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Abstract

A quantum theory utilizing multivector amplitudes instead of complex
amplitudes has been developed within the framework of geometric alge-
bra. This theory generalizes the Born rule to a multivector probability
measure that is invariant under a wide range of geometric transforma-
tions. In this formalism, the gamma matrices become operators, enabling
the construction of the metric tensor as an observable. By requiring in-
variance of the metric tensor under specific multivector transformations,
the gauge symmetries SU(3) x SU(2) x U(1) and their associated conserved
currents naturally emerge, without the need for additional assumptions.
Remarkably, the multivector amplitude formalism is found to be consis-
tent only with 3+1-dimensional spacetime, encountering obstructions in
other dimensional configurations. This finding aligns with the observed
dimensionality of the universe and suggests a possible explanation for the
specific gauge symmetries of the Standard Model. Furthermore, the in-
corporation of the metric tensor as an observable within the quantum
framework provides a natural integration of gravity with quantum me-
chanics.

1 Introduction

In this paper, we introduce a novel quantum theory that employs multivector
amplitudes instead of complex amplitudes. The theory is entirely derived by
solving an entropy maximization problem, which intrinsically yields a prob-
ability measure and an associated non-negative Hilbert space in which the
multivector-valued wavefunction resides. The maximization problem also gen-
erates the complete set of requisite mathematical tools for a comprehensive
quantum mechanical treatment, including a non-negative inner product related
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to probabilities, an evolution operator, transition amplitudes, superposition,
interference, and observables, all generalized to the geometric domain via mul-
tivectors. By formulating the theory as a solution to an entropy optimization
problem, its consistency and well-definedness are mathematically assured.
Within this framework, we find that the gamma matrices are elevated to
the status of operators, enabling the construction of the metric tensor as an
observable. Remarkably, the gauge symmetries of the standard model of particle
physics, namely U(1), SU(2), and SU(3), naturally emerge as the charge currents
that preserve the invariance of the metric tensor. Furthermore, multivector
amplitudes are found to be free of obstructions exclusively in 3+1D spacetime,
potentially offering insights into the dimensional specificity of the universe.
This innovative approach to quantum mechanics extends the 'Prescribed
Observation Problem’ (POP), a methodology we previously proposed [1], which
applies entropy maximization techniques, well-established in statistical mechan-
ics, to derive the axioms of quantum mechanics from first principles. The natural
extension of this methodology to multivectors gives rise to the most geometri-
cally rich quantum theory that can be formulated in terms of a wavefunction
residing in a non-negative Hilbert space.
In the results section, we will delve into the properties and implications
of this multivector-based quantum mechanical theory. We commence with a
concise overview of entropy maximization techniques as employed in statistical
mechanics, followed by a summary of our previous work applying these tech-
niques to quantum mechanics, and finally, their generalization to multivectors.
The microcanonical ensemble of statistical mechanics (SM) can be derived
from an entropy maximization problem:

Definition 1 (Lagrange equation of SM).
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Solving this optimization problem[2] yields the celebrated Gibbs’ measure:
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Inspired by the result of Gibbs, in our previous work [1], we reformulated
QM as a solution to an entropy maximization problem. The Lagrange equation
defining the optimization problem is:



Definition 2 (Lagrange equation of QM).
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The phase anti-constraint serves as a formal device to expand the solution
space, allowing for the incorporation of complex phases into the probability
measure. As it expands rather the constrict the solution space, the expression
is the opposite of a constraint — hence we named it an anti-constraint.

Theorem 1. Solving this optimization problem yields the Born rule as the prob-
ability measure, p(q) as the wavefunction initial state, and a partition function
that is unitarily invariant:
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The solution resolves[1] into the five canonical axioms of QM [3, /).

Proof. The optimization problem is solved as follows:
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The partition function is obtained as follows:
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The probability measure is given by:
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Transforming the representation of complex numbers from [‘g _ab} to a +ib
and associating the exponential trace with the complex norm using exp tr M =
det exp M, we obtain:

exp tr {‘; _ab] = det exp [g _ab} =72 det {Z?j((gg ;z‘sr(‘l()l)?) }, where r = expa (14)
= r%(cos?(b) + sin?(b)) (15)
= ||r(cos(b) + isin(d))]| (16)
= ||r exp(ib)]| (17)

Substituting 7 = ¢/h and applying the complex-norm representation to both
the numerator and denominator yields the following probability measure:
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Let us recall the five principal axioms of the canonical formalism of QM
(3, 4]:

Axiom 1 State Space: Each physical system corresponds to a complex Hilbert
space, with the system’s state represented by a ray in this space.

Axiom 2 Observables: Physical observables correspond to Hermitian operators
within the Hilbert space.

Axiom 3 Dynamics: The time evolution of a quantum system is dictated by the
Schrodinger equation, where the Hamiltonian operator signifies the sys-
tem’s total energy.



Axiom 4 Measurement: The act of measuring an observable results in the sys-
tem’s transition to an eigenstate of the associated operator, with the mea-
surement value being one of the eigenvalues.

Axiom 5 Probability Interpretation: The likelihood of a specific measurement
outcome is determined by the squared magnitude of the state vector’s
projection onto the relevant eigenstate.

We now explore how these axioms are recovered from the expanded solution
space engendered by the anti-constraint.

The wavefunction is delineated by decomposing the complex norm into a
complex number and its conjugate, visualized as a vector within a complex
n-dimensional Hilbert space, with the partition function acting as the inner
product:
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Here, p(q) represents the probability associated with the initial preparation
of the wavefunction, where p(q;) = (1:(0)|¥;(0)), and Z is invariant under
unitary transformations.

