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Abstract

In modern theoretical physics, the laws of physics are formulated as
axioms (e.g., the Dirac–Von Neumann axioms, the Wightman axioms,
and Newton’s laws of motion). While axioms in modern logic hold true
merely by definition, the laws of physics are entailed by measurements.
This entailment reveals an opportunity to derive (rather than to posit)
the laws of physics from first principle. It also reveals a redundancy in the
foundations of physics. We propose an optimization problem relating to
entropy, information and measurements as a mean to select the optimal
predictive theory that respects this entailment. In consideration of the ex-
treme generality of this optimization problem, we note that the solution
we obtain is remarkable in its specificity and in its fitness for reality. Of
primary interest, the solution reveals the general setting for physics to be
the general linear Hilbert space, a generalization of the complex Hilbert
space able to support arbitrary geometry. Below 4D, the solutions are vac-
uous. In 4D, the general linear Hilbert space naturally contains gravity for
fermions and bosons from the quotient bundle FX/Spinc(3,1), electromag-
netism from the U(1)-bundle, the standard model from the gauge group
SU(3)xSU(2)xU(1), and admits no freedom for anything else. Above 4D,
the general linear Hilbert space fails to admit normalizable observables
altogether, suggesting an intrinsic delimitation of the dimensionality of
observable geometry and, by association, to that of spacetime.

1 Introduction

In logic, if an axiom is shown to be provable from the other axioms of the theory,
it is considered redundant and is removed. As measurements are part of physics
and the laws of physics are entailed by measurements, it follows that all axioms
that pertain to the laws of physics (but obviously not those that pertain to
measurements) are necessarily redundant. This argument holds irrespective of
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the perceived convenience and past successes of expressing the laws of physics
as axioms.

Our goal is this work is to realize this newly found opportunity to derive
from first principle (rather than to posit) the laws of physics.

As such, our axiomatic basis will relate solely to the measurements them-
selves. As for the laws of physics, they will be derived by solving an optimization
problem.

To formulate the optimization problem in full rigour, a few concepts must
be introduced.

First, let us consider the types of measurements that an observer can make
in nature. For instance, the observer can use a meter to measure the distance
between two points. The observer can also use a protractor to measure angles,
or a clock to count the number of ticks between two events, etc. By listing
the possible types, we are lead to identify a general measurement pattern rep-
resenting the possible measurements of nature. In general, the pattern could
include scalar measurements such as energy or volume measurements and geo-
metric measurements such as those produced by protractors, and phase, boost,
dilation, spin, and shear meters.

We will now produce the mathematically precise definition of this pattern,
then we will discuss its intended usage and clarify its meaning. The construction
of the general measurement pattern exploits the connection between geometry
and probability via the trace. The trace of a matrix can be understood as the
expected eigenvalue multiplied by the vector space dimension, and the eigenval-
ues as the ratios of the distortion of the linear transformation associated with
the matrix[1].

Axiom 1 (The General Measurement Pattern of Nature). The general mea-
surement pattern of nature is:

1

d
tru =

󰁛

q∈Q
ρ(q)

1

d
tru(q) (1)

where tru(q) is an observable, where tru is its average, and where u corre-
sponds to a multivector of the geometric algebra G(Rm,n) such that d = m+ n,
where ρ is a probability measure, and where Q is a statistical ensemble.

Since the multivectors of G(R2) and G(R3,1) are group isomorphic to M(2,R)
andM(4,R), respectively, we can understand the domain of the general measure-
ment pattern to be that of general linear measurements. The use of multivectors
instead of matrices merely singles out a preferred geometric representation of
said general linear measurements.

Finally, we note that the trace of a multivector can be obtained by mapping
the multivector to its matrix representation (Section 2), and taking its trace.

Now, we discuss its intended usage.
Measurement patterns are used as constraints in statistical mechanics to

derive the Gibbs measure using Lagrange multipliers[2] by maximizing the en-
tropy.
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For instance, an energy constraint on the entropy is

E =
󰁛

q∈Q
ρ(q)E(q), (2)

which is associated with an energy meter that measures the system’s energy
and produces a series of energy measurements E1, E2, . . . , convergent to an
expectation value E.

Another common constraint is related to the volume:

V =
󰁛

q∈Q
ρ(q)V (q), (3)

which is associated with a volume meter acting on a system and produces
a sequence of measured volumes V1, V2, . . . , converging to an expectation value
V .

Moreover, the sum over the statistical ensemble must equal 1, as follows:

1 =
󰁛

q∈Q
ρ(q) (4)

Using equations (2) and (4), a typical statistical mechanical system is ob-
tained by maximizing the entropy using the corresponding Lagrange equation.
The Lagrange multiplier method is expressed as:

L(ρ,λ,β) = −kB
󰁛

q∈Q
ρ(q) ln ρ(q) + λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ β

󰀳

󰁃E −
󰁛

q∈Q
ρ(q)E(q)

󰀴

󰁄 ,

(5)

where λ and β are the Lagrange multipliers.

By solving ∂L(ρ,λ,β)
∂ρ = 0 for ρ, we obtain the Gibbs measure as:

ρ(q,β) =
1

Z(β)
exp

󰀃
−βE(q)

󰀄
, (6)

where

Z(β) =
󰁛

q∈Q
exp

󰀃
−βE(q)

󰀄
. (7)

In our optimization problem, Equation 2, a scalar measurement pattern, is
replaced with Axiom 1, the general measurement pattern. In addition to energy
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or volume meters, we will have protractors, and phase, boost, dilation, spin,
and shear meters.

In general, an optimization problem is the problem of finding the best so-
lution from the solution space. Specifically, we wish to find the best predictive
theory (best solution) out of all possible predictive theories (the solution space)
constrained by the general measurement pattern (the constraint).

Before we continue further, let us discuss the familiar scientific procedure,
so that we can understand precisely the problem that the general measurement
pattern solves.

Why not simply use the scientific method; is it not the pinnacle of scientific
optimization? For instance, could we not consider scientific fitness as a quality
score, the space of all scientific theories as a solution space, and the scientific
method as the means to establish fitness over the solution space? Alas, since
scientific fitness is binary (fit/unfit), the scientific method is a decision problem,
not an optimization problem. Furthermore, as pure mathematics is apriori
unaware of the scientific fitness of any particular sets of axioms, it cannot assign
them a scientific fitness score without feedback from nature. The problem can
neither be solved for a maximum (not an optimization problem) nor be entirely
defined mathematically (feedback from nature is required to establish scientific
fitness).

Knowing that scientific fitness does not allow optimization (nor full math-
ematization), we may become concerned that any such attempt at optimization
would necessarily fail and lose contact with reality. Afterall, what way could
there possibly be of establishing the soundness of a scientific theory other than
by testing its scientific fitness?

This is precisely the problem that the general measurement pattern ad-
dresses. Using it to constrain predictive theories guarantees contact with real-
ity. The general measurement pattern is the strongest reality constraint that
can be formulated. Comparatively, falsifiability allows, even encourages, pre-
dictive theories to overshoot the known domain of nature so as to make them
potentially falsifiable, but the general measurement pattern neither allows over-
shooting nor undershooting — when used as a constraint, it demands that a
predictive theory exactly fit to nature.

That is not to say that scientific fitness (and falsifiability) does not play a
role in our proposal; it does, but this role is transposed away from the predictive
theories (the solution space) to the pattern (the axiom). The general measure-
ment pattern remains the subject of a scientific fitness test, because we must
interact with nature to identify what this pattern is. If new unsupported types
of measurements are ever found, the pattern must be altered to account for
them. We only mean to say that once a pattern is identified, we can produce an
optimization problem using a mathematizable quality score other than that of
scientific fitness, because scientific fitness applies to the axiom and the solution
space is exactly constrained to this axiom.

As hinted, for the quality score to contain a maximum, it cannot be binary.
We must assign to each predictive theory a score in [0,∞[.

As such, we will score each predictive theory by the quantity of informa-
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tion required to exactly specify a sequence of realized measurements (whose
elements are selected from the ensemble of the theory). To help us understand
why maximizing this information is the correct approach, let us now contrast
two examples. Suppose Alice uses a predictive theory such that no additional
information is required to specify the realized measurements. For this to be
the case, her predictive theory must be a brute enumeration of those measure-
ments. Such a theory has no explanatory power. Now, suppose with his theory,
that Bob requires more information to specify the realized measurements, than
he would had he used any other. This is the opposite of the first example; it
maximizes explanatory power.

The above is one of a few ways to justify the approach. Another way to justify
it is to understand that any information within the foundations of a physical
theory that relates to realized measurements is axiomatically redundant. When
we maximize this information, we identify the least axiomatically redundant
predictive theory as the solution. It is the least redundant, because it requires
the most amount of information (out of all feasible solutions) to specify those
measurements.

We can now define the main theorem of our proposal.

Theorem 1 (The Fundamental Theorem of Physics). Physics is the solution
to a maximization problem over all predictive theories on the quantity of infor-
mation associated with the receipt of a message of realized measurements whose
elements are randomly selected according to a probability measure constrained
by the general measurement pattern of nature. The mathematical equation is:

L(ρ,λ, τ )

󰁿 󰁾󰁽 󰂀
a

maximization
problem

= λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
over all predictive theories

+ −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)

󰁿 󰁾󰁽 󰂀
on the quantity of information

associated with the
construction of a message

+ τ

󰀳

󰁃 1

n
tru−

󰁛

q∈Q
ρ(q)

1

n
tru(q)

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
whose elements are constrained by the
general measurement pattern of nature

(8)

where λ and τ are Lagrange multipliers.

To summarize, we formulated a scientific theory of measurements, whose
single axiom is the general measurement pattern of nature. This formulation
can be used to define an optimization problem able to find the best predictive
theory with conditions; to maintain contact with reality, the predictive theories
are constrained by the general measurement pattern of nature. Finding the best
solution amounts to finding the predictive theory with the highest explanatory
power, itself quantifiable via the information required to exactly specify the
realized measurements of nature from the theory.

