of infallibility to the jus-
tification. Knowledge, previously justified true belief, would now be infallible
true belief. Merely seeing the shadow of a dog in a field would not be enough to
qualify as infallible true belief, as all claims will have to be exactly proportional
to the evidence. This is generally understood to eliminate the loophole, but it is
an unpopular solution because adding it is assumed to reduce knowledge to rad-
ical skepticism in which almost nothing is knowledge, thus rendering knowledge
non-comprehensive.

Here, we will adopt the insight of Kirkham regarding the requirement of
infallibility whilst resolving the non-comprehensiveness objection. To do so, we
will structure our statements such that they are each infallible, thus epistemi-
cally certain, yet as a group will form a Turing complete language.

Our tool of choice to represent infallible true beliefs will be the halting pro-
grams. They will act as the building blocks of knowledge in our system. Here,
we understand halting programs as a descriptive language, similar in expressive
power to any other Turing complete language, such as say english. But unlike
english, using halting programs makes the description of each unit of knowl-
edge completely free of ambiguities. And ambiguities are of course antithetical
to knowledge. General translations between all Turing languages exists, and
so we do not lose any expressive power by using them, over any other choice
of language. For instance, any mathematical problem can be reformulated as
a statement regarding the halting status of a program via the Curry—Howard
correspondence. Other correspondences exist between all Turing-complete lan-
guages.

The primary advantage in using a listing of halting programs over other can-
didates is that it will allow us to union all new discoveries of knowledge with
older ones, without any risk of the new ones invalidating the previous ones; thus
making old knowledge immutable under union with new knowledge. Indeed, if
a program is known to halt, then no other halting programs discovered after-
wards can contradict that. Rather, it will be ezplanatory models of knowledge
that would or could be invalidated (falsified) by new knowledge, and not old
knowledge. Contributions of new knowledge to a lexicon will be incremental



and permanent by guarantee.

Halting programs are of course subject to the halting problem and this will
entail our system to be a trial and error system. Consequently, acquiring new
knowledge will be difficult, even arbitrarily difficulty, and may even contain
dead-ends (non-halting programs). These trial and error effects will in turn
become the basis of a formal model of science that is entirely formalized, yet
sufficiently sophisticated to be comprehensive.

Let us inform the reader that information regarding the connection be-
tween mathematics, science and programs, is available in the works of Gregory
Chaitin[5, 6, 7] which constitute a major source of inspiration for our work. A
familiarity with his work and ideas is assumed.

2.1 Halting Programs as Knowledge

How do we construct an epistemically certain statement, so that it qualifies as
infallible in the sense of Kirkham?

Let us take the example of a statement that may appear as an obvious true
statement such as 71 + 1 = 27, but is in fact not epistemically certain. Here,
we will provide the definition of an epistemically certain statement, but equally
important, such that the set of all such statements is Turing complete, thus
forming a language of maximum expressive power.

Specifically, the sentence ”1+1 = 2”7 halts on some Turing machine, but not
on others and thus is not epistemically certain. Instead consider the sentence
PA F [5(0)+s(0) = s(s(0))] to be read as ” Peano’s axioms proves that 1+1 = 27.
Such a statement embeds as a prefix the set of axioms in which it is provable.
Without decorations, one can deny "1 4+ 1 = 2” (for example, an adversary
could claim binary numbers, in which case 1 + 1 = 10), but if one specifies
the exact axiomatic basis in which the claim is provable, said adversary would
find it harder to find a loophole to fail the claim. Nonetheless, even with this
improvement, an adversary can fail the claim by providing a Turing machine
for which PA F [s(0) + s(0) = s(s(0))] does not halt.

The key is to structure the statement so that all context required to prove
the statement is provided along with the statement itself; then it is the claim
that the context entails the statement that is epistemically certain. If we use
the tools of theoretical computer science we can produce statements free of all
loopholes, thus ensuring they are epistemically certain. Those statements, which
are mathematical theorems, are also —via Curry—Howard correspondence— the
halting programs. The value in knowing that a specific programs halts correlates
with the complexity of running the program until termination, which depending
on the sophistication of the statement could be substantial. Let us now introduce
a few definitions.

Let ¥ be a set of symbols, called an alphabet. A word is a sequence of
symbols from Y. The empty word is represented as @. The set of all finite
words is given as:
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W .= fj DK (9)
=0

Finally a language L is as a subset of W.

As an example, the sentences of the binary alphabet ¥ = {0,1} are the
binary words {@, 0, 1,00, 01,10, 11,000, ... }.

There exists multiple models of computation, such as Turing machines, p-
recursive functions, Lambda calculus, etc. Here, to retain generality we will use
computable functions without requiring a specific model.

Instead of a Turing machine, we will consider a Turing-computable function
and its definition is as follows:

A Turing machine ® computes a partial function TM: W — W iff:

1. For each d € Dom(TM), ®(d) halts and equals TM(d).
2. For each d ¢ Dom(TM), ®(d) never halts.

Then, TM is a Turing-computable function (or simply, a computable func-
tion). We denote TM as the set of all computable partial functions from
W — W.

Likewise, and instead of a universal Turing machine as a specific implementa-
tion, we will prefer to use a universal Turing-computable partial function of two
inputs DM: W x W — W. To use the elements of TM in this function, we must
introduce a bijective function, which we call an interpreter, as: (-): TM + W
specific to the DM. Then, if for all TM € TM and for all d € Dom(TM), it is
the case that if DM((TM), d) ~ TM(d), then DM is a universal function, and
we denote it as UTM.

Definition 1 (Halting Program). A halting program p is a pair TM x W:

pi= (TM,d) (10)
such that TM(d) = r.

With this definition, d can be considered as the statement, TM is its context,
and if TM(d) halts, then both are paired as a context-free halting claim:

p = (TM,d); UTM((TM), d) halts (11)

Since a translation exists between universal Turing machine, a claim that
d halts on TM, if known, entails ”p halts” is verifiable on all universal Turing
machines, and requires no specific context for this to be verified.

For instance, the following (trivial) program halts:
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fn one_plus_one_equals_two(){
if 1+1==2{
return;
}
loop{};
}

The claim ”p = (cargo run,one_plus_one_equals_two); UTM(p) halts” is a
unit of knowledge, and I can contribute it to the lexicon.

A less trivial example is shown in Annex C which presents a formal proof of
the commutativity of addition for natural numbers written in COQJ8]. Thus,
the claim ”p = (COQ, plus_comm); UTM(p) halts” would be another unit of
knowledge.

The second objection is that the epistemic certainty requirement is too de-
manding, preventing knowledge from being comprehensive by making it able
at most to only tackle a handful of statements. However, the set of all halt-
ing programs constitutes the entire domain of the universal Turing machine,
and thus the expressive power of halting programs must be on par with any
Turing complete language. Since there exists no greater expressive power for
a formal language than that of Turing completeness, then no reduction takes
place. The resulting construction is element-by-element epistemically certain,
and comprehensive as a set:

Definition 2 (The Lexicon). The set of all programs TM x W that halts con-
stitutes the lexicon of epistemically certain knowledge, or simply the lexicon,
K.

o K constitute the set of all epistemically certain statements.
e K is non-computable, but is recursively enumerable.
e K contains countably infinitely many elements.

o We can definite K, we can also contribute to it, but we cannot complete
it.

e Unlike the hyperwebster[9] which includes all possible words from % re-
gardless of halting status and is thus without knowledge, here each entry
s a halting program and thus carries knowledge.

Definition 3 (Translation (of K)). A translation T of K is a map from TM x W
to W x W such that the interpreter function (-) is applied to each element of
TM. FEach translation of K corresponds to the domain of a universal Turing
machine UTM.

TUTM = DOHI(UTM) (12)

And contains all pairs W x W that halt on UTM.
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Theorem 1 (Incompleteness Theorem). Since a translation of K is the domain
of a UTM, then it is undecidable. The proof follows from the domain of a
universal Turing machine being undecidable. Finally, since (-) is bijective, it
follows that K is also undecidable.

The theorem implies that we will never run out of new knowledge to discover,
and can thus perpetually contribute to the lexicon (job security is assured).

Theorem 2 (K is recursively enumerable). We will list K by dovetailing.

Proof. First, let us recursively enumerate the translation T of K. Consider a
dovetail program scheduler which works as follows.

1. Sort the columns of W x W in shortlex:

dy ds ds
(TM1)  ((TMi),di)  ((TMi),d2)  ((TMi),d3) ... (13
(TMz)  ((TM2),d1)  ((TM2),d2)  ((TM2),d3) ...  (14)
(TMs)  ((TMs),dy ((TM3), d2 ((TMs), d3) (15

then trace a line across the pairs starting at ((TMj), d;) then ((TMa),d;),
((TMy),d2), ((TM3),ds), ((TM3),d;) and so on. This produces an order-
ing which grabs all pairs.

2. Take the first element of the sort, DM({TM;),d;), then run it for one
iteration.

3. Take the second element of the sort, DM((TMs),d;), then run it for one
iteration.

4. Go back to the first element, then run it for one more iteration.

5. Take the third element of the sort, DM((TMj),dz), then run it for one
iteration.

6. Continue with the pattern, performing iterations one by one, with each
cycle adding a new element of the sort.

7. Make note of any pair ((TM;),d;) which halts.

Finally, use the interpreter function to convert W x W to TM x L, yielding
the lexicon. O

This scheduling strategy is called dovetailing and allows one to enumerate
the domain of a universal Turing machine recursively, without getting stuck by
any particular program that may not halt. Progress will eventually be made on
all programs, thus producing a recursive enumeration.
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Definitionally, the domain of a recursively enumerable function is a set; how-
ever in practice and implemented as an algorithm, a dovetailer and other im-
plementations of recursive enumerations produces a sequence of incremental
contributions to knowledge. Each new element that halts gets added to a list;
the order of which depends on the implementation of the enumerating algorithm.

2.2 Incremental Contributions

We will now use the lexicon of knowledge and halting programs to redefine the
foundations of mathematics to be in terms of an incremental contribution to
knowledge, rather than in terms of formal aziomatic systems.

In principle, one can use any Turing complete language to re-express math-
ematics. The task is not particularly difficult. One generally has to build a
translator between the two formulations, whose existence is interpreted as a
proof of equivalence. For instance, one can write all of mathematics using set
theory with arbitrary set equipments, but also using the english language, or
using a computer language such as c++4, or using arithmetic with multiplica-
tion, etc. If the language is Turing complete, then it is as expressive as any
other Turing complete language, and translators are guaranteed to exist. So
why pick a particular system over another? This is often due to conveniences
and constraints other than pure expressive power. For instance, sets allow us
to intuitively express a very large class of mathematical problems quite conve-
niently. Typical selection criterions are; can we express the problem at hand
clearly?; elegantly?; are the solutions also clear and easier to formulate than in
the alternative system?

Here we will use and introduce the incremental contribution formulation of
mathematics, and, as we found its advantages regarding the capture, preserva-
tion and accumulation of epistemically certain statements, as well as its upcom-
ing role as the foundation of the formalized practice of science, are remarkable.

An incremental contribution comprises a group of programs known to halt,
and this group of programs defines a specific instance of accumulated mathe-
matical knowledge.

Definition 4 (Incremental Contribution (to Knowledge)). Let K be the lexicon
of knowledge. An incremental contribution m of n halting program is an element
of the n-fold Cartesian product of K:

m € K" (16)

The tuple, in principle, can be empty m := (), finite n € N or countably
infinite n = oo.
Note on the notation:

o We will designate p; = (TM;,d;) as an halting program element of m,
and proj;(p;) and projy(p;) designate the first and second projection of
the pair p;, respectively. Thus proj,(p;) is the TM; associated with p;,
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and proj,(p;) is the input d; associated with p;. If applied to a tuple or
set of pairs, then proj, (m) returns the set of all TM in m and proj,(m)
returns the set of all inputs d in m.

The programs comprising the incremental contribution adopt the normal
role of both axioms and theorems and form a single verifiable atomic concept
constituting a unit of mathematical knowledge.

Let us explicitly point out the difference between the literature definition of
a formal axiomatic system and ours. In a formal axiomatic sytem, its theorems
are a subset of the sentences of IL provable from the axioms — whereas in ours,
a sequence of incremental contributions, its elements are pairs of TM x W which
halts on a UTM.

Let us now explore some of the advantages of using incremental contributions
versus formal axiomatic systems.

Sequences of incremental contributions are more conductive to a description
of the scientific process, including the continued accumulation of knowledge,
than formal axiomatic systems. Essentially, under an incremental contribution
formulation, and unlike a formal axiomatic system, we will be able to perpet-
ually accumulate new mathematical knowledge building up to the full lexicon
(exclusively), without having to continuously readjust or expand some under-
laying axiomatic basis to accommodate it.

Let us open a small parenthesis to explore this advantage more illustratively
by comparing it to the tally mark numbering system, which admits a very similar
advantage, and then we will investigate it in greater detail.

Tally mark numbering systems are most useful in cases where intermediate
results do not have to be discarded, because one does not need to redraw the
numbers as the count is increased. Tally mark numbering system were likely the
first numbering system used, and dates at least back to the Upper Palaeolithic.
Remarkably, and although they are few and far in between, such systems still
admit desirable use cases in modern time. For instance, consider the following
warning sign posted at Hanakapiai Beach which utilizes such a numeral system:

15



"l ANAKAPYRY
BEACWY

Here, the tally mark numbering system no doubt adds to the impact and
seriousness of the warning, and to the permanence of what is being recorded.

When marking in stone, or using paint on a wood plank, a counting sys-
tem which necessitates erasure of the symbols to increase the count is highly
undesirable. For instance, if one uses Arabic numerals, one would start with
the symbol ”1”, then as the second incidence occurs, one has to erase the ”1”
from the stone, and write a new symbol, in this case the symbol ”2”, and so on.
But with a tally mark system, one only needs to add a new mark at the next
location to increase the count. No erasures are needed.

Now, going back to incremental contributions.

The incremental contribution formulation is, essentially, a tally mark system
for knowledge and as such there exists a number of use cases for which it exceeds
the utility of formal axiomatic systems.

In the sciences, it is typical to produce a scientific theory as an axiomatic
basis, expand it into theorems, compare them to experimental data, then if a
mismatch is found, rewrite said axiomatic basis to accommodate the new knowl-
edge. This is the prediction, falsification and refinement process characteristic
of the Karl Popper method.

In mathematics, a similar process can also be manifest. We refer to in-
completeness theorems such as the halting problem, Goddel’s incompleteness
theorems, and to the limits induced on the completeness of formal axiomatic
systems. Suppose one would wish to represent in real-time and with live updates
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the knowledge produced by all mathematicians and for an indefinite amount of
time into the future. Can a singular axiomatic system provide such a repre-
sentation? Alas, since one can produce the Godel sentence of any (sufficiently
expressive) axiomatic system, perpetual additions to the axioms of said system
would be required to accommodate all possible new discoveries of knowledge.

But this is not the only ”"annoyance” of formal axiomatic systems. One day
a mathematician may wish to work with Euclid’s axiom, and on another day he
or she may wish to work in ZFC set theory. How do we accumulate knowledge
that is discovered under different axiomatic basis? Or as another example,
what if a mathematician finds a contradiction in some esoteric systems; finding
a contradiction is still valuable knowledge and we may wish to record their
discoveries for posterity. Do we inject a wrapper of para-consistent logic around
them? Formal axiomatics systems, even with accommodations, ”crystallizes”
into a particular form of knowledge; and this form excludes other forms.

Comparatively, using the incremental contribution formulation of mathe-
matics, the task is much easier. One simply need to push each new discovery
at the end of the sequence whenever the discovery is made; no adjustment to
the methodology is ever required after insertion, we never run out of space, and
halting programs do not undermine each other even if some of them internally
relates to a contradiction.

An incremental contribution is the equivalent of an empirical notebook of
raw mathematical knowledge and behaves similarly to a tally mark numbering
system in the sense that ”erasing” then ”rewriting” a base set of axions is no
longer required to accommodate new knowledge.

In our formalization of the practice of science, an incremental contribution
will represent the base knowledge against which formal axiomatic systems may
be validated or invalidated, then refined as new knowledge is acquired. Itself is
not revised; only accumulated.

2.3 Connection to Formal Axiomatic Systems

We can connect our incremental contributions formulation of mathematics to
the standard formal axiomatic system (FAS) formulation:

Definition 5 (Enumerator (of a FAS)). Let FAS be a formal axziomatic system
and let s be a valid sentence of FAS. A function enumeratorgag is an enumerator
for FAS if it recursively enumerates the theorems of FAS:

1 FASF s

17
3/ does-not-halt otherwise (17)

enumeratorpas(s) = {

Definition 6 (Domain (of a FAS)). Let FAS be a formal aziomatic system and
let enumeratorpas be a function which recursively enumerates the theorems of
FAS. Then the domain of FAS, denoted as Dom(FAS), is the set of all sentences
s € I which halts for enumeratorgas.
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Definition 7 (Formal Axiomatic Representation (of a sequence of incremental
contributions)). Let FAS be a formal axiomatic system, let m be a sequence of
incremental contributions and let enumeratorgpag be a function which recursively
enumerates the theorems of FAS. Then FAS is a formal axiomatic representa-
tion of m iff:

Dom(FAS) = proj,(m) (18)

Definition 8 (Episto-morphism). Let FAS be the set of all formal axiomatic
systems; an episto-morphism is a map M: FAS — FAS such that VFAS €
FAS: Dom(FAS) = Dom(M (FAS)). Two formal aziomatic systems FAS; and
FASs are said to be episto-morphic if and only if Dom(FAS;) = Dom(FAS,).