The axioms of quantum mechanics are recovered as follows:

1. The entropy maximization procedure inherently normalizes the vectors |1))
with 1/Z = 1/4/(¢|), linking |¢) to a unit vector in Hilbert space. As
the POP formulation of QM associates physical states with its probability
measure, and the probability is defined up to a phase, physical states map
to rays within Hilbert space, demonstrating Axiom 1.

2. In Z, an observable must satisfy:

0= p(r)O(r)|lexp(=itE(r)/h)| (21)
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Since Z = (¥|y), any self-adjoint operator satisfying (Ov|p) = (1|O¢)
will equate the above equation, demonstrating Axiom 2.

3. Transforming Equation 20 out of its eigenbasis through unitary operations,
the energy E(q) typically transforms as a Hamiltonian operator:

[9(#)) = exp(—itH/h) [¢(0)) (22)



The system’s dynamics emerge from differentiating the solution with re-
spect to the Lagrange multiplier:

0 10(0)) = o exp(~itH/R) [(0)))
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which is the Schrodinger equation, demonstrating Axiom 3.
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4. From Equation 20, the possible microstates E(q) of the system correspond
to the eigenvalues of H. An observation can be conceptualized as sam-
pling from p(g,t), with the post-measurement state being the occupied
microstate g of Q. Consequently, when a measurement occurs, the sys-
tem invariably emerges in one of these microstates, corresponding to an
eigenstate of H. Measured in the eigenbasis, the probability distribution
is:

pla.t) = w—%(w(q,t»w(q, ). (27)

In scenarios where the probability measure p(g, 7) is expressed in a basis
other than its eigenbasis, the probability P();) of obtaining the eigenvalue
A; is given as a projection on an eigenstate:

P(A) = [(Ailv)? (28)

Here, [(\;|¢)]? signifies the squared magnitude of the amplitude of the
state |¢) when projected onto the eigenstate |\;). As this argument holds
for any observable, it demonstrates Axiom 4.

5. Since the probability measure (Equation 4) replicates the Born rule, Ax-
iom 5 is also demonstrated.

Revisiting quantum mechanics from this perspective offers a coherent and
unified narrative. Specifically, the phase anti-constraint is sufficient to entail
the foundations of quantum mechanics (Axiom 1, 2, 3, 4, and 5) through the
principle of entropy maximization. The phase anti-constraint becomes the for-
mulation’s sole axiom, and Axioms 1, 2, 3, 4, and 5 now emerge as theorems.
For a more in-depth analysis of the POP in the context of QM, the reader is
invited to consult our previous work [1].

In this paper, we present a natural generalization of the reformulation of
quantum mechanics based on the POP methodology. We extend the ”phase
anti-constraint” from our previous work to a more general ”geometric anti-
constraint,” which is the geometrically richest anti-constraint that still yields a
wavefunction living in a non-negative Hilbert space. This generalization leads
to a quantum theory based on multivector amplitudes. The Lagrange multiplier
equation for this generalized formulation becomes:



Definition 3 (Lagrange equation of multivector-valued QM).
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where d is the dimension of the space or spacetime, M is a traceless square
matriz and T is a Lagrange multiplier that will represent the proper time.

As we will see, the resolution of this Lagrange equation generates an exten-
sion of the five canonical axioms of QM that incorporates multivector ampli-
tudes. This multivector-based quantum mechanical theory provides a unified
framework that naturally includes the metric tensor of gravity as a quantum me-
chanical observable and the standard model gauge symmetries U(1), SU(2), and
SU(3). Solving the optimization problem also generates all the necessary tools
for a consistent quantum mechanical treatment, from non-negative inner prod-
ucts to observables, to self-adjointness, to superposition, to sum over geometries
and interference extending them to the realm of multivector amplitudes.

2 Results

Theorem 2. The solution to the Lagrange multiplier equation (Equation 29)
resolves to the following probability measure:

AL(p, A\, t) 1 ( 1 >
=0 = p(¢) = exp | —=7trM(q plg
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The partition function Z(7), serving as a normalization constant, is deter-
mined as follows:

1= Zp(r) exp(—1 — A) exp (—7’ tr %M(r)) (36)
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Z(t1) = Zp(r) exp (—T tr éM(r)) (38)
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Consequently, the optimal probability distribution is given by:

1 1

plq) = det exp (TM(q)> p(q) (39)
Zrer(T)det exp (—éTM(T)) d

where det exp M = exptr M. O

This theorem generalizes the Born rule to a probability measure that is
invariant under a wide range of geometric transformations. The geometrically
invariant ensemble serves as a normalization factor, while the initial state p(q)
represents the probability associated with the initial preparation of the system.

Corollary 2.1. QM is a special solution of Theorem 2.

Proof.
ola) - L lexp(~itE(q)/B)|  pla)
d—1,M(q)— {E?q) _Eo(q)} ZreqP(n)llexp(ZitE(r) /B Born Rule Initafs/tate
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This corollary demonstrates that quantum mechanics is a special case of the
generalized probability measure derived in Theorem 2. By setting the dimension
d = 1 and choosing the traceless matrix M(q) to represent a complex phase
within the energy of the system, we recover the familiar Born rule and the
unitarily invariant ensemble of quantum mechanics from which the five canonical
axioms of QM (Theorem 1) are provable.

Corollary 2.2. SM is a special solution of Theorem 2

Proof.
1
p(q) |d—>1,M(q)—)[E(q)],p(q)—>1 = Z’I‘GQ eXp<—ﬂE<T)) exp(—ﬁE(q)) (41)
Gibbs Measure
Microcanonical Ensemble
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Similarly, this corollary shows that statistical mechanics is another special
case of the generalized probability measure. By setting the dimension d = 1,
choosing the traceless matrix M(q) to represent the energy of the system, and
assuming a uniform initial state p(q¢) = 1, we recover the Gibbs measure and
the microcanonical ensemble of statistical mechanics.