To solve Theorem 1 for the explicit solution, the techniques of statistical
mechanics will be used abundantly. It therefore aids the comprehension to
identify and discuss the correspondence between ordinary statistical mechanics
and our proposal.
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Table 1: Correspondence

Constraint Energy Constraint General Measurement Constraint

Ontology Ergodic system Construction of a message
Entropy Boltzmann Shannon
Probability Measure Gibbs Born rule
Micro-state Energy levels Collapsed state
Lagrange multiplier Temperature Entropic flow of time

As we use the (relative) Shannon entropy instead of the Boltzmann entropy,
the ontology has changed from ergodic systems to the receipt of a message
(in the sense of the communication theory of Claude Shannon[3]) of realized
measurements of nature. The receipt of such a message by an observer carries
information; it is associated to the registration of a “click”[4] on a screen or
an incidence counter. It corresponds to a measurement-event. The message
of measurement represents the information missing from the observer’s best
predictive understanding of nature for the physical system to be canonically
defined.

The manuscript is organized as follows:
The Methods section introduces tools using geometric algebra, based on the

study by Lundholm et al. [5, 6]. Specifically, we use the notion of a determi-
nant for multivectors and the Clifford conjugate for generalizing the complex
conjugate. These tools enable the geometric expression of our results.

The Results section presents two solutions for the Lagrange equation. The
first applies to an ensemble Q which is at most countably infinite, and the second
applies to the continuum (

󰁓
→

󰁕
) where Q is uncountable.

In the Analysis section we inspect the solution. Of primary interest, the so-
lution identifies a Hilbert space for the states of the system. In 0+1D, a complex
Hilbert space is recovered, in which the solution is identical to non-relativistic
quantum mechanics. To accommodate the states of all general linear measure-
ments in 2D, the complex Hilbert space is not sufficient; instead a general linear
Hilbert space is obtained, and in 3+1D a double-copy general linear Hilbert space
is obtained. The 2D case contains gravity but is otherwise vacuous, whilst the
4D case contains gravity, electromagnetism and the standard model. Finally,
we show that the general solution lacks normalizable observables beyond 4D,
naturally limiting the dimensionality of spacetime.

2 Methods

2.1 Notation

• Typography:
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Sets are written using the blackboard bold typography (e.g., L, W, and
Q) unless a prior convention assigns it another symbol.

Matrices are in bold uppercase (e.g., P and M), tuples, vectors, and
multivectors are in bold lowercase (e.g., u, v, and g), and most other
constructions (e.g., scalars and functions) have plain typography (e.g., a,
and A).

The unit pseudo-scalar (of geometric algebra), imaginary number, and
identity matrix are i, i, and I, respectively.

• Sets:

The projection of a tuple p is proji(p).

As an example, the elements of R2 = R1 × R2 are denoted as p = (x, y).

The projection operators are proj1(p) = x and proj2(p) = y;

if projected over a set, the corresponding results are proj1(R2) = R1 and
proj2(R2) = R2, respectively.

The size of a set X is |X|.
The symbol∼= indicates an isomorphism, and→ denotes a homomorphism.

• Analysis:

The asterisk z† denotes the complex conjugate of z.

• Matrix:

The Dirac gamma matrices are γ0, γ1, γ2, and γ3.

The Pauli matrices are σx, σy, and σz.

The dagger M† denotes the conjugate transpose of M.

The commutator is defined as [M,P] : MP−PM, and the anti-commutator
is defined as {M,P} : MP+PM.

• Geometric algebra:

The elements of an arbitrary curvilinear geometric basis are denoted as
e0, e1, e2, . . . , en (such that eν · eµ = gµν), and x̂0, x̂1, x̂2, . . . , x̂n (such
that x̂µ · x̂ν = ηµν) if they are orthonormal.

A geometric algebra of m+ nD over field F is denoted as G(Fm,n).

The grades of a multivector are denoted as 〈v〉k.
Specifically, 〈v〉0 is a scalar, 〈v〉1 is a vector, 〈v〉2 is a bivector, 〈v〉n−1 is
a pseudo-vector, and 〈v〉n is a pseudo-scalar.

A scalar and vector such as 〈v〉0+ 〈v〉1 form a para-vector; a combination
of even grades (〈v〉0 + 〈v〉2 + 〈v〉4 + . . . ) or odd grades (〈v〉1 + 〈v〉3 + . . . )
form even or odd multivectors, respectively.

Let G(R2) be the 2D geometric algebra over the real set.
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We can formulate a general multivector of G(R2) as u = a+ x+b, where
a is a scalar, x is a vector, and b is a pseudo-scalar.

Let G(R3,1) be the 3+1D geometric algebra over the real set.

Then, a general multivector of G(R3,1) can be formulated as u = a +
x + f + v + b, where a is a scalar, x is a vector, f is a bivector, v is a
pseudo-vector, and b is a pseudo-scalar.

The notation ⊙ designates the Hadamard product, which is an entrywise
product. For instance, consider the multivector u = a + xx̂ + yŷ + bx̂ŷ
of G(R2), and consider τ = τa + τxx̂ + τyŷ + τbx̂ŷ, then τ ⊙ u = τaa +
τxxx̂+ τyyŷ + τbbx̂ŷ.

2.2 Geometric representation in 2D

Let G(R2) be the 2D geometric algebra over the real set.
A general multivector of G(R2) is given as

u = a+ x+ b, (9)

where a is a scalar, x is a vector, and b is a pseudo-scalar.
Each multivector has a structure-preserving (addition/multiplication) ma-

trix representation.

Definition 1 (2D geometric representation).

a+ xx̂+ yŷ + bx̂ ∧ ŷ ∼=
󰀗
a+ x −b+ y
b+ y a− x

󰀘
(10)

Thus, the trace of u is a.
The converse is also true: each 2 × 2 real matrix is represented as a multi-

vector of G(R2).
In geometric algebra, the determinant[6] of a multivector u can be defined

as:

Definition 2 (Geometric representation of the determinant 2D).

det : G(R2) −→ R
u 󰀁−→ u‡u, (11)

where u‡ is

Definition 3 (Clifford conjugate 2D).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2. (12)
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For example,

detu = (a− x− b)(a+ x+ b) (13)

= a2 − x2 − y2 + b2 (14)

= det

󰀗
a+ x −b+ y
b+ y a− x

󰀘
(15)

Finally, we define the Clifford transpose.

Definition 4 (2D Clifford transpose). The Clifford transpose is the geometric
analog to the conjugate transpose, interpreted as a transpose followed by an
element-by-element application of the complex conjugate. Likewise, the Clifford
transpose is a transpose followed by an element-by-element application of the
Clifford conjugate.

󰀵

󰀹󰀹󰀷

u00 . . . u0n

...
. . .

...
um0 . . . umn

󰀶

󰀺󰀺󰀸

‡

=

󰀵

󰀹󰀹󰀷

u‡
00 . . . u‡

m0
...

. . .
...

um0 . . . u‡
nm

󰀶

󰀺󰀺󰀸 (16)

If applied to a vector, then

󰀵

󰀹󰀹󰀷

v1

...
vm

󰀶

󰀺󰀺󰀸

‡

=
󰁫
v‡
1 . . .v‡

m

󰁬
(17)

2.3 Geometric representation in 3+1D

Let G(R3,1) be the 3+1D geometric algebra over the real set.
A general multivector of G(R3,1) can be written as:

u = a+ x+ f + v + b, (18)

where a is a scalar, x is a vector, f is a bivector, v is a pseudo-vector, and
b is a pseudo-scalar.

Similarly, each multivector has a structure-preserving (addition/multiplication)
matrix representation.

The multivectors of G(R3,1) are represented as follows:

Definition 5 (4D geometric representation).

a+ tγ0 + xγ1 + yγ2 + zγ3

+ f01γ0 ∧ γ1 + f02γ0 ∧ γ2 + f03γ0 ∧ γ3 + f23γ2 ∧ γ3 + f13γ1 ∧ γ3 + f12γ1 ∧ γ2

+ vtγ1 ∧ γ2 ∧ γ3 + vxγ0 ∧ γ2 ∧ γ3 + vyγ0 ∧ γ1 ∧ γ3 + vzγ0 ∧ γ1 ∧ γ2

+ bγ0 ∧ γ1 ∧ γ2 ∧ γ3
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∼=

󰀵

󰀹󰀹󰀹󰀷

a+ x0 − if12 − iv3 f13 − if23 + v2 − iv1 −ib+ x3 + f03 − iv0 x1 − ix2 + f01 − if02
−f13 − if23 − v2 − iv1 a+ x0 + if12 + iv3 x1 + ix2 + f01 + if02 −ib− x3 − f03 − iv0
−ib− x3 + f03 + iv0 −x1 + ix2 + f01 − if02 a− x0 − if12 + iv3 f13 − if23 − v2 + iv1

−x1 − ix2 + f01 + if02 −ib+ x3 − f03 + iv0 −f13 − if23 + v2 + iv1 a− x0 + if12 − iv3

󰀶

󰀺󰀺󰀺󰀸

(19)

Thus, the trace of u is a.
In 3+1D, we define the determinant solely using the constructs of geometric

algebra[6].
The determinant of u is

Definition 6 (3+1D geometric representation of determinant).

det : G(R3,1) −→ R (20)

u 󰀁−→ ⌊u‡u⌋3,4u‡u, (21)

where u‡ is

Definition 7 (3+1D Clifford conjugate).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2 + 〈u〉3 + 〈u〉4, (22)

and where ⌊u⌋{3,4} is the blade-conjugate of degrees three and four (the plus
sign is reversed to a minus sign for blades 3 and 4)

⌊u⌋{3,4} := 〈u〉0 + 〈u〉1 + 〈u〉2 − 〈u〉3 − 〈u〉4. (23)

3 Results

The Lagrange equation that defines our optimization problem is:

L(ρ,λ, τ) = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
+ λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ τ

󰀳

󰁃1

d
tru−

󰁛

q∈Q
ρ(q)

1

d
tru(q)

󰀴

󰁄 ,

(24)

where λ and τ are the Lagrange multipliers, and where u(q) is an arbitrary
multivector of d = m+ n dimensions.

