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Abstract

In modern theoretical physics, the laws of physics are formulated as
axioms (e.g., the Dirac–Von Neumann axioms, the Wightman axioms,
and Newton’s laws of motion). While axioms in modern logic hold true
merely by definition, the laws of physics are entailed by measurements.
This entailment creates an opportunity to derive (rather than to postu-
late) the laws of physics. To be provably optimal, the derivation must be
in the form of a solution to an optimization problem. We thus ask what
problem, if any, does physics solves optimally? We propose a maximiza-
tion problem on the quantity of information associated with the receipt
by an observer of a message of measurements from all possible measure-
ments; i.e, physics will be understood as the provable explanatory max-
imum for realized measurements. Given any linear measurements, the
optimization problem is able to mechanically produce the optimal Hilbert
space. Specifically, a Hilbert space that supports gravity and the stan-
dard model is obtained merely by solving the problem for general linear
measurements. The solution describes a universe that includes gravity
for fermions and bosons from the quotient bundle FX/Spinc(3,1), elec-
tromagnetism from the U(1)-bundle, and the standard model from the
gauge group SU(3)xSU(2)xU(1). No other solutions are permitted. It
even fails to admit normalizable observables above 4 dimensions, suggest-
ing an intrinsic limit to the dimensionality of observable geometry, and
by association spacetime.

1 Introduction

The physical laws in modern theoretical physics are formulated as axioms (e.g.,
the Dirac–Von Neumann axioms, the Wightman axioms, and Newton’s laws
of motion). The theorems provable by these axioms are the predictions of the
theory. If laboratory measurements invalidate the predictions, the postulated
laws are deemed falsified, and new laws are postulated.

In this scenario, it is the theorems (predictions) of the theory that are used
(in concert with experiments) to invalidate its axioms (laws).

In logic, however, axioms define what is true in a theory. It follows obviously
that its theorems cannot invalidate them.
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It is also the case that the laws of physics are entailed by something (i.e.
measurements) whereas axioms are entailed by nothing (i.e. they are held to be
true by definition).

Thus, there is a dissimilarity between using axioms in physics versus their
use in logic.

Since the laws of physics require a more complex interplay between axioms,
theorems, and their invalidations than the unidirectional entailment between
axioms and theorems found in logic, the question of using axioms to express the
laws of physics comes into question.

Motivated by this dissimilarity, we searched for a more appropriate logical
formulation of the laws of physics than axioms. The existence of an entailment
between measurements and laws of physics creates an opportunity to derive
them. In essence, from laboratory measurements, it is easier to intuit the correct
mathematical expression for all possible measurements than it is to intuit the
right laws of physics form the same. The distance one must travel in “intuition
space” is much shorter for the former than the latter, and this reduces the risk
of running astray.

In our proposal, it is the measurements, not the laws of physics, that will
constitute the axiom of our system. As for the laws of physics, they will be
defined as the solution to a maximization problem on the quantity of information
associated with the receipt by an observer of a message of measurement from
all possible measurements in nature. The solution to this optimization problem
is a novel and provably optimized formulation of fundamental physics.

In the case of linear measurements, one can understand our optimization
problem as a tool to mechanically generate the optimal Hilbert space given a
pre-defined measurement structure. When required, it will even extend complex
Hilbert spaces appropriately. As such it is able to generate the (elusive) Hilbert
space structure that supports gravity and the standard model. Specifically,
the solution produces a geometric Hilbert space (a superset of complex Hilbert
spaces), able to support all general linear measurements including those related
to gravity.

Corollaries that follow directly from the solution, such as the mathemati-
cal origin of the Born rule, the derivation from first principles of the axioms
of quantum physics (thus reducing them to theorems), an identification of the
correct interpretation of quantum mechanics, and the deprecation of the mea-
surement/collapse problem, are also mechanically included in the solution to
the optimization problem.

To define the problem rigorously, we first introduce the key structure that
makes our approach possible: the general linear measurement constraint. Next,
we present its rationale.

The construction of the general linear measurement constraint exploits the
connection between geometry and probability via the trace. The trace of a
matrix can be understood as the expected eigenvalue multiplied by the vector
space dimension, and the eigenvalues as the ratios of the distortion of the linear
transformation associated with the matrix[1].

Let u be a multivector of G(Rm,n) (the geometric algebra of m + n dimen-
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sions, defined over the real field) and let Q be a statistical ensemble. The general
linear measurement constraint is:

1

d
tru =



q∈Q
ρ(q)

1

d
tru(q), (1)

where d = m+ n, and where tru denotes the expectation eigenvalue of the
statistically weighted sum of multivectors u(q), parameterized over ensemble Q.

Since the matrix representation of the multivectors of G(R2) and G(R3,1)
are isomorphic to M(2,R) and M(4,R), respectively, we can understand the
general linear measurement constraint as a representation of all general linear
measurements. The use of multivector merely singles out a preferred geometric
representation of said general linear measurements.

We note that the trace of a multivector can be obtained by mapping the
multivector to its matrix representation (Section 2), and taking its trace.

Now, we discuss its rationale.
Constraints are used in statistical mechanics to derive the Gibbs measure

using Lagrange multipliers[2] by maximizing the entropy.
For instance, an energy constraint on the entropy is

E =


q∈Q
ρ(q)E(q), (2)

which is associated with an energy meter that measures the system’s energy
and produces a series of energy measurements E1, E2, . . . , convergent to an
expectation value E.

Another common constraint is related to the volume:

V =


q∈Q
ρ(q)V (q), (3)

which is associated with a volume meter acting on a system and produces
a sequence of measured volumes V1, V2, . . . , converging to an expectation value
V .

Moreover, the sum over the statistical ensemble must equal 1, as follows:

1 =


q∈Q
ρ(q) (4)

Using equations (2) and (4), a typical statistical mechanical system is ob-
tained by maximizing the entropy using the corresponding Lagrange equation.
The Lagrange multiplier method is expressed as:
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L(ρ,λ,β) = −kB


q∈Q
ρ(q) ln ρ(q) + λ



1−


q∈Q
ρ(q)



+ β



E −


q∈Q
ρ(q)E(q)



 ,

(5)

where λ and β are the Lagrange multipliers.

By solving ∂L(ρ,λ,β)
∂ρ = 0 for ρ, we obtain the Gibbs measure as:

ρ(q,β) =
1

Z(β)
exp


−βE(q)


, (6)

where

Z(β) =


q∈Q
exp


−βE(q)


. (7)

In our method, Equation 2, a scalar measurement constraint, is replaced
with Equation 1, the general linear measurement constraint. In addition to
energy or volume meters, we have protractors, and phase, boost, dilation, spin,
and shear meters.

As we found, the general linear measurement constraint is compatible with
the full machinery of statistical physics. The probability measure resulting
from entropy maximization will preserve the expectation eigenvalue of these
transformations up to a phase or symmetry group. For instance, based on
our entropy maximization procedure, a statistical system measured exclusively
using a protractor will carry a local rotation symmetry in the probability of the
measured events.

By limiting the definition of constraints to scalar expressions, we believe that
statistical physics has failed to capture all measurements available in nature.
The general linear measurement constraint redresses the situation and supports
the totality of (linear) measurements that are in principle possible.

Finally, it is the relative Shannon entropy (in base e) that we will maximize
and not the Boltzmann entropy. The Shannon entropy does not change the
mathematical equation for entropy (minus the Boltzmann constant). However,
the interpretation will differ. Rather than describing an ergodic system, the
solution will relate to the information associated with the receipt by the observer
of a message of measurements. The laws of physics, as the solution to this
optimization problem, provably makes the elements of this message maximally
informative to the observer. Further details on the interpretation are provided
in the discussion (Section 5).

1.1 Rigorous formulation of the optimization problem

We propose that the laws of physics are derivable by the following context and
axiom related exclusively to measurements and their structure.
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Context 1 (Ontology). The experience of the observer in nature is defined as
the receipt of a message m of n measurements:

m = Dom(O)n (8)

1. where O : Q → R is an observable of Q,

2. and where Q is a statistical ensemble.

Axiom 1 (The Fundamental Structure of Measurements). The general linear
measurement constraint is sufficient to describe the structure of all possible mea-
surements in nature (including scalars and geometric measurements):

1

d
tru =



q∈Q
ρ(q)

1

d
tru(q) (9)

where tru(q) is an observable (i.e. O(q) = tru(q)), where tru is its average,
and where u corresponds to a multivector of G(Rm,n) such that d = m+ n.

Theorem 1 (The Fundamental Theorem of Physics). Physics is the solution
to an optimization problem that makes the experience of the observer in nature
maximally informative. The optimization problem is defined by the following
Lagrange equation:

L(ρ,λ, τ ) = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
+ λ



1−


q∈Q
ρ(q)



+



 1

n
tr τ ⊙ u−



q∈Q
ρ(q)

1

n
tr τ ⊙ u(q)





(10)

where λ and τ are Lagrange multipliers.
This optimization problem maximizes the relative Shannon entropy (this is

equivalent to maximizing the information associated to the receipt of a message)
constrained by the general linear measurement constraint.

The notation ⊙ designates the Hadamard product, which is an entrywise
product. For instance, consider the multivector u = a+xx̂+yŷ+bx̂ŷ of G(R2),
and consider τ = τa+τxx̂+τyŷ+τbx̂ŷ, then τ⊙u = τaa+τxxx̂+τyyŷ+τbbx̂ŷ.
The Hadamard product allows us to assign a unique Lagrange multiplier to each
element of the basis of the multivector, using a compact notation. In G(R2), the
constraint expands as follows:
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 1

n
tr τ ⊙ u−



q∈Q
ρ(q)

1

n
tr τ ⊙ u(q)



 = τa



 1

n
tr a−



q∈Q
ρ(q)

1

n
tr a(q)





+ τx



 1

n
trxx̂−



q∈Q
ρ(q)

1

n
trx(q)x̂





+ τy



 1

n
tr yŷ −



q∈Q
ρ(q)

1

n
tr y(q)ŷ





+ τb



 1

n
tr bx̂ŷ −



q∈Q
ρ(q)

1

n
tr b(q)x̂ŷ





(11)

where τa, τx, τy, τb are the Lagrange multipliers.
Comparatively in G(R3,1), the constraint would contain 16 Lagrange multi-

pliers (17 if we also count λ) because the multivectors of G(R3,1) have 16 basis
elements.