2.4 Discussion — The Mathematics of Knowledge

Each element of an incremental contribution is a program-input pair represent-
ing an algorithm which is known to halt.

Let us see a few examples.

How does one know how to tie one’s shoes? One knows the algorithm re-
quired to produce a knot in the laces of the shoe. How does one train for a
new job? One learns the internal procedures of the shop, which are known to
produce the result expected by management. How does one impress manage-
ment? One learns additional skills outside of work and applies them at work
to produce results that exceed the expectation of management. How does one
create a state in which there is milk in the fridge? One ties his shoes, walks
to the store, pays for milk using the bonus from his or her job, then brings
the milk back home and finally places it in the fridge. How does a baby learn
about object permanence? One plays peak-a-boo repeatedly with a baby, until
it ceases to amuse the baby — at which point the algorithm which hides the
parent, then shows him or her again, is learned as knowledge. How does one
untie his shoes? One simply pulls on the tip of the laces. How does one untie
his shoes if, after partial pulling, the knot accidentally tangles itself preventing
further pulling? One uses his fingers or nails to untangle the knot, and then
tries pulling again.

Knowledge can also be in more abstract form — for instance in the form of
a definition that holds for a special case. How does one know that a specific
item fits a given definition of a chair? One iterates through all properties refer-
enced by the definition of the chair, each step confirming the item has the given
property — then if it does for all properties, it is known to be a chair according
to the given definition.

In all cases, knowledge is an algorithm along with an input, such that the
algorithm halts for it, lest it is not knowledge. The set of all known pairs form
an incremental contribution to knowledge.

Let us consider a few peculiar cases. What if a sequence contains both 7 A”
and "not A” as theorems? For instance, consider:
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m := ((TMy, A), (TMy, ~A)) (19)

Does such a contradiction create a problem? Should we vandalize our system
by adding a few restrictions to avoid this unfortunate scenario? Let us try an
experiment to see what happens — specifically, let me try to introduce A A = A
into my personal knowledge, and then we will evaluate the damage I have been
subjected to by this insertion. Consider the following implementation of TMj:

fn main(input: String){
if p=="A" {
return;
}
if p=="not A"{
return;
}
loopQ);
}

It thus appears that I can have knowledge that the above program halts for
both ”A” and "not A” and still survive to tell the tale. A-priori, the sentences
”A” and "not A” are just symbols. Our reflex to attribute the law of excluded
middle to these sentences requires the adoption of a deductive system. This
occurs one step further at the selection of a specific formal axiomatic represen-
tation of the sequence of incremental contributions, and not at the level of the
incremental contribution itself.

The only inconsistency that would create problems for this framework would
be a proof that a given halting program both [HALTS] and [NOT HALTS] on a
UTM. By definition of a UTM, this cannot happen lest the machine was not a
UTM to begin with. Thus, we are expected to be safe from such contradictions.

Now, suppose one has a sizeable sequence of incremental contributions which
may contain a plurality of pairs:

m = ((TMla dl)v (TM27 _'d1)7 (TMlv d2)7 (TM27 dl)v (TM27 _'d3)) (20)

Here, the negation of some, but not all, is also present across the pairs: in this
instance, the theorems d; and d3 are negated but for different context. What
interpretation can we give to such elements of a sequence? For our example,
let us call the sentences dy, ds, d3 the various flavours of ice cream. It could be
that the Italians define ice cream in a certain way, and the British define it in
a slightly different way. The context contains the definition under which the
flavour qualifies as real ice cream. A flavour with a large spread is considered
real ice cream by most definitions (i.e. vanilla or chocolate ice cream), and
one with a tiny spread would be considered real ice cream by only very few
definitions (i.e. tofu-based ice cream). Then, within this example, the presence
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of p; and its negation associated with another definition, simply means that
tofu-based ice cream is ice cream according to one definition, but not according
to another.

Reality is of a complexity such that a one-size-fits-all definition does not
work for all concepts, and further competing definitions might exist: a chair
may be a chair according to a certain definition, but not according to another.
The existence of many definitions for one concept is a part of reality, and a
mathematical framework which correctly describes it ought to be sufficiently
flexible to handle this, without itself exploding into a contradiction.

Even in the case where both A and its negation —A were to be theorems
of m while also having the same premise, is still knowledge. It means one has
verified that said premise is inconsistent. One has to prove to oneself that a
given definition is inconsistent by trying it out against multiple instances of a
concept, and those trials are an incremental contribution.

2.5 Axiomatic Information

Let us now plant the seed and introduce axiomatic information. If any account
for the elements of any particular incremental contribution is relegated to having
been 'randomly picked’, according to a probability measure p, from the set of
all possible halting programs, then we can quantify the information of the pick
using the entropy.

Definition 9 (Axiomatic Information). Let Q be a set of halting programs.
Then, let p : Q — [0,1] be a probability measure that assigns a real in [0, 1]
to each program in Q. The aziomatic information of a single element of Q is
quantified as the entropy of p:

S==Yp(p)np(p) (21)

peQ

For instance, a well-known (non-computable) probability measure regarding
a sum of prefix-free programs is the Halting probability[11] of computer science:

Q= > 27— pp) =27 (22)
p€Dom (UTM)

The quantity of axiomatic information (and especially its optimization),
rather than any particular set of axioms, will be the primary quantity of in-
terest for the production of a meaningful theory in this framework. A strategy
to gather mathematical knowledge which picks halting programs according to
the probability measure which maximizes the entropy will be interpreted as the
”least encumbered” or ”freest” strategy.
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3 The Formal System of Science

We now assign to our incremental contributions formulation of mathematics, the
interpretation of a purely mathematical system of science. As hinted previously,
the primary motivation for constructing a system of science follows from the set
of knowledge being recursively enumerable (as opposed to decidable) making its
enumeration subject to the non-halting problem. Notably, in the general case,
halting programs can only be identified by trial and error and this makes the
approach irreducibly experimental.

At this point in the paper, I must now warn the reader that, based on my
previous experience, almost any of the definitions I choose to present next will
likely either quickly induce at least a feeling of uneasiness, or may even trigger
an aversion in some readers. First and foremost, let me state that the definitions
are, we believe, mathematically correct, scientifically insightful and productive,
and thus we elected to fight against this aversion, rather than to abandon the
project. This uneasiness would present itself to a similar intensity regardless
of which definition I now choose to present first, and so we might as well pick
the simplest one. For instance, let us take the relatively simple definition of the
scientific method, which will be:

Definition 10 (Scientific method). A scientific method is any algorithm which
produces an incremental contribution of knowledge.

Mathematically speaking, this is a very simple definition. We have pre-
viously defined knowledge as halting programs (this made it comprehensible)
and it’s domain as that of a universal Turing-function (this made it compre-
hensive). Now we simply give a name, the scientific method, to any algorithm
which recursively enumerates its domain, or part thereof. The notion of the
scientific method, a previously informal construction, is now imported into pure
mathematics and as such we presume to have produced a net gain for science,
compared to not having it.

The features of the scientific method are found implicitly in the definition.
Indeed, implicit in said definition lies a requirement for the algorithm to verify
the input to be knowledge by running its corresponding program to completion,
and reporting success once proven to halt. That it may or may not halt is the
hypothesis, and the execution of the function is the ’experiment’ which verifies
the hypothesis. If an input runs for an abnormally long time, one may try a
different hypothesis hoping to reach the conclusion differently. Each terminating
experiments are formally reproducible as many times as one needs to, to be
satisfied of its validity. All of the tenets of the scientific method are implicit in
the definition, and its domain is that of knowledge itself, just as we would expect
from the scientific method. Finally, the domain of knowledge is arbitrarily
complex and countably infinite, therefore we never run out of new knowledge
allowing for a perpetual and never ending application of the scientific method.
Mathematically, it is a remarkably simple definition for such an otherwise rich
concept.
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But outside of mathematical land, the tone gets a bit more grim. Some
readers may need a few more definitions before they start feeling the full weight
induced by a total commitment to formalization on their worldview, but for
many this definition will mark that point. Let us give a few comments to illus-
trate the type and intensity of the aversions that can plausibly be experienced:

1. Those who previously believed, or even nurtured the hope that, reality ad-
mitted elements of knowledge that are outside the scientific method must
now find a flaw, or correct their worldview. As scientific as most people
claim to be, a surprisingly large group seem to have an aversion to this.
The unbiased response is, rather, to appreciate that what they thought
was knowledge was in fact fallible (and thus simply a guess), whereas the
scientific method does not output guesses, it outputs knowledge (which is
epistemically certain).

2. Those who nurture a worldview which is not "reducible” to our definition
of knowledge in terms of halting program, must now argue that our defini-
tion contains gaps of knowledge, lest they have to correct their worldview.
But our definition is simply the unique logical construction of knowledge
with is both comprehensible and comprehensive. Thus, as comprehensive-
ness implies no gaps, their worldview is revealed to necessarily contain at
least some elements that are incurably ambiguous, or it would be reducible
to our definition.

3. The elimination of all naive concepts or notions (no more ”magic” or
”handwaving”) is now required. If one has a worldview that relies upon
a plurality of non-formalizable ambiguities, then one’s worldview will not
survive this formalization. For many, this is interpreted as killing the
"fun” or the ”"imagination” from reality. It is unlikely that anyone’s pre-
existing worldview survives without some changes to accommodate total
formalization.

Does one even stand a chance at maintaining an informal worldview against
such definitions? Many of our base definitions were carefully chosen to merely
match and rebrand pre-existing and well respected mathematical definitions,
and this was a strategic choice to make it incredibly unlikely to find fatal flaws.
In our experience the battery of aversion we typically receive boils down to an
equivalent formulation of "I can’t find a specific error, but it must be wrong
because [my worldview] requires [certain informal physical or metaphysical lan-
guage], and here there is no support for that”. The other possibility, however,
is that one could be simply wrong in assuming that the world needs such infor-
mality to be defined for the purposes of physics. Furthermore, a fatal flaw has
so far not been identified otherwise we would either correct the source of the
error if possible, or immediately abandon the project altogether depending on
the nature of the error presented, and would clearly state so out of respect for
other’s time.
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Consider the alternative for a moment and let us try to be a crowd pleaser.
How could we leave room for ambiguities so that people to not feel constrained
by formalism, while remaining mathematically precise? Should we define the
scientific method as a function that recursively enumerates 95% of knowledge,
leaving a sympathetic 5% out for love, beauty and poetry? How would we
possibly justify this mathematically. Functions which recursively enumerate
one hundred percent of the domain do exists; should we just lie to ourselves
and pretend they don’t? Of course, we cannot. Whether a painting is or isn’t
beautiful, if not the result of an instantiation of epistemically certain knowledge,
is merely a guess. The scientific method does not output guesses, it outputs
knowledge.

Now, there is a way to discuss, for instance, beauty scientifically; if one
actually works out a precise definition of beauty, such as:

fn is_beautiful(painting: Object) -> bool{
if (painting.colors.count()>=3){
return true;

}

return false;

Then congratulations, one now has a definition of beauty that is actually
comprehensible for the scientific method! The function returns true if the paint-
ing has 3 or more colours, otherwise it returns false. The scientific method can
now use this definition to output all objects which are ”beautiful” according to
said definition.

Good luck getting everyone to agree to accept this definition as the be-all-
end-all of beauty. However, all hope is not lost; the set of all halting programs
includes the totality of all possible comprehensible definitions of beauty and
therefore if a 'good-one’ does exists then by necessity of having them all it
must be in there, otherwise it simply means the concept is fundamentally non-
comprehensible. Picking the ’good-one’ from the set of all comprehensible defi-
nitions of beauty could merely be a social convention based on what everyone’s
concept of beauty coalesces into. Even under this more challenging description,
which references a social convention, comprehensible definitions are still found
in the purview of the scientific method, as one can use a function such as this:

fn is_beautiful(painting: Object, people: Vec<Person>) -> bool{
for person in people{
if person.is_beautiful(painting)==true{
return true;
b
}
return false;

3

This function returns true if at least one person thinks it’s beautiful. In
this case, the scientific method ’polls’ every ’person’ in 'people’ and asks if
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the painting is beautiful, and as soon as one says yes, then it returns true,
otherwise it returns false at the end of the loop. In this case the definition of
beauty is comprehensible provided that each ’person’ in 'people’ also produced
a comprehensible implementation of the function is_beautiful. The scientific
method a-priori has no preference for which definition we end up agreeing (or
disagreeing) upon; it simply verifies that which can be verified comprehensibly.

The scientific method’s sole purpose is to convert comprehensible questions
or definitions into knowledge.

Let us return to our discussion on aversion. At the other end of the aver-
sion spectrum, we find some readers (it would be overly optimistic to expect it
from all readers, but hopefully some) that accept and understand that the pro-
posed system induces what amounts to a checkmate position for informal (naive)
worldview. Of those readers, most will then condition themselves to accept a
re-adjustment of their worldview such that it becomes conductive to complete
formalization. For these readers, their desire for formalization is greater than
their attachment to an informal worldview, and they are willing to make the
necessary sacrifices to work completely formally.

Let us now reprise our more neutral tonality to introduce and complete the
formal system of science. Although the "magic” is now gone, we hope that the
reader can find the will to smile again by immersing himself or herself in the
cheerful world of formal terminating protocols, in lieu of said ”magic”.

3.1 Terminating Protocols as Knowledge about Nature

Both Ozford Languages and the Collins dictionary defines a protocol as
[Protocol]: A procedure for carrying out a scientific experiment

Comparatively, Wikipedia, interestingly more insightful in this case, de-
scribes it as follows:

[Protocol]: In natural and social science research, a protocol is
most commonly a predefined procedural method in the design and
implementation of an experiment. Protocols are written whenever
it is desirable to standardize a laboratory method to ensure suc-
cessful replication of results by others in the same laboratory or by
other laboratories. Additionally, and by extension, protocols have
the advantage of facilitating the assessment of experimental results
through peer review.

The above description precisely hits all the right cords, making it especially
delightful as an introduction of the concept. We will now make the case for
a new description of nature, or natural processes, which is conductive to com-
plete formalization. Of course, as we did for knowledge, we will require this
description of nature to also be comprehensible and comprehensive in the same
mathematical sense.
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The proposed description will essentially require that one describes nature
via the set of all protocols known to have terminated thus far. This type of
description has a similar connotation to our previous formulation of mathematics
in terms of halting programs. In fact, the tools introduced for the former will
also be usable for the later. The proposed description is further similar to a
requirement well-known to peer-review, and should be already familiar to most
readers. In the peer-reviewed literature, the typical requirement regarding the
reproducibility of a protocol is that an expert of the field be able to reproduce the
experiment. This is of course a much lower standard than formal reproducibility
which is a mathematically precise definition, but nonetheless serves as a good
entry-level example.

Hinkelmann, Klaus and Kempthorne, Oscar in 'Design and Analysis of Ex-
periments, Introduction to Experimental Design’[12] note the following:

If two observers appear to be following the same protocol of mea-
surement and they get different results, then we conclude that the
specification of the protocol of measurement is incomplete and is sus-
ceptible to different implementation by different observers. [...] If a
protocol of measurement cannot be specified so that two trained ob-
servers cannot obtain essentially the same observation by following
the written protocol of measurement, then the measurement process
is not well-defined.

In practice it is tolerated to reference undefined, even informal, physical lan-
guage, as long as ’experts in the field’ understand each other. For instance, one
can say "take a photon-beam emitter” or one can reference an ”electric wire”,
etc., without having to provide a formal definition of either of these concepts.
Those definitions of physical objects ultimately tie to a specific product ID, as
made by a specific manufacturer, and said ID is often required to be mentioned
in the research report explicitly. For the electric wire, a commonly used product,
it is perhaps sufficient that the local hardware store sells them, and for more
complex products, such as a specific laser or protein solutions, an exact ID from
the manufacturer will likely be required for the paper to pass peer-review. If we
attempted to explain to, say, an alien from another universe what an electric
wire is, we would struggle unless our neighbourhood chain of hardware stores
also has a local office in its universe for it to buy the same type of wire.

Appeal to the concept of ’expert’ is a way for us to introduce and to tolerate
informality into a protocol without loosing face; as that which is understood
by ’experts’ does not need to be specified. In a formal system of science we
will require a much higher standard of protocol repeatability than merely being
communicable to a fellow expert. We aim for mathematically precise definitions.
For a protocol to be completely well-defined, the protocol must specify all steps
of the experiment including the complete inner workings of any instrumentation
used for the experiment. The protocol must be described as an effective method
equivalent to an abstract computer program.