To maximize this equation for ρ, we use the criterion ∂L(ρ,λ,τ)
∂ρ(q) = 0 as follows:
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∂L(ρ,λ, τ)
∂ρ(q)

= − ln
ρ(q)

p(q)
− 1− λ− τ

1

d
tru(q) (25)

0 = ln
ρ(q)

p(q)
+ 1 + λ+ τ

1

d
tru(q) (26)

=⇒ ln
ρ(q)

p(q)
= −1− λ− τ

1

d
tru(q) (27)

=⇒ ρ(q) = p(q) exp(−1− λ) exp

󰀕
−τ

1

d
tru(q)

󰀖
(28)

=
1

Z(τ )
p(q) det exp

󰀕
−τ

1

d
u(q)

󰀖
(29)

where Z(τ) is obtained as:

1 =
󰁛

q∈Q
p(q) exp(−1− λ) exp

󰀕
−τ

1

d
tru(q)

󰀖
(30)

=⇒
󰀃
exp(−1− λ)

󰀄−1
=

󰁛

q∈Q
p(q) exp

󰀕
−τ

1

d
tru(q)

󰀖
(31)

Z(τ ) :=
󰁛

q∈Q
p(q) det exp

󰀕
−τ

1

d
u(q)

󰀖
(32)

The resulting probability measure is:

ρ(q, τ) =
1

Z(τ)
p(q) det exp

󰀕
−τ

1

d
u(q)

󰀖
, (33)

where

Z(τ) =
󰁛

q∈Q
p(q) det exp

󰀕
−τ

1

d
u(q)

󰀖
. (34)

Finally, we can pose

ρ(q, τ) =
1

Z(τ)
detψ(q, τ), where ψ(q, τ) = exp

󰀕
−τ

1

d
u(q)

󰀖
ψ(q) (35)

and where p(q) = detψ(q).
Here, the determinant acts as a generalization of the Born rule, connecting

a general linear amplitude to a real-valued probability.
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3.1 Continuum case

In his original paper, Claude Shannon did not derive the differential entropy as
a theorem: instead, he posited that the discrete entropy ought to be extended
by replacing the sum with the integral:

−
󰁛

q∈Q
ρ(q) ln ρ(q) → −

󰁝

R
ρ(x) ln ρ(x) dx (36)

Unfortunately, it was later discovered that the differential entropy is not al-
ways positive, and neither is it invariant under a change of parameters. Specif-
ically, it transforms as follows:

−
󰁝

R
ρ(x) ln ρ(x) dx →−

󰁝

R
ρ̃(y(x))

dy

dx
ln

󰀕
ρ̃(y(x))

dy

dx

󰀖
dx (37)

= −
󰁝

R
ρ̃(y) ln

󰀕
ρ̃(y(x))

dy

dx

󰀖
dy (38)

Furthermore, due to an argument by Edwin Thompson Jaynes[7, 8], it is
known not to be the correct limiting case of the Shannon entropy. Rather, the
limiting case is relative entropy:

S = −
󰁝

R
ρ(x) ln

ρ(x)

p(x)
dx (39)

where p(x) is the initial preparation.
The relative entropy, unlike the differential entropy, is invariant with respect

to a change of parameter:

−
󰁝

R
ρ(x) ln

ρ(x)

p(x)
dx →−

󰁝

R
ρ̃(y(x))

dy

dx
ln

ρ̃(y(x)) dydx
p̃(y(x)) dydx

dx (40)

= −
󰁝

R
ρ̃(y) ln

ρ̃(y)

p̃(y)
dy (41)

Let us also show that the normalization constraint is invariant with respect
to a change of parameter:

󰁝

R
ρ(x) dx →

󰁝

R
ρ̃(y(x))

dy

dx
dx (42)

=

󰁝

R
ρ̃(y) dy (43)

Let us now investigate the differential observable. A differential observable
is typically formulated as
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O =

󰁝

R
O(x)ρ(x) dx (44)

But, this expression is not invariant with respect to a change of parameter:

󰁝

R
O(x)ρ(x) dx →

󰁝

R
Õ(y(x))

dy

dx
ρ̃(y(x))

dy

dx
dx (45)

=

󰁝

R
Õ(y)ρ̃(y(x))

dy

dx
dy (46)

To correct this, we now introduce the relative (with respect to a reference)
observable. For instance, if we stretch space by a factor of 2: x → 2x, then
the reference must also be stretched by the same amount for the observable to
remain invariant. The consequence is that we observe a ratio:

M/R =

󰁝

R

M(x)

R(x)
ρ(x) dx (47)

Where R is the reference and the ratio O = U/R is observable.
We now show that it is invariant with respect to a change of parameter:

󰁝

R

M(x)

R(x)
ρ(x) dx →

󰁝

R

M̃(y(x))dydx
R̃(y(x))dydx

ρ(y(x))
dy

dx
dx (48)

=

󰁝

R

M̃(y)

R̃(y)
ρ(y) dy (49)

With these definitions, the Lagrange equation becomes:

L(ρ,λ, τ) = −
󰁝

R
ρ(x) ln

ρ(x)

p(x)
dx+ λ

󰀕
1−

󰁝

R
ρ(x) dx

󰀖
+ τ

󰀕
1

d
tr

m

r
−
󰁝

R

1

d
tr

m(x)

r(x)
ρ(x) dx

󰀖

(50)

Maximizing this equation with respect to ρ gives

ρ(x, τ) |ba=
1

Z(τ)

󰁝 b

a

p(x) det exp

󰀕
−τ

1

d
u(x)

󰀖
dx (51)

where

Z(τ) =

󰁝

R
p(q) det exp

󰀕
−τ

1

d
u(x)

󰀖
dx (52)
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where u(x) = m(x)
r(x) .

The probability measure is now invariant with respect to a change of param-
eter:

󰁕 b

a
p(x) det exp

󰀓
−τ 1

d
m(x)
r(x)

󰀔
dx

󰁕
R p(x) det exp

󰀓
−τ 1

d
m(x)
r(x)

󰀔
dx

→

󰁕 b

a
p̃(y(x))dydx det exp

󰀕
−τ 1

d

m̃(y(x)) dy
dx

r̃(y(x)) dy
dx

󰀖
dx

󰁕
R p̃(y(x))dydx det exp

󰀕
−τ 1

d

m̃(y(x)) dy
dx

r̃(y(x)) dy
dx

󰀖
dx

(53)

=

󰁕 b

a
p̃(y) det exp

󰀓
−τ 1

d
m̃(y)
r̃(y)

󰀔
dx

󰁕
R p̃(y) det exp

󰀓
−τ 1

d
m̃(y)
r̃(y)

󰀔
dy

(54)

4 Analysis

We first demonstrate how a complex Hilbert space is produced in 0+1D, followed
by a general linear Hilbert space in 2D, and then a double-copy general linear
Hilbert space in 3+1D. We further show that the last two structures include
gravity, while the last one additionally includes the standard model. As for the
first case, it corresponds to non-relativistic quantum mechanics.

4.1 Phase-invariant measurements in 0+1D

In this subsection, which also serves as an introductory example, we recover
non-relativistic quantum mechanics using the Lagrange multiplier method and
a linear constraint on the relative Shannon entropy.

We recall that in statistical physics, the identification of β with the tem-
perature involves the recovery of the equation of states, and the equality β =
1/(kBT ). Similarly, here we will identify the role played by the Lagrange mul-
tiplier τ .

As previously mentioned, the relative Shannon entropy (in base e) is applied
instead of the Boltzmann entropy to achieve the aforementioned goal.

S = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
(55)

In statistical mechanics, we use scalar measurement constraints on the en-
tropy, such as energy and volume meters, which are sufficient for recovering
the Gibbs ensemble. However, applying such scalar measurement constraints is
insufficient to recover quantum mechanics.

A complex measurement constraint, a subset of the linear measurement con-
straint invariant for a complex phase, is used to overcome this limitation. It is

14



defined1 as

tr

󰀥
0 −E
E 0

󰀦
=

󰁛

q∈Q
ρ(q) tr

󰀗
0 −E(q)

E(q) 0,

󰀘
(56)

We recall that

󰀗
a(q) −b(q)
b(q) a(q)

󰀘
∼= a(q) + ib(q) is the matrix representation of

the complex numbers. In terms of multivectors, this constraint corresponds to
the matrix representation of the pseudoscalar of G(R0,1).

Similar to energy or volume meters, linear instruments produce a sequence
of measurements that converge to an expected value but with phase invariance.
In our framework, this phase invariance originates from the trace.

The Lagrangian equation that describes this optimization problem is:

L(ρ,λ, τ) = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
+ λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ τ

󰀳

󰁃tr

󰀥
0 −E
E 0

󰀦
−

󰁛

q∈Q
ρ(q) tr

󰀗
0 −E(q)

E(q) 0

󰀘󰀴

󰁄

(57)

This equation is maximized for ρ by imposing the condition ∂L(ρ,λ,τ)
∂ρ(q) = 0.