The manuscript is organized as follows: The Methods section introduces
tools using geometric algebra, based on the study by Lundholm et al. [3, 4].
Specifically, we use the notion of a determinant for multivectors and the Clif-
ford conjugate for generalizing the complex conjugate. These tools enable the
geometric expression of our results.

The Results section presents two solutions for the Lagrange equation. The
first applies to an ensemble Q which is at most countably infinite, and the second
applies to the continuum (


→


) where Q is uncountable.

In the Analysis section we inspect the solution. The optimization problem
is able to mechanically produce the correct Hilbert space for the states of the
solution. In 0+1D, a complex Hilbert space is recovered, in which the solu-
tion is identical to non-relativistic quantum mechanics. To accommodate the
states of all general linear measurements in 2D, a geometric Hilbert space is
obtained, and in 3+1D a double-copy geometric Hilbert space is obtained. The
last two structures contain gravity, whilst the last one also contain the standard
model. Specfically, we show in the general case that the model is a quantum
theory whose principal symmetry is generated by the exponential map of mul-
tivectors expG(R3,1). As this map is isomorphic to expM(4,R), it acts (up to
isomorphism) on the frame bundle FX of a world manifold. In 3+1D, the sym-
metry breaks into a quantum theory invariant in the SU(3)×SU(2)×U(1) gauge
groups, and from the quotient bundle FX/Spinc(3, 1) into a theory of gravity
and of electromagnetism for charged fermions. Furthermore, we show that the
general solution lacks normalizable observables beyond 4D, naturally limiting
the dimensionality of spacetime.
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Finally, the Discussion section provides an interpretation of quantum me-
chanics consistent with its newly revealed origin, namely the maximally infor-
mative interpretation. Central to this interpretation is the understanding that
the wavefunction is not fundamental but derived as the solution to an maxi-
mization problem on the quantity of information associated to the receipt by
the observer of a message of measurements. It is the only interpretation whose
mathematical formulation is sufficiently powerful to exactly derive the quantum
theory from the interpretation.

2 Methods

2.1 Notation

• Typography:

Sets are written using the blackboard bold typography (e.g., L, W, and
Q) unless a prior convention assigns it another symbol.

Matrices are in bold uppercase (e.g., P and M), tuples, vectors, and
multivectors are in bold lowercase (e.g., u, v, and g), and most other
constructions (e.g., scalars and functions) have plain typography (e.g., a,
and A).

The unit pseudo-scalar (of geometric algebra), imaginary number, and
identity matrix are i, i, and I, respectively.

• Sets:

The projection of a tuple p is proji(p).

As an example, the elements of R2 = R1 × R2 are denoted as p = (x, y).

The projection operators are proj1(p) = x and proj2(p) = y;

if projected over a set, the corresponding results are proj1(R2) = R1 and
proj2(R2) = R2, respectively.

The size of a set X is |X|.
The symbol∼= indicates an isomorphism, and→ denotes a homomorphism.

• Analysis:

The asterisk z† denotes the complex conjugate of z.

• Matrix:

The Dirac gamma matrices are γ0, γ1, γ2, and γ3.

The Pauli matrices are σx, σy, and σz.

The dagger M† denotes the conjugate transpose of M.

The commutator is defined as [M,P] : MP−PM, and the anti-commutator
is defined as {M,P} : MP+PM.
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• Geometric algebra:

The elements of an arbitrary curvilinear geometric basis are denoted as
e0, e1, e2, . . . , en (such that eν · eµ = gµν), and x̂0, x̂1, x̂2, . . . , x̂n (such
that x̂µ · x̂ν = ηµν) if they are orthonormal.

A geometric algebra of m+ nD over field F is denoted as G(Fm,n).

The grades of a multivector are denoted as 〈v〉k.
Specifically, 〈v〉0 is a scalar, 〈v〉1 is a vector, 〈v〉2 is a bivector, 〈v〉n−1 is
a pseudo-vector, and 〈v〉n is a pseudo-scalar.

A scalar and vector such as 〈v〉0+ 〈v〉1 form a para-vector; a combination
of even grades (〈v〉0 + 〈v〉2 + 〈v〉4 + . . . ) or odd grades (〈v〉1 + 〈v〉3 + . . . )
form even or odd multivectors, respectively.

Let G(R2) be the 2D geometric algebra over the real set.

We can formulate a general multivector of G(R2) as u = a+ x+b, where
a is a scalar, x is a vector, and b is a pseudo-scalar.

Let G(R3,1) be the 3+1D geometric algebra over the real set.

Then, a general multivector of G(R3,1) can be formulated as u = a +
x + f + v + b, where a is a scalar, x is a vector, f is a bivector, v is a
pseudo-vector, and b is a pseudo-scalar.

The notation ⊙ designates the Hadamard product, which is an entrywise
product. For instance, consider the multivector u = a + xx̂ + yŷ + bx̂ŷ
of G(R2), and consider τ = τa + τxx̂ + τyŷ + τbx̂ŷ, then τ ⊙ u = τaa +
τxxx̂+ τyyŷ + τbbx̂ŷ.

2.2 Geometric representation in 2D

Let G(R2) be the 2D geometric algebra over the real set.
A general multivector of G(R2) is given as

u = a+ x+ b, (12)

where a is a scalar, x is a vector, and b is a pseudo-scalar.
Each multivector has a structure-preserving (addition/multiplication) ma-

trix representation.

Definition 1 (2D geometric representation).

a+ xx̂+ yŷ + bx̂ ∧ ŷ ∼=

a+ x −b+ y
b+ y a− x


(13)

Thus, the trace of u is a.
The converse is also true: each 2 × 2 real matrix is represented as a multi-

vector of G(R2).
In geometric algebra, the determinant[4] of a multivector u can be defined

as:
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Definition 2 (Geometric representation of the determinant 2D).

det : G(R2) −→ R
u −→ u‡u, (14)

where u‡ is

Definition 3 (Clifford conjugate 2D).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2. (15)

For example,

detu = (a− x− b)(a+ x+ b) (16)

= a2 − x2 − y2 + b2 (17)

= det


a+ x −b+ y
b+ y a− x


(18)

Finally, we define the Clifford transpose.

Definition 4 (2D Clifford transpose). The Clifford transpose is the geometric
analog to the conjugate transpose, interpreted as a transpose followed by an
element-by-element application of the complex conjugate. Likewise, the Clifford
transpose is a transpose followed by an element-by-element application of the
Clifford conjugate.





u00 . . . u0n

...
. . .

...
um0 . . . umn





‡

=





u‡
00 . . . u‡

m0
...

. . .
...

um0 . . . u‡
nm



 (19)

If applied to a vector, then





v1

...
vm





‡

=

v‡
1 . . .v‡

m


(20)

2.3 Geometric representation in 3+1D

Let G(R3,1) be the 3+1D geometric algebra over the real set.
A general multivector of G(R3,1) can be written as:

u = a+ x+ f + v + b, (21)
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where a is a scalar, x is a vector, f is a bivector, v is a pseudo-vector, and
b is a pseudo-scalar.

Similarly, each multivector has a structure-preserving (addition/multiplication)
matrix representation.

The multivectors of G(R3,1) are represented as follows:

Definition 5 (4D geometric representation).

a+ tγ0 + xγ1 + yγ2 + zγ3

+ f01γ0 ∧ γ1 + f02γ0 ∧ γ2 + f03γ0 ∧ γ3 + f23γ2 ∧ γ3 + f13γ1 ∧ γ3 + f12γ1 ∧ γ2

+ vtγ1 ∧ γ2 ∧ γ3 + vxγ0 ∧ γ2 ∧ γ3 + vyγ0 ∧ γ1 ∧ γ3 + vzγ0 ∧ γ1 ∧ γ2

+ bγ0 ∧ γ1 ∧ γ2 ∧ γ3

∼=





a+ x0 − if12 − iv3 f13 − if23 + v2 − iv1 −ib+ x3 + f03 − iv0 x1 − ix2 + f01 − if02
−f13 − if23 − v2 − iv1 a+ x0 + if12 + iv3 x1 + ix2 + f01 + if02 −ib− x3 − f03 − iv0
−ib− x3 + f03 + iv0 −x1 + ix2 + f01 − if02 a− x0 − if12 + iv3 f13 − if23 − v2 + iv1

−x1 − ix2 + f01 + if02 −ib+ x3 − f03 + iv0 −f13 − if23 + v2 + iv1 a− x0 + if12 − iv3





(22)

Thus, the trace of u is a.
In 3+1D, we define the determinant solely using the constructs of geometric

algebra[4].
The determinant of u is

Definition 6 (3+1D geometric representation of determinant).

det : G(R3,1) −→ R (23)

u −→ ⌊u‡u⌋3,4u‡u, (24)

where u‡ is

Definition 7 (3+1D Clifford conjugate).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2 + 〈u〉3 + 〈u〉4, (25)

and where ⌊u⌋{3,4} is the blade-conjugate of degrees three and four (the plus
sign is reversed to a minus sign for blades 3 and 4)

⌊u⌋{3,4} := 〈u〉0 + 〈u〉1 + 〈u〉2 − 〈u〉3 − 〈u〉4. (26)

3 Results

The Lagrange equation that defines our optimization problem is:
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L(ρ,λ, τ ) = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
+ λ



1−


q∈Q
ρ(q)



+



1

d
tr τ ⊙ u−



q∈Q
ρ(q)

1

d
tr τ ⊙ u(q)



 ,

(27)

where λ and τ are the Lagrange multipliers, and where u(q) is an arbitrary
multivector of d = m+ n dimensions.