Let us now produce a thought experiment to help us understand how this
will be done.
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3.2 The Universal Experimenter

Suppose that an industrialist, perhaps unsatisfied with the abysmal record of
irreproducible publications in the experimental sciences (i.e. replication crisis),
or for other motivations, were to construct what we would call a universal
experimenter; that is, a machine able to execute in nature the steps specified
by any experimental protocol.

A universal experimenter shares features with the universal constructor of
Von-Neumann, as well as some hint of constructor theory concepts, but will be
utilized from a different stand-point, making it particularly helpful as a tool
to formalize the practice of science and to investigate its scope and limitations
self-reflectively. Von-Neumann was particularly interested in the self-replicating
features of such a construction, but self-replication will here not be our primary
focus of interest. Rather, the knowledge producible by such a machine will be
our focus.

The universal constructor of Von-Neumann is a machine that is able to
construct any physical item that can be constructed, including copies of itself.
Whereas, a universal experimenter is a machine that can execute any scientific
protocol, and thus perform any scientific experiment. Of course, both machines
are subject to the halting problem, and thus a non-terminating protocols (or
an attempt to construct the non-constructible in the case of the universal con-
structor) will cause the machine to run forever.

Both the machine and the constructor can be seen as the equivalent of each
other. Indeed, it is the case that a universal constructor is also a universal
experimenter (as said constructor can build a laboratory in which an arbitrary
protocol is executed), and a universal experimenter is also a universal construc-
tor (as a protocol could call for the construction of a universal constructor, or
even for a copy of itself, to experiment on).

Specifically, a universal experimenter produces a result if the protocol it is
instructed to follows terminates. A realization of such a machine would com-
prise possibly wheels or legs for movement, robotic arms and fingers for object
manipulation, a vision system and other robotic appendages suitable for both
microscopic and macroscopic manipulation. It must have memory in sufficient
quantity to hold a copy of the protocol and a computing unit able to work out
the steps and direct the appendages so that the protocol is realized in nature.
It must be able to construct a computer, or more abstractly a Turing machine,
and run computer simulation or other numerical calculation as may be specified
by the protocol. The machine can thus conduct computer simulations as well as
physical experiments. Finally, the machine must have the means to print out,
or otherwise communicate electronically, the result (if any) of the experiment.
Such result may be in the form of a numerical output, a series of measurements
or even binary data representing pictures.

Toy models are easily able to implement a universal experimenter; for in-
stance Von Neumann, to define an implementation universal constructor, cre-
ated a 2-D grid ’universe’, allocated a state to each element of the grid, then
defined various simple rules of state-transformations, and showed that said rule
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applied on said grid allowed for various initial grid setups in which a constructor
creates copies of itself. Popular games, such as Conway’s Game of Life are able
to support self-replication and even the implementation of a universal Turing
machine, and thus would admit specific implementations of a universal experi-
menter. In real life, the human body (along with its brain) is the closest machine
I can think of that could act as a general experimenter.

How would a theoretical physicist work with such a machine?

To put the machine to good use, a theoretical physicist must first write a
protocol as a series of steps the machine can understand. For instance, the
machine can expose a move instruction, causing it to move its appendages in
certain ways as well as a capture instruction to take snapshots of its environ-
ment, etc. In any case, the physicist will produce a sequence of instructions
for the machine to execute. The physicist would also specify an initial setup,
known as the preparation, such that the protocol is applied to a well-defined
initial condition. The initial condition is specified in the list of instructions, as
such it is created by the machine making the full experiment completely repro-
ducible. Finally, the physicist would then upload the protocol to the machine,
and wait for the output to be produced.

The mathematical definition of the protocol is as follows:

Definition 11 (Protocol). A protocol is defined as a partial computable func-
tion:

prot W — W
prep — r (23)

e The domain of the protocol Dom(prot) includes the set of all preparations
which terminates for it.

Let us now define the universal experimenter. A universal experimenter is
able to construct any preparation and execute any protocol on it. If a protocol
does not terminate, then the universal experimenter will run forever, hence it is
subject to the non-halting problem.

Definition 12 (Universal Experimenter). Let (prot) be the description of a
protocol prot interpreted into the language of a universal experimenter UE, and
prep, the preparation, both be sentences of a W, called the instructions. Then a
universal experimenter is defined as:

UE({prot), prep) ~ prot(prep) (24)
for all protocols and all preparations.

Definition 13 (Experiment). Let PROT be the set of all protocols, and let W
be the set all preparations. An experiment p is a pair PROT x W:
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p := (prot, prep) (25)
that terminates, such that prot(prep) = r.

Definition 14 (Domain of Science). We note D as the domain of science. The
domain of science is the set of all experiments.

Definition 15 (Experimental Contribution (to Knowledge)). An experimental
contribution to knowledge is a tuple of n elements of D:

m:=D" (26)

o An experimental contribution to knowledge only contains protocol-preparation
pairs that have terminated.

o An experimental contribution to knowledge corresponds, intuitively, to a
sequence of related or unrelated experiments, that have been verified by a
universal experimenter.

o An experimental contribution to knowledge corresponds to an instance of
natural knowledge (knowledge about nature).

e Finally, as the set of knowledge is comprehensive, then all systems which
admits knowledge, physical or otherwise, can be represented in the form of
a specific experimental contribution associated to a specific experimenter,
and said contribution constitutes a complete representation of the knowl-
edge the machine has produced thus far for its operator.

For a universal experimenter to execute a protocol, both the protocol and
its preparation must be described without ambiguity. Physical language such as
a camera cannot be referenced informally in the specifications of the protocol,
otherwise the universal experimenter cannot construct it. If the protocol calls for
the usage of a camera, then the behaviour of the camera must also be specified
without ambiguity in formal terms within the instructions. Consequently, all
rules and/or physical laws which are required to be known, including any initial
conditions, must be precisely provided in the description, so that the universal
experimenter can construct the experiment.

For some highly convoluted experiments, such as : ”is this a good recipe for
apple pie?”... the aphorism from Carl Sagan ”If you wish to make an apple pie
from scratch, you must first invent the universe” is adopted quite literally by
the universal experimenter. The universal experimenter must create (or at least
simulate) the universe, let interstellar matter accretes into stars, let biological
evolution run its course, then finally conduct the experiment once the required
actors are in play by feeding them apple pie. For a universal experimenter,
certain protocols, due to their requirement for arbitrary complex contexts or
general protocol complexity, cannot be created more efficiently than from literal
scratch and by going through the full sequence of events until the end of the
experiment.
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3.3 Classification of Scientific Theories

Definition 16 (Scientific Theory). Let m be an experimental contribution by
UE, and let ST be a formal aziomatic system. If

projy(m) N Dom(ST) # & (27)
then ST is a scientific theory of m.

Definition 17 (Empirical Theory). Let m be an experimental contribution by
UE and let ST be a scientific theory. If

proj,(m) = Dom(ST) (28)
then ST is an empirical theory of m.

Definition 18 (Scientific Field). Let m be an experimental contribution by UE
and let ST be a scientific theory. If

Dom(ST) C projz(m) (29)
then ST is a scientific field of m.

Definition 19 (Predictive Theory). Let m be an experimental contribution by
UE and let ST be a scientific theory. If

proj,(m) C Dom(ST) (30)

then ST is a predictive theory of m.
Specifically, the predictions of ST are given as follows:

S := Dom(ST) \ proj,(m) (31)

Scientific theories that are predictive theories are supported by experiments,
but may diverge outside of this support.

3.4 The Fundamental Theorem of Science

With these definitions we can prove, from first principle, that the possibility of
falsification is a necessary consequence of the scientific method.

Theorem 3 (The Fundamental Theorem of Science). Let m; and mg be two
experimental contributions to knowledge, such that the premises of the former
are a subset of the later: proj,(my) C proj,(ms). If ETs is an empirical theory
of ms, then it follows that ETy is a predictive theory of my. Finally, up to
episto-morphism, Dom(ETs) has measure 0 over the set of all distinct domains
spawned by the predictive theories of my.

Proof. Dom(ET3) is unique. Yet, the number of distinct domains spawned by
the set of all possible predictive theories of m; is infinite. Finally, the measure
of one element of an infinite set is 0. O
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Consequently, the fundamental theorem of science leads to the concept of
falsification, as commonly understood in the philosophy of science and as given
in the sense of Popper. It is almost certain (measure of 1) that a predictive
scientific theory will eventually be falsified.

Let us point out that there exists a plurality of strategies to tame the effect
of this theorem. For instance, one can create scientific fields, whose aim are
to prove only a subpart of the experimental contribution. This allows one to
qualify the experimental contributions it is unable to prove as simply out of
scope, rather than to falsify the field.

4 A Formal Theory of the Observer

Biology has the organism, microbiology the cell and chemistry the molecule, but
what about physics; what is its fundamental object of study? Is it the planets
(~16th century), is it mechanics (17th century), is it thermodynamics (18th
century), is it electromagnetism (19th century), is it quantum mechanics and
special relativity (early 20th century) or is it general relativity, quantum field
theory, the standard model and cosmology (20th century). Is it broadly what
we haven’t figured out about nature yet? Or perhaps it is permissively anything
physicists do?

In our model of physics, it will be the observer and its actions that will be
the fundamental object of study.

Let us first attempt to fix the intuition by taking the example of a generic
theory of the electron. To understand the electron, one must experiment on
the electron. For instance, in a lab, one could power electricity into a wire,
undertake spin measurements, perform double-slits experiments or magnetism
experiments, etc. All of these experiments build up the knowledge of the elec-
tron’s behaviour and properties. Eventually with enough accumulated knowl-
edge, one can formulate a theory of the electron, which describes its behaviour
and properties. The theory of the electron is considered a physical theory by
association, because it applies to the electron, which by definition is a physical
particle.

At a first approximation, we now invite the reader to think of our theory of
the observer along the same lines, except we replace the word ’electron’ with
the word ’observer’. Instead of experimenting on the electron, we experiment
on the observer. Instead of a few targeted experiment in the lab, we target all
possible experiments this observer could do in nature. Instead of recovering,
say, the Schrodinger equation which governs the behaviour of the electron, we
get a comprehensive theory of fundamental physics which governs the complete
participation of the observer in nature.

But where the electron only knows a few tricks, the scope of possible observer
participation is a coalescence of three mathematically related but philosophically
distinct concepts: the universal Turing machine, the universal constructor and
the universal experimenter, and thus is able to account for all construction and
verification rules whether physical, simulated or mathematical and over any
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possible systems.

4.1 Nature

Consider a universal experimenter and recall that it is able to produce any valid
experimental contribution from the domain of science. To allow investigation of
whole of domain, the model of investigation of said experimenter must of course
be Turing-complete, otherwise there will be gaps in knowledge that cannot be
investigated by it.

Now, let us consider the collection of all possible experimental contributions.
Let us further consider that this collection forms an investigable space. It fol-
lows that, whatever the experimenter does or doesn’t do, it will be confined to
produce elements of this space because producing experimental contributions is
definitionally all the experimenter can do.

The "investigable space” of experimental contributions the observer is con-
fined to operate in will be called nature, and it will be defined as follows:

Definition 20 (Nature). Let m be an experimental contribution comprised of
n terminating protocols, and let My, = |J;_, proj;,(m) be the set comprised of
the elements of m. Then, Nature (N ) is the "powertuple” of m:

N = (M)’ (32)
i=0
e Conceptually, a powertuple is similar to a powerset where the notion of
the set is replaced by that of the tuple.

o Put simply, nature (Nm) is the set of all possible experimental contri-
butions (including the empty experimental contribution) that can be built
from m.

o All elements of nature are experimental contributions, and all ”sub-tuples”
of an experimental contributions are elements of nature.

4.2 Definition of the Observer

The departure from typical practice and intuition is exceptional; let us note
that the observer in modern theoretical physics is considered by many to be the
last element of quantum physics that is not yet mathematically integrated into
the formalism. Here, is it the only (physical) axiom that we define; it will be
sufficient by itself to entail fundamental physics.

Axiom 1 (Observer). An observer, denoted as O, is a probability space over
all experiments in nature:

O := (m,Nm,p: Nm — [0,1]) (33)
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where p is a probability measure, m is an experimental contribution, and
Nm, nature, is the space of all experimental contributions over m, and where
the measure sums to one. We note that, unlike traditional measure theory in
mathematics, here our definition of the measure is over tuples rather than sets.
A recipe to tackle such a measure will be given in the main result section.

Just our minimalistic definition of the scientific method earlier recovered the
richness of the concept, here a similar richness will be recovered for fundamental
physics as a consequence of this definition of the observer.

4.3 The Experience of the Observer

For the familiar laws of physics to be recovered, we found that the model of
investigation must support a probability measure over the possible incremental
contributions, rather than merely be a deterministic implementation of a partic-
ular scientific method algorithm. In this case, we may qualify the experimenter
as having the ”freedom” to investigate nature. This property is reminiscent of
(and will ultimately connect to) the Bell inequality experimenter freedom in
familiar quantum mechanics, hence the name.

As stated in the sketch, the terms ’free’ and ’freedom’ are in this context
to be interpreted similarly to the strict sense given by Conway and Kochen[1]
as freedom from being determined by past history, thus allowing a probabilistic
enumeration in the present; and that of the Bell inequality as having the freedom
to pick the experiment (or equivalently its parameters), also undetermined by
past history. It is not meant to be interpreted in the metaphysical sense of free
will commonly used in philosophy.

As a probability space over all experiments of nature, the observer will then
receive or produce a message (in the sense of Claude Shannon’s theory of infor-
mation) of completed experiments. The receipt (or production) of this message
constitutes what we will call his or her experience, and represents the model of
investigation used by the observer to acquire knowledge in nature.

To obtain the laws of physics, the final step is to optimize the information
associated with the receipt (or production) of this message. As the solution
to an optimization problem on experimenter freedom, the laws of physics will
define a circumscription on the freedom of action of the observer.

Maximizing experimenter freedom will involve a similar methodology as that
used in ordinary statistical mechanics to maximize the entropy. The Lagrange
multiplier method will be utilized. The entropy will also be utilized and max-
imized, but here we will not think of the entropy as a ’'measure of disorder’,
but rather as a quantification of information in the sense of Claude Shannon’s
theory of information. The information acquired by the observer following a
measure will adopt the role of a message that fixes the acquired knowledge into
a new state.

Finally, maximizing the entropy of a measure over a power-tuple rather than
a power-set requires modifications to the original recipe, and this will be given
in the main result.
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Thesis 1 (Fundamental Physics). The probability measure that mazimizes ex-
perimenter freedom in nature constitutes the fundamental physics, or simply the
laws of physics’.

Our definition of fundamental physics is not given as a pre-formulated law
such as F' = ma. That is not to say that laws do not come into play; but when
they do they are derived from this measure, and not brutely postulated. Taking
an example of statistical mechanics, the ideal gas law PV = nRT can be derived
from the Gibbs measure as an equation of state under the appropriate energy
and volume constraint on entropy.

5 Intermission

5.1 Science

To introduce falsification within a formal system of science, the notion of knowl-
edge being epistemically certain is critical. It is the reason why we can be certain
that acquiring new knowledge does in fact necessarily falsify any conflicting mod-
els. If our knowledge was uncertain, we would simply be perpetually juggling the
probabilistic weights of various hypotheses and models, and no model could ever
be falsified. With this in mind, let us correct a terminology error made by Karl
Popper. A core tenet of Karl Popper’s philosophy is that scientific knowledge
is always transitory, and so a scientific theory would be subject to falsification.
The correction is minor, but nonetheless leads to substantial clarifications. The
correction is on the usage of the term knowledge; knowledge is not transitory
rather it is the models that are. Models are entailed by knowledge, as such they
do not entail it in return. In fact, when acquiring new knowledge, if the model
conflicts with it, then the model always loses the tug of war because the former
is epistemically certain while the later isn’t. The correct terminology is that
scientific models (not knowledge) are transitory because knowledge (which isn’t
transitory) takes precedence over the conflicting model.

Karl Popper’s extended philosophy is correct in regards to scientific theories
(e.g. biology, economic science, psychology, etc.), but physics as it would is a
different beast altogether. The difference between the two stands out when we
investigate their relationship to our newly formalized observer. For instance, if
an observer ”violates” a scientific theory, then said theory is simply falsified.
This happens every once in a while, and other than perhaps a bruised ego, not
much harm is done. Whereas, if an observer were to violate the laws of physics,
presumably all hell would break loose. Why the difference? Of course, without
a formal system of science, we have historically derived and justified our laws
of physics the same way as any other scientific theory assuming they are of
the same category, and thus the difference was unnoticed, but with a formal
system of science we can pinpoint the difference. A scientific theory involves
a choice of formal axiomatic representation of an experimental contribution,
and it is this choice that is falsified when facing conflicting knowledge. In
contrast, the observer cannot violate the fundamental physics without violating
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its circumscription. The circumscription is unique to physics and is absent
from mere scientific theories; this makes fundamental physics inviolable to the
observer, whereas a scientific theory is only falsifiable to the observer hence not
inviolable.