The following results are obtained:

∂L(ρ,λ, τ)
∂ρ(q)

= − ln
ρ(q)

p(q)
− 1− λ− τ tr

󰀗
0 −E(q)

E(q) 0

󰀘
(58)

0 = ln
ρ(q)

p(q)
+ 1 + λ+ τ tr

󰀗
0 −E(q)

E(q) 0

󰀘
(59)

=⇒ ln
ρ(q)

p(q)
= −1− λ− τ tr

󰀗
0 −E(q)

E(q) 0

󰀘
(60)

=⇒ ρ(q) = p(q) exp(−1− λ) exp

󰀣
−τ tr

󰀗
0 −E(q)

E(q) 0

󰀘󰀤
(61)

=
1

Z(τ)
p(q) det exp

󰀣
−τ

󰀗
0 −E(q)

E(q) 0

󰀘󰀤
, (62)

where Z(τ) is obtained as:

1We may wonder why we take n = 1 (in Equation ??) if the matrix is 2 × 2. Here, we
only use the imaginary part of the complex numbers a + ib |a→0= ib, making the constraint
one-dimensional.
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1 =
󰁛

q∈Q
p(q) exp(−1− λ) exp

󰀣
−τ tr

󰀗
0 −E(q)

E(q) 0

󰀘󰀤

(63)

=⇒
󰀃
exp(−1− λ)

󰀄−1
=

󰁛

q∈Q
p(q) exp

󰀣
−τ tr

󰀗
0 −E(q)

E(q) 0

󰀘󰀤
(64)

Z(τ) :=
󰁛

q∈Q
p(q) det exp

󰀣
−τ

󰀗
0 −E(q)

E(q) 0.

󰀘󰀤
(65)

The exponential of the trace is equal to the determinant of the exponential
according to the relation det expA ≡ exp trA.

Finally, we obtain

ρ(q, τ) =
1

Z(τ)
p(q) det exp

󰀣
−τ

󰀗
0 −E(q)

E(q) 0

󰀘󰀤
(66)

∼= p(q)| exp−iτE(q)|2 (67)

With the equality τ = t/󰄁 (analogous to β = 1/(kBT )) we recover the
familiar form of

ρ(q, t) =
1

Z(t)
p(q)

󰀏󰀏󰀏exp
󰀃
−itE(q)/󰄁

󰀄󰀏󰀏󰀏
2

. (68)

or in general

ρ(q, t) =
1

Z

󰀏󰀏ψ(q, t)
󰀏󰀏2 , where ψ(q, t) = exp

󰀃
−itE(q)/󰄁

󰀄
ψ(q). (69)

and where |ψ(q)|2 = p(q) is the initial preparation.
The time t here emerges as a Lagrange multiplier, which is the same manner

in which T , the temperature, emerges in ordinary statistical mechanics. We
may qualify t as a ”thermal time” or as an ”entropic flow”.

We can show that the Dirac Von–Neumann axioms and the Born rule are
satisfied.

To do so, we identify the wavefunction as a vector of a complex Hilbert
space, and the partition function as its inner product, expressed as:

Z = 〈ψ|ψ〉 . (70)

As the solution is automatically normalized by the entropy-maximization
procedure, the physical states are associated with the unit vectors, and the
probability of any particular state is given by
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ρ(q, t) =
1

〈ψ|ψ〉 (ψ(q, t))
†ψ(q, t). (71)

As the solution is invariant under unitary transformations, it can be trans-
formed out of its eigenbasis, and the energy E(q) is in general represented by a
Hamiltonian operator as follows:

󰀏󰀏ψ(t)
󰀎
= exp

󰀃
−itH/󰄁

󰀄 󰀏󰀏ψ(0)
󰀎

(72)

Any self-adjoint operator, defined as 〈Oψ|φ〉 = 〈ψ|Oφ〉, will correspond to a
real-valued statistical mechanics observable if measured in its eigenbasis, thereby
completing the equivalence.

The dynamics are governed by the Schrödinger equation, obtained by taking
the derivative with respect to the Lagrange multiplier:

∂

∂t

󰀏󰀏ψ(t)
󰀎
=

∂

∂t
(exp

󰀃
−itH/󰄁

󰀄 󰀏󰀏ψ(0)
󰀎
) (73)

= −iH/󰄁 exp
󰀃
−itH/󰄁

󰀄 󰀏󰀏ψ(0)
󰀎

(74)

= −iH/󰄁
󰀏󰀏ψ(t)

󰀎
(75)

=⇒ H
󰀏󰀏ψ(t)

󰀎
= i󰄁

∂

∂t

󰀏󰀏ψ(t)
󰀎

(76)

which is the Schrödinger equation.
Finally, the measurement postulate is imported as a direct consequence of

ρ(q, τ) being a probability measure of statistical mechanics like any other; as
it is parametrized over Q, it describes the probability of finding the state at
parametrization q upon measurement (in the continuum case, this is a Dirac
delta).

Consequently, all axioms of non-relativistic quantum mechanics (including
the Born rule and measurement postulate) have been reduced to a specific solu-
tion to our optimization problem which depends only on a single axiom regarding
the measurement structure of nature. This demonstrates, at least in the case of
non-relativistic quantum mechanics, that the axioms pertaining to the laws of
physics (but not those relating to the measurement structure) are redundant.

4.2 Geometric Hilbert space in 2D

We now attack the 2D case.
We recall that the general solution to the optimization problem is:

ρ(q, τ) =
1

Z(τ)
detψ(q, τ), where ψ(q, τ) = exp

󰀕
−τ

1

d
u(q)

󰀖
ψ(q) (77)
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and where p(q) = detψ(q).
In 2D, the multivector u is in G(R2). It contains a scalar a, a vector x and

a pseudoscalar b, and can be written as u = a+ x+ b.
We also recall that the determinant in 2D can be expressed as detu = u‡u,

where u‡ is the Clifford conjugate of u.
We note that in the following sections, we wish to investigate the geometric

properties of the wavefunction, and ignoring all dynamical evolution. As such,
we will normalize τ to 1. This does not affect the generality of our analysis,
because what follows only depends on the impact of the multivector u and not
τ . The dynamical evolution will be investigated in Section 4.21 where τ will be
reintroduced.

Consequently, we can write the solution as:

ρ(q, τ) |τ→1=
1

Z
ψ(q)‡ψ(q), where ψ(q) = exp

󰀕
−1

2
u(q)

󰀖
ψ0(q) (78)

and where p0(q) = ψ0(q)
‡ψ0(q).

Rewriting the determinant as the 2D multivector norm allows us to use a
notation similar to the bra-ket notation used in physics. It also allows us to
represent an inner product over the general linear group analogously to how the
complex norm is represented for complex Hilbert spaces.

Let V be an m-dimensional vector space over G(R2).
A subset of vectors in V forms an algebra of observables A(V) if the following

holds:

A) ∀ψ ∈ A(V), the sesquilinear map

〈·, ·〉 : V× V −→ G(R2)

〈u,v〉 󰀁−→ u‡v (79)

is positive-definite such that for ψ ∕= 0, 〈ψ,ψ〉 > 0

B) ∀ψ ∈ A(V). Then, for each element ψ(q) ∈ ψ, the function

ρ(ψ(q)) =
1

〈ψ,ψ〉ψ(q)
‡ψ(q) (80)

is either positive or equal to zero.

We note the following comments and definitions:

• From A) and B), it follows that ∀ψ ∈ A(V), the probabilities sum up to
unity:

󰁛

ψ(q)∈ψ

ρ(ψ(q)) = 1 (81)
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• ψ is called a physical state.

• 〈ψ,ψ〉 is called the partition function of ψ.

• If 〈ψ,ψ〉 = 1, then ψ is called a unit vector.

• ρ(q) is called the probability measure (or generalized Born rule) of ψ(q).

• The set of all matrices T acting on ψ as Tψ → ψ′, such that the sum of
probabilities remains normalized.

〈Tψ,Tψ〉 = 〈ψ,ψ〉 (82)

are the physical transformations of ψ.

• A matrix O such that ∀u ∈ V and ∀v ∈ V:

〈Ou,v〉 = 〈u,Ov〉 (83)

is called an observable.

• The expectation value of an observable O is

〈O〉 = 1

〈ψ,ψ〉 〈Oψ,ψ〉 (84)

4.3 Geometric self-adjoint operator in 2D

The general case of an observable in 2D is shown in this section. A matrix O is
observable if it is a self-adjoint operator defined as:

〈Oφ,ψ〉 = 〈φ,Oψ〉 (85)

∀φ ∈ V and ∀ψ ∈ V.

Setup: Let O =

󰀗
o00 o01

o10 o11

󰀘
be an observable.

Let φ and ψ be two two-state multivectors φ =

󰀗
φ1

φ2

󰀘
and ψ =

󰀗
ψ1

ψ2

󰀘
. Here,

the components φ1, φ2, ψ1, ψ2, o00, o01, o10, o11 are multivectors of G(R2).
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Derivation: 1. Calculate 〈Oφ,ψ〉:

2〈Oφ,ψ〉 = (o00φ1 + o01φ2)
‡ψ1 +ψ‡

1(o00φ1 + o01φ2)

+ (o10φ1 + o11φ2)
‡ψ2 +ψ‡

2(o10φ1 + o11φ2) (86)

= φ1
‡o‡

00ψ1 + φ‡
2o

‡
01ψ1 +ψ‡

1o00φ1 +ψ‡
1o01φ2

+ φ‡
1o

‡
10ψ2 + φ‡

2o
‡
11ψ2 +ψ‡

2o10φ1 +ψ‡
2o11φ2 (87)

2. Next, calculate 〈φ,Oψ〉:

2〈φ,Oψ〉 = φ‡
1(o00ψ1 + o01ψ2) + (o00ψ1 + o01ψ2)

‡φ1

+ φ‡
2(o10ψ1 + o11ψ2) + (o10ψ1 + o11ψ2)

‡φ1 (88)

= φ‡
1o00ψ1 + φ‡

1o01ψ2 +ψ‡
1o

‡
00φ1 +ψ‡

2o
‡
01φ1

+ φ‡
2o10ψ1 + φ‡

2o11ψ2 +ψ‡
1o

‡
10φ1 +ψ‡

2o
‡
11φ1 (89)

To realize 〈Oφ,ψ〉 = 〈φ,Oψ〉, the following relations must hold:

o‡
00 = o00 (90)

o‡
01 = o10 (91)

o‡
10 = o01 (92)

o‡
11 = o11. (93)

Therefore, O must be equal to its own Clifford transpose, indicating that O
is observable if

O‡ = O, (94)

which is the geometric generalization of the self-adjoint operator O† = O of
complex Hilbert spaces.