These corollaries illustrate the unifying power of the generalized probability
measure derived in Theorem 2, as it encompasses both quantum mechanics
and statistical mechanics as special cases. The theorem provides a common
framework for understanding the foundations of these theories and highlights
the central role of entropy maximization in their construction.

2.1 Obstructions to Multivector amplitudes in 2D

In this section, we apply Theorem 2 to a two-dimensional (2D) space, where the
dimension d = 2 and the traceless matrix M is a 2 x 2 matrix. The probability
measure in this case takes the form:

1 L[ a2 w@-ba
p(q) = det exp <——7‘{ N = } p(q)
1 z(q) (¢)—b(q) 9" ly(@)+ble) —=(q)
2 reqP(r) detexp (‘ET [y(mfb(q) e D
(42)

To represent this probability measure in terms of multivectors, we choose a
matrix representation that is group isomorphic to the geometric algebra in 2D
over the reals, denoted as GA(2) = M(2,R):

|:CL—|—.’L' y—>b

b a_x]’:va+x>2+yy+b§c/\y (43)

where the basis elements of this geometric algebra are defined as:
. _(r 0 . (0 1 . . [0 -1

A more compact notation for this multivector u is as follows:

u=a+x+Db (45)

where a is a scalar, x is a vector, and b is a pseudo-scalar.
Using this notation, the evolution operator in the probability measure can
be written as:

1 z(q)  y(a)—b(q) _ —1lr(x(q)+b(0)
exp (_57_ (Q(Q)-&-b(q) —I(q) ) = e 2 q q (46)

We now introduce the multivector conjugate, also known as the Clifford
conjugate, which generalizes the concept of complex conjugation to multivectors.



Definition 4 (Multivector conjugate (a.k.a Clifford conjugate)). Let u = a +
X +b be a multi-vector of the geometric algebra over the reals in two dimensions
GA(2). The multivector conjugate is defined as:

w=a-x-b (47)

The determinant of the matrix representation of a multivector can be ex-
pressed as a self-product:

Theorem 3 (Determinant as a Multivector Self-Product).
ufu = det M, (48)

Proof. Let u=a+ xX + yy + bX A ¥, and let M, be its matrix representation
[(H'x y_b]. Then:

y+b a—x

1: ulu (49)

= (a+2x+yy + X A9 a+ x4+ y§ + XA ) (50)

=(a—ax—yy —bXAY)(a+aX+y§ +bXAY) (51)

=a® -2 -y + ¥ (52)

2: detMy (53)

= det [ {33 172 (54)
=(a+z)(a—2)—(y—b)(y+b) (55)

=a? -2 — >+ (56)
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Building upon the concept of the multivector conjugate, we introduce the
multivector conjugate transpose, which serves as an extension of the Hermitian
conjugate to the domain of multivectors.

Definition 5 (Multivector Conjugate Transpose). Let |V) € (GA(2))™:

a1 +x1 + by
V)= : (57)
an + Xn + by,
The multivector conjugate transpose of |V) is defined as first taking the

transpose and then the element-wise multivector conjugate:

<<V|:[a1—x1—b1 an—xn—bn} (58)
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Definition 6 (Bilinear Form). Let |[V)) and |W) be two vectors valued in GA(2).
We introduce the following bilinear form:

(VIW) = (a1 —x1 —by)(a1 +x1 +b1) +...(an — X, —byp)(an + x, + by)
(59)
The partition function in Equation 42 can be expressed in terms of the
general linear wavefunction multiplied against its conjugate, as follows:
Theorem 4 (Partition Function). Z = (V|V)
Proof.
(VIV) =D V(@'V(g) =) detMy(y = Z (60)
q€Q q€Q
U

Theorem 5 (Inner Product). In the even sub-algebra of GA(2), the bilinear
form is an inner product.

Proof.

(VIWhx—0 = (a1 —b1)(a1 +b1) +...(an —bp)(an + by) (61)
This is isomorphic to the inner product of a complex Hilbert space, with the
identification i 2 X A ¥. O

Since the even sub-algebra of GA(2) is closed with respect to addition and
multiplication, and the bilinear form is an inner product, it follows can it can
be used to construct an Hilbert space. As it leads to a well-defined quantum
theory, we will therefore study the x — 0 case going forward in this section.

We now introduce the wavefunction, which is rotor-valued:

Definition 7 (Rotor-valued Wavefunction). The rotor-valued wavefunction is
defined as follows:

e3(a1+b1) N
) = : =
3 (an+bn) VonRn
The rotor wavefunction leads to the (2D) Dirac current:
Definition 8 (Dirac Current). Let 1(q) = \/p(q)R(q). Then,

J = (q) %,u10(q) = p(q)eu(q) (63)

The Lagrange multiplier 7 leads to a proper-time valued Schrodinger equa-
tion:

(62)

Definition 9 (Rotor/proper-time Schrodinger equation).

d 1
3 [P = —5b (1) (64)

The resulting theory is very similar to David Hestenes’ geometric algebra
formulation of QM[5], but applied to the 2D case.

11



2.1.1 Obstructions
We note two obstructions:

1. The Lagrangian multiplier requires the proper time 7, but 2D contains 2
space dimensions and 0 time dimensions.

2. The 141D theory leads to a split-complex quantum theory because the
bilinear form is (a — bt A %)(a + bt A %), which resolves to negative proba-
bilities: a? — b € R for certain wavefunction states (versus a? + b? € R=0
for the euclidean 2D case).

In the next section, we will investigate the 3+1D, then we will investigate
obstructions in higher dimensional configurations. This will show that the 3+1D
is the only multivector quantum theory which is obstruction-free.

