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Abstract

In modern theoretical physics, the laws of physics are represented with
axioms (e.g., the Dirac–Von Neumann axioms, the Wightman axioms,
and Newton’s laws of motion). While axioms in modern logic hold true
merely by definition, the laws of physics are entailed by measurements.
Motivated by this dissimilarity, we introduce a more suitable foundation
than axioms to represent the laws of physics, and then we make the case
for its supremacy. Specifically, measurements will be the axioms whose
theorems are the laws of physics. Explicitly, we define a maximization
problem on the entropy of all geometric measurements; its unique solu-
tion is a geometric quantum theory. In 3+1D, its principal symmetry is
generated by the exponential map of multivectors expG(R3,1). It is then
shown that this symmetry breaks into a Spinc(3,1) quantum theory whose
Dirac current is invariant in the SU(2)xU(1) and SU(3) groups, and into
the quotient bundle expG(R3,1)/Spinc(3,1) yielding a theory of gravity
for charged fermions. Remarkably, the model fails to admit normaliz-
able observables above 4 dimensions, suggesting an intrinsic limit to the
dimensionality of observable geometry.

1 Introduction

The physical laws in modern theoretical physics are expressed as axioms (e.g.,
the Dirac–Von Neumann axioms, the Wightman axioms, and Newton’s laws
of motion). The theorems provable by these axioms are the predictions of the
theory. If laboratory measurements invalidate the predictions, the postulated
laws are deemed falsified, and new laws are postulated.

In this scenario, it is the theorems (predictions) of the theory that are used
(in concert with experiments) to invalidate its axioms (laws).

In logic, however, axioms define what is true in a theory. It follows obviously
that its theorems cannot invalidate them.
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Thus, there is a dissimilarity between using axioms in physics versus their
use in logic.

Since the laws of physics require a more complex interplay between axioms,
theorems, and their invalidations than the unidirectional entailment between
axioms and theorems found in logic, the question of using axioms to express the
laws of physics arises.

Motivated by this dissimilarity, we searched for a more appropriate logical
formulation of the laws of physics than brute axioms. We intend to show that
correcting the axiomatic entailment between the laws and measurements yields
a superior and optimized formulation of fundamental physics.

In our proposal, laboratory measurements entail the mathematical expres-
sion of those measurements, and it is this expression, not the laws of physics,
that will constitute the axioms of our system. The laws of physics will be de-
fined as the solution to a carefully crafted optimization problem based on the
entropy of all geometric measurements.

The solution to this optimization problem is a novel and optimized formu-
lation of fundamental physics. In 3+1D, it yields a geometric quantum theory,
whose principal symmetry is generated by the exponential map of multivectors
expG(R3,1). This map is isomorphic to expM(4,R) and generates (up to iso-
morphism) GL+(4,R), which in turn acts on the frame bundle FX of a world
manifold as its structure group. The symmetry breaks into a quantum theory
whose Dirac current is invariant in the SU(2)xU(1) and SU(3) gauge groups,
and into a theory of gravity of charged fermions defined in the quotient bundle
FX/Spinc(3, 1). Remarkably, the general solution cannot produce normalizable
observables above 4D (the necessary low dimensional coincidences are lacking),
suggesting an intrinsic limit to the dimensionality of any geometry observable
in the quantum mechanical sense. We interpret this tight configuration as sug-
gestive of the power and efficiency of defining the laws of physics as the solution
to a mathematical optimization problem, rather than as brute axioms.

In essence, from laboratory measurements, it is easier to “guess” the cor-
rect mathematical expression for all possible (geometric) measurements than to
“guess” the right laws of physics. The distance one must travel in “guessing
space” is much shorter for the former than the latter, and this reduces the risk
of running astray.

Our optimized formulation is unlikely to have been obtained by trial and
error or traditional methods, making our optimization problem a key step in
the derivation.

Corollaries that follow directly from our solution, such as the mathematical
origin of the Born rule, the derivation from first principles of the axioms of
quantum physics, an identification of the correct interpretation of quantum
mechanics, and the deprecation of the measurement/collapse problem, are also
presented.

To define the problem rigorously, we first introduce the key structure that
makes our approach possible: the geometric measurement constraint. Next, we
present its rationale.

The construction of the geometric measurement constraint exploits the con-
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nection between geometry and probability via the trace. The trace of a matrix
can be understood as the expected eigenvalue multiplied by the vector space
dimension, and the eigenvalues as the ratios of the distortion of the linear trans-
formation associated with the matrix[1]. The geometric measurement constraint
is defined as follows:

Definition 1 (The geometric measurement constraint). Let u be a multivector
of G(Rp,q) (the geometric algebra of p+q dimensions, defined over the real field)
and let Q be a statistical ensemble. The geometric measurement constraint is:

1

n
tru =

󰁛

q∈Q
ρ(q)

1

n
tru(q), (1)

where n = p + q, and where tru denotes the expectation eigenvalue of the
statistically weighted sum of multivectors u(q), parameterized over ensemble Q.