4.4 Geometric spectral theorem in 2D

The application of the spectral theorem to O‡ = O such that its eigenvalues are
real is shown below:

Consider

O =

󰀗
a00 a− xx̂1 − yx̂2 − bx̂12

a+ xx̂1 + yx̂2 + bx̂12 a11

󰀘
, (95)

Then O‡ is
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O‡ =

󰀗
a00 a− xx̂1 − yx̂2 − bx̂12

a+ xx̂1 + yx̂2 + bx̂12 a11

󰀘
, (96)

It follows that O‡ = O
This example is the most general 2× 2 matrix O such that O‡ = O.
The eigenvalues are obtained as:

0 = det(O− λI) = det

󰀗
a00 − λ a− xx̂1 − yx̂2 − bx̂12

a+ xx̂1 + yx̂2 + bx̂12 a11 − λ

󰀘
, (97)

This implies that

0 = (a00 − λ)(a11 − λ)− (a− xx̂1 − yx̂2 − bx̂12)(a+ xx̂1 + yx̂2 + bx̂12 + a11)
(98)

0 = (a00 − λ)(a11 − λ)− (a2 − x2 − y2 + b2), (99)

Finally,

λ = {1
2

󰀓
a00 + a11 −

󰁳
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

󰀔
, (100)

1

2

󰀓
a00 + a11 +

󰁳
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

󰀔
} (101)

The roots would be complex if a2−x2−y2+b2 < 0. Since a2−x2−y2+b2 is
the determinant of the multivector, the complex case is ruled out for orientation-
preserving multivectors. Consequently, it follows that O‡ = O constitutes an
observable with real-valued eigenvalues for orientation-preserving multivectors.

4.5 Invariant transformations in 2D

A left action on the wavefunctionT |ψ〉 connects to the bilinear form as 〈ψ|T‡T |ψ〉.
The invariance requirement on T is

〈ψ|T‡T |ψ〉 = 〈ψ|ψ〉 . (102)

Therefore, we are interested in the group of matrices that follow

T‡T = I. (103)

Let us consider a two-state system, with a general transformation repre-
sented by
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T =

󰀗
u v
w x

󰀘
, (104)

where u, v, w, x are the 2D multivectors.
The expression T‡T is

T‡T =

󰀥
v‡ u‡

w‡ x‡

󰀦 󰀗
v w
u x

󰀘
=

󰀥
v‡v + u‡u v‡w + u‡x
w‡v + x‡u w‡w + x‡x

󰀦
(105)

For T‡T = I , the following relations must hold:

v‡v + u‡u = 1 (106)

v‡w + u‡x = 0 (107)

w‡v + x‡u = 0 (108)

w‡w + x‡x = 1 (109)

This is the case if

T =
1√

v‡v + u‡u

󰀥
v u

−eϕu‡ eϕv‡

󰀦
, (110)

where u, v are the 2D multivectors, and eϕ is a unit multivector.
Comparatively, the unitary case is obtained when the vector part of the

multivector vanishes, i.e., x → 0, and we obtain

U =
1󰁳

|a|2 + |b|2

󰀥
a b

−eiθb† eiθa†

󰀦
. (111)

Here T is the geometric generalization (in 2D) of unitary transformations.

4.6 Gravity in FX/SO(2)

We will now investigate the quotient bundle associated with the structure re-
duction from GL+(2,R) to SO(2).

Let X2 be a smooth orientable real-valued manifold in 2D. We consider its
tangent bundle TX and its associated frame bundle FX. Since X2 is orientable,
its structure group is GL+(2,R). The action by our wavefunction, valued in
expG(R2) ∼= expM(2,R) generates GL+(2,R), and thus acts on FX. We now
consider a reduction of the structure group of FX to SO(2).

Let us begin by investigating the cosets of SO(2) in GL+(2,R). Let g1 ∈
GL+(2,R), g2 ∈ GL+(2,R) and s ∈ SO(2). We now identify the relation
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g2 = g1s. We also note gT2 = sT gT1 . Finally, we note the product g2g
T
2 =

g1ss
T gT1 =⇒ g2g

T
2 = g1g

T
1 . Since g1g

T
1 and g2g

T
2 are symmetric positive-

definite 2×2 matrices, one verifies a diffeomorphism between GL+(2,R)/SO(2)
and the inner products.

The global section of the quotient bundle FX/SO(2) is a tetrad field ha
µ(x)

and it associates to a Riemannian metric on X2 via the identity gµν = ha
µh

b
νηab.

The connection that preserves the structure SO(2) across the manifold are the
metric connections[9], and with the additional requirement of no torsion, the
connections reduce to the Levi-Civita connection. It has been shown recently[10]
that the Goldstone fields associated with the quotient bundle have enough de-
grees of freedom to create a metric and a covariant derivative. Finally, the frame
bundle is a natural bundle that admits general covariant transformations, which
are the symmetries of the gravitation theory on X2[11]. This is the geometric
setting for gravity.

In this work, we have merely maximized the entropy of all possible geometric
measurements, and we have arrived, without introducing any other assumptions,
at a general linear quantum theory holding in the GL+(2,R) group, whose
symmetry breaks into a theory of gravity (FX/SO(2)) and into a quantum
theory of the special orthogonal group (valued in SO(2)).

4.7 Wavefunction in SO(2)

With its structure reduced to SO(2), we thus arrived at a quantum theory of
the special orthogonal group, where the wavefunction defines the action on a
vector of the tangent space of the manifold as follows:

ψ(x, y)‡x̂0ψ(x, y) = exp

󰀕
1

2
iB(x, y)

󰀖
x̂0 exp

󰀕
−1

2
iB(x, y)

󰀖
(112)

= exp

󰀕
1

2
x̂0x̂1B(x, y)

󰀖
x̂0 exp

󰀕
−1

2
x̂0x̂1B(x, y)

󰀖
(113)

The expression exp
󰀃
1
2 x̂0x̂1B(x, y)

󰀄
x̂0 exp

󰀃
− 1

2 x̂0x̂1B(x, y)
󰀄
maps x̂0 to a curvi-

linear basis e0 via the application of the rotor and its reverse:

exp

󰀕
1

2
x̂0x̂1B(x, y)

󰀖
x̂0 exp

󰀕
−1

2
x̂0x̂1B(x, y)

󰀖
= e0 (114)

Consequently, we have obtained a 2D relativistic wavefunction (with a Eu-
clidean signature in this case). This is the 2D version of David Hestenes’ geo-
metric algebra formulation of the relativistic wavefunction. In the 3+1D case,
we will see that the wavefunction has 6 generators for rotations and boosts and
one generator for a complex phase.
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4.8 Metric interference in 2D

We now consider a transformation T‡T = I and a wavefunction |ψ〉 =
󰀗
u
v

󰀘
such

that a multivector u is mapped to a linear combination of two multivectors. Let
us consider this transformation:

1√
2

󰀗
1 1
−1 1

󰀘 󰀗
u
v

󰀘
=

1√
2

󰀗
u+ v
u− v

󰀘
(115)

We can now investigate the probability:

ρ(u+ v) =
1

Z
det(u+ v), where Z = det(u+ v) + det(u− v) (116)

We proceed as follows:

det(u+ v) = (u+ v)‡(u+ v) (117)

= (u‡ + v‡)(u+ v) (118)

= (u‡u+ u‡v + v‡u+ v‡v) (119)

= detu+ detv + u‡v + v‡u (120)

= detu+ detv + u · v (121)

where we have defined the dot product between multivectors as follows:

u · v = u‡v + v‡u (122)

Since detu > 0 and detv > 0, then u · v is always positive, thereby quali-
fying as a positive-definite inner product, but not greater than either detu or
detv (whichever is greater). Therefore, it also satisfies the conditions of an
interference term capable of destructive and constructive interference.

In the case x → 0, the interference pattern reduces to a form identical to
the unitary case:

det
󰀓
ψ1e

− 1
2b1 + ψ2e

− 1
2b2

󰀔
= detψ1 + detψ2 + 2ψ1ψ2e

− 1
2b1− 1

2b2 (123)

= |ψ1|2 + |ψ2|2 + 2ψ1ψ2e
− 1

2b1− 1
2b2 (124)

whereas, in the general linear case, we would have

det
󰀓
ψ1e

− 1
2 (a1+x1+b1) + ψ2e

− 1
2 (a2+x2+b2)

󰀔
(125)

= detψ1 + detψ2 + 2ψ1ψ2

󰀓
e−

1
2 (a1+x1+b1) + e−

1
2 (a2+x2+b2)

󰀔
(126)

which includes non-commutative effects in the interference pattern.
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4.9 A double-copy geometric Hilbert space in 4D

In 2D, the determinant can be expressed using only the product ψ‡ψ, which can
be interpreted as the inner product of two multivectors. This form allowed us to
extend the complex Hilbert space to a geometric Hilbert space. We then found
that the familiar properties of the complex Hilbert spaces were transferable to
the geometric Hilbert space, eventually yielding a 2D gravitized quantum theory
in the language of geometric algebra.

Although a similar correspondence exists in 4D, it is less recognizable because
we need a double-copy inner product (i.e., ρ = ⌊φ‡φ⌋3,4φ‡φ) to produce a real-
valued probability in 4D.

Thus, in 4D, we cannot produce an inner product as in the 2D case. The
absence of a satisfactory inner product indicates no Hilbert space in the usual
sense of a complete inner product vector space.

