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Abstract

A method to construct a provably optimal quantum theory is pre-
sented. The method comprises solving an optimization problem related
to information and measurements. In the case of scalar measurements
the solution reduces to the Gibbs measure of statistical mechanics. In
the case of phase-invariant measurements, the solution is an equivalent
formulation of non-relativistic quantum mechanics. Finally, in the case
of geometric measurements, the solution extends the basis of quantum
physics to support quantum gravity and the standard model; notably, it
disallows dimensions other than four as well as gauges other than those
of the standard model.

1 Introduction

An optimization problem relating to information and measurements is pre-
sented. Solving the problem for geometric measurements yields the solution
of interest. Specifically, below 4D, the solution is vacuous; above 4D, it admits
no observables; and finally in 4D, the solution contains gravity for fermions
and bosons from the quotient bundle FX/Spinc(3,1), electromagnetism from the
U(1)-bundle, and the standard model from the gauge group SU(3)×SU(2)×U(1).
No other structures are possible within the theory, making it hyper-specific to
what we observe in the universe.

Let us begin by reviewing how statistical mechanics uses an optimization
problem on entropy and measurements to derive the Gibbs measure.

Measurements and expectation values are used as constraints in statistical
mechanics to derive the Gibbs measure using Lagrange multipliers[1] by maxi-
mizing the entropy.

For instance, an energy constraint on the entropy is expressed as
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E =


q∈Q
ρ(q)E(q), (1)

which is associated with an energy meter that measures the system’s energy
and produces a series of energy measurements E1, E2, . . . , convergent to an
expectation value E.

Another common constraint is related to the volume as

V =


q∈Q
ρ(q)V (q), (2)

which is associated with a volume meter acting on a system and produces a
sequence of measured volumes V1, V2, . . . , converging to an expectation value
V .

Moreover, the sum over the statistical ensemble must equal one, as follows:

1 =


q∈Q
ρ(q). (3)

Using Equations (1) and (3), a typical statistical mechanical system is ob-
tained by maximizing the entropy using the corresponding Lagrange equation.
The Lagrange multiplier method is expressed as

L(ρ,λ,β) = −kB


q∈Q
ρ(q) ln ρ(q) + λ



1−


q∈Q
ρ(q)



+ β



E −


q∈Q
ρ(q)E(q)



 ,

(4)

where λ and β are the Lagrange multipliers.

By solving ∂L(ρ,λ,β)
∂ρ = 0 for ρ, the Gibbs measure is obtained as

ρ(q,β) =
1

Z(β)
exp


−βE(q)


, (5)

where

Z(β) =


q∈Q
exp


−βE(q)


. (6)

Let us now return to the present optimization problem. The goal is to
support all possible measurements of nature.

What measurements are missing from statistical mechanics? As the con-
straints used in statistical mechanics are scalar (e.g., energy and volume meters),
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they cannot support those that are geometric. In general, geometric measure-
ments include some scalar measurements, such as those produced by a dilation
meter, and geometric measurements, such as those produced by protractors and
phase, boost, spin, and shear meters.

A constraint will be introduced that extends the scope of statistical mechan-
ics to geometric measurements.

Consistent with the identified missing types of measurements, the construc-
tion of the extended constraint requires a mathematical object coherent with
both scalars and geometry. As such, multivectors are used. A link between
geometry and probability via the trace is also utilized. The trace of a matrix
can be understood as the expected eigenvalue multiplied by the vector space
dimension, and the eigenvalues as the ratios of the distortion of the linear trans-
formation associated with the matrix[2].

Axiom 1 (The Geometric Constraint).

1

d
tru =



q∈Q
ρ(q)

1

d
tru(q), (7)

where tru(q) is an observable, tru is its average, u corresponds to a multivector
of the geometric algebra G(Rm,n) such that d = m+n, ρ is a probability measure,
and Q is a statistical ensemble. It is also noted that the trace of a multivector
can be obtained by mapping the multivector to its matrix representation (Section
2) and taking the trace of the matrix.

As the multivectors of G(R2) and G(R3,1) are group isomorphic to M(2,R)
and M(4,R), respectively, the domain of the geometric constraint can be reck-
oned to be that of general linear measurements. The use of multivectors instead
of matrices merely presents a preferred geometric representation of said general
linear measurements.

To formulate the proposed optimization problem, Equation 1, which corre-
sponds to a scalar measurement constraint, will be replaced with Axiom 1, which
is the geometric constraint. Instead of energy or volume meters, protractors and
phase, boost, dilation, spin, and shear meters will be supported.

Let us now rigorously state the optimization problem, then we will further
discuss the rationale.

Theorem 1 (A Provably Optimal Formulation of Physics).

L(ρ,λ, τ )

  
a

maximization
problem

= −


q∈Q
ρ(q) ln

ρ(q)

p(q)

  
on the quantity of information

associated with the
production of a measurement

event

+ λ



1−


q∈Q
ρ(q)





  
over all predictive theories

+ τ



 1

n
tru−



q∈Q
ρ(q)

1

n
tru(q)





  
of nature

,

(8)

where λ and τ are Lagrange multipliers. The theorem yields the optimal for-
mulation of physics as its solution. The solution and proof of this theorem are
given in Section 3.
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Now, its rationale is discussed.
As the techniques of statistical mechanics are used abundantly, it is rel-

evant to identify and discuss the correspondence between ordinary statistical
mechanics and the present proposal.

Table 1: Correspondence between statistical mechanics and the present pro-
posal.

Constraint Energy (Scalar) Constraint Geometric Constraint

Ontology Ergodic system Production of a measurement event
Entropy Boltzmann Shannon
Probability measure Gibbs Section 3 (Generalized Born Rule)
Micro-state Energy levels Collapsed state
Lagrange multiplier Temperature Section 3.1 (Entropic flow)

In the present proposal, the information is quantified by the relative Shannon
entropy (in base e), and not by Boltzmann entropy. Consequently, the ontology
is not that of ergodic systems but that of the production of a message (in
the sense of the Shannon communication theory [3]) in which the elements are
measurement events. Measurements are inline with the purpose of a predictive
theory; it is therefore normal that they constitute the core of this optimization
problem. It is clarified that the notion of a message here is not to be interpreted
as a signal (i.e., the physical transmission of a message); rather the present
message is a mathematical device to quantify the information associated to
measurement events. Specifically, a message is a n-tuple whose elements are in
Q and selected according to the probability measure ρ. It is also clarified that
the message is not intended to be interpreted as an exchange of information
between two observers; rather, it is a message defined by the observer following
the production of a measurement event in nature. It is used to exactly specify
the sequence of measurement events that have so far transpired in the system.
For instance, it may be associated with the registration of a “click”[4] on a
screen or an incidence counter. It is analogous to the micro-state of an ergodic
system which exactly specify the position and momentum of all particles in a
gas.

The remainder of the manuscript is organized as follows.
The Methods section introduces tools using geometric algebra, based on the

study by Lundholm et al. [5, 6]. Specifically, the notion of a determinant for
multivectors and the Clifford conjugate for generalizing the complex conjugate
are used. These tools enable the geometric expression of the results.

The Results section presents two solutions for the general Lagrange equa-
tion. The first is applicable to an ensemble Q that is at most countably infinite,
whereas the second is applicable to the continuum (


→


) where Q is un-

countable.
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The Analysis section details the solution in R, C, 2D, and 4D, and the defects
in (2n+1)D and 2nD>4. Specifically, in 4D, the solution automatically contains
gravity for fermions and bosons from the quotient bundle FX/Spinc(3,1), elec-
tromagnetism from the U(1)-bundle, and the standard model from the gauge
group SU(3)×SU(2)×U(1), and admits no freedom for alternatives. These struc-
tures do not need to be inserted manually; they are automatically included in
the solution.

2 Methods

2.1 Notation

• Typography:

Sets are written using the blackboard bold typography (e.g., L, W, and
Q) unless a prior convention assigns it another symbol.

Matrices are in bold uppercase (e.g., P and M); tuples, vectors, and
multivectors are in bold lowercase (e.g., u, v, and g); and most other
constructions (e.g., scalars and functions) have plain typography (e.g., a,
and A).

The unit pseudo-scalar (of geometric algebra), imaginary number, and
identity matrix are i, i, and I, respectively.

• Sets:

The projection of a tuple p is proji(p).

As an example, the elements of R2 = R1 × R2 are denoted as p = (x, y).

The projection operators are proj1(p) = x and proj2(p) = y; if projected
over a set, the corresponding results are proj1(R2) = R1 and proj2(R2) =
R2, respectively.

The size of a set X is |X|.
The symbol ∼= indicates an isomorphism and → denotes a homomorphism.