2.2 Multivector Amplitudes in 3+1D

In this section, we extend the concepts and techniques developed for multivector
amplitudes in 2D to the more physically relevant case of 3+1D dimensions. We
begin by defining a general multivector in the geometric algebra GA(3,1).

Definition 10 (Multivector). Let u be a multivector of GA(3,1). Its general
form is:

u=a (65)
+aX+yy + 22+ tt (66)
+ fort AR+ foat A§ + fost A2+ froX A9 + fisX A2+ fas§ A2 (67)
FRAFAZ+UEATAZ+ 0t ARAZ Ot ARAY (68)
+OEARAY A2 (69)

A more compact notation for u is
u=a+x+f+v+b (70)

where a is a scalar, x a vector, £ a bivector, v is pseudo-vector and b a pseudo-
scalar.

This general multivector can be represented by a 4 x 4 real matrix using
the real Majorana representation, which establishes a connection between the
geometric algebra and matrix algebra.

Definition 11 (Matrix Representation My, of u). In a 3+I1-dimensional con-
text, a 4 X 4 real matriz, M, can be expressed using the real Majorana represen-
tation. Such a matriz has the general form:

a+z— fo2+q —z—fiztw—=>b  fo3—faz—p—v t+y+ for+ fi2
M — —z—fis+w+b a—-z—foo—q —tH+y+for+fiz fos—faz—p—v
foz+ foaz—p+v t+y— for + fi2 atz+ foo—q —z2—fiz—w+bl’
—t+y+for—fiz —foz—faz—p+tv —z+fiz—w—-b a—-2x+ fo2+q
(71)
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To manipulate and analyze multivectors in GA(3,1), we introduce several
important operations, such as the multivector conjugate, the 3,4 blade conju-
gate, and the multivector self-product.

Definition 12 (Multivector Conjugate (in 4D)).
w=a-x—f+v+b (72)
Definition 13 (3,4 Blade Conjugate). The 3,4 blade conjugate of u is
lujsa=a+x+f—-v—-D>b (73)

We can now express the determinant of the matrix representation of a mul-
tivector via a self-product|[6]:

Theorem 6 (Determinant as a Multivector Self-Product).
|ufu s 4utu = det M, (74)
Proof. Omitted due to space constraint. See [6] for a proof. O

These constructions allow us to express the probability measure in terms of
the multivector self-product.

Definition 14 (GA(3,1)-valued Vector).

u; ar+x1+f +vi+ by
Vi=1|:|= : (75)
Uy ap + xp + £, + vy, + by,

Definition 15 (Multilinear Form).

u ... 0 u% ... 0 u;

WIVivivy =[lul ... w]|: . i |sa

Theorem 7 (Partition Function). Z = {(|¢|y])

13



Proof.

(Yl (77)
up 0 11% 0 up
= [ [u} u,] Jsa |t (78)
0 u, 0 ul | |(u,
u%ul
= L[u‘iul R T T W (79)
ulu,
= Lu§u1J3,4u§u1 +- 4 Luflunj374uflun (80)
= det My, (81)
i=1
=7 (82)
O

We can reduce the multilinear form to a sesquilinear form, as follows:

Definition 16 (Sesquilinear Form). Let V' and W be GA(3, 1)-valued vectors.
Then:

(VW) = (VIVIWW) =" [V(9)*V(g)]5,4W (¢)W (q) (83)
q€Q

Theorem 8 (Non-negative inner product). The sesquilinear form, applied to
the even sub-algebra of GA(3,1), reduces to a non-negative inner product. The
resulting non-negative Hilbert space is valued in even sub-algebra of GA(3,1).

Proof. We consider an inner product between two even multivector of GA(3,1).
a; +f + by ay +f] + b}
V) = : and |W) =

a, + £, +b, a/’/IL+f’I{L+b’/ﬂ
The, the sesquilinear form is:

14



Viw) (84)
= (VIviw|w) (85)

(a1 +f1 +by1)¥(a + £ + by)
= I_[(a1+f1+b1)i(a1+f1+b1) ...M374 .

(86)
(a1 —f1 +b1)(a1 + 1 +by)
= L[(alff1+b1)(a1+f1 +b1) ...]J3,4 .
(87)
= |[a} + a1fi + arby — fia1 — £2 — fiby + bray +bifi + b7 L] 5.
(88)

We note 1) b? = (bI)? = —b? and 2) f? = —E? — E2 — E3 + B? + B3 + B? +
460616263 (ElBl + EQBQ + Eng)

= L[a% — b% + E% + E22 + E?% - B% - B% - Bg - 460616263(E131 + E2B2 + Eng) .. .]J374 e

(90)

We note that the terms are now complex numbers, which we rewrite as Re(z) =
a% — b% —|— E% —|— ES +E§ — B% — B% — Bg and Im(z) = _4(ElBl + EQBQ + Eng)

Zn
ZL[Z1 22]J3,4 (91)
Zn
Zn
= ... Al (92)
Zn
= Za+ -+ 2z (93)

Which is non-negative for all even multivectors of GA(3,1). The even sub-
algebra of GA(3,1) forms a vector space, which now armed with an inner prod-
uct, can be used to construct a non-negative Hilbert space. O

We now define the even-sub-algebra-valued wavefunction, or Spin®(3,1)-
valued wavefunction:

Definition 17 (Spin°(3, 1)-valued Wavefunction).

ei(ai+fi+b1) \4//T1R131
W= =] o
ei(an'f'fn""bn) «4/ anan

15



where R; is a rotor and B; is a phase.