To maximize this equation for ρ, we use the criterion ∂L(ρ,λ,τ )
∂ρ(q) = 0 as follows:

∂L(ρ,λ, τ )
∂ρ(q)

= − ln
ρ(q)

p(q)
− 1− λ− 1

d
tr τ ⊙ u(q) (28)

0 = ln
ρ(q)

p(q)
+ 1 + λ+

1

d
tr τ ⊙ u(q) (29)

=⇒ ln
ρ(q)

p(q)
= −1− λ− 1

d
tr τ ⊙ u(q) (30)

=⇒ ρ(q) = p(q) exp(−1− λ) exp


−1

d
tr τ ⊙ u(q)


(31)

=
1

Z(τ )
p(q) det exp


−1

d
τ ⊙ u(q)


(32)

where Z(τ ) is obtained as

1 =


q∈Q
p(q) exp(−1− λ) exp


−1

d
tr τ ⊙ u(q)


(33)

=⇒

exp(−1− λ)

−1
=



q∈Q
p(q) exp


−1

d
tr τ ⊙ u(q)


(34)

Z(τ ) :=


q∈Q
p(q) det exp


−1

d
τ ⊙ u(q)


(35)

The resulting probability measure is

ρ(q, τ ) =
1

Z(τ )
p(q, 0) det exp


−1

d
τ ⊙ u(q)


, (36)

where

Z(τ ) =


q∈Q
p(q, 0) det exp


−1

d
τ ⊙ u(q)


. (37)

Finally, we can pose
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ρ(q, τ ) =
1

Z(τ )
detψ(q, τ ), where ψ(q, τ ) = exp


−1

d
τ ⊙ u(q)


ψ0(q, 0) (38)

and where p(q, 0) = detψ0(q, 0).
Here, the determinant acts as a geometric Born rule, connecting, in this case,

a geometric amplitude to a real-valued probability.

3.1 Continuum case

In his original paper, Claude Shannon did not derive the differential entropy as
a theorem: instead, he posited that the discrete entropy ought to be extended
by replacing the sum with the integral:

−


q∈Q
ρ(q) ln ρ(q) → −



R
ρ(x) ln ρ(x) dx (39)

Unfortunately, it was later discovered that the differential entropy is not al-
ways positive, and neither is it invariant under a change of parameters. Specif-
ically, it transforms as follows:

−


R
ρ(x) ln ρ(x) dx →−



R
ρ̃(y(x))

dy

dx
ln


ρ̃(y(x))

dy

dx


dx (40)

= −


R
ρ̃(y) ln


ρ̃(y(x))

dy

dx


dy (41)

Furthermore, due to an argument by Edwin Thompson Jaynes[5, 6], it is
known not to be the correct limiting case of the Shannon entropy. Rather, the
limiting case is the relative entropy:

S = −


R
ρ(x) ln

ρ(x)

p(x)
dx (42)

where p(x) is the initial preparation.
The relative entropy, unlike the differential entropy, is invariant with respect

to a change of parameter:

−


R
ρ(x) ln

ρ(x)

p(x)
dx →−



R
ρ̃(y(x))

dy

dx
ln

ρ̃(y(x)) dydx
p̃(y(x)) dydx

dx (43)

= −


R
ρ̃(y) ln

ρ̃(y)

p̃(y)
dy (44)

Let us also show that the normalization constraint is invariant with respect
to a change of parameter:
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R
ρ(x) dx →



R
ρ̃(y(x))

dy

dx
dx (45)

=



R
ρ̃(y) dy (46)

Let us now investigate the differential observable. A differential observable
is typically formulated as

O =



R
O(x)ρ(x) dx (47)

But, this expression is not invariant with respect to a change of parameter:



R
O(x)ρ(x) dx →



R
Õ(y(x))

dy

dx
ρ̃(y(x))

dy

dx
dx (48)

=



R
Õ(y)ρ̃(y(x))

dy

dx
dy (49)

To correct this, we now introduce the relative (with respect to a reference)
observable. For instance, if we stretch space by a factor of 2: x → 2x, then
the reference must also be stretched by the same amount for the observable to
remain invariant. The consequence is that we observe a ratio:

M/R =



R

M(x)

R(x)
ρ(x) dx (50)

Where R is the reference and the ratio O = U/R is the observable.
We now show that it is invariant with respect to a change of parameter:



R

M(x)

R(x)
ρ(x) dx →



R

M̃(y(x))dydx
R̃(y(x))dydx

ρ(y(x))
dy

dx
dx (51)

=



R

M̃(y)

R̃(y)
ρ(y) dy (52)

With these definitions, the Lagrange equation becomes:

L(ρ,λ, τ ) = −


R
ρ(x) ln

ρ(x)

p(x)
dx+ λ


1−



R
ρ(x) dx


+


1

d
tr τ ⊙ m

r
−


R

1

d
tr τ ⊙ m(x)

r(x)
ρ(x) dx



(53)

Maximizing this equation with respect to ρ gives
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ρ(x, τ ) =
1

Z(τ )
p(x, 0) det exp


−1

d
τ ⊙ m(x)

r(x)


(54)

where

Z(τ ) =



R
p(q, 0) det exp


−1

d
τ ⊙ m(x)

r(x)


dx (55)

The probability measure is now invariant with respect to a change of param-
eter:

 b

a
p(x) det exp


− 1

dτ ⊙ m(x)
r(x)


dx


R p(x) det exp


− 1

dτ ⊙ m(x)
r(x)


dx

→

 b

a
p̃(y(x))dydx det exp


− 1

dτ ⊙ m̃(y(x)) dy
dx

r̃(y(x)) dy
dx


dx


R p̃(y(x))dydx det exp


− 1

dτ ⊙ m̃(y(x)) dy
dx

r̃(y(x)) dy
dx


dx

(56)

=

 b

a
p̃(y) det exp


− 1

dτ ⊙ m̃(y)
r̃(y)


dx


R p̃(y) det exp


− 1

dτ ⊙ m̃(y)
r̃(y)


dy

(57)

We can now generalize this result to a manifold.
Let X4 be a world manifold. Let us also write u = m/r. We can write the

probability density as follows:

ρ(x, y, z, t, τ ) |ba=
1

Z(τ)

 b

a

p(x, y, z, t, 0) det exp


−1

4
τ ⊙ u(x, y, z, t)


|g| dx dy dz dt

(58)

where |g| is the absolute value of the determinant of the matrix representa-
tion of the metric tensor on the manifold.

Finally, we can define a wavefunction

φ(x, y, z, t, τ ) = exp


−1

4
τ ⊙ u(x, y, z, t)


φ0(x, y, z, t, 0) (59)

where det

φ0(x, y, z, t, 0)


= p(x, y, z, t, 0).

4 Analysis

We first show that in 0+1D, a complex Hilbert space is obtained, that in 2D a
geometric Hilbert space is obtained, and finally, that in 3+1D a double-copy ge-
ometric Hilbert space is obtained. We further show that the last two structures
include gravity, whilst the last one additionally includes the standard model.
As for the first case, it corresponds to non-relativistic quantum mechanics.
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4.1 Phase-invariant measurements in 0+1D

In this subsection, which also serves as an introductory example, we recover
non-relativistic quantum mechanics using the Lagrange multiplier method and
a linear constraint on the relative Shannon entropy.

We recall that in statistical physics the identification of β with the temper-
ature involves the recovery of the Maxwell equations as the equations of states
and under the equality β = 1/(kBT ). Similarly, here we will identify known
laws of physics in which the Lagrange multiplier plays a known role.

As previously mentioned, the relative Shannon entropy (in base e) is applied
instead of the Boltzmann entropy to achieve the aforementioned goal.

S = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
(60)

In statistical mechanics, we use scalar measurement constraints on the en-
tropy, such as energy and volume meters, which are sufficient for recovering
the Gibbs ensemble. However, applying such scalar measurement constraints is
insufficient to recover quantum mechanics.

A complex measurement constraint, invariant for a complex phase, is used
to overcome this limitation. It is defined1 as

tr


0 −E
E 0


=



q∈Q
ρ(q) tr


0 −E(q)

E(q) 0,


(61)

We recall that


a(q) −b(q)
b(q) a(q)


∼= a(q) + ib(q) is the matrix representation of

the complex numbers. In terms of multivectors this constraint corresponds to
the matrix representation of the pseudoscalar of G(R0,1).

Similar to energy or volume meters, linear instruments produce a sequence of
measurements that converge to an expectation value but with phase invariance.
In our framework, this phase invariance originates from the trace.

The Lagrangian equation that describes this optimization problem is:

L(ρ,λ, τ) = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
+ λ



1−


q∈Q
ρ(q)



+ τ



tr


0 −E
E 0


−



q∈Q
ρ(q) tr


0 −E(q)

E(q) 0





(62)

This equation is maximized for ρ by imposing the condition ∂L(ρ,λ,τ)
∂ρ(q) = 0.

The following results are obtained:

1We may wonder why we take n = 1 (in Equation 1) if the matrix is 2 × 2. Here, we
only use the imaginary part of the complex numbers a + ib |a→0= ib, making the constraint
one-dimensional.
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∂L(ρ,λ, τ)
∂ρ(q)

= − ln
ρ(q)

p(q)
− 1− λ− τ tr


0 −E(q)

E(q) 0


(63)

0 = ln
ρ(q)

p(q)
+ 1 + λ+ τ tr


0 −E(q)

E(q) 0


(64)

=⇒ ln
ρ(q)

p(q)
= −1− λ− τ tr


0 −E(q)

E(q) 0


(65)

=⇒ ρ(q) = p(q) exp(−1− λ) exp


−τ tr


0 −E(q)

E(q) 0


(66)

=
1

Z(τ)
p(q) det exp


−τ


0 −E(q)

E(q) 0


, (67)

where Z(τ) is obtained as:

1 =


q∈Q
p(q) exp(−1− λ) exp


−τ tr


0 −E(q)

E(q) 0



(68)

=⇒

exp(−1− λ)

−1
=



q∈Q
p(q) exp


−τ tr


0 −E(q)

E(q) 0


(69)

Z(τ) :=


q∈Q
p(q) det exp


−τ


0 −E(q)

E(q) 0.