We aim to find a construction that supports the geometric wavefunction in
4D.

To build the right construction, a double-copy inner product of four terms is
devised, superseding the inner product in the Hilbert space, mapping any four
vectors to an element of G(R3,1), and yielding a complete double-copy inner
product vector space — or simply, a double-copy Hilbert space.

We note that the construction will be more familiar than it may first ap-
pear. Indeed, the familiar quantum mechanical features (linear transformations,
unit vectors, and linear superposition in the probability measure, etc.) will be
supported in the construction, and just as it did in 2D, it will also here break
into a familiar inner-product Hilbert space whose Dirac current is invariant for
SU(3)×SU(2)×U(1) and into a theory of gravity and of electromagnetism for
charged fermions FX/Spinc(3, 1).

Let V be an m-dimensional vector space over G(R3,1).
A subset of vectors in V forms a double-copy algebra of observables A(V) if

the following holds:

1. ∀φ ∈ A(V), the double-copy inner product form

〈·, ·, ·, ·〉 : V× V× V× V −→ G(R3,1)

〈u,w,y, z〉 󰀁−→
m󰁛

i=1

⌊u‡
iwi⌋3,4y‡i zi (127)

is positive-definite when φ ∕= 0; that is 〈φ,φ,φ,φ〉 > 0

2. ∀φ ∈ A(V), then for each element φ(q) ∈ φ, the function

ρ(φ(q)) =
1

〈φ,φ,φ,φ〉 detφ(q), (128)

is either positive or equal to zero.
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We note the following properties, features, and comments:

• From A) and B), it follows that, ∀φ ∈ A(V), and the probabilities sum to
unity.

󰁛

φ(q)∈φ

ρ(φ(q)) = 1 (129)

• φ is called a physical state.

• 〈φ,φ,φ,φ〉 is called the partition function of φ.

• If 〈φ,φ,φ,φ〉 = 1, then φ is called a unit vector.

• ρ(q) is called the probability measure (or generalized Born rule) of φ(q).

• The set of all matrices T acting on φ such as Tφ → φ′ makes the sum of
probabilities normalized (invariant):

〈Tφ,Tφ,Tφ,Tφ〉 = 〈φ,φ,φ,φ〉 (130)

are the physical transformations of φ.

• A matrix O such that ∀u∀w∀y∀z ∈ V:

〈Ou,w,y, z〉 = 〈u,Ow,y, z〉 = 〈u,w,Oy, z〉 = 〈u,w,y,Oz〉 (131)

is called an observable.

• The expectation value of an observable O is

〈O〉 = 〈Oφ,φ,φ,φ〉
〈φ,φ,φ,φ〉 (132)

4.10 Wavefunction in 3+1D

In the David Hestenes’ notation[12], the 3+1D wavefunction is expressed as:

ψ =
󰁳
ρe−ibR, (133)

where ρ represents a scalar probability density, eib is a complex phase, and
R is a rotor.

Comparatively, our wavefunction in G(R3,1) is:
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φ = e−
1
4 (a+x+f+v+b)φ0 (134)

To recover David Hestenes’ formulation of the wavefunction, it suffices to
eliminate the terms a → 0, x → 0 and v → 0, and to perform a substitution of
the entries of the double-copy inner product (Equation 142), as follows:

w → u‡ (135)

y → z‡ (136)

As one of the copies is destroyed by the substitution, the double-copy inner
product reduces to an inner product. Furthermore, with the elimination, the
blade-3,4 conjugate is also reduced to the blade-4 conjugate, yielding

〈u,w,y, z〉 → 〈u,u‡, z‡, z〉 ∼= 〈u, z〉 =
m󰁛

i=1

⌊u2
i ⌋2,4(z2i ) (137)

Consequently, our wavefunction φ reduces to

φ2 = e−
1
2 (f+b)φ2

0 (138)

This shows that the 3+1D wavefunction (comprising a rotor R = e−
1
2 f , a

pseudo-scalar e−
1
2b and a prior probability φ2

0 =
√
ρ) is a sub-structure of the

general G(R3,1) wavefunction. The primary difference is that our formulation
lives in a grade 2-4 geometric Hilbert space.

In this sub-structure, the observables are satisfied when

⌊O⌋2,4 = O (139)

Let us now analyze the symmetry group of this wavefunction.
First, we note that the term b commutes with f . They can be factored out

as

e−
1
2 (f+b)φ2

0 = e−
1
2be−

1
2 fφ2

0 (140)

Second, the term exp f can be understood as the exponential map from the
bivectors to the Spin+(3, 1) group and the term expb to U(1).

Finally, since Spin+(3, 1)∩expb = {±1}, it must be removed from the group
product[13].

We conclude that the geometric components of the wavefunction correspond
to the following group

U(1)× (Spin+(3, 1)/{±1}) ∼= Spinc(3, 1) (141)
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4.11 Geometric Hilbert space in 3+1D (broken symme-
try)

The substitution given by Equation 137 yields the following algebra of geometric
observables:

Let V be an m-dimensional vector space over G(R3,1).
A subset of vectors in V forms an algebra of observables A(V) if the following

holds:

1. ∀ψ ∈ A(V), the inner product form

〈·, ·〉 : V× V −→ G(R3,1)

〈u,w〉 󰀁−→
m󰁛

i=1

⌊u2
i ⌋2,4w2

i (142)

is positive-definite when ψ ∕= 0; that is 〈ψ,ψ〉 > 0

2. ∀ψ ∈ A(V), then for each element ψ(q) ∈ ψ, the function

ρ(ψ(q)) =
1

〈ψ,ψ〉 detψ(q), (143)

is either positive or equal to zero.

We note the following properties, features, and comments:

• From A) and B), it follows that, ∀ψ ∈ A(V), and the probabilities sum to
unity.

󰁛

ψ(q)∈ψ

ρ(ψ(q)) = 1 (144)

• ψ is called a physical state.

• 〈ψ,ψ〉 is called the partition function of φ.

• If 〈ψ,ψ〉 = 1, then ψ is called a unit vector.

• ρ(q) is called the probability measure (or generalized Born rule) of ψ(q).

• The set of all matrices T acting on ψ such as Tψ → ψ′ makes the sum
of probabilities normalized (invariant):

〈Tψ,Tψ〉 = 〈ψ,ψ〉 (145)

are the physical transformations of ψ.
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• A matrix O such that ∀u∀w ∈ V:

〈Ou,w〉 = 〈u,Ow〉 (146)

is called an observable.

• The expectation value of an observable O is

〈O〉 = 〈Oψ,ψ〉
〈ψ,ψ〉 (147)

4.12 Gravity and electromagnetism in 3+1D

In 2D, we benefited from a coincidence of low dimensions, where the matrix
representation of G(R2) was in M(2,R). As such, our wavefunction generated
GL+(2,R) which acted as the structure group of the frame bundle FX, and
following a structure reduction from GL+(2,R) to SO(2), a tetrad field was
associated with the global section of the quotient bundle FX/SO(2) which led
to a gravitized quantum theory.

In 4D, unlike in 2D where SO(2) = Spin(2), the geometry of the wavefunction
is not in SO but rather in Spinc (since 4D also contains a pseudoscalar in addition
to bivectors). And since Spinc is not, in general, in GL+, we cannot benefit from
the same coincidences as in 2D.

Typically, to reach Spin(p, q) from the structure group GL(p+ q), one would
reduce GL(p+ q) to O(p, q), then lift it to Spin(p, q). Here, however, we will use
a different approach to get the spin connection.

Remarkably, 4D admits a coincidence that will allow us to embed the Spinc(3, 1)
group into the GL+(4,R) group, then take its quotient FX/Spinc(3, 1) without
having to lift to a larger geometric structure; our solution already contains what
is necessary to take this quotient.

The coincidence comes from the standard classification of real Clifford algebra[14]
and from the fact that exp(f + b) ∼= Spinc(3, 1) ⊂ expG(R3,1). The diagram

G(R3,1) M(4,R)

expG(R3,1) GL+(4,R)

exp

f

exp

f

(148)

commutes by group homomorphisms. Since exp(f + b) ∼= Spinc(3, 1) ⊂
expG(R3,1), the map f embeds Spinc(3, 1) into GL+(4,R). The inclusion of
Spinc(3, 1) in expG(R3,1) is required to break the symmetry into exactly a theory
of gravity and of electromagnetism for charged fermions and into a Spinc(3, 1)-
valued quantum theory. We are now ready.

Let X4 be a world manifold.
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We first consider the tangent bundle TX along with its associated frame
bundle FX. Our wavefunction acts on the frame bundle using the exponential
map of multivectors expG(R3,1) ∼= expM(4,R) which generates GL+(4,R).

The desired reduction is from expG(R3,1) to the Spinc(3, 1) group. With
its symmetry reduced, the wavefunction will assign an element of Spinc(3, 1) to
each event x ∈ X4. The connection that preserves the structure is a Spinc(3, 1)
preserving connection. It relates to a theory of gravity and electromagnetism for
charged fermions. We note that since SO(3, 1)× U(1) is a quotient Spinc(3, 1),
the cosets are further associable with the inner products. Thus, the global
section of the quotient bundle FX/SO(3, 1) associates with a tetrad field that
uniquely determines a pseudo-Riemannian metric. As for the U(1)-bundle, it is
simply the geometric setting for electromagnetism. Finally, the frame bundle is
a natural bundle that admits general covariant transformations, which are the
symmetries of the gravitation theory on X4[11]. This is the geometric setting
for gravity and electromagnetism.