The evolution operator of the partition function, valued in the even sub-
algebra, becomes:

Definition 18 (Spin®(3,1) Flow).
e~ L17(f(q)+b(q)) (95)

In turn, this leads to the following Schrédinger equation:

Definition 19 (Spin©(3,1) Generating Schrodinger equation).

d 1
S(t) = =3 (£ +b)(7) (96)

The consistency and compatibility of the geometric algebra formalism with
the standard quantum formalism are further re-enforced by the unitary evolution
of states and the self-adjointness of observables.

Theorem 9 (Unitary Evolution).

Proof.
(S| Se) (97)
= (S¥|S¥|Sé|Se) (98)
= > 1(S¥(9))"S1h(q)].4(S(q)) S (q) (99)
qeQ
= " [¥(9)'S*Sv(q)|5.40(a)* S*Sé(q) (100)
q€Q

It follows that for S with elements in a + f + b, then S*S = U, where U is in
a+b. Then U commutes with ¢(g) and ¢(q).

= " 19(0)(q) |3.40(0)* U 5.4U(q) (101)

q€Q

which in the case where the elements of U are in a + b, implies
Ulu =1 (102)
which is the condition for an unitary operator in a complex Hilbert Space. [

Theorem 10 (Self-Adjoint Observables).
Proof. Let |¢) and |¢) be Spin©(3, 1)-valued wavefunctions:

(A]g) (103)
= (Ap|AY[o|) (104)
= 3 L(Av(9) At (q)J5.16(a) é(q) (105)

q€Q
= 3 1w(9) AP A (q) 5.46(0) 6 (a) (106)
q€Q
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Then, from the other side we have:

(1| Ay) (107)
= WW\AM!‘W» (108)
= > Ll J.4(Ad(9))! Ad(q) (109)

q€Q
= Y 1@ (a)]s.aé(a) A Ag(q) (110)
qeQ

It follows that for A with elements in a + f + b, then the elements of A*A are
in @+ b. This implies that (A*A)T = A*A. Finally, posing O = A*A, we obtain

o' =0 (111)
O

The metric, however, requires the self-adjointness of the multilinear form
itself; the bilinear form is insufficient:

Theorem 11 (Metric). Let ¥(q) = v/p(q)R(q ), where R(q) is a rotor, and
B(q) is a phase. Then,
P(D9 () = (@) (@) [P(@) 4 (9)) (112)

We also note that p(¢)g,.(q) = (¥ (D)Y(D)v (@)Y (q)) is also true. Con-
sequently, in 3+1D, the basis of space time vy, and 7, are observables since

V(DY (@) v (@))b(a) = (@) (@)|v(@)]vb(q)), leading to the metric

tensor g,., when measured.

Proof.
(@) (@) (a) v (a)) (113)
= | ¢/pRBY,/pRB|34¢/pRBv, YpRB (114)

(We have dropped the dependence on (q) to improve legibility). We note that
B, B = 7,, because the pseudo-scalar anti-commutes with vectors. Therefore,

= pe e, (115)
= PGy (116)

For completeness, we also investigate the self-adjoint:

(@@ (@)v(a)) (117)
= [ /pRB(=7,) ¥/pRB]34/pRB(~7.) /pRB (118)

= | YpRB~,YpRB|34/pRBY, YpRB (119)

= PGy (120)

O
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As we recall in 2D, the insertion of the 7, within the probability measure
produced the Dirac current (p(q)e, = v¥(q)*%,1(q)). Whereas, in 3+1D the
analogous operation replaces the Dirac current (a probability density involving
a 4-vector) with a probability density involving the metric tensor.

We will now show that the theory contains the U(1), SU(2), and SU(3) gauge
symmetries, which play a fundamental role in the standard model of particle
physics. The multilinear form contains no other symmetries with respect to the
7o basis.

To show this invariance with respect to the metric, we will utilize the ~q
basis:

Theorem 12 (U(1) invariance). [7, 8]

(W(@) 10w ()| (@) 10v(a)) = (e2(q)roer Py (g) ez () roetPy(e)) (121)
Proof.

(e2P¥(q)loe?Pv(q)le =Py (g)oe =P (q)) (122)
= %(a)*e*Py0e "9 (q) ] 3.41(q) e Pr0e 221 (q) (123)

= [(q)*0e"PePP(q) |3,4%(q)Fr0e 2P Py (q) (124)

= [¥(a)"v0% (@) ]3,.4%(0) 0t (q) (125)

= (Y(@) v (@)|v(9) v (q) (126)

O

Theorem 13 (SU(2) invariance). [7, 8]

(W(@) 0w (@) (@) 0w (@) = (e284h(q) e v(q) e (@) e t(q))  (127)
implies £ = 017071 + 0270772 + 037073, which generates SU(2).
Proof.
(e=* () voe* T (q) e = () yoe T (q)) (128)
= [¥(g)*e 2 y0e2 (q) |3.at(q) e 2 r0e 2 ) (g) (129)

. . . 1 1 . . .
We now identify the relation e~ 2fygezf = ~4, which is true only if f = 014071 +
Bav071 + O37073:
6*9170’71*027071*937073*317273*327173*337172,70 (130)
— ,.),06*917071*92’7071*93’7073‘#31’7273‘#32’7173+3371’72 (131)

therefore the product e*%f’yoe%f reduces to 7y if and only if B; = By = B3 = 0:
Finally, we note that e?17071+027071+037% generates SU(2). O

Theorem 14 (SU(3) invariance). [7, 8/
(V@0 (@Y (D 0v(a) = E () rofe(g)|Fy(a) ofy(e)) (132)
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Proof. The relation that must remain invariant is —fyof = 9. Let f = E1voy11+
Esvom1 + Esvoy1 + Biyeys + Baviys + Bsmive

—(Evyom1 + E2vov1 + Ezvoy1 + Biyeys + Bayiys + Bsviy2)vof (133)