• Analysis:

The dagger z† denotes the complex conjugate of z.

• Matrix:

The Dirac gamma matrices are γ0, γ1, γ2, and γ3.

The Pauli matrices are σx, σy, and σz.

The dagger M† denotes the conjugate transpose of M.

The commutator is defined as [M,P] : MP−PM, and the anti-commutator
is defined as {M,P} : MP+PM.
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• Geometric algebra:

The elements of an arbitrary curvilinear geometric basis are denoted as
e0, e1, e2, . . . , en (such that eν · eµ = gµν), and x̂0, x̂1, x̂2, . . . , x̂n (such
that x̂µ · x̂ν = ηµν) if they are orthonormal.

A geometric algebra of m+ nD over field F is denoted as G(Fm,n).

The grades of a multivector are denoted as 〈v〉k.
Specifically, 〈v〉0 is a scalar, 〈v〉1 is a vector, 〈v〉2 is a bivector, 〈v〉n−1 is
a pseudo-vector, and 〈v〉n is a pseudo-scalar.

A scalar and vector such as 〈v〉0+ 〈v〉1 form a para-vector; a combination
of even grades (〈v〉0 + 〈v〉2 + 〈v〉4 + . . . ) or odd grades (〈v〉1 + 〈v〉3 + . . . )
form even or odd multivectors, respectively.

Let G(R2) be the 2D geometric algebra over the real set. A general mul-
tivector of G(R2) can be formulated as u = a+ x+b, where a is a scalar,
x is a vector, and b is a pseudo-scalar.

Let G(R3,1) be the 3+1D geometric algebra over the real set. A general
multivector of G(R3,1) can be formulated as u = a+ x+ f + v+b, where
a is a scalar, x is a vector, f is a bivector, v is a pseudo-vector, and b is
a pseudo-scalar.

2.2 Geometric representation in 2D

Let G(R2) be the 2D geometric algebra over the real set.
A general multivector of G(R2) is expressed as

u = a+ x+ b, (9)

where a is a scalar, x is a vector, and b is a pseudo-scalar.
Each multivector has a structure-preserving (addition/multiplication) ma-

trix representation.

Definition 1 (2D geometric representation).

a+ xx̂+ yŷ + bx̂ ∧ ŷ ∼=

a+ x −b+ y
b+ y a− x


(10)

Thus, the trace of u is a. The converse is also true: each 2 × 2 real matrix
is represented as a multivector of G(R2).

In geometric algebra, the determinant[6] of a multivector u can be defined
as:

Definition 2 (Geometric representation of the determinant 2D).

det : G(R2) −→ R
u −→ u‡u, (11)
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where u‡ is

Definition 3 (Clifford conjugate 2D).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2. (12)

For example,

detu = (a− x− b)(a+ x+ b) (13)

= a2 − x2 − y2 + b2 (14)

= det


a+ x −b+ y
b+ y a− x


. (15)

Finally, the Clifford transpose is defined.

Definition 4 (2D Clifford transpose). The Clifford transpose is the geometric
analog to the conjugate transpose and is interpreted as a transpose followed by an
element-by-element application of the complex conjugate. Likewise, the Clifford
transpose is a transpose followed by an element-by-element application of the
Clifford conjugate.





u00 . . . u0n

...
. . .

...
um0 . . . umn





‡

=





u‡
00 . . . u‡

m0
...

. . .
...

um0 . . . u‡
nm



 (16)

If applied to a vector, then





v1

...
vm





‡

=

v‡
1 . . .v‡

m


. (17)

2.3 Geometric representation in 3+1D

Let G(R3,1) be the 3+1D geometric algebra over the real set. A general multi-
vector of G(R3,1) can be written as

u = a+ x+ f + v + b, (18)

where a is a scalar, x is a vector, f is a bivector, v is a pseudo-vector, and b is
a pseudo-scalar.

Similarly, each multivector has a structure-preserving (addition/multiplication)
matrix representation.

The multivectors of G(R3,1) are represented as follows:
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Definition 5 (4D geometric representation).

a+ tγ0 + xγ1 + yγ2 + zγ3

+ f01γ0 ∧ γ1 + f02γ0 ∧ γ2 + f03γ0 ∧ γ3 + f23γ2 ∧ γ3 + f13γ1 ∧ γ3 + f12γ1 ∧ γ2

+ vtγ1 ∧ γ2 ∧ γ3 + vxγ0 ∧ γ2 ∧ γ3 + vyγ0 ∧ γ1 ∧ γ3 + vzγ0 ∧ γ1 ∧ γ2

+ bγ0 ∧ γ1 ∧ γ2 ∧ γ3

∼=





a+ x0 − if12 − iv3 f13 − if23 + v2 − iv1 −ib+ x3 + f03 − iv0 x1 − ix2 + f01 − if02
−f13 − if23 − v2 − iv1 a+ x0 + if12 + iv3 x1 + ix2 + f01 + if02 −ib− x3 − f03 − iv0
−ib− x3 + f03 + iv0 −x1 + ix2 + f01 − if02 a− x0 − if12 + iv3 f13 − if23 − v2 + iv1

−x1 − ix2 + f01 + if02 −ib+ x3 − f03 + iv0 −f13 − if23 + v2 + iv1 a− x0 + if12 − iv3





(19)

Thus, the trace of u is a.
In 3+1D, the determinant is defined solely using the constructs of geometric

algebra[6].
The determinant of u is as follows:

Definition 6 (3+1D geometric representation of determinant).

det : G(R3,1) −→ R (20)

u −→ ⌊u‡u⌋3,4u‡u, (21)

where u‡ is

Definition 7 (3+1D Clifford conjugate).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2 + 〈u〉3 + 〈u〉4, (22)

and where ⌊u⌋{3,4} is the blade-conjugate of degrees three and four (the plus
sign is reversed to a minus sign for blades three and four).

⌊u⌋{3,4} := 〈u〉0 + 〈u〉1 + 〈u〉2 − 〈u〉3 − 〈u〉4 (23)

3 Results

3.1 Phase-invariant measurements in 0+1D

In this first result, which also serves as an introductory example, non-relativistic
quantum mechanics is recovered using the Lagrange multiplier method and a
linear constraint on the relative Shannon entropy.

As previously mentioned, the relative Shannon entropy (in base e) is applied
instead of Boltzmann entropy to achieve the aforementioned goal.

S = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
(24)
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In statistical mechanics, scalar measurement constraints are used on the
entropy, such as energy and volume meters, which are sufficient for recovering
the Gibbs ensemble. However, applying such scalar measurement constraints is
insufficient to recover quantum mechanics.

A complex measurement pattern, a subset of the geometric constraint in-
variant for a complex phase, is used to overcome this limitation. It is defined1

as

tr


0 −E
E 0


=



q∈Q
ρ(q) tr


0 −E(q)

E(q) 0,


. (25)

It may be recalled that


a(q) −b(q)
b(q) a(q)


∼= a(q) + ib(q) is the matrix repre-

sentation of the complex numbers. In terms of multivectors, this constraint
corresponds to the matrix representation of the pseudoscalar of G(R0,1).

Similar to energy or volume meters, linear instruments produce a sequence
of measurements that converge to an expected value but with phase invariance.
In the solution, this phase invariance originates from the trace.

The Lagrangian equation that describes this optimization problem is

L(ρ,λ, τ) = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
+ λ



1−


q∈Q
ρ(q)



+ τ



tr


0 −E
E 0


−



q∈Q
ρ(q) tr


0 −E(q)

E(q) 0



 .

(26)

This equation is maximized for ρ by imposing the condition ∂L(ρ,λ,τ)
∂ρ(q) = 0.

The following results are obtained:

∂L(ρ,λ, τ)
∂ρ(q)

= − ln
ρ(q)

p(q)
− 1− λ− τ tr


0 −E(q)

E(q) 0


(27)

0 = ln
ρ(q)

p(q)
+ 1 + λ+ τ tr


0 −E(q)

E(q) 0


(28)

=⇒ ln
ρ(q)

p(q)
= −1− λ− τ tr


0 −E(q)

E(q) 0


(29)

=⇒ ρ(q) = p(q) exp(−1− λ) exp


−τ tr


0 −E(q)

E(q) 0


(30)

=
1

Z(τ)
p(q) det exp


−τ


0 −E(q)

E(q) 0


, (31)

1The consideration that d = 1 (in Axiom 1) if the matrix is 2 × 2 may be of concern.
Here, only the imaginary part of the complex numbers a+ ib |a→0= ib is used, rendering the
constraint one-dimensional.
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where Z(τ) is obtained as

1 =


q∈Q
p(q) exp(−1− λ) exp


−τ tr


0 −E(q)

E(q) 0



(32)

=⇒

exp(−1− λ)

−1
=



q∈Q
p(q) exp


−τ tr


0 −E(q)

E(q) 0


(33)

Z(τ) :=


q∈Q
p(q) det exp


−τ


0 −E(q)

E(q) 0


. (34)

The exponential of the trace is equal to the determinant of the exponential
according to the relation det expA ≡ exp trA.