(70)

The exponential of the trace is equal to the determinant of the exponential
according to the relation det expA ≡ exp trA.

Finally, we obtain

ρ(q, τ) =
1

Z(τ)
p(q, 0) det exp


−τ


0 −E(q)

E(q) 0


(71)

∼= p(q, 0)| exp−iτE(q)|2 (72)

With the equality τ = t/ (analogous to β = 1/(kBT )) we recover the
familiar form of

ρ(q, t) =
1

Z(t)
p(q, 0)

exp

−itE(q)/


2

. (73)

or in general

ρ(q, t) =
1

Z

ψ(q, t)
2 , where ψ(q, t) = exp


−itE(q)/


ψ0(q, 0). (74)

16



and where |ψ0(q, 0)|2 = p(q, 0) is the initial preparation.
The time t here emerges as a Lagrange multiplier, which is the same manner

in which T , the temperature, emerges in ordinary statistical mechanics.
We can show that the Dirac Von–Neumann axioms and the Born rule are

satisfied, revealing the possible origin of quantum mechanics as the solution to
an optimization problem on the entropy of measurements.

To do so, we identify the wavefunction as a vector of a complex Hilbert
space, and the partition function as its inner product, expressed as:

Z = 〈ψ|ψ〉 . (75)

As the solution is automatically normalized by the entropy-maximization
procedure, the physical states are associated with the unit vectors, and the
probability of any particular state is given by

ρ(q, t) =
1

〈ψ|ψ〉 (ψ(q, t))
†ψ(q, t). (76)

As the solution is invariant under unitary transformations, it can be trans-
formed out of its eigenbasis, and the energy E(q) is in general represented by a
Hamiltonian operator as follows:

ψ(t)

= exp


−itH/

 ψ(0)


(77)

Any self-adjoint operator, defined as 〈Oψ|φ〉 = 〈ψ|Oφ〉, will correspond to a
real-valued statistical mechanics observable if measured in its eigenbasis, thereby
completing the equivalence.

The dynamics are governed by the Schrödinger equation. Indeed, it suffices
to take the time derivative

∂

∂t

ψ(t)

=

∂

∂t
(exp


−itH/

 ψ(0)

) (78)

= −iH/ exp

−itH/

 ψ(0)


(79)

= −iH/
ψ(t)


(80)

=⇒ H
ψ(t)


= i

∂

∂t

ψ(t)


(81)

which is the Schrödinger equation.
Finally, the measurement postulate is imported directly from ρ(q, τ ) being a

probability measure of statistical mechanics like any other; as it is parametrized
over Q, it describes the probability of finding the state at parametrization q
upon measurement (in the continuum case, this is a Dirac delta).

Consequently, all axioms of non-relativistic quantum mechanics (including
the Born rule and measurement postulate) have been reduced to a specific so-
lution of our optimization problem (i.e. it has been reduced to a single axiom).
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4.2 Is τ always time?

We have to be careful associating τ with time, as this will not true in general.
The association worked in the previous example, but this was due to a number
of coincidences.

Let us investigate.
First, let us note that given the Schrödinger equation, an operator U is a

symmetry if it commutes with the hamiltonian : [H,U] = 0.
Second, we recall that in 2D, τ contains four Lagrange multipliers, and in

3+1D, it contains sixteen. Obviously, our solution does not suggest that there
are four time dimensions in 2D, and sixteen such dimensions in 3+1D. When
discussing events in spacetime, the wavefunction will already be parametrized
in spacetime as ψ(x, y, z, t, τ ). Since t is already in there, it makes no sense to
consider τ to also represent time.

What then is the role of τ in general?
Each element of τ corresponds to the one-parameter group that gener-

ates a dynamical evolution governed by the Schrödinger equation. In 2D, four
Schrödinger equations will be generated, whereas in 3+1D, we will have sixteen
Schrödinger equations. They define the dynamics that continuously connect the
configurations of spacetime, whilst respecting global symmetries and conserva-
tion laws. In neither of these cases will τ represent time. The global symmetries
and conservation laws will be induced by the geometric properties of the system.

Let us see in more details.
In 2D, we have 4 Lagrange multipliers τ = τa + τxx̂ + τyŷ + τbx̂ŷ. The

dynamics of the wavefunction

ψ(x, y, τa, τx, τy, τb)

= exp


−1

2
τ ⊙ u(x, y)

 ψ0(x, y, 0, 0, 0, 0)


(82)

are given in the form of four partial differential equations:

−1

2
a
ψ(x, y, τa, τx, τy, τb)


=

∂

∂τa

ψ(x, y, τa, τx, τy, τb)


(83)

−1

2
xx̂

ψ(x, y, τa, τx, τy, τb)

=

∂

∂τx

ψ(x, y, τa, τx, τy, τb)


(84)

−1

2
yŷ

ψ(x, y, τa, τx, τy, τb)

=

∂

∂τy

ψ(x, y, τa, τx, τy, τb)


(85)

−1

2
bx̂ŷ

ψ(x, y, τa, τx, τy, τb)

=

∂

∂τb

ψ(x, y, τa, τx, τy, τb)


(86)

The Schrödinger-like equations define four relations for conserved quantities:
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[a,u] = 0 (87)

[xx̂,u] = 0 (88)

[yŷ,u] = 0 (89)

[bx̂ŷ,u] = 0 (90)

The first relation define the set of all u which are conserved under the gen-
erator of dilation transformations (since a is a scalar, this case exceptionally
comprises all u in G(R2)), the second and third relate to the generators of shear
transformations, and the fourth to the generator of rotational transformations.

Why does τ associates to t in non-relativistic quantum mechanics? This
is caused by three coincidences. In non-relativistic quantum mechanics, the
wavefunction is parametrized in (x, y, z), but not in t (the first coincidence).
Furthermore, in this case only one Schrödinger equation is required to connect
the different configurations of space (the second coincidence). Finally, the pseu-
doscalar happens to generate the geometric symmetry of the Hamiltonian (third
coincidence). Because of the three coincidences, τ can be associated with time
simply by choosing the factor of the pseudoscalar to be the Hamiltonian.

Our general interpretation of the Schrödinger equation as continuously con-
necting two configurations of spacetime also holds in the non-relativistic case;
indeed, the Schrödinger equation connects a configuration of space ψ0(x, y, z)
to another ψ(x, y, z) using the one-parameter group generated by τ .

To further clarify the dynamics let us contrast it to the dynamics commonly
found in relativity. For instance, an observer or particle in 3+1D might still
follow a path l parametrizing the coordinates (x, y, z, t) as (x(l), y(l), z(l), t(l))
and consequently still be the subject of a dynamical equation such as the Dirac
equation. However, such dynamics would be defined within a configuration of
spacetime, and this is not the same as the dynamics that generates the global
symmetries and conservation laws via the four Schrödinger equations of 2D, or
the sixteen of 3+1D.

4.3 Geometric Hilbert space in 2D

We now attack the 2D case. We recall that the determinant in 2D can be
expressed as detu = u‡u, where u‡ is the Clifford conjugate of u. This allows
us to use a notation similar to the bra-ket notation used in physics. It also
allows us to represent an inner product analogously to the complex norm for
complex Hilbert spaces.

Let V be an m-dimensional vector space over G(R2).
A subset of vectors in V forms an algebra of observables A(V) if the following

holds:

A) ∀ψ ∈ A(V), the sesquilinear map
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〈·, ·〉 : V× V −→ G(R2)

〈u,v〉 −→ u‡v (91)

is positive-definite such that for ψ ∕= 0, 〈ψ,ψ〉 > 0

B) ∀ψ ∈ A(V). Then, for each element ψ(q) ∈ ψ, the function

ρ(ψ(q)) =
1

〈ψ,ψ〉ψ(q)
‡ψ(q) (92)

is either positive or equal to zero.

We note the following comments and definitions:

• From A) and B), it follows that ∀ψ ∈ A(V), the probabilities sum up to
unity:



ψ(q)∈ψ

ρ(ψ(q)) = 1 (93)

• ψ is called a physical state.

• 〈ψ,ψ〉 is called the partition function of ψ.

• If 〈ψ,ψ〉 = 1, then ψ is called a unit vector.

• ρ(q) is called the probability measure (or generalized Born rule) of ψ(q).

• The set of all matrices T acting on ψ as Tψ → ψ′, such that the sum of
probabilities remains normalized.

〈Tψ,Tψ〉 = 〈ψ,ψ〉 (94)

are the physical transformations of ψ.

• A matrix O such that ∀u ∈ V and ∀v ∈ V:

〈Ou,v〉 = 〈u,Ov〉 (95)

is called an observable.

• The expectation value of an observable O is

〈O〉 = 1

〈ψ,ψ〉 〈Oψ,ψ〉 (96)
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4.4 Geometric self-adjoint operator in 2D

The general case of an observable in 2D is shown in this section. A matrix O is
observable if it is a self-adjoint operator defined as:

〈Oφ,ψ〉 = 〈φ,Oψ〉 (97)

∀φ ∈ V and ∀ψ ∈ V.

Setup: Let O =


o00 o01

o10 o11


be an observable.

Let φ and ψ be two two-state multivectors φ =


φ1

φ2


and ψ =


ψ1

ψ2


. Here,

the components φ1, φ2, ψ1, ψ2, o00, o01, o10, o11 are multivectors of G(R2).