Then the parts in v anti-commute with 79, and the parts commute with y:

=Y (Ervo71 + E2vom + Ezvon — Biv2vs — Bayiys — Bamivya)f (134)

To can be written as
v%(E — B)(E + B) (135)
= (E*+ EB - BE - B?) (136)

Thus, for —fyf = 79, we need 1) E2 — B2 = 1 and 2) EB — BE. The second
requirement simply means that E and B commute, and the first means

E? - B® = (Ef + B}) + (E3 + B3) + (E3 + B3) (137)
which is simply the SU(3) symmetry group. ]

The following theorem provides a general expression for the interference pat-
tern arising from the superposition of two general multivectors or even multivec-
tors, which generalizes the complex interference commonly found in standard
QM. This interference can lead to a sum over geometries:

Theorem 15 (Multivector Superposition and Interference).

Proof. The general form of geometric interference, which includes diffeomor-
phisms, Spin® and flux interference, for a superposition u; with us, is given as
follows:

= wiululuy + wiulubu, + wivlufu, + uiululuy + 12 terms
—_———— ——

[(a + 112)1(111 +uy)34(ur + 112)1(111 + us) (138)
= (uj +u3)(u] + ub)(uf + uf) (W + w) (139)

= (u*{uJ{ + u{ug + ugul{ + ugug)(uji'ul + u{uz + u%ul + u%uQ) (140)
(141)

P1 P2 geometric interference pattern

Let us now discuss gravity.

In the multivector amplitude formalism, the fundamental objects for a for-
mulation of the Einstein-Hilbert action are available from within the theory. The
action can be formulated using the metric tensor observable and an SO(3,1)-
valued spin connection w, which would be a gauge that leaves the Spin®(3,1)-
valued wavefunction invariant. A crude example for constructing spacetime
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could involve measurements identically-prepared quantum systems, using the
gamma matrices v, and -, as operators. Such measurements produces g,, as
the observable. As measurements of the spacetime geometry are accumulated, a
progressively more complete picture of spacetime geometry emerges. This gives
a quantum character to the metric tensor used in the EFE.

In summary, this section provides a foundation for a unified, geometrically
intuitive formulation of quantum mechanics, gravity, and particle physics in 3+1
dimensions using multivector amplitudes. The geometric algebra GA(3, 1) offers
a powerful framework for describing the fundamental interactions of particles
and spacetime geometry, naturally incorporating U(1), SU(2), SU(3), Spin(3,1),
and SO(3,1) gauge symmetries, as well as the metric tensor as a quantum me-
chanical object.

2.3 Dimensional Obstructions

In this section, we explore the dimensional obstructions that arise when attempt-
ing to extend the multivector amplitude formalism to dimensions other than
3+1D. We begin by examining the self-products associated with low-dimensional
geometric algebras.

Definition 20. From the results of [6], the self-products associated with low-
dimensional geometric algebras are:

CL(0,1) : oo (142)
CL(2,0) : oro (143)
CL(3,0) : Lot elspte (144)
CL(3,1) : Lgoi |3, a0t (145)
CL(4,1) : (lete)sapte) (Lot elsapte) (146)

From Theorem 6, and the results obtained in the previous sections, we have
seen that in the CL(3,1) case, the self-product corresponds to the determinant
of the matrix representation of the corresponding geometric algebra and can be
interpreted as a probability measure associated with many physical phenomena.
However, when we investigate other dimensions, we encounter several obstruc-
tions that prevent the construction of a consistent and physically meaningful
probability measure.

The first obstruction arises in the case of CL(0,1), CL(3,0), and higher
odd-dimensional geometric algebras, where the determinant of the matrix rep-
resentation is complex-valued and, consequently, cannot represent a probability.

Theorem 16. For CL(0,1), CL(3,0), and higher odd-dimensional geometric
algebras, the determinant of the matrix representation is complex-valued and,
consequently, cannot represent a probability.

Proof. The probabilities in the POP framework are defined by the determinant
of a matrix. 3D geometric algebra is represented by 2x2 complex matrices, and
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the determinant of such matrices is complex, not real. Hence, the probabilities
are complex-valued, not real-valued, making the solution unphysical in 3D. In
0+1D, the GA is isomorphic to the complex numbers, and the determinant of a
complex number is the complex number itself. Since odd-dimensional geometric
algebras map to complex-valued matrices, this is also the case with 5D geometric
algebra and higher odd-dimensional spaces. O

This theorem highlights the fundamental issue with odd-dimensional geomet-
ric algebras, where the complex-valued determinant of the matrix representation
cannot be interpreted as a physically meaningful probability measure.

The second obstruction concerns the lack of a corresponding geometric alge-
bra formulation for certain matrix dimensions, which limits the ability to define
a wavefunction in terms of multivectors, necessary for defining an amplitude.

Theorem 17. For 1 x 1, 3 x 3, or any higher odd-dimensional matrices, there
18 mo corresponding geometric algebra formulation. It is, therefore, not possible
to represent the determinant as a self-product of multivectors, which limits the
ability to define a wavefunction.

Proof. All geometric algebras, regardless of signature or dimension, map to
even-dimensional square matrices. This means that odd-dimensional square
matrices, such as 3x3 matrices, do not have a corresponding geometric algebra
formulation and thus cannot define an amplitude. O

This theorem emphasizes the importance of having a geometric algebra for-
mulation for the matrix representation, as it allows for the definition of a wave-
function in terms of multivectors and the construction of an amplitude based
on the multivector self-product.

As we move to higher dimensions, we encounter further obstructions that
prevent the construction of a consistent probability measure and the satisfaction
of observables. In particular, the multivector representation of the norm in 6D
fails to extend the self-product patterns found in lower dimensions.