Newfound clear-cut delimitations between previously overlapping concepts
is typically welcomed, especially when the overlap is caused by ambiguities. For
instance, chemistry overlaps with physics significantly, and so does biology via
bio-physics. What is the exact split, if any, or is everything ultimately physics?
With our system, we now know the difference; scientific theories are entailed
by knowledge, whereas fundamental physics is entailed by the definition of the
observer as the maximally permissive circumscription over its freedom of partic-
ipation. A word of caution however; in practice one could always demand that
we subject Axiom 1, and its predictions, to the falsification process, and thus
physics, via the technicality of the definition of the observer remains falsifiable
despite being of a different category; physics is the unique member of a special
category of falsifiable theories.

This difference carries over with respect to the techniques used to falsify
physics. Physics, although falsifiable as we just said, is not subject to the fun-
damental theorem of science which applies only to formal axiomatic represen-
tations of experimental contributions and is responsible for a common scientific
theory being falsifiable. For physics, a special falsification theorem must be
created, and such must start with the definition of the observer rather than
with the elements of the experimental contribution. The resulting falsification
theorem will be more challenging than the first, simply because the observer is
a probability space and this is a more challenging mathematical object to work
with than a mere enumeration. To falsify a common empirical theory via the
fundamental theorem of science, it suffices to identify a halting program within
the experimental contribution to knowledge that is not entailed by it. For in-
stance, J.B.S. Haldane one of the founders of evolutionary biology reportedly
stated that finding the fossils of a rabbit in the Precambrian would falsify the
theory of evolution. This is a binary yes/no type of falsification. Whereas, since
physics is entailed by a probability space, falsifying physics will involve the use
of probabilities. Specifically, we will find that repeat experiments over multi-
ple copies of identical preparations, such that a probability distribution can be
extracted from a plurality of similar measurements, will be required to test or
falsify physics by comparing it to the predicted expectation values.

5.2 The Observer

The reader will notice that Axiom 1 does not reference a plurality of observers,
rather it postulates what amounts to a singleton observer. The system is in-
tended to be formulated from the perspective of the observer. This should be
less surprising than it tends to be as it avoids a battery of observer-related para-
doxes, and captures the ontologically safest possible foundation, but we have to
be careful so that the intent is not misunderstood. Let us explain the term, and
then we will discuss its motivation and attempt to address the concerns. The
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term singleton is imported from software engineering, where the singleton pat-
tern refers to a design pattern of object-oriented programming in which a class
can only be instantiated once. Singleton does not mean that the program itself
can only be ran once, it only means that each running copy has only one instan-
tiation of its singleton variables within its memory. Our system supports the
idea of "running” multiple times in parallel, thus admitting multiple observers
—or more precisely formulated; it allows other observers to claim singleton sta-
tus from their perspective—, and the singleton observer axiom is not designed
to prevent that; it simply means that for each execution, the theory is formu-
lated from the perspective of its singleton observer. The singleton observer is
”T” from my perspective, and ”you” from your perspective, and ”him” from his
perspective, etc. To be explicit, it is not a universal observer neither it is God
— just you, him, her or I. The singleton observer is a mathematical description
of who ”I” am that also conveniently formalizes the set of tools ”I” have access
to in order to understand or participate in nature.

First, let us explain exactly how the theory is intended to support other
observers from the perspective of the singleton observer. Their existence will
be evidence-derived rather than postulated. Other observers, if they exist, can
and will be derived by the singleton observer the same way any other facts are
investigated, by merely inspecting the experimental contributions and weighting
the evidence for them, and thus do not need to be postulated. Do we also need
to postulate rocks, trees, or bees — or can we accept that their existence will
be derived conditional upon the scientific evidence, and if so why not demand
the same in regards to evidence for other observers? Indeed, psychologically
and developmental-wise, this is what happens naturally as an infant matures
and over time develop a theory of the mind to assess the motivations and the
decision-making strategies of others — i.e. Infant solipsism (Piaget). Evidence
for other observers is identified by inspection of all available evidence and builds
over time and is the subject of the scientific method and to falsification. To
include other observers via postulation would be to erase said developmental
steps from the domain of the scientific method, or at least eliminate the necessity
of a laborious but insightful derivation thereof by virtue of having reduced them
to mere postulation, and would result in a representation of reality missing this
sophistication.

Let us further point out that if we find it reasonable to expect that physics
ought to work for any number of observers between 1 and infinity; then physics
must also work with just one — and just like Peano’s axiom posits only the first
natural number and the others are derived by the successor function, here the
singleton observer is the base axiom and others are intended to be derived from
evidence.

Secondly, one must remember the role of axioms. Axioms are the logical
manimal required to derive a theory and are intended to be free of any redun-
dancy. They are not a collection of desiratas, nor are they designed to make the
world a better place than it is. Not only do we not need a plurality thereof to
complete the theory, if we made the world conditional upon multiple axiomatic
observers, the thesis becomes nonsensical: We would be claiming that at least
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two observers are needed to entail the laws of physics... can an observer, when
working alone, violate the laws of physics, but can’t if working as a team... ?
Of course not.

Just like quantum theory should work for one or any number of particles, the
laws of physics should logically be definable against only one observer if need
be, or any other number, because they limit what each observer can individually
do or cannot do. Team work, although perhaps socially beneficial, does not in
this case prevail against the laws of physics.

Let us now discuss the singleton observer within the context of a relevant
physics experiment. The Wigner’s friend experiment puts forward a paradox
in which two observers appears to witness the collapse of a wave-function at
different times. The Wigner’s friend experiment supposes that an observer F
measures a wave-function |¢) = «a|¢1) + 8 |¢2) to be in state |¢p1) or |pa), with
probability |a|? and |3|? respectively, that F notes the result somewhere in his
laboratory, but refrains from advising another observer W of the result. This
other observer then understands the wave-function of the laboratory in which
F performed his measurement to retain the superposition. Whether the system
is or isn’t in a superposition appears to be resolved at different times for each
observer; F sees the collapse at the instant of measure, but W sees it only af-
ter F choose to share his notes with him. This difference in collapse timing is
the paradox. A commonly proposed resolution is that superposition does not
occur in macroscopic objects, and the reproduction of this experiment in a mi-
croscopic system would appear less paradoxical. In actuality however, as soon
as observer F notes then hides the result, F begins to act as a glorified hidden
variable theory with respect to W and this is ruled out by Bell’s inequality; thus
F cannot cause |1) to collapse at any time other than simultaneously for all ob-
servers. In his original paper Wigner focused on another possible resolution:
7 All this is quite satisfactory: the theory of measurement, direct or indirect,
is logically consistent so long as I maintain my privileged position as ultimate
observer”. Historically, this has not been the preferred interpretation because of
the obvious resistance to the connotation associated with a privileged ultimate
observer. In our system, the observer is not assumed to be ”privileged ultimate”
but merely to be formulated as a singleton, and other observers can proclaim
the same. Specifically, the wave-function will be formulated from the perspec-
tive of a singleton observer; and since other observers are derived by inspection
of the evidence ”gathered” by said wave-function, they will obviously be unable
to support a different wave-function behaviour than that reported by the sin-
gleton. Furthermore, as we said, other observers can proclaim the same, and
thus, symmetry oblige and as we found guaranteed by the laws of physics, all
observers, singleton and evidence-derived, will observe the same wave-function
behaviour as each other.

Our feedback was that some find this last point hard to accept as they imag-
ine we are implying the need for some prior non-local synchronization effect to
guarantee agreement between observers whenever they meet to compare results.
However, this is not necessary. Let us open a small parenthesis, grant ourselves
access to more lenient, illustrative and familiar physical language, and expand
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on this statement, at the cost of dropping some of the generality. For the pur-
poses of these examples, let us assume the concepts of matter, biological bodies,
light cones and wave-function. Essentially, the picture is painted as follows.
First, the singleton observer defines itself as the sole probability space over the
experiments of nature. What about the evidence-derived observers? In the wild
they simply appear to the singleton as biological bodies evolving in nature and
they are subject to the same physical laws as anything else made of matter.
That they may or may not be more than that (i.e. are they also, from their own
perspectives, a probability space?) is private knowledge that is not available
to the singleton. Hence, the behaviour of biological bodies, as they are made
of ordinary matter, are solutions of the singleton’s wave-function, like other
other object made of matter. The second element that negates the need for
prior non-logical synchronization is the incremental contribution formulation.
Suppose observer A knowns halting program 1 and observer B knowns halting
program 2. The union of their knowledge is always a valid state of knowledge
(i.e. knowledge is closed under union). No prior non-local synchronicity is
required to ensure future compatibility of knowledge.

Finally, why did we present the singleton observer as an axiom, and not say,
as a definition? An axiom implies one could claim it to be false, and technically
speaking this is indeed possible. For instance, one simply has to state they do not
believe they exist as an observer, and as we would only have their proclamation
of such to go by since the singleton observer is postulated, the scientific method
would be powerless to prove the claim wrong. The question ”what if axiom 1 is
false” is answered amicably with ”then you are not an observer”, and we move
on. The other, slightly more challenging, reformulation of the question is ”what
if axiom 1 is slightly-off” (in the sense that our probability space definition
of the singleton observer is the wrong one to use, but the concepts we put
forward might still otherwise be the correct overall approach). In this case we
would simply get, proportionally to a how wrong our definition is, the wrong
laws of physics, which is why we claimed earlier that physics is also subject
to falsification. We do not exclude that, in principle, future experiments may
confirm, or force us to adjust, the mathematical form of axiom 1 along with its
accompanying entropy-maximization recipe. Consequently, our physical theory
of the observer is in principle falsifiable.

5.3 The Theories

We have previously stated that a scientific theory is entailed by knowledge, and
that it does not entail it in return. Phrasing it like this however makes it sounds
like models are vacuous; this is not the case as they do provide value, but we
do not call this value knowledge, rather we call it insight.

For instance, it is the case that natural selection is an insightful model of bio-
diversity, but does it give us knowledge of bio-diversity? — or, it is knowledge
of bio-diversity that gives us natural selection as the insight?

Consider these statements:
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1. (The model of) natural selection entails knowledge of bio-diversity.

2. Knowledge of bio-diversity entails (the model of) natural selection.

In our system, the entailment is always as follows:

Knowledge = Model (34)

The entailment must be in this direction because knowledge is epistemi-
cally certain, and the model, as it is only hypothetical, cannot entail epistemic
certainty.

Let us consider what is perhaps a more counter-intuitive example:

1. (The model of) gravity entails knowledge of objects falling.

2. Knowledge of objects falling entails (the model of) gravity.

It is common to hear that the first is true on the grounds that gravity causes
objects to fall. However, it is knowledge of objects falling that caused Newton
to produce the model of gravity. Gravity may appear as logically equivalent
to the sum-total of all falling objects; but nature is not gravity, nature is the
sum-total of all falling objects.

It is in regards to the formulation of quantum physics that adopting the cor-
rect entailment will pay the most dividends. Consider the following statements;
which one is true?

1. Measuring a wave-function [)) = a|p1) + 8|d1) caused it to collapse to

|p1) or to |¢2).

2. Registering ’clicks’ such as |¢1) or |¢2) on an incidence counter causes us
to derive ) = a|p1) + B |11) as a statistical model of the clicks.

As always, the second is the correct entailment. But careful; this reverses
the typical formulation of quantum physics! — First, 'clicks’ are recorded then
the wave-function is derived...

In the upcoming sections, we will investigate the consequences and advan-
tages of this reversal.

5.4 It from Bit”

Let’s begin by explaining what we mean by a ’click’. We borrowed the term from
" Information, Physics, Quantum; The Search for Links.” by John A. Wheeler[2].
Wheeler states:

[The photon is one of many examples] that may illustrate the
theme of it from bit. [...] With polarizer over the distant source and
analyzer of polarization over the photodetector under watch, we ask
the yes or no question, ”Did the counter register a click during the
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specified second?” If yes, we often say, ” A photon did it.” We know
perfectly well that the photon existed neither before the emission
nor after the detection. However, we also have to recognize that any
talk of the photon ”existing” during the intermediate period is only
a blown-up version of the raw fact, a count

Wheeler explains the term ’it from bit’ as follows:

It from bit symbolizes the idea that every item of the physical
world has at bottom — at a very deep bottom, in most instances
— an immaterial source and explanation; that what we call real-
ity arises in the last analysis from the posing of yes-no questions
and the registering of equipment-evoked responses; in short, that
all things physical are information-theoretic in origin and this is a
participatory universe.

Essentially, ’clicks’ are wave-function collapses; they refer to what an instru-
ment records when they occur.

By taking the ’click’ as the fundamental object, rather than the wave-
function, the formulation of quantum mechanics will be in the opposite direction;
our goal will be to start with a sequence of recorded ’clicks’ and to end up, via
some mathematical procedure, on the wave-function.

Having some familiarity with the work of John A. Wheeler on the partici-
patory universe, we believe this may be where he hit the roadblock as he was
missing said mathematical procedure.

The procedure will be presented in the following section.

5.5 Origin of the Wave-Function

Statistical mechanics derives the Gibbs measure under specific constraints on
the entropy. Using a similar methodology, we will appropriately constrain the
entropy subject to recorded ’clicks’, and we will derive the wave-function along
with the Born rule (together forming a measure), essentially as an extension of
statistical mechanics.

First let us review statistical mechanics. In statistical mechanics, constraints
on the entropy are associated to instruments acting on the system. For instance,
an energy constraint on the entropy:

E=> p(@)E(q) (35)

q€Q
is interpreted physically as an energy-meter measuring the system and pro-
ducing a series of energy measurement 1, Fs, ... converging to an average value
E.

Another common constraint is that of the volume:
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V=> p@V(q) (36)

associated to a volume-meter acting on the system and converging towards
an average volume value V, also by producing a sequence of measurements of
the volume Vi, V5, . ...

With these two constraints, the typical system of statistical mechanics is
obtained by maximizing the entropy using its corresponding Lagrange equation,
and the method of the Lagrange multipliers:

L=—kpY pl@pl@+A| 1= p@) | +B|E=D_p@E@ | +7|V =2 r@V(a)
q€Q q€Q qeQ q€Q
(37)

and then solving ‘3—’2 = 0 for p, we get the Gibbs measure:

p(q, B,p) = % exp(—BE(q) +vV(q)) (38)
= exp(~5(B(a) + pV(0)) (39)

Let us now recover the wave-function using a similar methodology.

To do so, we will introduce a larger class of instruments into statistical
mechanics. Instead of an energy-meter or a volume-meter, consider a phase-
invariant instrument, such that the constraint it induces on the entropy is given

as follows:
tr < b

e () )

complex numbers.

Here, the purpose of the trace is to enforce the phase-invariance of the instru-
ment. The entropy will be maximized, not under energy or volume constraints
this time, but under the constraint of measurement-events (or ’clicks’) collected
by phase-invariant instruments (or ’click’ recorders), and this will yield the
wave-function along with the Born rule automatically as the statistical model
of the ’clicks’.

The corresponding Lagrangian equation that maximizes the entropy will in
this case be:

[BS]

b = plg)tr (40 H@) (40)
a) <b(q) (a)>

q€Q

IR

a(q) + ib(q) is the matrix representation of the
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a —b a(q)

L=-=) pl@h(g)+a|l=> plg)|+7|tr{; _ =) plgtr
> > (i 7)-Zrw (il
(41)

Maximizing the entropy under such constraints does produce the probability
measure of the wave-function along with the Born rule. But here it is derived
using the same technique as we would for any other system of statistical me-
chanics, and thus we inherit its tools, interpretation and will be able to account

for the origin of the measure. Indeed, solving p for %(Lq) = 0 gives:

p(q) = %exp trr (qu)) —b(q)) (42)

q) alq)
1 et expr (2@ —0(a)
= 7 detexp (b<q> a<q>) (43)

1%

exp 27a(q)| expiTb(q)|? Born rule (44)

We hold this to be the true origin of the wave-function and the Born rule.

This formulation yields what we call the minimal interpretation of quan-
tum mechanics: In nature, there exists instruments that record sequences of
measurements on systems, those instruments have a phase-invariance, and the
wave-function along with the Born rule are the base measure constrained by
those measurements. This interpretation is completely factual and entirely free
of redundancies (many-worlds, etc.).

Let us expand further in the following section.

5.6 A Random Walk in Algorithmic Space

Starting with the definition of the observer, a probability space over all ex-
periments of nature, the correspondence between our approach and statistical
mechanics can be improved further — and even be made complete. Specifically,
the correspondence is as follows:

Statistical Mechanics Statistical System of ’clicks’
Entropy Boltzmann Shannon  (45)
Measure Gibbs Born Rule  (46)
Constraint Energy meter Phase-invariant instrument  (47)
Micro-state Energy values Sub-Contributions  (48)
Macro-state Equation of state Evolution of the wave-function (49)
Experience Ergodic Message  (50)

We will now investigate the correspondence.
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As stated previously, nature N is the power tuple of the incremental contri-
bution m; it therefore comprises multiple elements. Let us now call the elements
of N the possible sub-contributions. These elements will be the micro-states of
our system. As for the macroscopic state, it will acquire the form of a wave-
function and will describe the evolution of the possible micro-states. Finally,
the message connects to the macro-state via a specific sequence of registered
“clicks’, and this information is quantified by the Shannon entropy.