Finally,

ρ(q, τ) =
1

Z(τ)
p(q) det exp


−τ


0 −E(q)

E(q) 0


(35)

∼= p(q)| exp−iτE(q)|2. (36)

With the equality τ = t/ (analogous to β = 1/(kBT )), the familiar form of

ρ(q, t) =
1

Z(t)
p(q)

exp

−itE(q)/


2

(37)

can be recovered, or, in general,

ρ(q, t) =
1

Z

ψ(q, t)
2 , where ψ(q, t) = exp


−itE(q)/


ψ(q), (38)

where |ψ(q)|2 = p(q) is the initial preparation.
Here, the time t emerges as a Lagrange multiplier, which is the same manner

in which T , the temperature, emerges in ordinary statistical mechanics. t may
be qualified as a “thermal time” or as an “entropic flow.”

It can be shown that the Dirac–von Neumann axioms and the Born rule are
satisfied.

To this end, the wavefunction is identified as a vector of a complex Hilbert
space and the partition function as its inner product; this is expressed as

Z = 〈ψ|ψ〉 . (39)

As the solution is automatically normalized by the entropy-maximization
procedure, the physical states are associated with the unit vectors and the prob-
ability of any particular state is expressed as
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ρ(q, t) =
1

〈ψ|ψ〉 (ψ(q, t))
†ψ(q, t). (40)

As the solution is invariant under unitary transformations, it can be trans-
formed out of its eigenbasis. Further, the energy E(q) is generally represented
by a Hamiltonian operator as follows:

ψ(t)

= exp


−itH/

 ψ(0)

. (41)

Any self-adjoint operator, defined as 〈Oψ|φ〉 = 〈ψ|Oφ〉, corresponds to a
real-valued statistical mechanics observable if measured in its eigenbasis, thereby
completing the equivalence.

The dynamics are governed by the Schrödinger equation, obtained by taking
the derivative with respect to the Lagrange multiplier:

∂

∂t

ψ(t)

=

∂

∂t
(exp


−itH/

 ψ(0)

) (42)

= −iH/ exp

−itH/

 ψ(0)


(43)

= −iH/
ψ(t)


(44)

=⇒ H
ψ(t)


= i

∂

∂t

ψ(t)

, (45)

which is the Schrödinger equation.
Finally, the measurement postulate is imported as a direct consequence of

ρ(q, τ) being a probability measure of statistical mechanics like any other; as
it is parametrized over Q, it describes the probability of finding the state at
parameter q upon measurement (in the continuum case, this is a Dirac delta
that associates with the state of the wavefunction immediately after measure-
ment). The Shannon entropy quantities the information associated to such a
measurement event.

Consequently, all axioms of non-relativistic quantum mechanics (including
the Born rule and measurement postulate) have been reduced to a specific solu-
tion to the optimization problem, which only depends on a single axiom regard-
ing the measurement pattern of nature. This demonstrates, so far in the case
of non-relativistic quantum mechanics, that the axioms pertaining to the laws
of physics (but not those relating to the measurement pattern) are redundant.

3.2 General case

As stated in Theorem 1, the Lagrange equation that defines the optimization
problem is
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L(ρ,λ, τ) = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
+ λ



1−


q∈Q
ρ(q)



+ τ



1

d
tru−



q∈Q
ρ(q)

1

d
tru(q)



 ,

(46)

where λ and τ are the Lagrange multipliers and u(q) is an arbitrary multivector
of d = m+ n dimensions.

To maximize this equation for ρ, the criterion ∂L(ρ,λ,τ)
∂ρ(q) = 0 is used as follows:

∂L(ρ,λ, τ)
∂ρ(q)

= − ln
ρ(q)

p(q)
− 1− λ− τ

1

d
tru(q) (47)

0 = ln
ρ(q)

p(q)
+ 1 + λ+ τ

1

d
tru(q) (48)

=⇒ ln
ρ(q)

p(q)
= −1− λ− τ

1

d
tru(q) (49)

=⇒ ρ(q) = p(q) exp(−1− λ) exp


−τ

1

d
tru(q)


(50)

=
1

Z(τ )
p(q) det exp


−τ

1

d
u(q)


, (51)

where Z(τ) is obtained as

1 =


q∈Q
p(q) exp(−1− λ) exp


−τ

1

d
tru(q)


(52)

=⇒

exp(−1− λ)

−1
=



q∈Q
p(q) exp


−τ

1

d
tru(q)


(53)

Z(τ ) :=


q∈Q
p(q) det exp


−τ

1

d
u(q)


. (54)

The resulting probability measure is

ρ(q, τ) =
1

Z(τ)
p(q) det exp


−τ

1

d
u(q)


, (55)

where

Z(τ) =


q∈Q
p(q) det exp


−τ

1

d
u(q)


. (56)

Finally, it can be rewritten as:
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ρ(q, τ) =
1

Z(τ)
detψ(q, τ), where ψ(q, τ) = exp


−τ

1

d
u(q)


ψ(q), (57)

where p(q) = detψ(q).

3.3 Continuum case

In his original paper, Shannon did not derive differential entropy as a theorem;
instead, he posited that discrete entropy should be extended by replacing the
sum with the integral:

−


q∈Q
ρ(q) ln ρ(q) → −



R
ρ(x) ln ρ(x) dx (58)

However, it was later discovered that differential entropy is not always pos-
itive, and neither is it invariant under a change of parameters. Specifically, it
transforms as follows:

−


R
ρ(x) ln ρ(x) dx →−



R
ρ̃(y(x))

dy

dx
ln


ρ̃(y(x))

dy

dx


dx (59)

= −


R
ρ̃(y) ln


ρ̃(y(x))

dy

dx


dy. (60)

Furthermore, owing to an argument by Jaynes[7, 8], this is known to not be
the correct limiting case of the Shannon entropy. Rather, the limiting case is
relative entropy:

S = −


R
ρ(x) ln

ρ(x)

p(x)
dx, (61)

where p(x) is the initial preparation.
Relative entropy, in contrast to differential entropy, is invariant with respect

to a change of parameter:

−


R
ρ(x) ln

ρ(x)

p(x)
dx →−



R
ρ̃(y(x))

dy

dx
ln

ρ̃(y(x)) dydx
p̃(y(x)) dydx

dx (62)

= −


R
ρ̃(y) ln

ρ̃(y)

p̃(y)
dy. (63)

Let us also show that the normalization constraint is invariant with respect
to a change of parameter:
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R
ρ(x) dx →



R
ρ̃(y(x))

dy

dx
dx (64)

=



R
ρ̃(y) dy. (65)

Let us now investigate the differential observable. A differential observable
is typically formulated as

O =



R
O(x)ρ(x) dx. (66)

However, this expression is not invariant with respect to a change of parameter:



R
O(x)ρ(x) dx →



R
Õ(y(x))

dy

dx
ρ̃(y(x))

dy

dx
dx (67)

=



R
Õ(y)ρ̃(y(x))

dy

dx
dy. (68)

To correct this, the relative (with respect to a reference) observable is intro-
duced. For instance, if space is stretched by a factor of 2 (x → 2x), the reference
must also be stretched by the same amount for the observable to remain invari-
ant. The consequence is that the following ratio is observed:

M/R =



R

M(x)

R(x)
ρ(x) dx, (69)

where R is the reference and the ratio O = U/R is observable.
It is now shown to be invariant with respect to a change of parameter:



R

M(x)

R(x)
ρ(x) dx →



R

M̃(y(x))dydx
R̃(y(x))dydx

ρ(y(x))
dy

dx
dx (70)

=



R

M̃(y)

R̃(y)
ρ(y) dy. (71)

With these definitions, the Lagrange equation becomes:

L(ρ,λ, τ) = −


R
ρ(x) ln

ρ(x)

p(x)
dx+ λ


1−



R
ρ(x) dx


+ τ


1

d
tr

m

r
−


R

1

d
tr

m(x)

r(x)
ρ(x) dx


.

(72)

Maximizing this equation with respect to ρ yields
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ρ(x, τ) |ba=
1

Z(τ)

 b

a

p(x) det exp


−τ

1

d
u(x)


dx, (73)

where

Z(τ) =



R
p(q) det exp


−τ

1

d
u(x)


dx, (74)

where u(x) = m(x)
r(x) .