Conjecture 1. The multivector representation of the norm in 6D cannot satisfy
any observables.

Argument. In six dimensions and above, the self-product patterns found in Def-
inition 20 collapse. The research by Acus et al.[9] in 6D geometric algebra
demonstrates that the determinant, so far defined through a self-products of
the multivector, fails to extend into 6D. The crux of the difficulty is evident
in the reduced case of a 6D multivector containing only scalar and grade-4
elements:

s(B) = b1Bfs(f4(B)f3(f2(B)f1(B))) + b2Bgs(ga(B)gs(92(B)g1(B))) (147)

This equation is not a multivector self-product but a linear sum of two multi-
vector self-products.
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The full expression [9] is given in the form of a system of 4 equations, which
is too long to list in its entirety. A small characteristic part is shown:

ay — 2a2a%; 4 baadai-pa1opaze + (72 monomials) = 0 (148)
biagass + 2b200a57a52P412P422Pa32Paa2Pas2 + (72 monomials) =0 (149)
(74 monomials) = 0 (150)
(74 monomials) = 0 (151)

From Equation 147, it is possible to see that no observable O can satisfy this
equation because the linear combination does not allow one to factor it out of
the equation.

b1OB f5(fa(B)f3(f2(B)f1(B))) + b2Bgs(9a(B)gs(g2(B)g1(B))) = b1 st(f4(B)f3(f2(B)f1(B()i)S;S b20Bgs(94(B)gs(g92(B)g1(B)))

Any equality of the above type between b1 O and b2 O is frustrated by the factors
b1 and bs, forcing O = 1 as the only satisfying observable. Since the obstruction
occurs within grade-4, which is part of the even sub-algebra it questionable that
a satisfactory quantum theory (with observables) be constructible in 6D. O

This theorem demonstrates that the multivector representation of the de-
terminant in 6D does not allow for the construction of non-trivial observables,
which is a crucial requirement for a consistent quantum formalism. The lin-
ear combination of multivector self-products in the 6D expression prevents the
factorization of observables, limiting their role to the identity operator.

Conjecture 2. The norms beyond 6D are progressively more complex than the
6D case, which is already obstructed.

Finally, we consider the specific case of four dimensions and show that the
POP method requires a 3+1D signature to maintain consistency with the pre-
viously established results.

Theorem 18. The POP method in four dimensions specifically requires a 841D
stgnature.

Proof. Starting with 4x4 real matrices as our solution, we are restricted to
choosing a geometric algebra isomorphic to it. In 4D, the options are:

1. GA(3,1) is isomorphic to the algebra of 4 x 4 real matrices, denoted as
M(4,R).

2. GA(1,3) is isomorphic to the algebra of 2 x 2 quaternionic matrices, de-
noted as M(2,H) or H(2).

3. GA(4,0) is isomorphic to the direct sum of two copies of the algebra of
2 x 2 real matrices, denoted as M(2,R) & M(2,R).

4. GA(2,2) is isomorphic to the algebra of 4 x 4 real matrices, denoted as
M(4,R).
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5. GA(0,4) is isomorphic to the algebra of 2 x 2 quaternionic matrices, de-
noted as M(2, H) or H(2).

This leaves only the choice of either GA(3,1) or GA(2,2) as signatures of inter-
est. |

Conjecture 3 (Obstruction in GA(2,2)). The mazimization problem intro-
duces a single Lagrange multiplier T, governing the time evolution of systems,
leading to possible obstructions when applied to a spacetime with multiple time
dimensions, such as GA(2,2).

Conjecture 4 (Obstruction in GA(4,0) and GA(0,4) and GA(2,0)). The maz-
imization problem introduces a single Lagrange multiplier T, governing the time
evolution of systems, leading to obstructions when applied to a spacetime with
no time dimensions, such as GA(0,4), GA(4,0) or GA(2,0).

Theorem 19 (Obstruction in 1+1D). We repeat the obstruction found in

1+1D, leading to negative probabilities because the bilinear norm resolves to
2 _ 2
a® —b°.

These conjectures provide additional insights into the unique role of the
341D signature in the POP method. The conjecture regarding the obstruction
in GA(2,2) suggests that the presence of multiple time dimensions may lead
to complications in the formalism due to the introduction of a single Lagrange
multiplier governing the time evolution of systems. This highlights the impor-
tance of the 341D signature, which has a single time dimension, in maintaining
consistency with the Lagrange equation.

The dimensional obstructions encountered in this section provide valuable
insights into the limitations of the geometric algebra approach and the specific
requirements for constructing a consistent and physically meaningful quantum
formalism. It suggests a plausible mechanism for the specific dimensional ar-
rangement of the universe deeply linked to the mathematical good behavior of
geometric probabilities measures.

3 Discussion

The Geometric Anti-Constraint as the Sole Axiom

The geometric anti-constraint, given by 0 = étr quQ p(@)M(q), serves
as the sole axiom of the theory in our formulation. This constraint shapes
the optimization problem and determines the structure of the resulting quan-
tum theory. Just as the average energy constraint £ = Y €0 p(@)E(q) in
statistical mechanics yields the Gibbs measure, and the phase anti-constraint

0 = tr qut@ p(q) {E?q) _E;(‘I)}, a special case of the geometric anti-constraint,

in our previous work leads to the five canonical axioms of quantum mechan-
ics, the geometric anti-constraint resolves into a quantum theory that naturally
incorporates multivector amplitudes.
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The power of multivector amplitudes lies in their ability to encapsulate the
essential features of both particle physics and gravitation within a single frame-
work. The gauge symmetries of the standard model, namely U(1), SU(2), and
SU(3), arise naturally from the invariance of the probability measure under the
transformations generated by the bivectors of the geometric algebra. Similarly,
the geometry of spacetime emerges from the geometric anti-constraint through
the invariance of the probability measure under infinitesimal diffeomorphisms
and Lorentz transformations. This remarkable property suggests that the geo-
metric anti-constraint contains the necessary information to describe the funda-
mental interactions of particles and fields, as well as the geometry of spacetime,
without the need for ad hoc assumptions or additional postulates.