In statistical mechanics it is often assumed that the system, say the molecules
of air in a box, permute over the possible micro-states of the system (i.e. ergodic
hypothesis), whereas in our system as we use the Shannon entropy, there is no
such permutation; how the observer experiences the system is in the form of
a message fixing the realized incremental contribution from the possible sub-
contributions available in nature. And the information gained by the observer
from this message is equal and opposite to that of the entropy of the system.
Thus, our formulation contains no redundancies; there are no many-worlds —
only a unique message of incremental contributions that the observer experiences
as reality.

Here, it is the experience that is considered real and fundamental. In our
system, the experience is defined under the assumption of an observer with
experimenter freedom (Axiom 1) receiving or producing a message as an incre-
mental contribution. The observer could have produced a different incremental
contribution but it so happen to have produced this particular one, and the
difference between what is and what could have been constitutes the entropy
that associates with experimenter freedom. The clicks represent the informa-
tion required to fix the experience of the observer as a particular message from
nature.

As for the rest of the table, it simply follows from (maximizing the quan-
tity of information/entropy of, or generally to optimize the information of) the
experience.

Finally, new contributions by the observer resulting from its continued par-
ticipation in nature, will automatically trigger new ’clicks’ to be registered in
the system so as to preserve the general form of the experience as a message
and to do so consistently over the addition of those new contributions. The
clicks are therefore directly produced by observer participation in nature and
serves as evidence of experimenter freedom, and this is more fundamental than
the wave-function which is derived afterwards as a statistical model entailed by
the clicks that are registered.

An example to fix the intuition is that of a random walk in algorithmic space
(in nature). As the observer collects halting programs (completed experiments),
‘clicks’ are registered to define the path it takes. Here, the ’clicks’ are the
experimental analog to the bits used to define the path of a one-dimensional
random walk.

Aspects of our model connects with insights by Conway and Kochen[1],
where they describe "new bits of information coming into existence in the uni-
verse” as a result of experimenter freedom. They say:
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...there will be a time tq after x, y, z are chosen with the property
that for each time ¢t < ty no such bit is available, but for every ¢t > tg
some such bit is available.

But in this case the universe has taken a free decision at time
to, because the information about it after ¢ is, by definition, not a
function of the information available before t!

In our work, we have taken it a step further and revealed that the unit
of information of experimenter freedom is not the bit but actually the ’click’,
and that unlike the bit, the ’click’ contains enough sophistication to encode the
experience of the observer such that its maximized freedom of action is precisely
circumscribed by the laws of physics as they are empirically familiar to us. We
will see that in detail in the main result.

5.7 Dissolving the Measurements Problem

Starting with a sequence of ’clicks’ (wave-function collapses), our procedure de-
rived the wave-function (which supports a plurality, or superposition, of possible
‘click’ results). We have traversed the measurement problem from the opposite
direction of the standard formulation:

Standard: ~ Measurement(wave-function) = ‘click’ (51)
—— —— ——
Axiomatic collapse problem?
Ours:  Max-Entropy( clicks’ ) = wave-function  (52)
— —_————
Axiomatic derived

We note that the maximization of entropy operation is non-problematic,
but the measurement operation introduces the problem of the wave-function
collapse.

Let’s investigate the distinction in more details.

Very broadly, all statistical systems, classical or quantum, admit two formu-
lations, sometimes referred to as a frequentist or a bayesian formulation.

Our formulation of quantum mechanics from statistical mechanics is entirely
frequentist; whereas the standard formulation mix and match elements of both
the bayesian and the frequentist schools. Specifically, the wave-function collapse
in the standard formulation is treated using the bayesian school; it assumes a
prior (the wave-function) and updates it with the result of each measurement
as they occur. However, the bayesian update (the collapse) is not physically
understood and constitute what is known as the wave-function collapse problem.

To better understand how the formulations differ and to illustrate the na-
ture of problem, let’s consider the archetypical example of a fair coin toss with
50%/50% probability of landing on either head or tail. We can produce the
formulations by picking different points in the history of the system to define
the measure; either before or after the coin lands.
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1. If formulated before the coin lands:

If we are to formulate the statistical model before the coin lands, we would
first posit a probability measure 50% head /50% tail (bayesian prior), then
we would find that sampling the system (throwing the coin) yields either
head or tail whenever it lands (this is the bayesian update). In this case,
the probability measure, if it were proclaimed to be the complete physical
description of the system would be insufficient to support a physical mech-
anism for the bayesian update. This is similar to how quantum mechanics
is typically formulated.

2. If formulated after the coin lands:

Now, consider the discovery of a coin on the floor with head facing up.
To work with probabilities, we must first assume an appropriate history
for this coin making the present result due to chance; and specifically
the choice will be that the coin landed as the result of fair coin toss.
Unlike the previous case, we did not witness this history. We merely as-
sumed it following the discovery of the coin on the floor, and theoretically
speaking, we could be wrong about our assumption (someone could have
just deposited it carefully on the ground face up). This is the post-facto
formulation. Then, under the fair coin toss history assumption, we can
construct a probability measure to account for the state the coin was dis-
covered in. The probability measure assigns a 50/50 probability to each
outcome: head or tail. We end up with the same statistical model as the
previous case, but no sampling of the probability measure has occurred
and the probability interpretation is readily understood to merely be a
plausible model of the history of the system. Since we model the past and
the past is fixed, no updates on the measure need occur.

In our system, the wave-function along with the Born rule are not fundamen-
tal, but are derived following the registration of ’clicks’. It models the history of
the system; it is not a physical object that is acted on by an observer; it holds
only after the observer has acted.

That is not to say that the wave-function cannot be used predictively, but
implicit assumptions are required to do so; in all cases and while the experiment
is carried out, the regularity of the environment must be assumed. However,
this regularity is verifiable only after the experiment is completed. For instance,
one typically assumes a meteor will not strike the lab. Or perhaps the lab will
lose funding mid-experiment and will shutdown. That the environment is or
isn’t regular until the end cannot be know, in the general case, until the end.
Or said differently; a predictive wave-function is a gamble that the system will,
at some point in the future, be in a state such that the system’s past is correctly
modelled by it.

The advantage of our interpretation is that it matches what actually occurs
in reality; it is indeed the case that we first register the ’clicks’ on a recorder,
and only then do we derive the measure to be a wave-function. Likewise, if we
register no clicks, we assume no wave-function.
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Finally, since we cannot have knowledge of the existence of a wave-function
(the prior) before a click is registered (its update), it should now be clear that
the bayesian interpretation demands that the update precedes its prior — and
this is nonsense.

Some may have the impression that this may be too simple to be the solution,
but let us reassure the reader that this is not the case. This interpretation was
not conductive before our main result relating statistical mechanics (and phase-
invariant instruments) to the wave-function, as its origin was otherwise too
obscure to support this interpretation.

5.8 Automatic Inclusion of Gravity

In our main result we will actually obtain a generalization of quantum mechan-
ics to support general linear transformations. In this case the interpretation
of quantum mechanics takes its simplest and most visualizable interpretation.
The phase-invariant instruments are upgraded from a complex phase to a gen-
eral linear phase, and the geometry automatically follows. The probability
will then be associated with a sequence of ’clicks’ recorded in space-time as
events. The framework will describe reality as a sequence of space-time ’clicks’
(or events) which, under entropy maximization, are associated to a general lin-
ear wave-function in lieu of the Gibbs ensemble. As we note, general relativity
is primarily a theory of events in space-time, and the extension to quantum the-
ory assigns a probability and an entropy to said events, such that the measure
over said events is a wave-function able to support the transformations required
by general relativity while preserving the invariance of the probability measure.
This generalization yields a gauge-invariant general linear wave-function whose
equations of motions are exactly the Einstein field equations. No other equations
of motion are supported (except as sub-cases).

5.9 Context

Finally, let us address a common concern:

Surely there is more to reality than simply ’clicks’ — what about
objects such as chairs or kitchen tables, what about colours or liter-
ature?

Here we give a "first-approximation answer”. It is not designed to be a
complete answer, but merely to guide the intuition.

This is where context sneaks in. Each halting program contains the context
to the claim it makes. An observer with a naturally-selected brain will be
influenced by biological evolution and other environmental factors, and will pick
a preferred context to clarify the set of halting program it knows (this could be
colours instead of wavelength, or set theory instead of quantum Turing machine
programs). The mind understands reality as a collection of scientific fields,
which are choices of formal axiomatic bases, formulated in a matter it finds
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efficient or convenient; each representing a falsifiable choice of context. Why we
think of a particular cloud of ’clicks’ as a chair, or another cloud as a wood club
which is a potential weapon, is simply the result of natural selection influencing
these contextual choices and committing them to the biological wiring of the
brain.

The laws of physics, however, are without specific context and this is re-
quired for them to be universal. The lack of dependance upon a specific context
relate the laws of physics to the ”fraction” of reality. Specifically, they relate
to the transformations from arbitrary initial states to arbitrary final states a-
contextually, and the "rest” of reality is relegated to scientific theories which
are contextual.

6 Main Result

Let us now use the definition of the observer (Axiom 1) as our starting point to
derive fundamental physics. We recall that our definition of the observer is:

O:=(mN,p: N —10,1]) (53)

where m is a n-tuple, N is a "powertuple” and p is a (probability) measure
over V.

In this main result, we will maximize the entropy of p using the method of
the Lagrange multipliers. How?

First, note the similarity between our definition of the observer to that of
a measure space in mathematics. Comparatively, the definition of a measure
space is:

M := (X, 5, u(X)) (54)

where X is a set, ¥ is (often) taken to be the powerset of X, and p is a
measure over .

The difference with our measure is simply that sets have been replaced by
tuples. Consequently, we must adapt the standard definition of a measure space
from set to tuples. To do so, we will use the following recipe:

1. We assign a non-negative real number to each element of A/ (this number
represents the probability associated with the element).

2. We equip said numbers with the addition operation, converting the con-
struction to a vector space.

3. We maximize the entropy of a single element under the effect of con-
straints, by using the method of the Lagrange multipliers.

4. We use the tensor product n-times over said vector space to construct a
probability measure of n-tuples of halting programs.
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5. We use the direct sum to complete the measure over the whole of tuple-
space by combining the measures of different sizes as a single measure.

Explicitly, we maximize the entropy:

S=-=> pp)np(p) (55)

pem

subject to these constraints:

S olp) = 1 (56)

> pp)trM(p) = tr M (57)

pem

where the notation Zpem designates a sum over the elements of the experi-
mental contribution m, where M(p) are a matrix-valued maps from the elements
of m to C™*™ representing the linear transformations of the vector space onto
itself, and where M is a element-by-element average matrix.

Let us note that maximizing the entropy under these constraints is the math-
ematically explicit form of what we have previously called maximizing experi-
menter freedom, or maximizing 'freedom of action’. The linear transformations
of this vector space will in turn be we found to associate to one of the steps
specified by an experimental protocol. By maximizing the entropy here, we will
therefore look for the ’least encumbered’ probability measure consistent with
these transformations. After entropy-maximization, the resulting physics is a
circumscription on experimenter freedom.

Usage of the trace of a matrix as a constraint imposes an invariance with re-
spect to a similarity transformation, accounting for all possible linear reordering
of the elements of the tuples of the sum, thus allowing the creation of a measure
of a tuple or group of tuples from within a space of tuples, invariantly with
respect to the order of the elements of the tuples. Similarity transformation
invariance on the trace is the result of this identity:

trM = tr BMB ™! (58)

Furthermore, as the trace of a matrix corresponds to the expectation of its
eigenvalues (times the dimension of the matrix), and the eigenvalues have a
geometric interpretation the form of the ratio of the distortion of the length of
a geometric transformation, the probability measure will be inherently geomet-
ric. The constraint of the entropy is to preserve this expectation value of said
geometric transformation. We will further discuss the geometric implications in
section 7 and 8.
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We now use the Lagrange multiplier method to derive the expression for p
that maximizes the entropy, subject to the above mentioned constraints. The
corresponding Lagrange equation is:

L=—-kp Y p(p)In(p) + (1 -y p(p)> +7 (trM - plp)tr M(F))

peEmM pEmM pEm
(59)

where o and 7 are the Lagrange multipliers. Except for the presence of the
trace and matrices, the method is standard and shown in most introductory
textbooks of statistical mechanics to derive the Gibbs measure. The explicit
derivation is made available in Annex B.

With the trace and matrices, the resulting probability measure exceeds the
sophistication of the Gibbs measure, and is:

pp,7) = % det exp(—rM(p)) (60)
where
Z(r) =) detexp(—TM(p)) (61)
pEmM

We finish up the probability measure by adding the prior. The prior, which
accounts for an arbitrary preparation of the ensemble, ought to be —for purposes
of preserving the scope of the theory— of the same kind as the elements of the
probability measure. Let us thus introduce the prior as the map P from the
elements of m to C"*™ and inject it into the probability measure as well as into
the partition function:

p(p) = et exp (P(p)) det exp (~7M(p)) (62)
where
Z = Z det exp (P(p)) det exp (—7M(p)) (63)
pEmM

6.1 Completing the Measure over Nature

In the previous section, we have produced a measure over a tuple of single
experiments. Whereas the measure we are after is a sum over the whole space
of experiments spawned by an experimental contribution, which contains all
sub-tuples of the experimental contribution (i.e. over the whole of nature).
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Completing the measure over nature will require us to sum over differently-
sized tuples. To do so, first, we will use the tensor product to produce measures
summing over multiple elements, and second, we will use the direct sum to
combine the differently-sized measures into a single final measure.

6.1.1 Split to Amplitude / Probability Rule

Before we are able to proceed with both the tensor product and the direct sum,
we can capitalize on pre-existing familiarity by splitting the measure into two
operations.

We begin by splitting the probability measure into a first step, which is
linear with respect to a 'probability amplitude’, and a second which connects
the amplitude to the probability. We thus write the probability measure as:

(b, 7) =  det(p,7) (64)

where

Y(p, 7) = exp(P(p)) exp(—7M(p)) (65)

Here, the determinant is interpreted as a generalization of the Born rule
and reduces to exactly it when M is the matrix representation of the complex
numbers. In the general case where M are arbitrary n x n matrices, ¥(p, 7) will
be called the general linear probability amplitude.

We can write t(p, 7) as a column vector:

¢gp17T§ zl

17Z) 2, T 2

= = (66)
Y(pn,T) Un,

6.1.2 Tensor Product

How do we extend the measure to experimental contributions containing mul-
tiple experiments? We have to use a Cartesian product. For instance, let us
consider the following sets of experiments:

M; = {plaaplb} (67)
My = {P2a7p2b} (68)

The Cartesian product produces a set of experimental contributions com-
prised of two elements:
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m € My x My = {(p1a; P2a); (P1a> P2b), (D155 P2a)s (P16, P2b) } (69)

At the level of the probability amplitude, the Cartesian product of sets
translates to the tensor product. For instance, we start with a column vector
where each entry is one experiment;

_ (expP(p1a)
W) = (eXp P(m)) (0)

Adding a program-step via a linear transformation produces:

Too exp P(p1a) + To1 exp P(pw))
T = 71
1) <T10 exp P(p1a) + T11 exp P(p1p) (1)

We then introduce another column vector:

= (een) ™

along with a program-step:
TI eXpP(pZ ) + T/ exp P(pr)
T’ = (-00 a 01 73
v2) (T{o exp P(paq) + T1; exp P(pay) (73)

Then the tensor product of these states produces the probability measure of
an experimental contribution as follows:

(Too exp P(p1a) + To1 exp P(p1p)) (T{o exp P(paa) + T4y exp P(pan))
T |,¢)1> QT |,¢J2> _ (TOO exp P(pla) + To1 eXpP(plb))(TlIO expP(pQG) -+ Tlll exp P(pr))
(Tyo exp P(pra) + Ti1 exp P(p1y)) (T4 exp P(paa) + T4y exp P (pay))
(Tho exp P(p1a) + Th1 exp P(p15)) (T exp P(p2q) + 111 exp P(pasy))

(74)

Now, each element of the resulting vector is an experimental contribution
of two programs, but its probability is a sum over a path. One can repeat the
process n times.

6.1.3 Direct Sum

In the previous section, we have introduced a way to produce measures of fixed
sizes n by using the tensor product. Here, we wish to produce a measure with el-
ements of different sizes. Taking the direct sum of the measures of different sizes
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(where each individual size is produced from the tensor product), accomplishes
the goal and yields an amplitude given has follows:

[¥) = 11b1) @ (1¥1) @ [¥3)) ® ([¥1) @ [¥3) ® |45)) & ... (75)

In quantum field theory, in the limiting case n — oo and when M(p) is
reduced to the complex field, these are the states of a Fock Space, which we
have obtained here simply my maximizing the entropy of the measure associated
with our simple definition of the observer (Axiom 1).

6.2 Discussion — Fock Spaces as Measures over Tuples

Some may consider our result purely using measure theory as the starting point
and neglect the model of the observer. An entropy-maximized measure over the
tuples of a tuple-space (as an extension to typical measure theory defined for the
subsets of a set) induces a Fock Space, along with the appropriate probability
rule (Born rule) for use in quantum mechanics. The measures used in quantum
mechanics would thus result quite intuitively from this simple extension of mea-
sure theory, previously defined for sets, to tuples, and then simply maximizing
the entropy.