The probability measure is now invariant with respect to a change of param-
eter:

 b

a
p(x) det exp


−τ 1

d
m(x)
r(x)


dx


R p(x) det exp


−τ 1

d
m(x)
r(x)


dx

→

 b

a
p̃(y(x))dydx det exp


−τ 1

d

m̃(y(x)) dy
dx

r̃(y(x)) dy
dx


dx


R p̃(y(x))dydx det exp


−τ 1

d

m̃(y(x)) dy
dx

r̃(y(x)) dy
dx


dx

(75)

=

 b

a
p̃(y) det exp


−τ 1

d
m̃(y)
r̃(y)


dx


R p̃(y) det exp


−τ 1

d
m̃(y)
r̃(y)


dy

. (76)

3.4 The entropic flow of time

The role of τ is now elucidated in the 2D and 4D cases.
In 0+1D, τ associated with the time t. Further, the Schrödinger equation

was recovered by taking the derivative of the wavefunction with respect to t:

i
d

dt

ψ(t)

= H

ψ(t)

. (77)

In both 2D and 4D, a Schrödinger-like equation can also be recovered by
deriving the wavefunction (with respect to τ).

First, the 2D case is considered.
A naive way to treat the dynamics would be to consider that τ constitutes

a third dimension (2+1D). In this case, the 2D Schrödinger equation is

∂

∂τ
ψ(x, y, τ) = −1

2
u(x, y)ψ(x, y, τ). (78)

The question now is how the dynamics can be understood.
Consider that in 0+1D, the non-relativistic Schrödinger equation generates

in-time rotations in the complex plane (i.e., exp it generates the U(1) group
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with expE(q) as the magnitude) for the probability amplitude. Similarly, in
2D, τ generates a one-parameter group that causes the probability amplitude
to cycle over the possible geometric configuration of the system in a manner that
preserves the probabilities. The U(1) group is replaced with a one-parameter
realization of the GL+(2,R) group. This is completely analogous to how time
cycles the probability amplitude over the U(1) group in non-relativistic quantum
mechanics, except that the geometry the system cycles over is richer than U(1).

The only problem with this naive method is that one has to introduce a third
dimension to what should be 2D only. Although we may come to accept this
for the 2D case (if we consider it to be embedded in a larger 2+1D spacetime),
in 4D this is unacceptable.

Before considering the 4D case, it may be recalled that the Hamiltonian
in the non-relativistic Schrödinger (0+1D) equation can be rendered as time
dependent. In this case, the equation is

i
d

dt

ψ(t)

= H(t)

ψ(t)

. (79)

Further, its solution[9] is

ψ(t)

=



n

cn exp


− i



 t

0

En(t
′) dt′


|n, t〉 . (80)

Let us now consider the 4D case. The corresponding Schrödinger equation
would be

∂

∂τ
ψ(x, y, z, t, τ) = −1

4
u(x, y, z, t)ψ(x, y, z, t, τ). (81)

However, this would add an extra fifth dimension to spacetime, which is
unwanted. To resolve this, the coordinates are first changed from ψ(x, y, z, t)
to ψ̃(x̃, ỹ, z̃, τ), where τ is the proper time experienced by the observer. The
equation would then be

∂

∂τ
ψ̃(x̃, ỹ, z̃, τ) = −1

4
u(x̃, ỹ, z̃, τ)ψ̃(x̃, ỹ, z̃, τ). (82)

This form is very similar to the non-relativistic Schrödinger equation with
a time-dependent Hamiltonian, as shown above. Now, the solution involves an
integral over τ ′.

ψ̃(x̃, ỹ, z̃, τ) =


n

cn exp


−1

4

 τ

0

u(x̃, ỹ, z̃, τ ′) dτ ′

ψ̃n(x̃, ỹ, z̃, τ) (83)
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This expression admits an arbitrary general linear geometry at every event of
spacetime via u(x̃, ỹ, z̃, τ). The time evolution causes the probability amplitude
of the wavefunction to cycle over the possible geometric configurations of the
system provided they preserve the probabilities. As shown in the analysis, this
construction also allows for the definition of a time evolution, defined from the
perspective of the observer (proper time) and valid for both general relativity
and quantum mechanics[10].

4 Analysis

A general linear Hilbert space in 2D and a double-copy general linear Hilbert
space in 4D are produced. It is further shown that the last two structures
include gravity, while the last one additionally includes the standard model.

The time-independent geometry of the wavefunction will now be analysed.
The dynamical case, having been discussed earlier, will not be necessary here.
As such, a time-independent formulation of ρ(q) will be considered:

ρ(q) =
1

Z
detψ(q), where ψ(q) = exp


−1

d
u(q)


ψ0(q), (84)

where p0(q) = detψ0(q).

4.1 General linear Hilbert space in 2D

The complex Hilbert space is insufficient to support all possible geometric mea-
surements in nature. The general arena for physics is discovered to be the
general linear Hilbert space, a generalization of the complex Hilbert space that
can support all such measurements. This space allows the quantum theoretical
support of arbitrary geometry, including pseudo-Riemannian geometry.

Let us observe this in detail.
It may be recalled that the general time-independent solution to the opti-

mization problem is

ρ(q) =
1

Z(τ)
detψ(q, τ), where ψ(q, τ) = exp


−τ

1

d
u(q)


ψ(q), (85)

where p(q) = detψ(q).
In 2D, the multivector u is in G(R2). It contains a scalar a, vector x, and

pseudoscalar b, and can be written as u = a+ x+b. Further, the determinant
in 2D can be expressed as detu = u‡u, where u‡ is the Clifford conjugate of u.

Consequently, the solution can be written as

ρ(q) =
1

Z
ψ(q)‡ψ(q), where ψ(q) = exp


−1

2
u(q)


ψ0(q), (86)
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where p0(q) = ψ0(q)
‡ψ0(q).

Rewriting the determinant as the 2D multivector norm allows us to use a
notation similar to the bra-ket notation used in physics. It also allows us to
represent an inner product over the general linear group, analogous to how the
complex norm corresponds to the inner product of the complex Hilbert space.

Let V be an m-dimensional vector space over G(R2). A subset of vectors in
V forms an algebra of observables A(V) if the following holds:

A) ∀ψ ∈ A(V), the sesquilinear map

〈·, ·〉 : V× V −→ G(R2)

〈u,v〉 −→ u‡v (87)

is positive-definite such that for ψ ∕= 0, 〈ψ,ψ〉 > 0

B) ∀ψ ∈ A(V). Then, for each element ψ(q) ∈ ψ, the function

ρ(ψ(q)) =
1

〈ψ,ψ〉ψ(q)
‡ψ(q) (88)

is either positive or equal to zero.

The following comments and definitions may be noted:

• From A) and B), it follows that ∀ψ ∈ A(V), the probabilities sum to
unity:



ψ(q)∈ψ

ρ(ψ(q)) = 1. (89)

• ψ is referred to as a physical state.

• 〈ψ,ψ〉 is referred to as the partition function of ψ.

• If 〈ψ,ψ〉 = 1, then ψ is referred to as a unit vector.

• ρ(q) is referred to as the probability measure (or generalized Born rule) of
ψ(q).

• The set of all matrices T acting on ψ as Tψ → ψ′, such that the sum of
probabilities remains normalized.

〈Tψ,Tψ〉 = 〈ψ,ψ〉 (90)

are the physical transformations of ψ.
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• A matrix O such that ∀u ∈ V and ∀v ∈ V:

〈Ou,v〉 = 〈u,Ov〉 (91)

is referred to as an observable.

• The expectation value of an observable O is

〈O〉 = 1

〈ψ,ψ〉 〈Oψ,ψ〉. (92)

4.2 General linear self-adjoint operator in 2D

The general case of an observable in 2D is shown in this section. A matrix O is
observable if it is a self-adjoint operator defined as

〈Oφ,ψ〉 = 〈φ,Oψ〉, (93)

∀φ ∈ V and ∀ψ ∈ V.

Setup: Let O =


o00 o01

o10 o11


be an observable.

Let φ and ψ be two two-state multivectors φ =


φ1

φ2


and ψ =


ψ1

ψ2


. Here,

the components φ1, φ2, ψ1, ψ2, o00, o01, o10, and o11 are multivectors of
G(R2).