Derivation: 1. Calculate 〈Oφ,ψ〉:

2〈Oφ,ψ〉 = (o00φ1 + o01φ2)
‡ψ1 +ψ‡

1(o00φ1 + o01φ2)

+ (o10φ1 + o11φ2)
‡ψ2 +ψ‡

2(o10φ1 + o11φ2) (98)

= φ1
‡o‡

00ψ1 + φ‡
2o

‡
01ψ1 +ψ‡

1o00φ1 +ψ‡
1o01φ2

+ φ‡
1o

‡
10ψ2 + φ‡

2o
‡
11ψ2 +ψ‡

2o10φ1 +ψ‡
2o11φ2 (99)

2. Next, calculate 〈φ,Oψ〉:

2〈φ,Oψ〉 = φ‡
1(o00ψ1 + o01ψ2) + (o00ψ1 + o01ψ2)

‡φ1

+ φ‡
2(o10ψ1 + o11ψ2) + (o10ψ1 + o11ψ2)

‡φ1 (100)

= φ‡
1o00ψ1 + φ‡

1o01ψ2 +ψ‡
1o

‡
00φ1 +ψ‡

2o
‡
01φ1

+ φ‡
2o10ψ1 + φ‡

2o11ψ2 +ψ‡
1o

‡
10φ1 +ψ‡

2o
‡
11φ1 (101)

To realize 〈Oφ,ψ〉 = 〈φ,Oψ〉, the following relations must hold:

o‡
00 = o00 (102)

o‡
01 = o10 (103)

o‡
10 = o01 (104)

o‡
11 = o11. (105)

Therefore, O must be equal to its own Clifford transpose, indicating that O
is an observable if

O‡ = O, (106)

21



which is the geometric generalization of the self-adjoint operator O† = O of
complex Hilbert spaces.

4.5 Geometric spectral theorem in 2D

The application of the spectral theorem to O‡ = O such that its eigenvalues are
real is shown below:

Consider

O =


a00 a− xx̂1 − yx̂2 − bx̂12

a+ xx̂1 + yx̂2 + bx̂12 a11


, (107)

Then O‡ is

O‡ =


a00 a− xx̂1 − yx̂2 − bx̂12

a+ xx̂1 + yx̂2 + bx̂12 a11


, (108)

It follows that O‡ = O
This example is the most general 2× 2 matrix O such that O‡ = O.
The eigenvalues are obtained as:

0 = det(O− λI) = det


a00 − λ a− xx̂1 − yx̂2 − bx̂12

a+ xx̂1 + yx̂2 + bx̂12 a11 − λ


, (109)

This implies that

0 = (a00 − λ)(a11 − λ)− (a− xx̂1 − yx̂2 − bx̂12)(a+ xx̂1 + yx̂2 + bx̂12 + a11)
(110)

0 = (a00 − λ)(a11 − λ)− (a2 − x2 − y2 + b2), (111)

Finally,

λ = {1
2


a00 + a11 −


(a00 − a11)2 + 4(a2 − x2 − y2 + b2)


, (112)

1

2


a00 + a11 +


(a00 − a11)2 + 4(a2 − x2 − y2 + b2)


} (113)

The roots would be complex if a2−x2−y2+b2 < 0. Since a2−x2−y2+b2 is
the determinant of the multivector, the complex case is ruled out for orientation-
preserving multivectors. Consequently, it follows O‡ = O constitutes an observ-
able with real-valued eigenvalues for orientation-preserving multivectors.

22



4.6 Invariant transformations in 2D

A left action on the wavefunctionT |ψ〉 connects to the bilinear form as 〈ψ|T‡T |ψ〉.
The invariance requirement on T is

〈ψ|T‡T |ψ〉 = 〈ψ|ψ〉 . (114)

Therefore, we are interested in the group of matrices that follow

T‡T = I. (115)

Let us consider a two-state system, with a general transformation repre-
sented by

T =


u v
w x


, (116)

where u, v, w, x are the 2D multivectors.
The expression T‡T is

T‡T =


v‡ u‡

w‡ x‡

 
v w
u x


=


v‡v + u‡u v‡w + u‡x
w‡v + x‡u w‡w + x‡x


(117)

For T‡T = I , the following relations must hold:

v‡v + u‡u = 1 (118)

v‡w + u‡x = 0 (119)

w‡v + x‡u = 0 (120)

w‡w + x‡x = 1 (121)

This is the case if

T =
1√

v‡v + u‡u


v u

−eϕu‡ eϕv‡


, (122)

where u, v are the 2D multivectors, and eϕ is a unit multivector.
Comparatively, the unitary case is obtained when the vector part of the

multivector vanishes, i.e., x → 0, and we obtain

U =
1

|a|2 + |b|2


a b

−eiθb† eiθa†


. (123)

Here T is the geometric generalization (in 2D) of unitary transformations.
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4.7 Gravity in FX/SO(2)

We will now investigate the quotient bundle associated with the structure re-
duction from GL+(2,R) to SO(2).

Let X2 be a smooth orientable real-valued manifold in 2D. We consider its
tangent bundle TX and its associated frame bundle FX. Since X2 is orientable,
its structure group is GL+(2,R). The action by our wavefunction, valued in
expG(R2) ∼= expM(2,R) generates GL+(2,R), and thus acts on FX. We now
consider a reduction of the structure group of FX to SO(2).

Let us begin by investigating the cosets of SO(2) in GL+(2,R). Let g1 ∈
GL+(2,R), g2 ∈ GL+(2,R) and s ∈ SO(2). We now identify the relation
g2 = g1s. We also note gT2 = sT gT1 . Finally, we note the product g2g

T
2 =

g1ss
T gT1 =⇒ g2g

T
2 = g1g

T
1 . Since g1g

T
1 and g2g

T
2 are symmetric positive-

definite 2×2 matrices, one verifies a diffeomorphism between GL+(2,R)/SO(2)
and the inner products.

The global section of the quotient bundle FX/SO(2) is a tetrad field ha
µ(x)

and it associates to a Riemannian metric on X2 via the identity gµν = ha
µh

b
νηab.

The connection that preserves the structure SO(2) across the manifold are the
metric connections[7], and with the additional requirement of no torsion, the
connections reduce to the Levi-Civita connection. It has been shown recently[8]
that the Goldstone fields associated with the quotient bundle have enough de-
grees of freedom to create a metric and a covariant derivative. Finally, the frame
bundle is a natural bundle that admits general covariant transformations, which
are the symmetries of the gravitation theory on X2[9].

In this work, we have merely maximized the entropy of all possible geometric
measurements, and we have arrived, without introducing any other assumptions,
at a general linear quantum theory holding in the GL+(2,R) group, whose
symmetry breaks into the theory of gravity (FX/SO(2)) and into a quantum
theory of the special orthogonal group (valued in SO(2)).

4.8 Wavefunction in SO(2)

With its structure reduced to SO(2), we thus arrived at a quantum theory of
the special orthogonal group, where the wavefunction defines the action on a
vector of the tangent space of the manifold, as follows:

ψ‡(τb)x̂0ψ(τb) = exp


τb
1

2
iB


x̂0 exp


−τb

1

2
iB


(124)

= exp


τb
1

2
x̂0x̂1B


x̂0 exp


−τb

1

2
x̂0x̂1B


(125)

The expression exp

τb

1
2 x̂0x̂1B


x̂0 exp


−τb

1
2 x̂0x̂1B


maps x̂0 to a curvilinear

basis e0 via the application of the rotor and its reverse:

exp


τb
1

2
x̂0x̂1B


x̂0 exp


−τb

1

2
x̂0x̂1B


= e0(τ) (126)
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Consequently, we have obtained a 2D relativistic wavefunction (with Eu-
clidean signature in this case). This is the 2D version of the David Hestenes’
geometric algebra formulation of the relativistic wavefunction. In 3+1D case,
we will see that the wavefunction has 6 generators for rotations and boosts, and
one generator of a complex phase.

4.9 Metric interference in 2D

We now consider a transformation T‡T = I and a wavefunction |ψ〉 =

u
v


such

that a multivector u is mapped to a linear combination of two multivectors. Let
us consider this transformation:

1√
2


1 1
−1 1

 
u
v


=

1√
2


u+ v
u− v


(127)

We can now investigate the probability:

ρ(u+ v) =
1

Z
det(u+ v), where Z = det(u+ v) + det(u− v) (128)

We proceed as follows:

det(u+ v) = (u+ v)‡(u+ v) (129)

= (u‡ + v‡)(u+ v) (130)

= (u‡u+ u‡v + v‡u+ v‡v) (131)

= detu+ detv + u‡v + v‡u (132)

= detu+ detv + u · v (133)

where we have defined the dot product between multivectors as follows:

u · v = u‡v + v‡u (134)

Since detu > 0 and detv > 0, then u · v is always positive, thereby quali-
fying as a positive-definite inner product, but not greater than either detu or
detv (whichever is greater). Therefore, it also satisfies the conditions of an
interference term capable of destructive and constructive interference.

In the case x → 0, the interference pattern reduces to a form identical to
the unitary case:

det

ψ1e

−τb
1
2b1 + ψ2e

−τb
1
2b2


= detψ1 + detψ2 + 2ψ1ψ2e

−τb
1
2b1−τb

1
2b2 (135)

= |ψ1|2 + |ψ2|2 + 2ψ1ψ2e
−τb

1
2b1−τb

1
2b2 (136)
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whereas, in the general linear case, we would have

det

ψ1e

− 1
2τ⊙(a1+x1+b1) + ψ2e

− 1
2τ⊙(a2+x2+b2)


(137)

= detψ1 + detψ2 + 2ψ1ψ2


e−

1
2τ⊙(a1+x1+b1) + e−

1
2τ⊙(a2+x2+b2)


(138)

which includes non-commutative effects in the interference pattern.

4.10 A double-copy geometric Hilbert space in 4D

In 2D, the determinant can be expressed using only the product ψ‡ψ, which can
be interpreted as the inner product of two multivectors. This form allowed us to
extend the complex Hilbert space to a geometric Hilbert space. We then found
that the familiar properties of the complex Hilbert spaces were transferable to
the geometric Hilbert space, eventually yielding a 2D gravitized quantum theory
in the language of geometric algebra.