We should mention that, although tuples can represent anything, in our
system Axiom 1 requires the tuples to represent experimental contributions (or
halted programs). But this is a minimal constraint, enforcing, while introducing
no other constraints, that all experimental preparations or protocols must be
describable using computable steps, and thus be comprehensible to the scientific
method.

6.3 Connection to Computation

Previously, in the formal system of knowledge, we have stated that our defini-
tions will reference the concept of the computable function, and that such will
hold irrespectively of the underlaying model of computation. We can now claim
more. Here, we will see that having maximized the entropy of the measure space
over tuples has automatically generated the underlaying model of computation.

Let us begin by reviewing the basics of quantum computation. One starts
with a state vector:

ltha) = | (76)

n
Which evolves unitarily to a final state:

|’(/}b> = UOUl v Um |7/Ja> (77)
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Clever use of the unitary transformations, often arranged as simple ’gates’,
allows one to execute a program; but technically speaking any arrangements
of unitary transformations qualify abstractly as a program (without or without
gates). The input to the program is the state |i,) and the output is the state
[tp). One would note that, so defined and if the sequence of unitary transfor-
mation is finite, such a program must always halt, and thus its complexity must
be bounded. One can however get out of this predicament by taking the final
state |1) to instead be an intermediary state, and then to add more gates in
order continue with a computation:

step 1 [Yp) = UoUs ... Up [tha) (78)
step 2 [he) = UgUx - .. Ug |hn) (79)
step k ) = UgUy ... Uy [bk) (80)

For a quantum computation to simulate a universal Turing machine it must
be able to add more steps until a halting state is reached (or continue to add
steps indefinitely if the program never halts).

The linear transformations T, Ts, ... of our main result are here interpreted
in the same manner as those used in quantum computations, but extended to
the general linear group. Protocols are executed by chaining transformations
on a preparation:

|¢b> =TiTy...T, |wa> (81)
final state protocol  preparation

And a quantum computation involves a sequence of unitary transformations
on the unit vectors of a complex Hilbert space:

) = UUs... Un  |th) (82)
~—~ —————
final state computing steps initial state

We are now ready to begin investigating the main result as a general linear
quantum theory.

7 Foundation of Physics

We will now introduce the algebra of observables of the general linear wave-
function.
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7.1 Matrix-Valued Vector and Transformations

To work with the general linear wave-function, we will use vectors whose ele-
ments are matrices. An example of such a vector is:

M,
)y =1 : (83)

Likewise a linear transformation of this space will expressed as a matrix of
matrices:

MOO e MOm
Mo ... Mpm
Note: The scalar element of the vector space are given as:

aM1
alp)=1 : (85)
aM,,

7.2 Algebra of Observables, in 2D

The notation of our upcoming definitions will be significantly improved if we use
a geometric representation for matrices. Let us therefore introduce a geometric
representation of 2 x 2 matrices.

7.2.1 Geometric Representation of 2 x 2 matrices

Let G(2,R) be the two-dimensional geometric algebra over the reals. We can
write a general multi-vector of G(2,R) as follows:

u=A+X+B (36)

where A is a scalar, X is a vector and B is a pseudo-scalar. Each multi-vector
has a structure-preserving (addition/multiplication) matrix representation. Ex-
plicitly, the multi-vectors of G(2,R) are represented as follows:

Definition 21 (Geometric representation of a matrix (2 x 2)).

(87)

A+Xﬁ+Yy+BiAy§<A+X ‘B+Y)

B+Y A-X



And the converse is also true, each 2 x 2 real matrix is represented as a
multi-vector of G(2,R).
We can define the determinant solely using constructs of geometric algebra[13].

Definition 22 (Clifford conjugate (of a G(2,R) multi-vector)).
uf = (u)o — (u)r — (u) (88)
Then the determinant of u is:

Definition 23 (Geometric representation of the determinant (of a 2 x 2 ma-
trix)).

det : G(2,R) —R
u— ufu (89)
For example:
detu=(A—-X-B)(4A+X+B) (90)
=A* - X?_Y*4+B? (91)
- A+X —-B+Y
det(B—i—Y A—X) (92)

Finally, we define the Clifford transpose:

Definition 24 (Clifford transpose (of a matrix of 2 x 2 matrix elements)). The
Clifford transpose is the geometric analogue to the conjugate transpose. Like the
conjugate transpose can be interpreted as a transpose followed by an element-
by-element application of the complex conjugate, here the Clifford transpose is
a transpose followed by an element-by-element application of the Clifford conju-
gate:

oo uo, ) uf ul
Wpno --.- Umn Uno --- uim
If applied to a vector, then:
Vi ¢
= (v;t vfn) (94)
Vin
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7.2.2 Axiomatic Definition of the Algebra, in 2D

Let V be an m-dimensional vector space over G(2,R). A subset of vectors in V
forms an algebra of observables A(V) iff the following holds:

1. Vap € A(V), the bilinear map:

2.
() :  VxV-—GEZR)
(u,v) - uty (95)
is positive-definite:
(%) € Rog (96)
3. Vap € A(V), then for each element v(q) € 4, the function:
0). ) = s bl) (0 (97)
is positive-definite:
p(¥(q), ) € Rso (98)

We note the following comments and definitions:

e From (1) and (2) it follows that Vi € A(V), the probabilities sum to
unity:

> p(a), ) =1 (99)

Y(g)ed
e 1) is called a natural (or physical) state.
o (1, 1)) is called the partition function of 1.
e p(q,1p) is called the probability measure (or generalized Born rule) of 1(q).

e The set of all matrices T acting on v, as T — 4, which leaves the sum
of probabilities normalized (invariant):

S op((a), Ty) = > p(v(g),) =1 (100)

P(q)EY P(q)EY

are the natural transformations of .
e A matrix O such that Yuvv € A(V) :
(Ou,v) = (u, Ov) (101)
is called an observable.

e The expectation value of an observable O is:

- L _op,y) (102)

©) = )
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7.2.3 Observable, in 2D — Self-Adjoint Operator

Let us now investigate the general case of an observable is 2D. A matrix O is
an observable iff it is a self-adjoint operator; defined as:

(00, v) = (¢, 0v) (103)
YuVv € V.
Setup: Let O = <OOO OOl) be an observable. Let ¢ and 1 be 2 two-state
O On
vectors ¢ = <§1> and ¥ = <zl) Here, the components ¢1, ¢2, 11, V2, Ogo,
2 2

Oop1, O10, O are multi-vectors of G(2,R).

Derivation: 1. Let us now calculate (O¢,¢):

2(0¢, %) = (Oooé1 + Oo162) "1 + ¥f (Oood1 + Oo162)
+ (01001 + O1102) s + (01061 + O11¢2) (104)

= (ﬁogo% + ¢§O(§1¢1 + ¢f000¢1 + 7/11:001452
+ @10k + GLOT Yo + YEO 1061 + ¥301d2  (105)

2. Now, (¢, Ov):

2(¢p, Oy) = éfﬁ(ooowl + 001v2) + (Oooth1 + Oo192) 1
+ ¢5(O10¥1 + O11%2) + (0101 + O11902) ¢ (106)

= ¢t 0001 + H1001¢ + 10k b1 + Y508, 61
+ ¢501001 + 030119 + 10T h1 + 30T, 41 (107)

For (O¢, 1) = (¢, 01) to be realized, it follows that these relations must
hold:

Ok, = Ovo (108)
Ok, = 010 (109)
0%, = On (110)
O, =0n (111)

Therefore, it follows that it must be the case that O must be equal to its
own Clifford transpose. Thus, O is an observable iff:
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0of=0 (112)

which is the equivalent of the self-adjoint operator Of = O of complex
Hilbert spaces.

7.2.4 Observable, in 2D — Eigenvalues / Spectral Theorem

Let us show how the spectral theorem applies to Of = O, such that its eigen-
values are real. Consider:

aoo a—xer — yez — beio
0= 113
(a + xey + yes + beis ail > (113)

In this case, it follows that Of = O:

- - — be
of = aoo a—xeyp — Yye2 12 114
(a + zey + yes + beio a (114)

This example is the most general 2 x 2 matrix O such that O = O. The

eigenvalues are obtained as follows:

_ _ _ agy — A a —xey — yeg — bejo
O—det(o )\I) —det <a+x61+y62+b612 a1 _)\ ) (115)

implies:

0= (ago — AN)(a11 — A) — (a — we; — yea — bera)(a + xey + yea + bera + ar)

(116)
0= (ao — N)(ar1 — A) — (a% — 22 — y* + %) (117)
finally:
L 2 2 2 22
)\={§(a00+a11—\/(aoo—a11) +4(a -z =y +b)), (118)
1
3 (aoo +a11 + v/(ago — a11)? +4(a? — 22 — y2 + bz))} (119)

We note that in the case where agg — a1 = 0, the roots would be complex iff
a’?—x% —y?+b? < 0, but we already stated that the determinant of real matrices
must be greater than zero because the exponential maps to the orientation-
preserving general linear group— therefore it is the case that a? —22—y%+b > 0,

as this expression is the determinant of the multi-vector. Consequently, O = O
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— implies, for orientation-preserving' transformations, that its roots are real-
valued, and thus constitute a ’geometric’ observable in the traditional sense of
an observable whose eigenvalues are real-valued.

7.3 Algebra of Observables, in 4D

We will now consider the general case for a vector space over 4 X 4 matrices.

7.3.1 Geometric Representation, in 4D

The notation will be significantly improved if we use a geometric representation
of matrices. Let G(4,R) be the two-dimensional geometric algebra over the
reals. We can write a general multi-vector of G(4,R) as follows:

u=A+X+F+V+B (120)

where A is a scalar, X is a vector, F is a bivector, V is a pseudo-vector,
and B is a pseudo-scalar. Each multi-vector has a structure-preserving (ad-
dition/multiplication) matrix representation. Explicitly, the multi-vectors of
G(4,R) are represented as follows:

Definition 25 (Geometric representation of a matrix (4 x 4)).

A+Tyo+ X1+ Yy + Zvys

+ Foi1vo A v1 + Foz2vo A v2 + Fozyo A y3 + Fazya A vz + Fizyi Ays + Fiayi Ay

FVimi A A3 +Vevo A Ava+Vyvo Ayt Ay + Veyo Ayr Ay

+ By Ay1 A2 A3

A+ Xo—iFi12 —iV3 Fizg —1Fos + Vo — V) —iB + X3 + Foz3 — iV
—Fi3 —i1F3 — Vo — V) A+ Xo+iF12 +iV3 X1 +1iX2 + Fo1 + iFo2
—iB — X3+ Fos +iVo  —X1 +iXo+ Fo1 — 1Fp2 A—Xo—iF12 +1iV3
- X1 —iXo+ For +iFo2 —tB+ X3 —Foz+1iVo  —Fi3 —iFas+ Vo +1iV3

(121)

[

And the converse is also true; each 4 X 4 real matrix is represented as a
multi-vector of G(4,R).

In 4D as well we can define the determinant solely using constructs of geo-
metric algebra[13].

Definition 26 (Clifford conjugate (of a G(4, R) multi-vector)).

ut = (u)o — ()1 — ()2 + (u)s + (u)s (122)

1We note the exception that a geometric observable may have real eigenvalues even in the
case of a transformation that reverses the orientation if the elements agg — a11 are not zero
and up to a certain magnitude, whereas transformations in the natural orientation are not
bounded by a magnitude — thus creating an orientation-based asymmetry. We do not know
its physical consequences.
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and |m] 34y as the blade-conjugate of degree 3 and 4 (flipping the plus sign to
a minus sign for blade 8 and blade 4):

[u] 3,43 = (o + (w)1 + (w)2 — ()3 — (u)4 (123)
Then, the determinant of u is:

Definition 27 (Geometric representation of the determinant (of a 4 x 4 ma-
trix)).

det G(4,R) — R (124)
u+— [ufu)zutu (125)
7.3.2 Axiomatic Definition of the Algebra, in 4D

Let V be a m-dimensional vector space over the 4 x 4 real matrices. A subset
of vectors in V forms an algebra of observables A(V) iff the following holds:

1. Vi € A(V), the quadri-linear form:
(syeyrye)y VXxVxVxV—GH4,R)
(u,v,w,x) — [utv]zwix (126)

is positive-definite:

<¢a¢7¢a¢> € R>0 (127)
2. Vo € A(V), then for each element 1(q) € 1, the function:
_ 1 1 :
p(¥(q), ¥) = RRVRT) (@) ¥ (a)]s,.4%(a) ¥ (q) (128)
is positive-definite:
p(¥(q), ) € Ro (129)

We note the following properties, features and comments:
e 1) is called a natural (or physical) state.
o (WY,1p, 1, 1) is called the partition function of .

e p(1(q),v) is called the probability measure (or generalized Born rule) of
¥(q)-

e The set of all matrices T acting on 1) such as T — 1)’ which leaves the
sum of probabilities normalized (invariant):

D pWa), TY) = > pv(e) ) =1 (130)

Y(q)EYP P(q)EY

are the natural transformations of .
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e A matrix O such that VuvVvVwyvx € V :
(Ou,v,w,x) = (u,Ov,w,x) = (u,v,Ow,x) = (u,v,w,0x) (131)
is called an observable.

e The expectation value of an observable O is:

_ (0%, 9.9, 4)
A

7.4 Probability-Preserving Transformation

7.4.1 Left Action, in 2D

(132)

A left action on a wave-function : T |1}, connects to the bilinear form as follows:
()| T*T |4). The invariance requirement on T is as follows:

(W THT |1h) = (P|y) (133)

We are thus interested in the group of matrices such that:

T =1 (134)

Let us consider a two-state system. A general transformation is:

T (j; ;) (135)

where u, v, w, z are multi-vectors of 2 dimensions. The expression GG is:

I I i I I i3
TiT:<U u)(v w>:<vv+uu vw+um> (136)

wh ot U x wiv—i—xiu wiw—l—xix

For the results to be the identity, it must be the case that:

vy +utu =1 (137)
vhw 4+ ute =0 (138)
who + ztu =0 (139)
whw + 2t =1 (140)

This is the case if

1 v U
T = \/Uiy —+ uiu (_6<Pui e“’vi) (141)
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where u, v are multi-vectors of 2 dimensions, and where e¥ is a unit multi-
vector. Comparatively, the unitary case is obtained with X — 0, and is:

1 a b
U= NEESLE (_eiebT eieaT> (142)

We can show that G*G = I as follows:

1 vi —emPy v u
1 =
— T T ’Ui'l) ¥ ’U,iu (ui e—(Pv > <—€<Pui e‘qui> (143)
1 vio + utu vtu — vtu
T vtv +utu (uiv —utv  wtu 4+ oto (144)
=1 (145)

In the case where T and |i)) are n-dimensional, we can find an expression
for it starting from a diagonal matrix:

eT1X+y1y+ib 0
D= 0 exzfc-l-yzy—i-ibg (146)

where T = PDP~!. It follows quite easily that D¥D = I, because each
diagonal entry produces unity: e T1X V1Y —ibigTiXktyiytibs —

7.4.2 Adjoint Action, in 2D

The left action case can recover at most the special linear group. For the general
linear group itself, we require the adjoint action. Since the elements of |1)) are
matrices, in the general case, the transformation is given by adjoint action:

T|y) T~ (147)

The bilinear form is:

(T[) T HHT ) T~ = (T~ H (| T*T ) T~ (148)

and the invariance requirement on T is as follows:

(T~ (@I THT [y) T = ($ly) (149)

With a diagonal matrix, this occurs for general linear transformations:
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ed1 T 1X+y1y+iby 0 0
D= 0
0 0

@2+ T2X+y2y+iba 0 (150)

where T = PDP~1L.
Taking a single diagonal entry as an example, the reduction is:

e—a1+w1X+y1y+lb1 w%eal —T1X—y1y—ib1 ea1+w1X+y1y+lb1 ¢16_a1 —T1X—Yy1y—1ib1 (151)

_ e—a1+z1x+y1y+ib1 ¢%€2a1 wle—al—zlx—yly—ibl (152)

We note that %1 is a scalar, therefore
_ w{wle%ll e—a1+m1ﬁ+y19+ib1 e—a1—:c15<—y1$'—ib1 (153)

= Pihre? e Me ™M = it (154)

8 Applications

8.1 Familiar Grounds

Before we propose new contributions, let us first recover familiar grounds.

8.1.1 Dirac Current and the Bilinear Covariants

For this application, we will impose a group reduction from the general linear
group to the spinor group. As such we pose X — 0 and V — 0.
The general linear wave-function reduces from:

Yp=exp(A+X+F+V +B) (155)
to:

(Ylx0voo =exp(A+F +B) (156)

We recall that in 4D, the probability associated with our wave-function is
given as follows:

det i = [H0h | 40T = exp4A = p (157)

but, since we eliminated X — 0 and V — 0, we can drop the blade inversion
of degree 3, and the rule reduces to:
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det i = (1) p*ipte) = exp4A = p (158)

Let us now recover the familiar Dirac theory.
First, we will expand the probability rule explicitly:

(P p*pth = ete BeFede BeFedeBe FedeBel (159)
Since the terms commute with each other, we can reorganize as follows:

— (€2A€_2B6_2F) (€2A62B€2F) (160)

P ¢

With the substitutions by ¢, we can then rewrite the probability density as
¢t ¢ = p. Here, ¢ is the relativistic wave-function and p is the Dirac current.