Derivation: 1. Calculate 〈Oφ,ψ〉:

2〈Oφ,ψ〉 = (o00φ1 + o01φ2)
‡ψ1 +ψ‡

1(o00φ1 + o01φ2)

+ (o10φ1 + o11φ2)
‡ψ2 +ψ‡

2(o10φ1 + o11φ2) (94)

= φ1
‡o‡

00ψ1 + φ‡
2o

‡
01ψ1 +ψ‡

1o00φ1 +ψ‡
1o01φ2

+ φ‡
1o

‡
10ψ2 + φ‡

2o
‡
11ψ2 +ψ‡

2o10φ1 +ψ‡
2o11φ2. (95)

2. Next, calculate 〈φ,Oψ〉:

2〈φ,Oψ〉 = φ‡
1(o00ψ1 + o01ψ2) + (o00ψ1 + o01ψ2)

‡φ1

+ φ‡
2(o10ψ1 + o11ψ2) + (o10ψ1 + o11ψ2)

‡φ1 (96)

= φ‡
1o00ψ1 + φ‡

1o01ψ2 +ψ‡
1o

‡
00φ1 +ψ‡

2o
‡
01φ1

+ φ‡
2o10ψ1 + φ‡

2o11ψ2 +ψ‡
1o

‡
10φ1 +ψ‡

2o
‡
11φ1. (97)
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To realize 〈Oφ,ψ〉 = 〈φ,Oψ〉, the following relations must hold:

o‡
00 = o00, (98)

o‡
01 = o10, (99)

o‡
10 = o01, (100)

o‡
11 = o11. (101)

Therefore, O must be equal to its own Clifford transpose, indicating that O
is observable if

O‡ = O, (102)

which is the geometric generalization of the self-adjoint operator O† = O of
complex Hilbert spaces.

4.3 General linear spectral theorem in 2D

The application of the spectral theorem to O‡ = O such that its eigenvalues are
real is shown below:

Consider

O =


a00 a− xx̂1 − yx̂2 − bx̂12

a+ xx̂1 + yx̂2 + bx̂12 a11


. (103)

Then, O‡ is expressed as

O‡ =


a00 a− xx̂1 − yx̂2 − bx̂12

a+ xx̂1 + yx̂2 + bx̂12 a11


. (104)

It follows that O‡ = O. This example is the most general 2 × 2 matrix O
such that O‡ = O.

The eigenvalues are obtained as

0 = det(O− λI) = det


a00 − λ a− xx̂1 − yx̂2 − bx̂12

a+ xx̂1 + yx̂2 + bx̂12 a11 − λ


, (105)

which implies that

0 = (a00 − λ)(a11 − λ)− (a− xx̂1 − yx̂2 − bx̂12)(a+ xx̂1 + yx̂2 + bx̂12 + a11)
(106)

0 = (a00 − λ)(a11 − λ)− (a2 − x2 − y2 + b2). (107)
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Finally,

λ = {1
2


a00 + a11 −


(a00 − a11)2 + 4(a2 − x2 − y2 + b2)


, (108)

1

2


a00 + a11 +


(a00 − a11)2 + 4(a2 − x2 − y2 + b2)


}. (109)

The roots are complex if a2 − x2 − y2 + b2 < 0. As a2 − x2 − y2 + b2 is the
determinant of the multivector, the complex case is ruled out for orientation-
preserving multivectors. Consequently, it follows that O‡ = O constitutes an
observable with real-valued eigenvalues for orientation-preserving multivectors.

4.4 Invariant transformations in 2D

A left action on the wavefunctionT |ψ〉 connects to the bilinear form as 〈ψ|T‡T |ψ〉.
The invariance requirement on T is

〈ψ|T‡T |ψ〉 = 〈ψ|ψ〉 . (110)

Therefore, the group of matrices obeying

T‡T = I (111)

are of interest.
Let a two-state system be considered, with a general transformation repre-

sented by

T =


u v
w x


, (112)

where u, v, w, x are the 2D multivectors.
The expression T‡T represents

T‡T =


v‡ u‡

w‡ x‡

 
v w
u x


=


v‡v + u‡u v‡w + u‡x
w‡v + x‡u w‡w + x‡x


. (113)

For T‡T = I , the following relations must hold:

v‡v + u‡u = 1, (114)

v‡w + u‡x = 0, (115)

w‡v + x‡u = 0, (116)

w‡w + x‡x = 1. (117)
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This is the case if

T =
1√

v‡v + u‡u


v u

−eϕu‡ eϕv‡


, (118)

where u, v are the 2D multivectors and eϕ is a unit multivector.
Here, T is the geometric generalization (in 2D) of unitary transformations.
Comparatively, the unitary case is obtained when the vector part of the

multivector vanishes, that is, x → 0. The following results:

U =
1

|a|2 + |b|2


a b

−eiθb† eiθa†


. (119)

4.5 Gravity in FX/SO(2)

The quotient bundle associated with the structure reduction from GL+(2,R) to
SO(2) is now investigated.

Let X2 be a smooth orientable real-valued manifold in 2D, and let TX be
its tangent bundle and FX be its associated frame bundle. As X2 is orientable,
its structure group is GL+(2,R). The action by the proposed wavefunction,
valued in expG(R2) ∼= expM(2,R), generates GL+(2,R), and thus acts on FX.
A reduction of the structure group of FX to SO(2) can now be considered.

Let us begin by investigating the cosets of SO(2) in GL+(2,R). Let g1 ∈
GL+(2,R), g2 ∈ GL+(2,R), and s ∈ SO(2). The relation g2 = g1s is now
identified. Further, gT2 = sT gT1 . Finally, the product g2g

T
2 = g1ss

T gT1 =⇒
g2g

T
2 = g1g

T
1 . As g1g

T
1 and g2g

T
2 are symmetric positive-definite 2× 2 matrices,

a diffeomorphism between GL+(2,R)/SO(2) and the inner products is verified.
The global section of the quotient bundle FX/SO(2) is a tetrad field ha

µ(x)

and is associated to a Riemannian metric on X2 via the identity gµν = ha
µh

b
νηab.

The connections that preserve the structure SO(2) across the manifold are the
metric connections[11], and with the additional requirement of no torsion, the
connections reduce to the Levi-Civita connection. It has been shown recently[12]
that the Goldstone fields associated with the quotient bundle have sufficient
degrees of freedom to create a metric and a covariant derivative. Finally, the
frame bundle is a natural bundle that admits general covariant transformations,
which are the symmetries of the gravitation theory on X2[13]. This is the
geometric setting for gravity.

Without introducing any other assumptions, the optimization problem af-
fords a general linear quantum theory that holds in the GL+(2,R) group, whose
symmetry breaks into a theory of gravity (FX/SO(2)) and a quantum theory of
the special orthogonal group (valued in SO(2)).
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4.6 Wavefunction in SO(2)

With its structure reduced to SO(2), a quantum theory of the special orthogonal
group is obtained, wherein the wavefunction defines the action on a vector of
the tangent space of the manifold as follows:

ψ(x, y)‡x̂0ψ(x, y) = exp


1

2
iB(x, y)


x̂0 exp


−1

2
iB(x, y)


(120)

= exp


1

2
x̂0x̂1B(x, y)


x̂0 exp


−1

2
x̂0x̂1B(x, y)


. (121)

The expression exp

1
2 x̂0x̂1B(x, y)


x̂0 exp


− 1

2 x̂0x̂1B(x, y)

maps x̂0 to a curvi-

linear basis e0 via the application of the rotor and its reverse:

exp


1

2
x̂0x̂1B(x, y)


x̂0 exp


−1

2
x̂0x̂1B(x, y)


= e0. (122)

Consequently, a 2D relativistic wavefunction (with a Euclidean signature in
this case) is obtained. This is the 2D version of the geometric algebra formula-
tion of the relativistic wavefunction by Hestenes[14].

4.7 Metric interference in 2D

A transformation T‡T = I and wavefunction |ψ〉 =


u
v


are now considered,

such that a multivector u is mapped to a linear combination of two multivectors.
The following transformation may be considered:

1√
2


1 1
−1 1

 
u
v


=

1√
2


u+ v
u− v


. (123)

The following probability can be investigated:

ρ(u+ v) =
1

Z
det(u+ v), where Z = det(u+ v) + det(u− v). (124)

The investigation proceeds as follows:

det(u+ v) = (u+ v)‡(u+ v) (125)

= (u‡ + v‡)(u+ v) (126)

= (u‡u+ u‡v + v‡u+ v‡v) (127)

= detu+ detv + u‡v + v‡u (128)

= detu+ detv + u · v, (129)
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where the dot product between multivectors is defined as follows:

u · v = u‡v + v‡u. (130)

As detu > 0 and detv > 0, u · v is always positive, thereby qualifying
as a positive-definite inner product, but not greater than either detu or detv
(whichever is greater). Therefore, it also satisfies the conditions of an interfer-
ence term capable of destructive and constructive interference.