We note that the trace of a multivector can be obtained by mapping the
multivector to its matrix representation (Section 2), and taking its trace.

Now, we discuss its rationale.
Constraints are used in statistical mechanics to derive the Gibbs measure

using Lagrange multipliers[2] by maximizing the entropy.
For instance, an energy constraint on the entropy is

E =
󰁛

q∈Q
ρ(q)E(q), (2)

which is associated with an energy meter that measures the system’s energy
and produces a series of energy measurements E1, E2, . . . , convergent to an
expectation value E.

Another common constraint is related to the volume:

V =
󰁛

q∈Q
ρ(q)V (q), (3)

which is associated with a volume meter acting on a system and produces
a sequence of measured volumes V1, V2, . . . , converging to an expectation value
V .

Moreover, the sum over the statistical ensemble must equal 1, as follows:

1 =
󰁛

q∈Q
ρ(q) (4)

Using equations (2) and (4), a typical statistical mechanical system is ob-
tained by maximizing the entropy using the corresponding Lagrange equation.
The Lagrange multiplier method is expressed as:
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L = −kB
󰁛

q∈Q
ρ(q) ln ρ(q) + λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ β

󰀳

󰁃E −
󰁛

q∈Q
ρ(q)E(q)

󰀴

󰁄 , (5)

where λ and β are the Lagrange multipliers.
Therefore, by solving ∂L

∂ρ = 0 for ρ, we obtain the Gibbs measure as:

ρ(q,β) =
1

Z(β)
exp

󰀃
−βE(q)

󰀄
, (6)

where

Z(β) =
󰁛

q∈Q
exp

󰀃
−βE(q)

󰀄
. (7)

In our method, (2), a scalar measurement constraint, is replaced with 1
n tru,

a geometric measurement constraint. Instead of energy or volume meters, we
have protractors, and boost, dilation, spin, and shear meters.

As we found, the geometric measurement constraint is compatible with the
full machinery of statistical physics. The probability measure resulting from
entropy maximization will preserve the expectation eigenvalue of these trans-
formations up to a phase or symmetry group. For instance, based on our entropy
maximization procedure, a statistical system measured exclusively using a pro-
tractor will carry a local rotation symmetry in the probability of the measured
events.

By limiting the definition of constraints to scalar expressions, we believe that
statistical physics has failed to capture all measurements available in nature.
Our geometric measurement constraint redresses the situation and supports the
totality of geometric measurements that are in principle possible.

Finally, it is the relative Shannon entropy (in base e) that we maximize and
not the Boltzmann entropy. The resulting probability measure quantifies the
information associated with an observer’s receipt of a message of measurements.
The Shannon entropy does not change the mathematical equation for entropy
(minus the Boltzmann constant); only the final interpretation is changed (fur-
ther details on the interpretation of quantum mechanics resulting from this
model are provided in section 5).

The corresponding Lagrange equation is

L = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
+ λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ τ

󰀳

󰁃 1

n
tru−

󰁛

q∈Q
ρ(q)

1

n
tru(q)

󰀴

󰁄 ,

(8)
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where we refer to p(q) as the initial preparation. It is sufficient to solve
∂L
∂ρ = 0 for ρ to obtain the solution, which is our main result.

The manuscript is organized as follows: The Methods section introduces
tools using geometric algebra, based on the study by Lundholm et al. [3, 4].
Specifically, we use the notion of a determinant for multivectors and the Clif-
ford conjugate for generalizing the complex conjugate. These tools enable the
geometric expression of the results.

The Results section presents four solutions for the Lagrange equation. The
first is the recovery of standard non-relativistic quantum mechanics when re-
ducing the matrix from an arbitrary matrix to a representation of the imaginary
number. The second and third are the general cases with an arbitrary matrix
or multivector, respectively. Finally, the fourth result applies to the continuum
(
󰁓

→
󰁕
).

We then develop our initial results into a geometric foundation for physics
in 2D and 3+1D, consistent with the general solution. We show in the general
case that the model is a geometric quantum theory whose principal symmetry
is the exponential map of multivectors expG(R3,1). As this map is isomorphic
to expM(4,R), it acts (up to isomorphism) on the frame bundle FX of a world
manifold. In 3+1D, the symmetry breaks into a quantum theory invariant in the
SU(2)×U(1) and SU(3) gauge groups, and in the quotient bundle FX/Spinc(3, 1)
into a theory of gravity of charged fermions. Furthermore, we show that the
general solution lacks normalizable observables beyond 4D.