To see more clearly that this is indeed the case, we will adopt the geometric
algebra notation of David Hestenes for the wave-function. The replacements are
et =p,etB = e e = R, where R is a rotor. We will also use R to designate
the reverse of R, such that RR = I. Thus:

b = e2Ae?BIF _ jl/2,ib/2p (161)
= (pe®)IR (162)

¢ is now identical to the David Hestenes’ geometric algebra formulation of the
relativistic wave-function[14].

By also defining;:

é = (pe~™)2 Ry (163)

, we can now obtain the full list of bilinear covariants:

Ours Standard Form Result
scalar e (]ah) eopcosb (164)
vector &’Yuﬁb <'€E|7u|'¢}> Ju (165)
bivector IV, (Plivuvel) S (166)
pseudo-vector ¢y, 1o (D5 ) Sy (167)
pseudo-scalar ) (Wiys ) — egpsinb (168)

Our results here are the same as those of David Hestenes’[14].
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One might have been sceptical that our extension from the Born rule on
complex-valued wave-functions to the determinant of matrices could yield any
relevance for physics, but this result shows that it is equivalent to the full Dirac
theory, in 4D.

We would argue, however, that our approach conceptually much simpler; it
essentially only involves applying the determinant to a sum of matrices and not-
ing the emergence of the geometric elements manifest in the geometric algebra
representation of matrices. No import of physical language is required to get
the Dirac theory; the result follows directly from our recipe.

We even get the geometry of space-time (R and R) for free, again without
requiring insertions from outside the theory.

8.1.2 Unitary Gauge Recap

Quantum electrodynamics is obtained by gauging the wave-function with U(1).
The U(1) invariance results from the usage of the complex norm in ordinary
quantum theory. A parametrization of v over a differentiable manifold is re-
quired to support this derivation. Localizing the invariance group 6§ — 6(x) over
said parametrization, yields the corresponding covariant derivative:

D, = 0, +iqA,(x) (169)

where A, () is the gauge field.
If one then applies a gauge transformation to ¢ and A,:

Y — e 9@y and A, — A, +0,0(x) (170)

The covariant derivative is:

Dy = 8#’1/1 + Z'un’L/J (171)
— 0,(e7" @) p) 4 ig(A,, + 9,0(x))(e710@qp) (172)
= ¢710@) D 4 (173)

Finally, the field is given as follows:

Fl =Dy, D] (174)

where D, is the covariant derivative with respect to the potential one-form
Ay = AJT,, and where T,, are the generators of the lie algebra of U(1).

8.2 New Contributions

We are now ready to investigate new contributions of the general linear model
of quantum physics.
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8.2.1 General Linear Gauge Invariance

The fundamental invariance group of the general linear wave-function is the
orientation-preserving general linear group GLT(4,R). Like quantum electro-
dynamics (via the U(1) gauge) is the archetypal example of QFT, here quantum
gravity (via the GL™ (4, R) gauge) will be the archetypal example of our system.

Gauging the GL™ (4, R) group is known to produce the Einstein field equa-
tions since the resulting GL™ (4, R)-valued field can be viewed as the Christoffel
symbols I'*, and the commutator of the covariant derivatives as the Riemann
tensor. This is not a new result and dates back to 1956 by Utiyama[l5], in
1961 by Kibble[16]. The novelty here is that our wave-function is able to ac-
commodate all transformations required by general relativity without violating
probability conservation laws.

Due to our usage of the determinant, a general linear transformation:

U (x) = gi(x)g™ (175)

will leave the probability measure of the wave-function invariant, because

det gip(x)g™"! = det (z) (176)

The gauge-covariant derivative associated with this transformation is:

D/ﬂb = 8;@ - [iuny M (177)

Finally, the field is given as follows:

R,, =[D,,D,] (178)

where R, is the Riemann tensor.
The resulting Lagrangian is of course the Einstein-Hilbert action which, up
to numerical constant, is:

S = /eabcdR“b Aef Aet = /d4 zv/—gR (179)

Let us now discuss the physical interpretation of this quantum theory of
gravity.
8.2.2 Physical Interpretation

Typically to insert gravity into a quantum field theory, one would write the
metric as follows: g,, = Ny + hyw. Then after expansion in powers of h, the
Einstein-Hilbert action becomes:
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d* z(0hoh 4 hohdh + h20hoh + ...)

_ 1 4
<S_ 16wG/d w9 ~ 167G

v = Npv+hpw

(180)

where the indices on h have been dropped for brevity.

The terms OhOh are similar in role to those of an ordinary scalar field theory
0¢p0¢p, and the higher order terms are interaction terms. The linearized approx-
imation of the full theory of quantum gravity is obtained by dropping the higher
order terms.

Comparatively in our theory, the Einstein field equations are automatically
entailed by the theory as the equation of motion of the wave-function. They do
not have to be imported from outside, nor to they have to be linearized.

Before we further explore the idea, let us first review the interpretation
proposed by David Hestenes for the spinor case of the wave-function, where
X — 0,V — 0. The resulting wave-function is then parametrized as follows:

d(xo, 1, 2, 23) = p(w0, 21, .T2,$3)1/2 exp(2F (xo, 1, T2, x3) + 2B(xo, 21, T2, T3))
(181)

or, using David Hestenes’ notation it is equivalent to:

11}(1:071'1717231’3) = (,0(500,1‘1,172,173) exp(ib(xoaxlax27x3)))l/2 R(:L'O?xl’ 172,173)
(182)

The wave-function simply assigns a rotor R, a probability density p and a
complex phase exp(ib) to each point of R%. R, as a rotor, represents a Lorentz
rotation at each point: e, = Rwué. As argued by David Hestenes[14], this de-
scription is equivalent to other interpretations of quantum physics. It is framed
in terms of a relativistic kinematic theory of the electron.

How does the general linear case compare? The wave-function would be
parametrized as follows:

Y(xo, 21, T2, 23) =

p(x0, 21,2, 23) 4 exp(X(z0, 21, T2, 23) + F(x0, 71, T2, ¥3) + V (20, 21, T2, ¥3) + B(20, 21, T2, 3))
(183)

where (xg, 21,22, 23) € My.

The general linear wave-function assigns an element of the GL™ (4, R) group,
an instruction to transform the frame bundle, to each point on the manifold.
The dynamics of this field, obtained by gauging the general linear group, are
now given by the complete Einstein field equations.

The general linear wave-function can further be extended to a Fock space
via simple tensor products and direct sums, and consequently the formulation is
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able to represent a superposition of general linear frame bundles transformations
at each point on My.

Neither gravity nor quantum physics needed to be imported from outside the
theory; both are uniquely entailed by the recipe, and appear in a compatible
form. Finally, the recipe suggests that between general relativity and quantum
physics, it was quantum physics that required corrections (i.e. an extension to
a larger group) to support the other; general relativity remained as-is.

8.2.3 A Step Towards Falsifiable Predictions

Annex D lists a number falsifiable predictions.

The main idea is that a general linear wave-function would allow a larger
class of interference patterns than what is possible merely with complex inter-
ference.

As a secondary idea, it is also plausible that an Aharonov—Bohm effect ex-
periment on gravity could detect a general linear phase.

Let us now summarize the Annex.

A general linear interference pattern between two arbitrary geometries will
be of the following form:

det Y1 + 1o = det ipy + det ihg + 11 - o (184)
= e penA2 g qhy (185)

where det 1), + det1)s is a sum of probabilities and where 1 - 15 is the
interference pattern, and where n is the number of dimensions of the matrix
representation of the geometric algebra.

The interference pattern is given by the dot product which we define as
follows:

e In 2D the dot product is equivalent to this form:

%(det(u +v)—detu—detv) = % (u+ v)iu+4v) —ufu— Viv)
(186)
=uvfu+utv + viu+ viv —ufu — viv
(187)
=ulv +viu (188)

e In 4D it is substantially more verbose:
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1
E(det(u +v) —detu—detv) (189)

1 (L(u + v)i(u +v)]sa(u+ V)i(u +v)-— LuiuJ3’4uiu — LvivJ3’4viv)

2
(190)
= % (lufu+utv +viu+vivjss(utu+ulv +viu+viv) — )
(191)
= [utu)s utu+ [utu)szy + [utu)zaviu + [utu)s v
+ [utv]zutu + [uf jg qutv + [utv ]z aviu 4 [utv]saviv
+ [viuzsutu + [viu s gutv + [viuz aviu 4 [ Vi) aviv
+ [viv [z utu + [ viv]zutv + [viv]gaviu + [viv]gaviv —
(192)
= Luiuj374uiv+ |ufu s 4viu + [u uJ3,4v
+ [utv]zutu + [utv ]z utv + [utv ]z aviu 4 [uiv]saviv
+ [viuzautu + [viu s gutv + [Viuzaviu 4 [via)saviv
+ |[viv]zautu + [viv]zutv + [viv]saviu (193)
Comparatively, complex interference is given as:
91 + a|” = [91]* + h2]® + 2[eb1[|ha] cos (¢1 — ¢2) (194)

More algebraically manageable special cases of the general linear interference
pattern are provided in the annex.

Finally, we stress that the general linear interference pattern can only be
tested within the context of quantum gravity, as ordinary quantum field theory
reduces to complex interference.

9 Discussion

Let us now attempt to tie everything together.

Assume a formal theory of everything (ToE).

This leads to a paradox.

Godel showed that for a very wide range of formal systems — and arguably
any ToE - it is always possible to create a proposition that is true but not
provable within the system, which then added as a new axiom to the system,
extends it. And this extendibility is possible into the transfinite, implying that
no ToE is ever finally finished, is ever really a ToE. As a consequence, a ToE must
be redefined as dynamical in that it be able to accommodate new discoveries.
Science and mathematics are examples of two systems that already work this
way — but neither claims to be a ToE.
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Adding the observer makes possible such a system that does constitute a
ToE, as now newly defined, to be knowledgeable of physics. Four systems were
required to derive physics from this approach:

1. A Formal System of Knowledge (used to represent knowledge)
2. A Formal System of Science (used to map out knowledge)
3. A Formal Theory of the Observer (used to practice science)

4. A Formal Model of Physics (as a circumscription on the free practice of
science in nature by the observer).

Step 1 and 2 defined, as we required, a dynamical theory of knowledge able
to accommodate new discoveries thereof. Adding the observer as a probability
space (step 3) over halting programs entailed an experience defined as the re-
ceipt (or production) of a message of halted programs. Finally, optimizing the
information of the message (step 4) yielded an inviolable circumscription over
said experience; it described a model of computation (main result - section 6),
and it entailed the laws of physics in their empirically familiar form (applications
- section 8).

The resulting model describes reality as the observer having an experience
in nature circumscribed by the laws of physics, and it is closed with respect to
all that occurs within this experience. That is our ToE.

9.1 The Ontological Sufficiency of the Experience

What about ”physical” objects; observers in the wild report an observable uni-
verse — why?

While our framework cannot explain why an observer exists nor why he or
she has freedom of participation —it is the logical primitive— we can provide
arguments that his or her experience is ontologically sufficient as a theory of
reality.

Let us warn the reader that some may be uneasy with what we are about
to suggest, but just like the heliocentric model is a more elegant mathematical
device to model the solar system than the geocentric model, here the formal
representation of the experience of the observer in nature is also a mathematical
device that simplifies our theory of reality. Finally, let us state that even if one
were not to believe in the ontological sufficiency of the experience, one can still
appreciate the mathematical improvements provided by the device.

In the beginning of this manuscript we focused heavily on the notion of
epistemic certainty, and on its relation to knowledge. We will now use epistemic
certainty as a tool to produce ontological guarantees. The famous result along
this line is the cogito ergo sum in which the epistemic certainty of "I think” (i.e.
if one doubts, one is certain to think) entails the ontological guarantee of one’s
own existence. Epistemic certainty is the preferred foundation for philosophical
construction (because it makes it infallible), however it is believed only to apply
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to a very limited range of beliefs (such as "I exist”) making it unusable as a
comprehensive framework.

But what if epistemic certainty constituted a Turing-complete language, and
we simply missed it; will the guarantees it provides be sufficient for ontological
closure over reality?

Let us begin by stating that the universe, in modern cosmology, is reasonably
expected to be a computable solution of quantum gravity. Let us also state that
in our system, the ontological guarantees are provided by the epistemic certainty
of the elements of the message defining the experience of the observer; that
these elements do halt is verified in our model also by a computable solution
of quantum gravity. Finally, as per the main result, we note that this solution
takes the form of a long chain of unitary (and general linear) transformations
acting on a wave-function and consequently associates with the entire quantum
history of the system.

From this, we may simply interpret the universe as the halting proof of the
elements constituting the experience of the observer, and as said experience is
epistemically certain, then the universe, as its proof, exists as the ontological
guarantee provided by the experience.

10 Conclusion

We suggest that the primary aim of physics is not to explain, say, how the
electron or the planets behave, as these are incidental to its main objective; that
is, physics is not a theory extrinsic to the observer. Rather, physics is the theory
that circumscribes the experience of the observer in nature, and the mathematics
ought to be completely consistent and coherent with this representation. The
mathematics presented here-in are a realization of this representation.
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A Notation

Sets, unless a prior convention assigns it another symbol, will be written us-
ing the blackboard bold typography (ex: L,W,Q, etc.). Matrices will be in
bold upper case (ex: A,B), whereas tuples, vectors and multi-vectors will be
in bold lower case (ex: u,v,g) and most other constructions (ex.: scalars,
functions) will have plain typography (ex. a,A). The identity matrix is I,
the unit pseudo-scalar (of geometric algebra) is I and the imaginary number
is 4. The Dirac gamma matrices are 7, 7y1,72,73 and the Pauli matrices are
0z,0y,0,. The basis elements of an arbitrary curvilinear geometric basis will
be denoted eg,e1,es,...,e, (such that e, - e, = g,,,) and if they are orthonor-
mal as Xo,X1,X2,...,X, (such that X, - X, = n,,). The asterisk z* denotes
the complex conjugate of z, and the dagger A' denotes the conjugate trans-
pose of A. A geometric algebra of m dimensions over a field F is noted as
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G(m,F). The grades of a multi-vector will be denoted as (v);. Specifically,
(v)p is a scalar, (v); is a vector, (V)3 is a bi-vector, (v),,_1 is a pseudo-vector
and (v), is a pseudo-scalar. Furthermore, a scalar and a vector (v)o + (v)1
is a para-vector, and a combination of even grades ((v)o + (V)2 + (V)4 +...)
or odd grades ({(v); + (v)3 + ...) are even-multi-vectors or odd-multi-vectors,
respectively. The commutator is defined as [A,B] := AB — BA and the anti-
commutator as {A,B} := AB + BA. We use the symbol 2 to relate two sets
that are related by a group isomorphism. We use the symbol ~ to relate two
expressions that are equal if defined, or both undefined otherwise. We denote
the Hadamard product, or element-wise multiplication, of two matrices using
©®, and is written for instance as M ® P, and for a multivector as u ® v; for
instance: (ag+ xoX + Yoy + boX Ay) ® (a1 + z1X + 11y + bplx A y) would equal
apay + Tor1X + Yoy1y + bobi X A Y.

B Lagrange equation

The Lagrangian equation to maximize is:

L(p,a,7) = kg Y _plg)np(a) +a | 1= plg) | +7tr [ M= p(q)M(q)
q€Q q€Q q€Q
(195)

where o« and 7 are the Lagrange multipliers. We note the usage of the
trace operator for the geometric constraint such that a scalar-valued equation is
maximized. Maximizing this equation for p by posing % = 0, where p € Q,
we obtain:

oL

5000) =—kplnp(p) — kp — a — 7tr M(p) (196)
0=kplnp(p) + kp + o+ 7tr M(p) (197)

— np(p) = 1 (~hp — = T M(p) (198)
= p(p) = exp(—5 ) exp(— 1 trM(p)) (199)
- %det exp(—éM(p)) (200)

where Z is obtained as follows:
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1= qezQexm%) exp(— = rM(@)  (201)
— (ew(=2=) - q%em—é rM(g)) (202)
7 = qez;@det exp(—éM(q)) (203)

We note that the Trace in the exponential drops down to a determinant, via
the relation det exp A = exp tr A.

B.1 Multiple constraints

Consider a set of constraints:

M; =) p(¢9)Mi(q) (204)

M, =) p(¢)M,(q) (205)

Then the Lagrange equation becomes:

L=-kpY pl@nplg)+a|1= plg) | +7tr [ Myi=> plg)Mi(q) | +...
q€Q q€Q q€Q

+ratr (| M, = > p(g)Ma(g)

q€Q
(206)
and the measure references all n constraints:
1 T Tn
p(q) = — detexp(———Mi(q) — - — —“M,(q)) (207)
A kg kB

B.2 Multiple constraints - General Case

In the general case of a multi-constraint system, each entry of the matrix cor-
responds to a constraint:
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Mo | 2 -0 | = p(@)Moo(q) [+ . (208)
0 0 1€Q 0 0
01 ... 0 01 ... 0
Moy | @ ¢ . ] = Z p(@)Mor(q) |+ + . ¢ (209)
0 0 0 a€Q 0 0 0
0o ... 0 0O ... 0
Mo [0 0 =D p@Mun(g) |2 - (210)
0o ... 1 9€Q 0o ... 1

For a n x n matrix, there are n? constraints.