Although a similar correspondence exists in 4D, it is less recognizable because
we need a double-copy inner product (i.e., ρ = ⌊φ‡φ⌋3,4φ‡φ) to produce a real-
valued probability in 4D.

Thus, in 4D, we cannot produce an inner product as in the 2D case. The
absence of a satisfactory inner product indicates no Hilbert space in the usual
sense of a complete inner product vector space.

We aim to find a construction that supports the geometric wavefunction in
4D.

To build the right construction, a double-copy inner product of four terms is
devised, superseding the inner product in the Hilbert space, mapping any four
vectors to an element of G(R3,1), and yielding a complete double-copy inner
product vector space — or simply, a double-copy Hilbert space.

We note that the construction will be more familiar than it may first ap-
pear. Indeed, the familiar quantum mechanical features (linear transformations,
unit vectors, and linear superposition in the probability measure, etc.) will be
supported in the construction, and just as it did in 2D, it will also here break
into a familiar inner-product Hilbert space whose Dirac current is invariant for
SU(3)×SU(2)×U(1) and into a theory of gravity and of electromagnetism for
charged fermions FX/Spinc(3, 1).

Let V be an m-dimensional vector space over G(R3,1).
A subset of vectors in V forms a double-copy algebra of observables A(V) if

the following holds:

1. ∀φ ∈ A(V), the double-copy inner product form

〈·, ·, ·, ·〉 : V× V× V× V −→ G(R3,1)

〈u,w,y, z〉 −→
m

i=1

⌊u‡
iwi⌋3,4y‡i zi (139)
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is positive-definite when φ ∕= 0; that is 〈φ,φ,φ,φ〉 > 0

2. ∀φ ∈ A(V), then for each element φ(q) ∈ φ, the function

ρ(φ(q)) =
1

〈φ,φ,φ,φ〉 detφ(q), (140)

is either positive or equal to zero.

We note the following properties, features, and comments:

• From A) and B), it follows that, ∀φ ∈ A(V), and the probabilities sum to
unity.



φ(q)∈φ

ρ(φ(q)) = 1 (141)

• φ is called a physical state.

• 〈φ,φ,φ,φ〉 is called the partition function of φ.

• If 〈φ,φ,φ,φ〉 = 1, then φ is called a unit vector.

• ρ(q) is called the probability measure (or generalized Born rule) of φ(q).

• The set of all matrices T acting on φ such as Tφ → φ′ makes the sum of
probabilities normalized (invariant):

〈Tφ,Tφ,Tφ,Tφ〉 = 〈φ,φ,φ,φ〉 (142)

are the physical transformations of φ.

• A matrix O such that ∀u∀w∀y∀z ∈ V:

〈Ou,w,y, z〉 = 〈u,Ow,y, z〉 = 〈u,w,Oy, z〉 = 〈u,w,y,Oz〉 (143)

is called an observable.

• The expectation value of an observable O is

〈O〉 = 〈Oφ,φ,φ,φ〉
〈φ,φ,φ,φ〉 (144)
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4.11 Wavefunction in 3+1D

In the David Hestenes’ notation[10], the 3+1D wavefunction is expressed as:

ψ =

ρe−ibR, (145)

where ρ represents a scalar probability density, eib is a complex phase, and
R is a rotor.

Comparatively, our wavefunction in G(R3,1) is:

φ = e−
1
4τ⊙(a+x+f+v+b)φ0 (146)

To approach David Hestenes’ formulation of the wavefunction, it suffices to
eliminate the terms a → 0, x → 0 and v → 0, and to perform a substitution of
the entries of the double-copy inner product (Equation 154), as follows:

w → u‡ (147)

y → z‡ (148)

As one of the copies is destroyed by the substitution, the double-copy inner
product reduces to an inner product. Furthermore, with the elimination, the
blade-3,4 conjugate is also reduced to the blade-4 conjugate, yielding

〈u,w,y, z〉 → 〈u,u‡, z‡, z〉 ∼= 〈u, z〉 =
m

i=1

⌊u2
i ⌋2,4(z2i ) (149)

Consequently, our wavefunction φ reduces to

φ2 = e−
1
2τ⊙(f+b)φ2

0 (150)

This shows that the 3+1D wavefunction (comprising a rotor R(τ) = e−
1
2τ⊙f ,

a pseudo-scalar e−
1
2 τbb and a prior probability φ2

0 =
√
ρ) is a sub-structure of the

general G(R3,1) wavefunction. The primary difference is that our formulation
also contains the generators of conservation laws and global symmetries, and
that it lives in a blade 2-4 Hilbert space.

In this sub-structure, the observables are satisfied when

⌊O⌋2,4 = O (151)

Let us now analyze the symmetry group of this wavefunction.
First, we note that the term b commutes with f . They can be factored out

as
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e−
1
2τ⊙(f+b)φ2

0 = e−
1
2τ⊙be−

1
2 τbfφ2

0 (152)

Second, the term exp f can be understood as the exponential map from the
bivectors to the Spin+(3, 1) group and the term expb to U(1).

Finally, since Spin+(3, 1)∩expb = {±1}, it must be removed from the group
product[11].

We conclude that the geometric components of the wavefunction corresponds
to the following group

U(1)× (Spin+(3, 1)/{±1}) ∼= Spinc(3, 1) (153)

4.12 Geometric Hilbert space in 3+1D (broken symme-
try)

The substitution given by Equation 149 yields the following algebra of geometric
observables:

Let V be an m-dimensional vector space over G(R3,1).
A subset of vectors in V forms an algebra of observables A(V) if the following

holds:

1. ∀ψ ∈ A(V), the inner product form

〈·, ·〉 : V× V −→ G(R3,1)

〈u,w〉 −→
m

i=1

⌊u2
i ⌋2,4w2

i (154)

is positive-definite when ψ ∕= 0; that is 〈ψ,ψ〉 > 0

2. ∀ψ ∈ A(V), then for each element ψ(q) ∈ ψ, the function

ρ(ψ(q)) =
1

〈ψ,ψ〉 detψ(q), (155)

is either positive or equal to zero.

We note the following properties, features, and comments:

• From A) and B), it follows that, ∀ψ ∈ A(V), and the probabilities sum to
unity.



ψ(q)∈ψ

ρ(ψ(q)) = 1 (156)
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• ψ is called a physical state.

• 〈ψ,ψ〉 is called the partition function of φ.

• If 〈ψ,ψ〉 = 1, then ψ is called a unit vector.

• ρ(q) is called the probability measure (or generalized Born rule) of ψ(q).

• The set of all matrices T acting on ψ such as Tψ → ψ′ makes the sum
of probabilities normalized (invariant):

〈Tψ,Tψ〉 = 〈ψ,ψ〉 (157)

are the physical transformations of ψ.

• A matrix O such that ∀u∀w ∈ V:

〈Ou,w〉 = 〈u,Ow〉 (158)

is called an observable.

• The expectation value of an observable O is

〈O〉 = 〈Oψ,ψ〉
〈ψ,ψ〉 (159)

4.13 Gravity and electromagnetism in 3+1D

In 2D, we benefited from a coincidence of low dimensions, where the matrix
representation of G(R2) was in M(2,R). As such, our wavefunction generated
GL+(2,R) which acted as the structure group of the frame bundle FX, and
following a structure reduction from GL+(2,R) to SO(2), a tetrad field was
associated with the global section of the quotient bundle FX/SO(2) which led
to a gravitized quantum theory.

In 4D, unlike in 2D where SO(2) = Spin(2), the geometry of the wavefunction
is not in SO but rather in Spinc. And since Spinc is not, in general, in GL+, we
cannot benefit from the same coincidences as in 2D.

Typically, to reach Spin(p, q) from the structure group GL(p+ q), one would
reduce GL(p+ q) to O(p, q), then lift it to Spin(p, q). Here, however, we will use
a different approach to get the spin connection.

Remarkably, 4D admits a coincidence that will allow us to embed the Spinc(3, 1)
group into the GL+(4,R) group, then take its quotient FX/Spinc(3, 1) without
having to lift; our solution already contains what is necessary to take this quo-
tient.
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The coincidence comes from the standard classification of real Clifford algebra[12]
and from the fact that exp(f + b) ∼= Spinc(3, 1) ⊂ expG(R3,1). The diagram

G(R3,1) M(4,R)

expG(R3,1) GL+(4,R)

exp

f

exp

f

(160)

commutes by group homomorphisms. Since exp(f + b) ∼= Spinc(3, 1) ⊂
expG(R3,1), the map f embeds Spinc(3, 1) into GL+(4,R). The inclusion of
Spinc(3, 1) in expG(R3,1) is required to break the symmetry into exactly a theory
of gravity and of electromagnetism for charged fermions and into a Spinc(3, 1)-
valued quantum theory. We are now ready.

Let X4 be a world manifold.
We first consider the tangent bundle TX along with its associated frame

bundle FX. Our wavefunction acts on the frame bundle using the exponential
map of multivectors expG(R3,1) ∼= expM(4,R) which generates GL+(4,R).

The desired reduction is from expG(R3,1) to the Spinc(3, 1) group. With
its symmetry reduced, the wavefunction will assign an element of Spinc(3, 1) to
each event x ∈ X4. The connection that preserves the structure is a Spinc(3, 1)
preserving connection. It relates to a theory of gravity and of electromagnetism
for charged fermions. We note that since SO(3, 1)×U(1) is a quotient Spinc(3, 1),
the cosets are further associable with the inner products. Thus, the global
section of the quotient bundle FX/SO(3, 1) associates with a tetrad field that
uniquely determines a pseudo-Riemannian metric. As for the U(1)-bundle, it is
simply the geometric setting for electromagnetism. Finally, the frame bundle is
a natural bundle that admits general covariant transformations, which are the
symmetries of the gravitation theory on X4[9].