4.13 Dirac current

David Hestenes[12] defines the Dirac current in the language of geometric alge-
bra as:

j = ψ‡γ0ψ = ρR‡γ0R = ρe0 = ρv (149)

where v is the proper velocity.
In our formulation, this relation also holds: the Dirac current represents the

action of the wavefunction on the unit time-like vector in the tangent space on
X4. Specifically, the Dirac current is a statistically weighted Lorentz action on
γ0:

j = ψ‡γ0ψ (150)

= e−
1
2 f+

1
2bφ0γ0e

1
2 f+

1
2bφ0 (151)

= φ2
0e

− 1
2 fγ0e

1
2 f (152)

= ρe0 (153)

= ρv (154)

We now have all the tools required to construct particle physics by exhaust-
ing the remaining geometry of our solution.

4.14 SU(2) × U(1) group

Our wavefunction transforms as a group under multiplication. We now ask, what
is the most general multivector eu which leaves the Dirac current invariant?
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ψ‡(eu)‡γ0e
uψ = ψ‡γ0ψ ⇐⇒ (eu)‡γ0e

u = γ0 (155)

When is this satisfied?
The bases of the bivector part f of u are γ0γ1, γ0γ2, γ0γ3, γ1γ2, γ1γ3, and

γ2γ3. Among these, only γ1γ2, γ1γ3, and γ2γ3 commute with γ0, and the rest
anti-commute; therefore, the rest must be made equal to 0. Finally, the base
γ0γ1γ2γ3 anti-commutes with γ0 and cancels out.

Consequently, the most general exponential multivector of the form eu where
u = f + b which preserves the Dirac current is

eu = exp

󰀕
1

2
F12γ1γ2 +

1

2
F13γ1γ3 +

1

2
F23γ2γ3 +

1

2
b

󰀖
(156)

We can rewrite the bivector basis with the Pauli matrices

γ2γ3 = iσx (157)

γ1γ3 = iσy (158)

γ1γ2 = iσz (159)

b = ib (160)

After replacements, we obtain

eu = exp
1

2
i(F12σz + F13σy + F23σx + b) (161)

The terms F23σx + F13σy + F12σz and b are responsible for SU(2) and U(1)
symmetries, respectively[15, 16].

4.15 SU(3) group

The invariance transformations identified by the 3+1D algebra of geometric
observables (Equation 145) are T‡T = I, T†T = I and ⌊T⌋2,4T = I. In the
first case, the identified evolution is bivectorial rather than unitary.

As we did for the SU(2) × U(1) case, we ask, in this case, what is the most
general bivectorial evolution that leaves the Dirac current invariant?

f‡γ0f = γ0 (162)

where f is a bivector:

f = F01γ0γ1 + F02γ0γ2 + F03γ0γ3 + F23γ2γ3 + F13γ1γ3 + F12γ1γ2 (163)
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Explicitly, the expression f‡γ0f is

f‡γ0f = −fγ0f = (F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12)γ0 (164)

+ (−2F02F12 + 2F03F13)γ1 (165)

+ (−2F01F12 + 2F03F23)γ2 (166)

+ (−2F01F13 + 2F02F23)γ3 (167)

For the Dirac current to remain invariant, the cross-product must vanish:

−2F02F12 + 2F03F13 = 0 (168)

−2F01F12 + 2F03F23 = 0 (169)

−2F01F13 + 2F02F23 = 0 (170)

leaving only

f‡γ0f = (F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12)γ0. (171)

Finally, F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12 must equal 1.
We note that we can re-write f as a 3-vector with complex components:

f = (F01 + iF23)γ0γ1 + (F02 + iF13)γ0γ2 + (F03 + iF12)γ0γ3 (172)

Then, with the nullification of the cross-product and equating F 2
01 + F 2

02 +
F 2
03+F 2

13+F 2
23+F 2

12 to unity, we can understand the bivectorial evolution when
constrained by the Dirac current to be a realization of the SU(3) group[16].

4.16 Satisfiability of geometric observables in 4D

In 4D, an observable must satisfy equation 131. Let us now verify that geometric
observables are satisfiable in 4D. For simplicity, let us take m in equation 142
to be 1. Then,

⌊(Ou)‡w⌋3,4y‡z = ⌊u‡Ow⌋3,4y‡z = ⌊u‡w⌋3,4(Oy)‡z = ⌊u‡w⌋3,4y‡Oz (173)

where u1, w1, y1 and z1 are multivectors.
Let us investigate.
If O contained a vector, bivector, pseudo-vector, or pseudo-scalar, the equal-

ity would not be satisfied as these terms do not commune with the multivectors
and cannot be factored out. The equality is satisfied if O ∈ R. Indeed, as a
real value, O commutes with all multivectors and hence, can be factored out to
satisfy the equality.

We thus find that observables are satisfied in the general 4D case. We
also recall that in 3+1D, the observable reduces to ⌊O⌋2,4 = O, which is also
satisfiable.
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4.17 Unsatisfiability of geometric observables in 6D and
above

At dimensions of 6 or above, the corresponding observable relation cannot be
satisfied. To see why, we look at the results[17] of Acus et al. regarding the
6D multivector norm. The authors performed an exhaustive computer-assisted
search for the geometric algebra expression for the determinant in 6D; as con-
jectured, they found no norm defined via self-products. The norm is a linear
combination of self-products.

The system of linear equations is too long to list in its entirety; the author
gives this mockup:

a40 − 2a20a
2
47 + b2a

2
0a

2
47p412p422 + 〈72 monomials〉 = 0 (174)

b1a
3
0a52 + 2b2a0a

2
47a52p412p422p432p442p452 + 〈72 monomials〉 = 0 (175)

〈74 monomials〉 = 0 (176)

〈74 monomials〉 = 0 (177)

The author then produces the special case of this norm that holds only for
a 6D multivector comprising a scalar and a grade 4 element:

s(B) = b1Bf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) (178)

Even in this simplified special case, formulating a linear relationship for
observables is doomed to fail. Indeed, the real portion of the observable cannot
be extracted from the equation. We find that for any function fi and gi, the
coefficients b1 and b2 will frustrate the equality:

b1OBf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) (179)

= b1Bf5(f4(B)f3(f2(B)f1(B))) + b2OBg5(g4(B)g3(g2(B)g1(B))) (180)

Equations 179 and 180 can only be equal if b1 = b2; however, the norm s(B)
requires both to be different. Consequently, the relation for observables in 6D
is unsatisfiable even by real numbers.

Thus, in our solution, observables are satisfied in 6D.
Furthermore, since the norms involve more sophisticated systems of linear

equations in higher dimensions, this result is likely to generalize to all dimensions
above 6.

4.18 Defective probability measure in 3D and 5D

The 3D and 5D cases (and possibly all odd-dimensional cases of higher dimen-
sions) contain a number of irregularities that make them defective for use in
this framework. Let us investigate.

In G(R3), the matrix representation of a multivector is as follows:

33



u = a+ xσx + yσy + zσz + qσyσz + vσxσz + wσxσy + bσxσyσz (181)

is

u ∼=
󰀗
a+ ib+ iw + z iq − v + x− iy
iq + v + x+ iy a+ ib− iw − z

󰀘
(182)

and the determinant is

detu = a2 − b2 + q2 + v2 + w2 − x2 − y2 − z2 + 2i(ab− qx+ vy − wz) (183)

The result is a complex-valued probability. Since a probability must be real-
valued, the 3D case is defective in our solution and cannot be used. In theory,
it can be fixed by defining a complex norm to apply to the determinant:

〈u,u〉 = (detu)† detu (184)

However, defining such a norm would entail a double-copy inner product of
4 multivectors, but the space is only 3D, not 4D (so why four?). It would also
break the relationship between trace and probability that justified its usage in
statistical mechanics.

Consequently, this case appears to us to be defective.
Perhaps, instead of G(R3) multivectors, we ought to use 3×3 matrices in 3D?

Alas, 3 × 3 matrices do not admit a geometric algebra representation because
they are not isomorphic with G(R3). Indeed, G(R3) has 8 parameters and 3× 3
matrices have 9. 3× 3 matrices are not representable geometrically in the same
sense that 2× 2 matrices are with G(R2).

In G(R4,1), the algebra is isomorphic to complex 4 × 4 matrices. In this
case, the determinant and probability would be complex-valued, making the
case defective. Furthermore, 5 × 5 matrices have 25 parameters, but G(R4,1)
multivectors have 32 parameters.

4.19 The dimensions that admit observable geometry

Our solution is non-defective in the following dimensions:

• R: This case corresponds to familiar statistical mechanics. The constraints
are scalar E =

󰁓
q∈Q ρ(q)E(q), and the probability measure is the Gibbs

measure ρ(q) = 1
Z(β) exp

󰀃
−βE(q)

󰀄
.

• C ∼=
󰀗
0 b
−b 0

󰀘
: This case corresponds to familiar non-relativistic quantum

mechanics.

However, neither of these cases contain geometry. The only case that con-
tains observable geometry are:
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• G(R2): This case corresponds to the geometric quantum theory in 2D. Its
GL+(2) symmetry breaks into a theory of gravity FX/SO(2) and into a
quantum theory valued in SO(2).

• G(R3,1): This case is valid. Like the 2D case, it also corresponds to a
geometric quantum theory. As such, its symmetry will break into a theory
of gravity and a relativistic wavefunction. But unlike the 2D case, the
wavefunction further admits an invariance with respect to the SU(2)×U(1)
and SU(3) gauge groups.

In contrast, our solution is defective in the following dimensions:

• G(R3): In this case, the probability measure is complex-valued.

• G(R4,1): In this case, the probability measure is complex-valued.

• 6D and above: For G(Rn), where n ≥ 6, no observables satisfy the corre-
sponding observable equation, in general.

We may thus say that 3D and 5D fail to normalize, and 6D and above
fail to satisfy observables. Consequently, in the general case of our solution,
normalizable geometric observables cannot be satisfied beyond 4D. This suggests
an intrinsic limit to the dimensionality of observable geometry and, by extension,
to spacetime.