The probability measure which maximizes the entropy is as follows:

1 1
plq) = - detexp(——7 © M(q)) (211)
A kp
where 7T is a matrix of Lagrange multipliers, and ®, the element-wise multi-
plication, assigns the corresponding Lagrange multiplier to each constraint.

C Example of a Formal Proof

The following program|[8] is a formal proof of the commutativity of addition for
natural numbers written in COQ:

plus_comm =
fun n m : nat =>
nat_ind (fun n0 : nat => n0 + m
(plus_n_0 m)
(fun (y : nat) (H: y+m=m+ y) =>
eq_ind (S (m + y))
(fun n0 : nat => S (y + m)
(f_equal S H)
(m+ Sy
(plus_.n_Smm y)) n
: forall nm : nat, n +m=m + n

m + n0)

no0)
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D A Step Towards Testable Predictions (Space-
time interference)

Certain transformations of the wave-function in quantum gravity, under the
general linear group or some of its subgroups, would produce richer interference
patterns than what is possible merely with complex interference in standard
QFT. This offer a difference in predictions between ordinary QFT and our
system, that can be used to test our system. The possibility of interference
patterns resulting from geometric algebra representation of the wave-function
has been proposed before; specifically, I note the work of B. I. Lev.[17] which
suggests (theoretically) the possibility of an interference pattern associated with
the David Hestenes form of the relativistic wave-function and for the subset of
rotors.

Here we derive a number of these possible interference patterns.

In the case of the general linear group, the interference pattern is much
more complicated than the simple cosine of the standard Born rule, but that
is to be expected as it comprises the full general linear group and not just the
unitary group. It accounts for the group of all geometric transformations which
preserves the probability distribution p for a two-state general linear system.

General linear interference can be understood as a generalization of complex
interference, which is recovered under a ”shallow” phase rotation in 4D and
under just a plain normal phase rotation in 2D. Furthermore, when all elements
of the odd-sub-algebra are eliminated (by posing X — 0, V. — 0), then the
wave-function reduces to the geometric algebra form of the relativistic wave-
function identified by David Hestenes, in terms of a spinor field.

Such reductions entails a series of interference patterns of decreasing com-
plexity, and as such they provide a method to experimentally identify which
group of geometric transformations physical reality allows in the most general
case of quantum gravity, using interference experiments as the identification
tool. Identification of the full general linear interference pattern (with all the el-
ements A, X, F,V,B) in a lab experiment would suggest a general linear gauge,
whereas identification of a reduced interference pattern (produced by A,F,B)
and subsequently showing a failure to observe the full general linear interfer-
ence (X — 0,V — 0) would suggest the Lorentz gauge instead of full quantum
gravity.

Let us start by introducing a notation for a dot product, then we will list
the various possible interference patterns.

D.1 Geometric Algebra Dot Product

Let us introduce a notation. We will define a bilinear form using the dot product
notation, as follows:
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G(2n,R) x G(2n,R) — R (212)

u-ve—s = (det(u +v) —detu—detv) (213)

For example,

u:A1 +X1€1—|—Y162+31612 (214)
v = Ay + Xoeq + Yaes + Baeio (215)
— u-v=A1A+ BBy, — X1 Xo —V1Ys (216)

Iff detu > 0 and detv > 0 then u - v is always positive, and therefore
qualifies as a positive inner product (over the positive determinant group), but
no greater than either det u or det v, whichever is larger. This definition of the
dot product extends to multi-vectors of 4 dimensions.

2D: In 2D the dot product is equivalent to this form:
1 1 : fy— vt
5(det(u+v) —detu —detv) = 5 (u+v)i(u+v)—u'u—vh) (217)

=utu +utv + viu + viv —ufu - viv (218)
=utv + viu (219)

4D: In 4D it is substantially more verbose:

%(det(u +v) —detu—detv) (220)

1
=5 (l(u+ v+ v)]zs(u+v)iu+v) - [utufszutu - LvivJ3,4viv)

(221)

= % (lufu+utv + viu+vivza(utu+ulv +viu+viv) —00) (222
= LuiuJSAUIH + \_uiuj 3,4uiv + I_uillJSAViu + LuiuJ3,4viv

+ [utv]zutu + [utv]zutv + [utv ] oviu+ [uiv]zaviv

+ [viuzsutu + [viuz gutv + [viuz goviu 4 [viazaviv

+ [viv]zautu + Lving autv + [viv ]z aviu 4 [vivgaviv — o0 (223)
= LuiuJ34uiv+ |utu)z 4viu + [utus 4viv

+ [utv [z utu + [utv ]z utv + [utv]zaviu 4 [utv ]z aviv

+ [viusqutu + [viu)sutv + [vius oviu 4 [viasaviv

+ [viv]zautu + [ viv]zutv + [viv]z avia (224)
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D.2 Geometric Interference (General Form)

A multi-vector can be written as u = a + s, where a is a scalar and s is the
multi-vectorial part. In general, the exponential exp u equals exp a exp s because
a commutes with s.

One can thus write a general two-state system as follows:

= 1hy + Py = eM1eS 4 2652 (225)
(226)

The general interference pattern will be of the following form:

det Y1 + 1o = det ip1 + det 1o + 1 - o (227)
=™ e gy (228)

where det 1, + det1, is a sum of probabilities and where 1 - 15 is the
interference pattern, and where n is the number of dimensions of the geometric
algebra.

D.3 Complex Interference (Recall)

Consider a two-state wave-function:

Y =1y + Py = eM1eB1 4 eA2eB2 (229)

The interference pattern familiar to quantum mechanics is the result of the
complex norm:

W = Pl + oy + vl + e (230)
_ eAleiBleAleBl + 6A2€7B2€A26B2 + 6A1€7B16A26B2 4 €A2€782€A1€B1
(231)
— €2A1 + 62A2 + eA]"rAz (€_B1+B2 + 6_(_B1+B2)) (232)
= 2 4 22 4 92eM A2 ¢o5(B) — By) (233)
S——
sum interference

D.4 Geometric Interference in 2D

Consider a two-state wave-function:

P =Py +ahy = eteXitBr | gAz2eXotBa (234)
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To lighten the notation we will write it as follows:
P =1p1 + P = eMeSt + eh2e52 (235)
where

S=X+B (236)

The interference pattern for a full general linear transformation on a two-
state wave-function in 2D is:

G e R (237)
— M (651 )iez‘h eS1 4 g2 (652)161‘12652 4 et (651 )i€A2 €S2 4 g2 (esz )ieAl St
(238)
_ €2A1 + 62A2 + 6A1+A2((esl)ies2 + (682)1651) (239)
_ 62A1 + €2A2 + 6A1+A2 (e—xl_BleX2+B2 + e_x2_B2eX1+B1) (240)
————
sum interference
D.5 Geometric Interference in 4D
Consider a two-state wave-function:
=11 + Yy = 6A16X1+F1+V1+B1 + 6A26X2+F2+V2+B2 (241)
To lighten the notation we will write it as follows:
=11+ 1hy = €15t 4 2652 (242)
where
S=X+F+V+B (243)

The geometric interference patterns for a full general linear transformation
in 4D is given by the product:

[9* 5 404 = (i) s.atin + [Paha)s athsts + 1 - 9o (244)
=t et (eAlesl) . (6A2€S2) (245)

In many cases of interest, the pattern simplifies. Let us see some of these
cases now.
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D.6 Geometric Interference in 4D (Shallow Phase Rota-
tion)

If we consider a sub-algebra in 4D comprised of even-multi-vector products ¥¥ 1,
then a two-state system is given as:

Y =11+ (246)

where
Py = (eM1eFreBr)i(eAieFieBr) = 241,281 (247)
Vg = (e2eF2eB2)t(eA2eF2B2) — 242,2B2 (248)

Thus
b = €241¢7B1 | (242282 (249)

The quadri-linear map becomes a bilinear map:

d}“/} — (62A1672B1 + 62A2 672B2)(62A162B1 + €2A2 62B2) (250)
_ €2A1€_2B162A1€2B1 + €2A1€_2B1€2A2 62B2 + €2A2€_2B2 €2A1 €2B1 4 €2A2€_2B2 €2A2 €2B2
(251)
= ¢t et 4 902414242 (05(2B) — 2By) (252)
sum complex interference

D.7 Geometric Interference in 4D (Deep Phase Rotation)

A phase rotation on the base algebra (rather than the sub-algebra) produces a
difference interference pattern. Consider a two-state wave-function:

) =1hy + 1y = eM1eBr + eM2eP (253)

The sub-product part is:

Py = (eM1eBr 4 eA2eB2)(eA1eB1 4 eA26B2) (254)
= eMeBiefieBr | oM BipAapBe | pA2 Bapdi By g A2 Ba oA Ba (955

— €2A1€2B1 + 62A262B2 + 26A1+A2 €B1+B2 (256)

The final product is:
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I—,(/}iz/}J 3’41/)11/} _ (€2A1€_2B1 + €2A2€_2B2 4 26A1+A26—B1—B2)

X (€2A162B1 + €2A2€2B2 4 26A1+A26B1+B2) (257)

0241 ,=2B1 241 2B | ,241,-2B1 245 2Bs | 241 ,~2B19,A1+Az Bi+B2
4 @2A42,72B2 241 2By | 245 ,—2B5 245 2By | 242 ,-2B29 A1 +42 ,Bi+B;
+ 26A1+A26*B1*B2 €2A1 e2B1

+ 26A1+A26_B1_B2 €2A2€2B2

+ 26A1+A2€—B1—Bz 2€A1+A2 6B1+B2 (258)
=t et | 92N H242 005(2B) — 2By)
+ e241,—2B19 A1+4; B1+B;
+ 62A2672B2 26A1+A2 6131+B2
+ 2@A1+A26_B1_B2 62A1 e2B1
4 9pA1+42 ,~B1-Ba 245 2B,
+ 4e2A11+242 (259)

= et 4 o2 4 9e2414242 (5(2 B — 2B5)
—_———

sum

complex interference

+2e1742 (241 4 ¢242) cos(By — Bp) + 4> 1242 (260)

deep phase interference

D.8 Geometric Interference in 4D (Deep Spinor Rotation)

Consider a two-state wave-function (we note that [F,B] = 0):

=11 + 1y = eMeF1eBr 4 eA2eF2B2 (261)

The geometric interference pattern for a full general linear transformation
in 4D is given by the product:

[ ]34 (262)
Let us start with the sub-product:

i) = (eAre F1eBr 4 ez F2eBr)(pA1eF1eB1 | pA2oF2B2) (263)
= et F1eBredieFipBr | oA1o—FipBi Az Fo o Be

+ ef2e F2eBapAieF1oB1 4 oA2o—FaB2pds o Fa By (264)

= 21e2B1 | 2422B2 4 oAi+Az BuiiBa (o ~Fi Py | ~Fs F1) (265)

= 62A162B1 + €2A2€2B2 + eAl +42 6B1+B2 (RlRQ + RgRl) (266)
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where R = ¥, and where R = ¢~ F.

The full product is:

93 Jsapiy = (e 4 2z 2Be 4 ArtAse BB (Ry R, 4 RyRy))

% (€2A162B1 1 e2A42,2By | 6A1+A26B1+B2(R1R2 + Rle))
(267)
= (2A1,72B1 241 2By | 241 ,—2B1 245 2By | 241, —2B1  A1+42 Bi+B; (Rle + Rle)
4242 —2B2 241 2By | (245, 2By 243 2By | 242 ,—2Bs A1+A2 B +B2 (Rle + RgRl)
+ eA1tAzo=B1—Bs (Rle + RgRl)eZAleQBl
+ eA1+A267B17B2(R1R2 + R2R1)62A262B2

+ et A2 BBy (R Ry + RoRy)e T42eB1 B2 (R Ry + RoRy)

= M et2 | 92N H242 005(2B) — 21y)

+ €A1+A2 (RlRQ + Rle)(
62A1(e—Bl+B2 +6B1—Bz)

+ e2A2 (6B1_B2 + e—B1+B2))
+ 62A1+2A2 (RlRQ + R2R1)2

= et 4 otz 4 9241124, cos(2B; — 2B3)
—————

sum

complex interference

+ 2€A1+A2 (€2A1 + €2A2)(R1R2 + RQRl)(COS<Bl — BQ)) + 62A1+2A2 (R]RQ + R2R1)2

deep spinor interference

(274)

E The General Linear Probability Amplitude in
Other Dimensions

Let us investigate the application of this system to dimensions other than 4. In
this section, we simply list various observations and do not reach any conclu-
sions.

E.1 Zero-dimension case

0. In OD, the ”geometric algebra” is: 1) = exp A, where A is a scalar. In our
system, this is equivalent to classical probabilities.

Obviously, there is no geometry in a 0D system.
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E.2
1.

2n+1

Odd-dimension cases

In 1D, the geometric algebra is: ¢ = exp A + B, where A is a scalar
and B = ¢gB = IB = iB is a pseudo-scalar. In 1D, the multi-vector
is a 1 x 1 matrix. The probability measure is given as the determinant
det (a + ib) = a + ib. This is not a real number, so naturally we flag the
1D case.

In 3D, the geometric algebra is ¢ = exp A+ X + V + B, where A is a
scalar, X is a vector, V is a pseudo-vector and B is a pseudo-scalar. Here
the multi-vector is a representation of the complex 2 x 2 matrices. Taking
the determinant produces a complex value and not a real, so naturally we
flag 3D for the same reason we flagged 1D.

In (2n+1)D, the same here happens as the 1D and 3D cases. We flag all
odd dimensions for the same reason: the determinant produces a complex
value instead of a real.

For all odd-dimension cases, the probability in our system maps to a complex
value instead of a real. We are not necessarily claiming that these are not
relevant for physics, but if they are then one needs an explanation to account
for complex probabilities (two probably measures required to describe the whole
space... ?)

E.3
2.

Even-dimension cases

In 2D, the geometric algebra is ¥ = exp A + X + B, where A is a scalar,
X is a vector and B is a pseudo-scalar. The probability normalizes to a
real value det ) = 1¥1). As we did in the 4D case, let us now use spinors
(X — 0). We get:

Pz = ee BxreteB = e24eBxe B (275)

It supports a particle kinematics as we get one rotor: e, = eBX”e*B. The
2D theory also supports a gravity theory as it invariably admits the general
linear group. In 2D, since the determinant is a polynomial of degree 2
of ¥ then the QFT and the quantum gravity are the same as they are
entailed from the same probability rule. This equivalence between QFT
and quantum gravity is a feature unique to 2D.

In 4D, we have recovered in the previous section the kinematic relativistic
theory of the electron that we are familiar with (or at least an interpre-
tation —David Hestenes’ interpretation— equivalent to it). But unlike the
2D case, the QFT is a sub-construction of the quantum gravity theory.
Specifically, the familiar QFT comes out with these replacements:

é=pie Ry (276)
¢ =p2e®R (277)
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Field theories over ¢ and ¢ do not capture the full invariance group of
the determinant. Trying to make quantum gravity fit on a ¢ and ¢ frame,
that is to say make quantum gravity a QFT, in 4D is bound to fail since
the ¢ and ¢ frame is a sub-construction of quantum gravity. Quantum
gravity requires the 4 degree polynomial [¢*1) |3 49*1) to be defined in 4D.

6. In 6D, the wave-function is:
Yv=expA+X+F+T+Q+V+B (278)

where A is a scalar, X is a vector, F is a bivector, T is a trivector, Q
is a quadrivector, V is a pseudo-vector and finally B is a pseudo-scalar.
Taking the even-sub-algebra, the spinor is:

Yv=expA+F+Q+B (279)

The wave-function will produce a probability measure (after simplifica-
tions), and the transformation of the comoving frame would be as follows:

e Fe Qe By eFeQeB (280)
Here we have more than just the rotors eF as we also have the ”spin-
rotors” eQ. A typical QFT is extended to more dimensions than 4 by
adding the rotations instructions over the extra dimensions. However, in
6D the pure geometric interpretation in terms of rotations is not complete,
and the expected QFT construction requires the extra spin-rotation terms
eQ

2n In even dimensions (2n > 6) the same happens as the 6D case, but with
even more extra terms for the spinors.

The constraints of our probability measure are such that the rotors required
to produce a pure kinematical and geometric interpretation of the wave-function
only show up by themselves in 2D and 4D, and this seems to suggest that
a geometric interpretation purely in terms of a wave-function that assigns an
instruction to rotate at each point in space-time, is only appropriate for these
dimensions. In 6D or above, the formulation still admits structures that feel
similar enough to a QFT; but such formulation contains additional terms that
are not purely Lorentz rotation, thus making any geometric interpretation above
4D more challenging.

Even in 4D the geometric interpretation still contains the small increased
challenge of a spin around the pseudo-scalar I with parameter B, whereas in
the 2D version it is purely a rotor. Only the 2D version is therefore purely
geometric and without spin.
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