4.14 Metric interference in 3+1D

A geometric wavefunction would allow a larger class of interference patterns than
complex interference. The geometric interference pattern includes the ways in
which the geometry of a probability measure can interfere constructively or
destructively and includes interference from rotations, phases, boosts, shears,
spins, and dilations.

In the case of 4D metric interference (shown below), the interference pattern
is associated with a superposition of elements of the group Spinc(3, 1), whose
subgroup SO(3, 1) associates to a superposition of inner products in the quotient.

It is possible that a sensitive Aharonov–Bohm effect experiment on gravity[13]
could detect special cases of the geometric phase and interference patterns iden-
tified in this section.

An interference pattern follows from a linear combination of u and v, and
the application of the determinant:
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det(u+ v) = detu+ detv + u · v (161)

The determinants detu and detv are a sum of probabilities, whereas the
dot product term u · v represents the interference term.

Such can be obtained following a transformation of a wavefunction |ψ〉 =
u
v


such that the multivectors are mapped to a linear combination of two

multivectors:

1√
2


1 1
−1 1

 
u
v


=

1√
2


u+ v
u− v


(162)

The dot product defines a bilinear form.

· : G(Rm,n)× G(Rm,n) −→ R (163)

u · v −→ 1

2
(det(u+ v)− detu− detv) (164)

If detu > 0 and detv > 0, then u · v is always positive, thereby qualify-
ing as a positive-definite inner product, but not greater than either detu or
detv (whichever is greater). Therefore, it also satisfies the conditions of an
interference term.

In 2D, the dot product has this form

1

2
(det(u+ v)− detu− detv) (165)

=
1

2


(u+ v)‡(u+ v)− u‡u− v‡v


(166)

= u‡u+ u‡v + v‡u+ v‡v − u‡u− v‡v (167)

= u‡v + v‡u (168)

In 3+1D, it has this form.

1

2
(det(u+ v)− detu− detv) (169)

=
1

2


⌊(u+ v)‡(u+ v)⌋3,4(u+ v)‡(u+ v)− ⌊u‡u⌋3,4u‡u− ⌊v‡v⌋3,4v‡v



(170)

=
1

2


⌊u‡u+ u‡v + v‡u+ v‡v⌋3,4(u‡u+ u‡v + v‡u+ v‡v)− . . .


(171)
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= ⌊u‡u⌋3,4u‡u+ ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u+ ⌊v‡v⌋3,4v‡v − . . . (172)

= ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u (173)

We now consider simpler interference patterns.
Interference in 3+1D:
As seen previously, the substituted double-copy inner product reduces to an

inner product (Equation 149). The interference pattern[14] is given as follows:

det(u+ v) = ⌊u+ v⌋2,4(u+ v) (174)

= ⌊u⌋2,4(u+ v) + ⌊v⌋2,4(u+ v) (175)

= ⌊u⌋2,4u+ ⌊u⌋2,4v + ⌊v⌋2,4u+ ⌊v⌋2,4v (176)

= detu+ detv + ⌊u⌋2,4v + ⌊v⌋2,4u (177)

Now replacing u = ρue
− 1

2 τbbue−
1
2τ⊙fu and v = ρve

− 1
2 τbbve−

1
2τ⊙fv

= |ρu|2 + |ρv|2 + ρuρv


e

1
2 τbbue

1
2τ⊙fue−

1
2 τbbve−

1
2τ⊙fv + e

1
2 τbbve

1
2τ⊙fve−

1
2 τbbue−

1
2τ⊙fu



(178)

Due to the presence of f and b, the geometric richness of the interference pat-
tern exceeds that of the 2D case. The term f associates with a non-commutative
interference effect in the interference pattern, which distinguishes it from (the
entirely commutative) complex interference and could presumably be identified
experimentally in a properly constructed interference experiment.

4.15 Dirac current

David Hestenes[10] defines the Dirac current in the language of geometric alge-
bra as:

j = ψ‡γ0ψ = ρR‡γ0R = ρe0 = ρv (179)

where v is the proper velocity.
In our formulation, this relation also holds; the Dirac current represents the

action of the wavefunction on the unit timelike vector in the tangent space on
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X4. Specifically, the Dirac current is a statistically weighted Lorentz action on
γ0:

j = ψ‡γ0ψ (180)

= e−
1
2τ⊙f+ 1

2 τbbφ0γ0e
1
2τ⊙f+ 1

2 τbbφ0 (181)

= φ2
0e

− 1
2τ⊙fγ0e

1
2τ⊙f (182)

= ρ(τ )e0(τ ) (183)

= ρ(τ )v(τ ) (184)

We now have all the tools required to construct particle physics by exhaust-
ing the remaining geometry of our solution.

4.16 SU(2) × U(1) group

Our wavefunction transforms as a group under multiplication. We now ask, what
is the most general multivector eu which leaves the Dirac current invariant?

ψ‡(eu)‡γ0e
uψ = ψ‡γ0ψ ⇐⇒ (eu)‡γ0e

u = γ0 (185)

When is this satisfied?
The bases of the bivector part f of u are γ0γ1, γ0γ2, γ0γ3, γ1γ2, γ1γ3, and

γ2γ3. Among these, only γ1γ2, γ1γ3, and γ2γ3 commute with γ0, and the rest
anti-commute; therefore, the rest must be made equal to 0. Finally, the base
γ0γ1γ2γ3 anti-commutes with γ0 and cancels out.

Consequently, the most general exponential multivector of the form eu where
u = f + b which preserves the Dirac current is

eu = exp


1

2
F12γ1γ2 +

1

2
F13γ1γ3 +

1

2
F23γ2γ3 +

1

2
b


(186)

We can rewrite the bivector basis with the Pauli matrices

γ2γ3 = iσx (187)

γ1γ3 = iσy (188)

γ1γ2 = iσz (189)

b = ib (190)

After replacements, we obtain

eu = exp
1

2
i(F12σz + F13σy + F23σx + b) (191)

The terms F23σx + F13σy + F12σz and b are responsible for SU(2) and U(1)
symmetries, respectively[15, 16].
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4.17 SU(3) group

The invariance transformation identified by the 3+1D algebra of geometric ob-
servables (Equation 157) are T‡T = I, T†T = I and ⌊T⌋2,4T = I. In the first
case, the identified evolution is bivectorial rather than unitary.

As we did for the SU(2) × U(1) case, we ask, in this case, what is the most
general bivectorial evolution that leaves the Dirac current invariant?

f‡γ0f = γ0 (192)

where f is a bivector:

f = F01γ0γ1 + F02γ0γ2 + F03γ0γ3 + F23γ2γ3 + F13γ1γ3 + F12γ1γ2 (193)

Explicitly, the expression f‡γ0f is

f‡γ0f = −fγ0f = (F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12)γ0 (194)

+ (−2F02F12 + 2F03F13)γ1 (195)

+ (−2F01F12 + 2F03F23)γ2 (196)

+ (−2F01F13 + 2F02F23)γ3 (197)

For the Dirac current to remain invariant, the cross-product must vanish:

−2F02F12 + 2F03F13 = 0 (198)

−2F01F12 + 2F03F23 = 0 (199)

−2F01F13 + 2F02F23 = 0 (200)

leaving only

f‡γ0f = (F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12)γ0. (201)

Finally, F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12 must equal 1.
We note that we can re-write f as a 3-vector with complex components:

f = (F01 + iF23)γ0γ1 + (F02 + iF13)γ0γ2 + (F03 + iF12)γ0γ3 (202)

Then, with the nullification of the cross-product and equating F 2
01 + F 2

02 +
F 2
03+F 2

13+F 2
23+F 2

12 to unity, we can understand the bivectorial evolution when
constrained by the Dirac current to be a realization of the SU(3) group[16].
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4.18 Satisfiability of geometric observables in 4D

In 4D, an observable must satisfy equation 143. Let us now verify that geometric
observables are satisfiable in 4D. For simplicity, let us take m in equation 154
to be 1. Then,

⌊(Ou)‡w⌋3,4y‡z = ⌊u‡Ow⌋3,4y‡z = ⌊u‡w⌋3,4(Oy)‡z = ⌊u‡w⌋3,4y‡Oz (203)

where u1, w1, y1 and z1 are multivectors.
Let us investigate.
If O contained a vector, bivector, pseudo-vector, or pseudo-scalar, the equal-

ity would not be satisfied as these terms do not commune with the multivectors
and cannot be factored out. The equality is satisfied if O ∈ R. Indeed, as a
real value, O commutes with all multivectors, and hence, can be factored out
to satisfy the equality.

We thus find that observables are satisfiable in the general 4D case. We
also recall that in 3+1D, the observable reduces to ⌊O⌋2,4 = O, which is also
satisfiable.

4.19 Unsatisfiability of geometric observables in 6D and
above

At dimensions of 6 or above, the corresponding observable relation cannot be
satisfied. To see why, we look at the results[17] of Acus et al. regarding the
6D multivector norm. The authors performed an exhaustive computer-assisted
search for the geometric algebra expression for the determinant in 6D; as con-
jectured, they found no norm defined via self-products. The norm is a linear
combination of self-products.

The system of linear equations is too long to list in its entirety; the author
gives this mockup:

a40 − 2a20a
2
47 + b2a

2
0a

2
47p412p422 + 〈72 monomials〉 = 0 (204)

b1a
3
0a52 + 2b2a0a

2
47a52p412p422p432p442p452 + 〈72 monomials〉 = 0 (205)

〈74 monomials〉 = 0 (206)

〈74 monomials〉 = 0 (207)

The author then produces the special case of this norm that holds only for
a 6D multivector comprising a scalar and grade 4 element:

s(B) = b1Bf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) (208)

Even in this simplified special case, formulating a linear relationship for
observables is doomed to fail. Indeed, the real portion of the observable cannot
be extracted from the equation. We find that for any function fi and gi, the
coefficient b1 and b2 will frustrate the equality:
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b1OBf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) (209)

= b1Bf5(f4(B)f3(f2(B)f1(B))) + b2OBg5(g4(B)g3(g2(B)g1(B))) (210)

Equations 209 and 210 can only be equal if b1 = b2; however, the norm s(B)
requires both to be different. Consequently, the relation for observables in 6D
is unsatisfiable even by real numbers.