4.20 Metric interference in 3+1D

A geometric wavefunction would allow a larger class of interference patterns than
complex interference. The geometric interference pattern includes the ways in
which the geometry of a probability measure can interfere constructively or
destructively and includes interference from rotations, phases, boosts, shears,
spins, and dilations.

In the case of 4D metric interference (shown below), the interference pat-
tern is associated with a superposition of elements of the group Spinc(3, 1),
whose subgroup SO(3, 1) associates with a superposition of inner products in
the quotient.

It is possible that a sensitive Aharonov–Bohm effect experiment on gravity[18]
could detect special cases of the geometric phase and interference patterns iden-
tified in this section.

An interference pattern follows from a linear combination of u and v, and
the application of the determinant:

det(u+ v) = detu+ detv + u · v (185)

The determinants detu and detv are a sum of probabilities, whereas the
dot product term u · v represents the interference term.
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Such can be obtained following a transformation of a wavefunction |ψ〉 =󰀗
u
v

󰀘
such that the multivectors are mapped to a linear combination of two

multivectors:

1√
2

󰀗
1 1
−1 1

󰀘 󰀗
u
v

󰀘
=

1√
2

󰀗
u+ v
u− v

󰀘
(186)

The dot product defines a bilinear form.

· : G(Rm,n)× G(Rm,n) −→ R (187)

u · v 󰀁−→ 1

2
(det(u+ v)− detu− detv) (188)

If detu > 0 and detv > 0, then u · v is always positive, thereby qualify-
ing as a positive-definite inner product, but not greater than either detu or
detv (whichever is greater). Therefore, it also satisfies the conditions of an
interference term.

In 2D, the dot product has this form:

1

2
(det(u+ v)− detu− detv) (189)

=
1

2

󰀓
(u+ v)‡(u+ v)− u‡u− v‡v

󰀔
(190)

= u‡u+ u‡v + v‡u+ v‡v − u‡u− v‡v (191)

= u‡v + v‡u (192)

In 3+1D, it has this form.

1

2
(det(u+ v)− detu− detv) (193)

=
1

2

󰀓
⌊(u+ v)‡(u+ v)⌋3,4(u+ v)‡(u+ v)− ⌊u‡u⌋3,4u‡u− ⌊v‡v⌋3,4v‡v

󰀔

(194)

=
1

2

󰀓
⌊u‡u+ u‡v + v‡u+ v‡v⌋3,4(u‡u+ u‡v + v‡u+ v‡v)− . . .

󰀔
(195)

= ⌊u‡u⌋3,4u‡u+ ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u+ ⌊v‡v⌋3,4v‡v − . . . (196)
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= ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u (197)

We now consider simpler interference patterns.
Interference in 3+1D:
As seen previously, the substituted double-copy inner product reduces to an

inner product (Equation 137). The interference pattern[19] is given as follows:

det(u+ v) = ⌊u+ v⌋2,4(u+ v) (198)

= ⌊u⌋2,4(u+ v) + ⌊v⌋2,4(u+ v) (199)

= ⌊u⌋2,4u+ ⌊u⌋2,4v + ⌊v⌋2,4u+ ⌊v⌋2,4v (200)

= detu+ detv + ⌊u⌋2,4v + ⌊v⌋2,4u (201)

Now replacing u = ρue
− 1

2bue−
1
2 fu and v = ρve

− 1
2bve−

1
2 fv

= |ρu|2 + |ρv|2 + ρuρv

󰀓
e

1
2bue

1
2 fue−

1
2bve−

1
2 fv + e

1
2bve

1
2 fve−

1
2bue−

1
2 fu

󰀔

(202)

Due to the presence of f and b, the geometric richness of the interference pat-
tern exceeds that of the 2D case. The term f associates with a non-commutative
interference effect in the interference pattern, which distinguishes it from (the
entirely commutative) complex interference and could presumably be identified
experimentally in a properly constructed interference experiment.

4.21 The entropic flow of time and the problem of time

Finally, we elucidate the role of τ in the 2D and 4D cases.
We recall that in 0+1D, τ associated with the time t. We recall also that the

Schrödinger equation was recovered by taking the derivative of the wavefunction
with respect to t:

i󰄁
d

dt

󰀏󰀏ψ(t)
󰀎
= H

󰀏󰀏ψ(t)
󰀎

(203)

In both 2D and 4D, we can recover a Schrödinger-like equation also by
deriving the wavefunction (with respect to τ).

First, let us do the 2D case.
A naive way to treat the dynamics would be to consider that τ constitutes

a third dimension (2+1D). In this case, the 2D Schrödinger equation is

∂

∂τ
ψ(x, y, τ) = −1

2
u(x, y)ψ(x, y, τ) (204)
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How are we to understand the dynamics?
Consider that in 0+1D, the non-relativistic Schrödinger equation generates

in time rotations in the complex plane (i.e. exp it generates the U(1) group with
expE(q) as the magnitude) for the probability amplitude.

Likewise in 2D, τ generates a one-parameter group that causes the probabil-
ity amplitude to cycle over the possible geometric configuration of the system
in a manner that preserves the probabilities. The U(1) group is replaced with a
one-parameter realization of the GL+(2,R) group. As the quotient FX/SO(2)
defines the tetrad field, this includes cycling over the possible metrics of the sys-
tem, so long as they preserve the probabilities. This is completely analogous to
how time cycles the probability amplitude over the U(1) group in non-relativistic
quantum mechanics, except that the geometry the system cycles over is much
richer.

The only problem with this naive story is that one has to introduce a third
dimension to what should be 2D only. In 4D, we will not be able to add another
time dimension to support τ , because spacetime is all there is to it.

Before we attack the 4D case, let us recall that the Hamiltonian in the non-
relativistic Schrödinger (0+1D) equation can be made to depend on time. In
this case, the equation is:

i󰄁
d

dt

󰀏󰀏ψ(t)
󰀎
= H(t)

󰀏󰀏ψ(t)
󰀎

(205)

And its solution[20] is

󰀏󰀏ψ(t)
󰀎
=

󰁛

n

cn exp

󰀣
− i

󰄁

󰁝 t

0

En(t
′) dt′

󰀤
|n, t〉 (206)

Let us now consider the 4D case. The corresponding Schrödinger equation
would be

∂

∂τ
ψ(x, y, z, t, τ) = −1

4
u(x, y, z, t)ψ(x, y, z, t, τ) (207)

But this would add an extra fifth dimension to spacetime, which is unwanted.
To resolve this, we begin by making a change of coordinate from ψ(x, y, z, t)

to ψ̃(x̃, ỹ, z̃, τ), where τ is the proper time experienced by the observer. The
equation becomes:

∂

∂τ
ψ̃(x̃, ỹ, z̃, τ) = −1

4
u(x̃, ỹ, z̃, τ)ψ̃(x̃, ỹ, z̃, τ) (208)

This form is very similar to the non-relativistic Schrödinger equation with
a time-dependent Hamiltonian, as shown above. The solution will involve an
integral over τ ′:
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ψ̃(x̃, ỹ, z̃, τ) =
󰁛

n

cn exp

󰀕
−1

4

󰁝 τ

0

u(x̃, ỹ, z̃, τ ′) dτ ′
󰀖
ψ̃n(x̃, ỹ, z̃, τ) (209)

A solution of this kind admits an arbitrary general linear geometry at every
event of spacetime via u(x̃, ỹ, z̃, τ). This symmetry, as shown before, can break
into the FX/Spinc(3,1) bundle, yielding a tetrad field. It can also support
the Spinc(3,1) geometry (and, in fact, anything else the general linear group
supports). The evolution causes the probability amplitude of the wavefunction
to cycle over the possible geometric configurations of the system as long as they
preserve the probabilities.

This construction also allows for the definition of a time evolution, defined
from the perspective of the observer and valid for both general relativity and
quantum mechanics[21].

5 Conclusion

We have maximized the information associated with the receipt by the osberver
of a message of measurement under the constraint of the general measurement
pattern. The solution supports a geometry richer than what could previously be
supported in either statistical physics or quantum mechanics alone. Accommo-
dating all possible geometric measurements entails a geometric wavefunction,
for which the Born rule is extended to the determinant. This substantially ex-
tends the opportunity to capture all fundamental physics within a single frame-
work. The framework produces solutions for 2D and 4D in which general ob-
servables are normalizable. 4D stands out as the largest geometry that satisfies
the conditions for having normalizable observables in the general case. A grav-
itized standard model results from the frame bundle FX of a world manifold,
whose structure group is generated by expG(R3,1) (which is group isomorphic
to expM(4,R) and as such generates to GL+(4,R) up to group isomorphism),
undergoing symmetry breaking to Spinc(3, 1). The global sections of the quo-
tient bundle FX/SO(3, 1) identify a pseudo-Riemannian metric. The connection
is a Spinc-preserving connection. The group SU(3)×SU(2)×U(1) is recovered in
the broken symmetry and associates with the invariant transformations under
the action of the wavefunction on a unit time-like vector of the tangent space,
preserving the Dirac current. Finally, an interpretation of quantum mechan-
ics, i.e., the optimization problem interpretation, is proposed; the structure of
measurements acquires a foundational role, and the wavefunction is derived as a
theorem. In this interpretation, it is considered that an observer receives or pro-
duces a message (theory of communication/Shannon entropy) of phase-invariant
measurements, and the probability measure, maximizing the information of this
message, is the geometric wavefunction accompanied by the geometric Born
rule. The states of this wavefunction live in a geometric Hilbert space, which
generalizes complex Hilbert space to arbitrary geometry. It is the only inter-
pretation whose mathematical formulation is sufficiently precise to recover, by
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itself, the full machinery of quantum physics, proving interpretational complete-
ness. Finally, as the solution to an optimization problem on information, we
concluded that physics, distilled to its conceptually simplest expression, is the
solution that provably makes realized measurements maximally informative to
the observer. Equivalently, physics is the provable explanatory maximum for
realized measurements.
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