In the case x → 0, the interference pattern reduces to a form identical to
the unitary case:

det

ψ1e

− 1
2b1 + ψ2e

− 1
2b2


= detψ1 + detψ2 + 2ψ1ψ2e

− 1
2b1− 1

2b2 (131)

= |ψ1|2 + |ψ2|2 + 2ψ1ψ2e
− 1

2b1− 1
2b2 , (132)

whereas in the general linear case,

det

ψ1e

− 1
2 (a1+x1+b1) + ψ2e

− 1
2 (a2+x2+b2)


(133)

= detψ1 + detψ2 + 2ψ1ψ2


e−

1
2 (a1+x1+b1) + e−

1
2 (a2+x2+b2)


, (134)

which includes non-commutative effects in the interference pattern.

4.8 A double-copy general linear Hilbert space in 4D

In 2D, the determinant can be expressed using only the product ψ‡ψ, which
can be interpreted as the inner product of two multivectors. This form allowed
us to extend the complex Hilbert space to a general linear Hilbert space. It
was then found that the familiar properties of the complex Hilbert spaces were
transferable to the general linear Hilbert space, eventually yielding a gravitized
quantum theory.

Although a similar correspondence exists in 4D, it is less recognizable because
a double-copy inner product (i.e., ρ = ⌊φ‡φ⌋3,4φ‡φ) is needed to produce a real-
valued probability in 4D. Thus, in 4D, an inner product cannot be produced as
in the 2D case. The absence of a satisfactory inner product indicates no Hilbert
space in the usual sense of a complete inner product vector space. This section
aims to find a construction that supports the general linear wavefunction in 4D.

To build the right construction, a double-copy inner product of four terms is
devised, superseding the inner product in the Hilbert space, mapping any four
vectors to an element of G(R3,1), and yielding a complete double-copy inner
product vector space or, simply, a double-copy Hilbert space.

The construction is more familiar than it may first appear. The familiar
quantum mechanical features (e.g., linear transformations, unit vectors, and
linear superposition in the probability measure) are supported in the construc-
tion. Similarly to how it breaks in 2D, the construction would also break
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into a familiar inner-product Hilbert space whose Dirac current is invariant for
SU(3)×SU(2)×U(1) and a theory of gravity and electromagnetism for charged
fermions and bosons in the quotient FX/Spinc(3, 1).

Let V be an m-dimensional vector space over G(R3,1). A subset of vectors
in V forms a double-copy algebra of observables A(V) if the following holds:

1. ∀φ ∈ A(V), the double-copy inner product form

〈·, ·, ·, ·〉 : V× V× V× V −→ G(R3,1)

〈u,w,y, z〉 −→
m

i=1

⌊u‡
iwi⌋3,4y‡i zi (135)

is positive-definite when φ ∕= 0; that is 〈φ,φ,φ,φ〉 > 0.

2. ∀φ ∈ A(V), then for each element φ(q) ∈ φ, the function

ρ(φ(q)) =
1

〈φ,φ,φ,φ〉 detφ(q) (136)

is either positive or equal to zero.

The following properties, features, and comments may be noted:

• From A) and B), it follows that ∀φ ∈ A(V), and the probabilities sum to
unity.



φ(q)∈φ

ρ(φ(q)) = 1 (137)

• φ is referred to as a physical state.

• 〈φ,φ,φ,φ〉 is referred to as the partition function of φ.

• If 〈φ,φ,φ,φ〉 = 1, then φ is referred to as a unit vector.

• ρ(q) is called the probability measure (or generalized Born rule) of φ(q).

• The set of all matrices T acting on φ such as Tφ → φ′ renders the sum
of probabilities normalized (invariant):

〈Tφ,Tφ,Tφ,Tφ〉 = 〈φ,φ,φ,φ〉 (138)

are the physical transformations of φ.
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• A matrix O such that ∀u∀w∀y∀z ∈ V:

〈Ou,w,y, z〉 = 〈u,Ow,y, z〉 = 〈u,w,Oy, z〉 = 〈u,w,y,Oz〉 (139)

is referred to as an observable.

• The expectation value of an observable O is

〈O〉 = 〈Oφ,φ,φ,φ〉
〈φ,φ,φ,φ〉 . (140)

4.9 Wavefunction in 3+1D

In the notation by Hestenes[14], the 3+1D wavefunction is expressed as

ψ =

ρe−ibR, (141)

where ρ represents a scalar probability density, eib is a complex phase, and R is
a rotor.

Comparatively, the proposed wavefunction in G(R3,1) is

φ = e−
1
4 (a+x+f+v+b)φ0. (142)

To recover the formulation of the wavefunction by Hestenes, it is sufficient
to eliminate the terms a → 0, x → 0, and v → 0, and to perform a substitution
of the entries of the double-copy inner product (Equation 150), as follows:

w → u‡, (143)

y → z‡. (144)

As one of the copies is destroyed by the substitution, the double-copy inner
product reduces to an inner product. Furthermore, with the elimination, the
blade-3,4 conjugate is also reduced to the blade-4 conjugate, yielding

〈u,w,y, z〉 → 〈u,u‡, z‡, z〉 ∼= 〈u, z〉 =
m

i=1

⌊u2
i ⌋2,4(z2i ). (145)

Consequently, the proposed wavefunction φ reduces to

φ2 = e−
1
2 (f+b)φ2

0. (146)
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This shows that the 3+1D wavefunction (comprising a rotor R = e−
1
2 f , a

pseudo-scalar e−
1
2b, and a prior probability φ2

0 =
√
ρ) is a sub-structure of

the general G(R3,1) wavefunction. The primary difference is that the present
formulation exists in a grade 2-4 geometric Hilbert space.

In this sub-structure, the observables are satisfied when

⌊O⌋2,4 = O. (147)

Let us now analyze the symmetry group of this wavefunction.
First, the term b commutes with f . They can be factored out as

e−
1
2 (f+b)φ2

0 = e−
1
2be−

1
2 fφ2

0. (148)

Second, the term exp f can be understood as the exponential map from the
bivectors to the Spin+(3, 1) group and the term expb to U(1).

Finally, as Spin+(3, 1) ∩ expb = {±1}, it must be removed from the group
product[15].

Thus, the geometric components of the wavefunction correspond to the fol-
lowing group

U(1)× (Spin+(3, 1)/{±1}) ∼= Spinc(3, 1). (149)

4.10 Geometric Hilbert space in 3+1D (broken symme-
try)

The substitution given by Equation 145 yields the following algebra of geometric
observables.

Let V be an m-dimensional vector space over G(R3,1). A subset of vectors
in V forms an algebra of observables A(V) if the following holds:

1. ∀ψ ∈ A(V), the inner product form

〈·, ·〉 : V× V −→ G(R3,1)

〈u,w〉 −→
m

i=1

⌊u2
i ⌋2,4w2

i (150)

is positive-definite when ψ ∕= 0; that is 〈ψ,ψ〉 > 0.

2. ∀ψ ∈ A(V), for each element ψ(q) ∈ ψ, the function

ρ(ψ(q)) =
1

〈ψ,ψ〉 detψ(q) (151)

is either positive or equal to zero.
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The following properties, features, and comments may be noted:

• From A) and B), it follows that ∀ψ ∈ A(V), the probabilities sum to unity.



ψ(q)∈ψ

ρ(ψ(q)) = 1 (152)

• ψ is referred to as a physical state.

• 〈ψ,ψ〉 is referred to as the partition function of φ.

• If 〈ψ,ψ〉 = 1, then ψ is referred to as a unit vector.

• ρ(q) is called the probability measure (or generalized Born rule) of ψ(q).

• The set of all matrices T acting on ψ such that Tψ → ψ′ renders the
sum of probabilities normalized (invariant),

〈Tψ,Tψ〉 = 〈ψ,ψ〉 (153)

are the physical transformations of ψ.

• A matrix O such that ∀u∀w ∈ V,

〈Ou,w〉 = 〈u,Ow〉 (154)

is referred to as an observable.

• The expectation value of an observable O is

〈O〉 = 〈Oψ,ψ〉
〈ψ,ψ〉 . (155)

4.11 Gravity and electromagnetism in 3+1D

In 2D, a coincidence of low dimensions, wherein the matrix representation
of G(R2) is in M(2,R), was utilized. As such, the wavefunction generated is
GL+(2,R), which acts as the structure group of the frame bundle FX. Follow-
ing a structure reduction from GL+(2,R) to SO(2), a tetrad field was associated
with the global section of the quotient bundle FX/SO(2).

In 4D, in contrast to 2D where SO(2) = Spin(2), the geometry of the wave-
function is not in SO but rather in Spinc (because 4D also contains a pseu-
doscalar in addition to bivectors). Moreover, as Spinc is not, in general, in
GL+, the same coincidence as in 2D does not occur.
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Typically, to reach Spin(p, q) from the structure group GL(p+ q), one would
reduce GL(p + q) to O(p, q) and then lift it to Spin(p, q). Here, a different
approach is used to obtain the spin connection.