Thus, in our solution, observables are satisfiable in 6D.
Furthermore, since the norms involve more sophisticated systems of linear

equations in higher dimensions, this result is likely to generalize to all dimensions
above 6.

4.20 Defective probability measure in 3D and 5D

The 3D and 5D cases (and possibly all odd-dimensional cases of higher dimen-
sions) contain a number of irregularities that make them defective to use in this
framework. Let us investigate.

In G(R3), the matrix representation of a multivector

u = a+ xσx + yσy + zσz + qσyσz + vσxσz + wσxσy + bσxσyσz (211)

is

u ∼=

a+ ib+ iw + z iq − v + x− iy
iq + v + x+ iy a+ ib− iw − z


(212)

and the determinant is

detu = a2 − b2 + q2 + v2 + w2 − x2 − y2 − z2 + 2i(ab− qx+ vy − wz) (213)

The result is a complex-valued probability. Since a probability must be real-
valued, the 3D case is defective in our solution and cannot be used. In theory,
it can be fixed by defining a complex norm to apply to the determinant:

〈u,u〉 = (detu)† detu (214)

However, defining such a norm would entail a double-copy inner product of
4 multivectors, but the space is only 3D, not 4D (so why four?). It would also
break the relationship between trace and probability that justified its usage in
statistical mechanics.

Consequently, this case appears to us to be defective.
Perhaps, instead of G(R3) multivectors, we ought to use 3×3 matrices in 3D?

Alas, 3 × 3 matrices do not admit a geometric algebra representation because
they are not isomorphic with G(R3). Indeed, G(R3) has 8 parameters and 3× 3
matrices have 9. 3× 3 matrices are not representable geometrically in the same
sense that 2× 2 matrices are with G(R2).
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In G(R4,1), the algebra is isomorphic to complex 4 × 4 matrices. In this
case, the determinant and probability would be complex-valued, making the
case defective. Furthermore, 5 × 5 matrices have 25 parameters, but G(R4,1)
multivectors have 32 parameters.

4.21 The dimensions that admit observable geometry

Our solution is non-defective in the following dimensions:

• R: This case corresponds to familiar statistical mechanics. The constraints
are scalar E =


q∈Q ρ(q)E(q), and the probability measure is the Gibbs

measure ρ(q) = 1
Z(β) exp


−βE(q)


.

• C ∼=

0 b
−b 0


: This case corresponds to familiar non-relativistic quantum

mechanics.

However, neither of these cases contain geometry. The only case that contain
observable geometry are:

• G(R2): This case corresponds to the geometric quantum theory in 2D. Its
GL+(2) symmetry breaks into a theory of gravity FX/SO(2) and into a
quantum theory valued in SO(2).

• G(R3,1): This case is valid. Like the 2D case, it also corresponds to a
geometric quantum theory. As such, its symmetry will break into a theory
of gravity and a relativistic wavefunction. But unlike the 2D case, the
wavefunction further admits an invariance with respect to the SU(2)×U(1)
and SU(3) gauge groups.

In contrast, our solution is defective in the following dimensions:

• G(R3): In this case, the probability measure is complex-valued.

• G(R4,1): In this case, the probability measure is complex-valued.

• 6D and above: For G(Rn), where n ≥ 6, no observables satisfy the corre-
sponding observable equation, in general.

We may thus say that 3D and 5D fail to normalize, and 6D and above
fail to satisfy observables. Consequently, in the general case of our solution,
normalizable geometric observables cannot be satisfied beyond 4D. This suggests
an intrinsic limit to the dimensionality of observable geometry, and by extension
to spacetime.
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5 Discussion

Our goal was to devise a framework in which the laws of physics can be derived
rather than postulated. Furthermore, we wish to derive them such that in some
sense the result is optimal.

One way to arrive at the laws of physics is to inspect the scientific literature,
then intuit a number of axioms, and finally submit them to experimental testing
for falsification. Such methodology can demonstrate scientific fitness (or more
precisely, lack thereof), but cannot demonstrate optimality. Indeed, as pure
mathematics is unaware of the scientific fitness of any sets of axioms, it cannot
assign them a score apriori. Furthermore, such methodology clashes with the
logical definition of an axiom because axioms in logic are held true by definition,
but laws in physics are entailed by measurement.

Our proposal capitalizes on a missed opportunity to constrain the set of all
theories by the structure of all measurements, thus constraining the theories
to be empirical. Under this constraint, physics is found as the solution that
maximizes the information associated with the receipt by the observer of a
message of measurements. The optimization problem assigns a score (measured
in terms of quantity of information) to each possible empirical theory and selects
the maximally informative one for a given measurement structure. Physics is
thus the provable explanatory maximum for realized measurements.

Defining the problem is this manner requires a single axiom, the fundamental
structure of measurements (Axiom 1) and such is sufficient to entail the fun-
damental theorem of physics (Theorem 1) as its main result. The fundamental
structure of measurements is a mathematical expression motivated solely as a
best empirical fit to the structure of the measurements that are found in nature.

With this foundation, the pervasive platonic defect induced by defining laws
as axioms, rather than deriving them from the measurements that entail them,
is now corrected. In our formulation, and for the first time, the foundation of
physics is completely consistent with physics being an empirical science because
it refers exclusively to the structure of measurements that are possible in nature,
and lacks any other importations.

The techniques of statistical mechanics are used abundantly in our work. The
complete correspondence between an ordinary system of statistical mechanics
and ours is as follows.

Table 1: Correspondence

Concept Energy Constraint Measurement Constraint

Entropy Boltzmann Shannon
Measure Gibbs Born rule
Constraint Energy meter Phase-invariant instrument
Micro-state Energy values Measurement results
Lagrange multiplier Temperature Entropic flow
Ontology Ergodic system Receipt of a message
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In the correspondence, using the Shannon entropy instead of the Boltzmann
entropy changes the ontology from ergodic systems to the receipt of a message (in
the sense of the communication theory of Claude Shannon[18]) of measurements.
The receipt of such a message by an observer carries information; it is associated
to the registration of a “click”[19] on a screen or an incidence counter. Since
the message is received by the observer, we are not dealing with entropy but
information, even though the equations are similar to those of statistical physics.

The probabilistic interpretation of the wavefunction via the Born rule is in-
herited from the solution, and is explained as the measure that maximizes the
information of measurements. The wavefunction is derived and consequently is
not considered axiomatic. The measurement postulate is also derived, because
the resulting probability measure is parametrized over the possible measurement
values of the system (and consequently one element of the parametrization is
picked upon measurement). Even the appropriate Hilbert space is automatically
recovered by the solution and need not be added by hand. The optimization
problem’s ability to mechanically produce the correct Hilbert space for the states
of the solution, is in fact one of its primary advantages as it allows seamlessly
extending the space to accommodate the structure of measurements whenever
required. It turns out that in 2D a geometric Hilbert space is required to ac-
commodate general linear measurements, and in 3+1D a double-copy geometric
Hilbert space is required. Both geometric Hilbert space contain gravity, but the
second one also contain the standard model. Both spaces are mathematically
well-defined, but are highly non-obvious without the benefit of our optimization
problem to mechanically derive them.

Since our knowledge of nature comes from the available instruments, postu-
lating the structure of the measurements produced by the these instruments as
the axiom (rather than postulating the wavefunction) makes the mathematics
of physics entirely consistent with it being an empirical science.

The full correspondence is also consistent with the general intuition that
random information must be axiomatic, as, by definition, it cannot be derived
from any earlier principles. Ultimately, it is viable to consider the message of
measurements (whose random nature associates to information), rather than
the wavefunction, to be the axiomatic foundation of the theory. As shown,
the latter can be derived from the former but not vice versa (the measurement
collapse problem prevents the mathematical derivation of the elements of the
message).

6 Conclusion

We proposed to maximize the information associated with a receipt by the ob-
server of a message of measurement under the constraint of a geometric measure-
ment apparatus. The resulting probability measure supports a geometry richer
than what could previously be supported in either statistical physics or quan-
tum mechanics. Accommodating all possible geometric measurements entails a
geometric wavefunction, for which the Born rule is extended to the determinant.
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This substantially extends the opportunity to capture all fundamental physics
within a single framework. The framework produces solutions for 2D and 4D
in which general observables are normalizable. 4D stands out as the largest ge-
ometry that satisfies the conditions for having normalizable observables in the
general case. A gravitized standard model results from the frame bundle FX
of a world manifold, whose structure group is generated by expG(R3,1) (which
is isomorphic to expM(4,R) and as such generates to GL+(4,R) up to isomor-
phism), undergoing symmetry breaking to Spinc(3, 1). The global sections of
the quotient bundle FX/SO(3, 1) identify with a pseudo-Riemannian metric and
the natural bundles to general covariant transformations. The connection is a
Spinc-preserving connection. The group SU(3)×SU(2)×U(1) is recovered in the
broken symmetry and associates to the invariant transformations under the ac-
tion of the wavefunction on a unit timelike vector of the tangent space, and
preserving the Dirac current. Finally, an interpretation of quantum mechan-
ics, i.e., the maximally-informative interpretation, is proposed; the structure of
measurements acquire the foundational role, and the wavefunction is derived as
a theorem. In this interpretation, it is considered that an observer receives a
message (theory of communication/Shannon entropy) of phase-invariant mea-
surements, and the probability measure, maximizing the information of this
message, is the geometric wavefunction accompanied by the geometric Born
rule. It is the only interpretation whose mathematical formulation is suffi-
ciently precise to recover, by itself, the full machinery of quantum physics (and
even improve upon it). Finally, as the solution to an optimization problem on
information, we concluded that physics, distilled to its conceptually simplest
expression, is the solution that provably makes measurements maximally in-
formative to the observer. Physics is the provable explanatory maximum for
realized measurements.
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