Addressing the Relativistic Nature of the Schrodinger Equation

A common objection to the relativistic nature of our theory arises from the
use of the Schrodinger equation or Schrodinger-like time evolution. However, it
is crucial to distinguish between the general Schrodinger equation itself and the
non-relativistic single-particle Schrodinger equation. The Schrodinger equation,
given by [¢(t)) = e /7|4 (0)), is relativistic provided H is relativistic. This
formulation is equivalent to the Feynman path integral representation, which is
manifestly compatible with relativity.

To illustrate this point, let’s consider the example of a free scalar field. In
the Feynman path integral representation, the action for a free scalar field ¢(x)
is given by:

1 1
i) = [ s (30,000~ gme? ). (153)
where m is the mass of the scalar field. The path integral is then defined as:
Z = /D¢ etSl/n, (154)

which sums over all possible field configurations weighted by the exponential
of the action.

In the Hamiltonian formulation, the Schrédinger equation for the free scalar
field is given by:

0 -
ih | (0) = H|T (), (155)

where the Hamiltonian H is obtained from the Legendre transform of the
Lagrangian:

- 1 1, - 1 5
H= /d% (§ﬁ2 + 5(vgzs)2 + §m2¢2) : (156)
with 7 = g—g being the canonical momentum operator.

The solution to the Schrodinger equation is given by:

(1)) = e /0| (0)), (157)
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which describes the time evolution of the quantum state |¥(¢)).

The relativistic compatibility of both the Feynman path integral represen-
tation and the Hamiltonian formulation using the Schrodinger equation are
dependant on the Lagrangian or Hamiltonian used, and not on the choice of
representation.

The POP methodology resolves to the Schrédinger picture, yet this does not
prevent it from being relativistic.

Probability Density

Let us now extend the entropy maximization problem from the discreet X
to the continuum [, using a Riemann sum:

n n n
o N P(E) B , LT 0 —E@)
L= - lim <;p(xz)ln (@) + A <1 ;MM) +7 (tr;p(wz)g(xi) [E(zi) 0 ] Az
(158)
where
e 1 is the number of subintervals,

e Az = (b—a)/n is the width of each subinterval,

e x; is a point within the i-th subinterval [x;_1,x;], often chosen to be the
midpoint (z;—1 + z;)/2.

o 1/e(x;) is a factor required to transform the energy E(x) into an energy
density £(z) = E(x)/e(x), required for integration.

which yields an integral:

EZ_/abp(m)lnz%dx-l—/\(1_/(lbp(x)dx>+T<tr/abp(x)$[E?z) _%(z)]dx>

(159)

Solving this optimization problem yields a probability measure parametrized
over the continuum.

We can extend this formulation to multivector amplitudes by using the ge-
ometric anti-constraint and parametrized over a world manifold X*:

b " b b
L=- / p(at) In P )\/——gd‘*xu(l— / p(mﬂw——gd‘*x)M(tr / Tola")

p(xr)

g(gjli) M(x/‘)\/—_gd‘lx)
(160)

The solution to this optimization problem is a probability density:
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LAt _ o plat) = — ! exp (*17L trM(fC“)) p(")
9p [, p(z#) exp (_iTWIH) trM(:c”)) V—gdiz 4 el@) Initial Stat

Geometric Born Rule
Geometrically Invariant Ensemble

(161)

This formulation extends the multivector amplitude framework to the con-
tinuum, allowing for the description of continuous systems while preserving the
geometric structure and invariance properties of the theory.

Double copy gauge theory

The U(1), SU(2), and SU(3) invariances in the multivector amplitude for-
malism lead to a double copy structure of gauge theories, as each side of the
multilinear form can evolve independently. For instance in the SU(3) case:

W(@)ov(@) (@) o () = (Fiv(q)|vofiv () [f20(q) ofatb(q)) (162)

This results in two separately conserved SU(3) gauge theories:

—fivofi =7 = SU(3) as copy 1 (163)
— f570f2 = 79 = another SU(3) as copy 2 (164)

This argument also holds for U(1) and SU(2).

A potential future research direction could be to investigate whether this
double copy structure is connected to the double copy theory[10], which aims to
express gravity as a double copy of a gauge theory. Exploring this relationship
may provide further insights into the interaction picture of quantum gravity.

4 Conclusion

In conclusion, this paper advances the "Prescribed Observation Problem’ (POP)
into a multivector quantum theory, seamlessly bridging the realms of quantum
mechanics and spacetime geometry. Our findings reveal the POP’s exceptional
ability to generate a mathematically well-behaved theory that generalizes quan-
tum probabilities through the introduction of the multivector probability mea-
sure, a generalization of the Born rule. This measure is invariant under a wide
range of geometric transformations, including those generated the gauge groups
of the standard model, and leading to the metric tensor as a quantum me-
chanical observables, without the need for additional assumptions beyond the
geometric anti-constraint. Remarkably, multivector amplitudes are found to be
consistent only with a 341D spacetime, encountering obstructions in other di-
mensional configurations. This finding aligns with the observed dimensionality
and gauge symmetries of the universe and suggests a possible explanation for
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its specificity. This research represents a significant step in reconciling quan-
tum mechanics with general relativity, challenging and expanding conventional
methodologies in theoretical physics, and potentially paving the way for new

insi
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ghts in the field.
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