Remarkably, 4D admits a coincidence that facilitates the embedding of the
Spinc(3, 1) group into the GL+(4,R) group. Then, the quotient FX/Spinc(3, 1)
can be reached without having to lift it to a larger geometric structure; the
solution already contains the necessary aspects to take this quotient.

The coincidence originates from the standard classification of real Clifford
algebra[16] and the fact that exp(f + b) ∼= Spinc(3, 1) ⊂ expG(R3,1). The
following diagram commutes by group homomorphisms.

G(R3,1) M(4,R)

expG(R3,1) GL+(4,R)

exp

f

exp

f

(156)

As exp(f + b) ∼= Spinc(3, 1) ⊂ expG(R3,1), the map f embeds Spinc(3, 1)
into GL+(4,R). The inclusion of Spinc(3, 1) in expG(R3,1) is required to break
the symmetry into exactly a theory of gravity and of electromagnetism for
charged fermions and into a Spinc(3, 1)-valued quantum theory.

Let X4 be a world manifold. The tangent bundle TX is first considered
along with its associated frame bundle FX. The proposed wavefunction acts
on the frame bundle using the exponential map of multivectors expG(R3,1) ∼=
expM(4,R), which generates GL+(4,R).

The desired reduction is from expG(R3,1) to the Spinc(3, 1) group. With
its symmetry reduced, the wavefunction assigns an element of Spinc(3, 1) to
each event x ∈ X4. The connection that preserves the structure is a Spinc(3, 1)
preserving connection relating to a theory of gravity and electromagnetism for
charged fermions. Notably, SO(3, 1) × U(1) is a quotient of Spinc(3, 1). The
cosets of SO(3, 1) are further associable with the inner products. Thus, the
global section of the quotient bundle FX/SO(3, 1) associates with a tetrad field
that uniquely determines a pseudo-Riemannian metric. As for the U(1)-bundle,
it is simply the geometric setting for electromagnetism. Finally, the frame bun-
dle is a natural bundle that admits general covariant transformations, which are
the symmetries of the gravitation theory on X4

4.12 Dirac current

Hestenes[14] defined the Dirac current in the language of geometric algebra as

j = ψ‡γ0ψ = ρR‡γ0R = ρe0 = ρv, (157)

where v is the proper velocity.
In the formulation herein, this relation also holds: the Dirac current repre-

sents the action of the wavefunction on the unit time-like vector in the tangent
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space on X4. Specifically, the Dirac current is a statistically weighted Lorentz
action on γ0:

j = ψ‡γ0ψ (158)

= e−
1
2 f+

1
2bφ0γ0e

1
2 f+

1
2bφ0 (159)

= φ2
0e

− 1
2 fγ0e

1
2 f (160)

= ρe0 (161)

= ρv. (162)

4.13 SU(2) × U(1) group

The proposed wavefunction transforms as a group under multiplication. The
following question can now be posed: what is the most general multivector eu

that renders the Dirac current invariant?

ψ‡(eu)‡γ0e
uψ = ψ‡γ0ψ ⇐⇒ (eu)‡γ0e

u = γ0 (163)

When is this satisfied?
The bases of the bivector part f of u are γ0γ1, γ0γ2, γ0γ3, γ1γ2, γ1γ3, and

γ2γ3. Among these, only γ1γ2, γ1γ3, and γ2γ3 commute with γ0, and the rest
anti-commute; therefore, the rest must be equated to zero. Finally, the base
γ0γ1γ2γ3 anti-commutes with γ0 and cancels out.

Consequently, the most general exponential multivector of the form eu,
where u = f + b, which preserves the Dirac current as

eu = exp


1

2
F12γ1γ2 +

1

2
F13γ1γ3 +

1

2
F23γ2γ3 +

1

2
b


. (164)

The bivector basis can be rewritten using the Pauli matrices

γ2γ3 = iσx, (165)

γ1γ3 = iσy, (166)

γ1γ2 = iσz, (167)

b = ib. (168)

After replacement, the following is obtained:

eu = exp
1

2
i(F12σz + F13σy + F23σx + b). (169)

The terms F23σx + F13σy + F12σz and b are responsible for SU(2) and U(1)
symmetries, respectively[17, 18].
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4.14 SU(3) group

The invariance transformations identified by the 3+1D algebra of geometric
observables (Equation 153) are T‡T = I, T†T = I, and ⌊T⌋2,4T = I. In the
first case, the identified evolution is bivectorial rather than unitary.

Similar to the SU(2) × U(1) case, the following question can be posed: in
this case, what is the most general bivectorial evolution that renders the Dirac
current invariant?

f‡γ0f = γ0, (170)

where f is a bivector:

f = F01γ0γ1 + F02γ0γ2 + F03γ0γ3 + F23γ2γ3 + F13γ1γ3 + F12γ1γ2 (171)

Explicitly, the expression f‡γ0f is

f‡γ0f = −fγ0f = (F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12)γ0 (172)

+ (−2F02F12 + 2F03F13)γ1 (173)

+ (−2F01F12 + 2F03F23)γ2 (174)

+ (−2F01F13 + 2F02F23)γ3. (175)

For the Dirac current to remain invariant, the cross-product must vanish:

−2F02F12 + 2F03F13 = 0, (176)

−2F01F12 + 2F03F23 = 0, (177)

−2F01F13 + 2F02F23 = 0, (178)

leaving only

f‡γ0f = (F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12)γ0. (179)

Finally, F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12 must equal one.
Notably, f can be rewritten as a 3-vector with complex components:

f = (F01 + iF23)γ0γ1 + (F02 + iF13)γ0γ2 + (F03 + iF12)γ0γ3. (180)

Consequently, when invariant for the Dirac current, the bivectorial evolution
can be understood to be a realization of the SU(3) group[18].
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4.15 Satisfiability of geometric observables in 4D

In 4D, an observable must satisfy Equation 139. Let us now verify that geometric
observables are satisfiable in 4D. For simplicity, let us set m in Equation 150 as
one. Then,

⌊(Ou)‡w⌋3,4y‡z = ⌊u‡Ow⌋3,4y‡z = ⌊u‡w⌋3,4(Oy)‡z = ⌊u‡w⌋3,4y‡Oz, (181)

where u1, w1, y1 and z1 are multivectors.
Let us investigate.
If O contained a vector, bivector, pseudo-vector, or pseudo-scalar, the equal-

ity would not be satisfied as these terms do not commune with the multivectors
and cannot be factored out. The equality is satisfied if O ∈ R. Indeed, as a
real value, O commutes with all multivectors, and hence can be factored out to
satisfy the equality.

Thus, the observables are satisfied in the general 4D case. Furthermore, in
3+1D, the observable reduces to ⌊O⌋2,4 = O, which is also satisfiable.

4.16 Unsatisfiability of geometric observables in 6D and
above

At six dimensions or above, the corresponding observable relation cannot be sat-
isfied. To explain this observation, the results by Acus et al. [19] regarding the
6D multivector norm are examined. They performed an exhaustive computer-
assisted search for the geometric algebra expression for the determinant in 6D;
as conjectured, they found no norm defined via self-products. The norm is a
linear combination of self-products.

The system of linear equations is too long to list in its entirety; the author
provides this mockup:

a40 − 2a20a
2
47 + b2a

2
0a

2
47p412p422 + 〈72 monomials〉 = 0, (182)

b1a
3
0a52 + 2b2a0a

2
47a52p412p422p432p442p452 + 〈72 monomials〉 = 0, (183)

〈74 monomials〉 = 0, (184)

〈74 monomials〉 = 0. (185)

The author then produces the special case of this norm that holds only for
a 6D multivector comprising a scalar and a grade 4 element:

s(B) = b1Bf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))). (186)

Even in this simplified special case, formulating a linear relationship for
observables is doomed to fail. Indeed, the real portion of the observable cannot
be extracted from the equation. For any observable, the following equality is
frustrated unless O = 1:
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b1OBf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) (187)

= b1Bf5(f4(B)f3(f2(B)f1(B))) + b2OBg5(g4(B)g3(g2(B)g1(B))). (188)

Consequently, the relation for observables in 6D is unsatisfiable even by real
numbers. Furthermore, as the norms involve more sophisticated systems of
linear equations in higher dimensions, this result is conjectured to generalize to
all dimensions above six.

4.17 Defective probability measure in 3D and 5D

The 3D and 5D cases (and possibly all odd-dimensional cases of higher dimen-
sions) contain several irregularities that render them defective for use in this
framework. Let us investigate.

In G(R3), the matrix representation of a multivector is as follows:

u = a+ xσx + yσy + zσz + qσyσz + vσxσz + wσxσy + bσxσyσz (189)

is

u ∼=

a+ ib+ iw + z iq − v + x− iy
iq + v + x+ iy a+ ib− iw − z


, (190)

and the determinant is

detu = a2 − b2 + q2 + v2 + w2 − x2 − y2 − z2 + 2i(ab− qx+ vy − wz). (191)

The result is a complex-valued probability. Because a probability must be
real-valued, the 3D case is defective in the present solution and cannot be used.
In theory, it can be fixed by defining a complex norm to apply to the determi-
nant:

〈u,u〉 = (detu)† detu. (192)

However, defining such a norm would entail a double-copy inner product of
four multivectors, but the space is only 3D, not 4D (so why four?). It would
also break the relationship between trace and probability that justified its usage
in statistical mechanics.

Consequently, this case is defective.
Instead of G(R3) multivectors, should 3×3 matrices be used in 3D? Alas no:

3 × 3 matrices do not admit a geometric algebra representation because they
are not isomorphic with G(R3). G(R3) has eight parameters and 3× 3 matrices
have nine. 3× 3 matrices are not representable geometrically in the same sense
that 2× 2 matrices are with G(R2).

In G(R4,1), the algebra is isomorphic to complex 4×4 matrices. In this case,
the determinant and probability would be complex-valued, rendering the case
defective. Furthermore, 5 × 5 matrices have 25 parameters; however, G(R4,1)
multivectors have 32 parameters.
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4.18 Dimensions that admit observable geometry

The solution is non-defective in the following dimensions:

• R: This case corresponds to familiar statistical mechanics. The constraints
are scalar E =


q∈Q ρ(q)E(q), and the probability measure is the Gibbs

measure ρ(q) = 1
Z(β) exp


−βE(q)


.

• Im(C) ∼=

0 b
−b 0


: This case corresponds to familiar non-relativistic quan-

tum mechanics.

However, neither of these cases contain geometry. The only cases that con-
tain observable geometry are:

• G(R2): This case corresponds to the geometric quantum theory in 2D.
Its GL+(2) symmetry breaks into a theory of gravity FX/SO(2) and a
quantum theory valued in SO(2). However, it is vacuous.

• G(R3,1): Similar to the 2D case, this case corresponds to a geometric
quantum theory. As such, its symmetry breaks into a theory of gravity
and a relativistic wavefunction. However, in contrast to the 2D case, the
wavefunction further admits an invariance with respect to the SU(2)×U(1)
and SU(3) gauge groups.

In contrast, the solution is defective in the following dimensions:

• G(R3): In this case, the probability measure is complex-valued.

• G(R4,1): In this case, the probability measure is complex-valued.

• 6D and above: For G(Rn), where n ≥ 6, no observables satisfy the corre-
sponding observable equation, in general.

It may thus be concluded that the 3D and 5D cases fail to normalize and the
6D and above cases fail to satisfy observables. Consequently, in the general case
of the solution, normalizable geometric observables cannot be satisfied beyond
4D. This suggests an intrinsic limit to the dimensionality of observable geometry
and, by extension, to spacetime.

4.19 Metric interference in 3+1D

A geometric wavefunction would allow a larger class of interference patterns than
complex interference. The geometric interference pattern includes the ways in
which the geometry of a probability measure can interfere constructively or
destructively and includes interference from rotations, phases, boosts, shears,
spins, and dilations.

In the case of 4D metric interference (shown below), the interference pattern
is associated with a superposition of elements of the group Spinc(3, 1), whose
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subgroup SO(3, 1) is associated with a superposition of inner products in the
quotient.

It is possible that an Aharonov–Bohm effect experiment on gravity[20] could
detect special cases of the geometric phase and interference patterns identified
in this section.

An interference pattern follows from a linear combination of u and v, and
the application of the determinant:

det(u+ v) = detu+ detv + u · v. (193)

The determinants detu and detv are a sum of probabilities, whereas the
dot product term u · v represents the interference term.

Following a transformation of a wavefunction |ψ〉 =


u
v


can be obtained,

such that the multivectors are mapped to a linear combination of two multivec-
tors:

1√
2


1 1
−1 1

 
u
v


=

1√
2


u+ v
u− v


. (194)

The dot product defines a bilinear form.

· : G(Rm,n)× G(Rm,n) −→ R (195)

u · v −→ 1

2
(det(u+ v)− detu− detv) (196)

If detu > 0 and detv > 0, then u · v is always positive, thereby qualify-
ing as a positive-definite inner product, but not greater than either detu or
detv (whichever is greater). Therefore, it also satisfies the conditions of an
interference term.

In 2D, the dot product takes the following form:

1

2
(det(u+ v)− detu− detv) (197)

=
1

2


(u+ v)‡(u+ v)− u‡u− v‡v


(198)

= u‡u+ u‡v + v‡u+ v‡v − u‡u− v‡v (199)

= u‡v + v‡u. (200)

In 3+1D, takes has the following form:
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1

2
(det(u+ v)− detu− detv) (201)

=
1

2


⌊(u+ v)‡(u+ v)⌋3,4(u+ v)‡(u+ v)− ⌊u‡u⌋3,4u‡u− ⌊v‡v⌋3,4v‡v



(202)

=
1

2


⌊u‡u+ u‡v + v‡u+ v‡v⌋3,4(u‡u+ u‡v + v‡u+ v‡v)− . . .


(203)

= ⌊u‡u⌋3,4u‡u+ ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u+ ⌊v‡v⌋3,4v‡v − . . . (204)

= ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u. (205)

Simpler interference patterns are now considered.
Interference in 3+1D:
As seen previously, the substituted double-copy inner product reduces to

an inner product (Equation 145). The interference pattern[21] is expressed as
follows:

det(u+ v) = ⌊u+ v⌋2,4(u+ v) (206)

= ⌊u⌋2,4(u+ v) + ⌊v⌋2,4(u+ v) (207)

= ⌊u⌋2,4u+ ⌊u⌋2,4v + ⌊v⌋2,4u+ ⌊v⌋2,4v (208)

= detu+ detv + ⌊u⌋2,4v + ⌊v⌋2,4u. (209)

Now, replacing u = ρue
− 1

2bue−
1
2 fu and v = ρve

− 1
2bve−

1
2 fv ,

= |ρu|2 + |ρv|2 + ρuρv


e

1
2bue

1
2 fue−

1
2bve−

1
2 fv + e

1
2bve

1
2 fve−

1
2bue−

1
2 fu


.

(210)

Owing to the presence of f and b, the geometric richness of the interference
pattern exceeds that of the unitary case. The term f associates with a non-
commutative interference effect in the interference pattern, which distinguishes
it from (the entirely commutative) complex interference and could presumably
be identified experimentally in a properly constructed interference experiment.
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5 Conclusion

The information associated with measurement events is maximized under the
geometric constraint. The solution supports a geometry richer than that previ-
ously supported in either statistical physics or quantum mechanics alone. Ac-
commodating all possible general linear measurements entails a general linear
wavefunction, for which the Born rule is extended to the determinant. This sub-
stantially extends the opportunity to capture all fundamental physics within a
single framework. In this proposal, the measurements acquire a foundational
role and the wavefunction is derived. It is assumed that an observer receives
or produces a message (according to the theory of communication/Shannon en-
tropy) of measurement events, and the probability measure, maximizing the
information of this message, is the general linear wavefunction accompanied
by the general linear Born rule. The states of this wavefunction exist in a
general linear Hilbert space, which generalizes the complex Hilbert space to ar-
bitrary geometry. The framework produces solutions for 2D and 4D, wherein
the general observables are normalizable. The 2D case contains gravity but is
otherwise vacuous. In the 4D case, a gravitized standard model results from
the frame bundle FX of a world manifold, whose structure group is generated
by expG(R3,1) (which is group isomorphic to expM(4,R) and as such gener-
ates to GL+(4,R) up to group isomorphism), undergoing symmetry breaking
to Spinc(3, 1). The global sections of the quotient bundle FX/SO(3, 1) identify
a pseudo-Riemannian metric. The connection is a Spinc-preserving connection.
The group SU(3)×SU(2)×U(1) is recovered in the broken symmetry and asso-
ciates with the invariant transformations under the action of the wavefunction
on a unit time-like vector of the tangent space, thus preserving the Dirac cur-
rent. Finally, it is stressed that only a single axiom (Axiom 1: The Geometric
Constraint) and a single theorem (Theorem 1: A Provably Optimal Formula-
tion of Physics) are required to obtain these results. In consideration of the
extreme generalizability of the optimization problem, the solution obtained is
remarkably specific for the present universe.
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