Finally, the Discussion section provides an interpretation of quantum me-
chanics consistent with its newly revealed origin, namely the metrological inter-
pretation. Central to this interpretation is the measure maximizing the Shannon
entropy and constrained by geometric measurements, which yields the wavefunc-
tion. This interpretation thus considers the information in measurements more
fundamental than the now entirely derivable wavefunction. The end product is
a theory that deprecates the measurement problem, supersedes it with a theory
of instruments, and provides a plausible explanation for the origin of quan-
tum mechanics in nature by connecting it entirely to the entropy of geometric
measurements.

2 Methods

2.1 Notation

• Typography:

Sets are written using the blackboard bold typography (e.g., L, W, and
Q) unless a prior convention assigns it another symbol.

Matrices are in bold uppercase (e.g., P and M), tuples, vectors, and
multivectors are in bold lowercase (e.g., u, v, and g), and most other
constructions (e.g., scalars and functions) have plain typography (e.g., a,
and A).
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The unit pseudo-scalar (of geometric algebra), imaginary number, and
identity matrix are i, i, and I, respectively.

• Sets:

The projection of a tuple p is proji(p).

As an example, the elements of R2 = R1 × R2 are denoted as p = (x, y).

The projection operators are proj1(p) = x and proj2(p) = y;

if projected over a set, the corresponding results are proj1(R2) = R1 and
proj2(R2) = R2, respectively.

The size of a set X is |X|.
The symbol∼= indicates an isomorphism, and→ denotes a homomorphism.

• Analysis:

The asterisk z† denotes the complex conjugate of z.

• Matrix:

The Dirac gamma matrices are γ0, γ1, γ2, and γ3.

The Pauli matrices are σx, σy, and σz.

The dagger M† denotes the conjugate transpose of M.

The commutator is defined as [M,P] : MP−PM, and the anti-commutator
is defined as {M,P} : MP+PM.

• Geometric algebra:

The elements of an arbitrary curvilinear geometric basis are denoted as
e0, e1, e2, . . . , en (such that eν · eµ = gµν), and x̂0, x̂1, x̂2, . . . , x̂n (such
that x̂µ · x̂ν = ηµν) if they are orthonormal.

A geometric algebra of m+ nD over field F is denoted as G(Fm,n).

The grades of a multivector are denoted as 〈v〉k.
Specifically, 〈v〉0 is a scalar, 〈v〉1 is a vector, 〈v〉2 is a bivector, 〈v〉n−1 is
a pseudo-vector, and 〈v〉n is a pseudo-scalar.

A scalar and vector such as 〈v〉0+ 〈v〉1 form a para-vector; a combination
of even grades (〈v〉0 + 〈v〉2 + 〈v〉4 + . . . ) or odd grades (〈v〉1 + 〈v〉3 + . . . )
form even or odd multivectors, respectively.

Let G(R2) be the 2D geometric algebra over the real set.

We can formulate a general multivector of G(R2) as u = a+ x+b, where
a is a scalar, x is a vector, and b is a pseudo-scalar.

Let G(R3,1) be the 3+1D geometric algebra over the real set.

Then, a general multivector of G(R3,1) can be formulated as u = a +
x + f + v + b, where a is a scalar, x is a vector, f is a bivector, v is a
pseudo-vector, and b is a pseudo-scalar.
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2.2 Geometric representation in 2D

Let G(R2) be the 2D geometric algebra over the real set.
A general multivector of G(R2) is given as

u = a+ x+ b, (9)

where a is a scalar, x is a vector, and b is a pseudo-scalar.
Each multivector has a structure-preserving (addition/multiplication) ma-

trix representation.

Definition 2 (2D geometric representation).

a+ xx̂+ yŷ + bx̂ ∧ ŷ ∼=
󰀗
a+ x −b+ y
b+ y a− x

󰀘
(10)

Thus, the trace of u is a.
The converse is also true: each 2 × 2 real matrix is represented as a multi-

vector of G(R2).
In geometric algebra, the determinant[4] of a multivector u can be defined

as:

Definition 3 (Geometric representation of the determinant 2D).

det : G(R2) −→ R
u 󰀁−→ u‡u, (11)

where u‡ is

Definition 4 (Clifford conjugate 2D).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2. (12)

For example,

detu = (a− x− b)(a+ x+ b) (13)

= a2 − x2 − y2 + b2 (14)

= det

󰀗
a+ x −b+ y
b+ y a− x

󰀘
(15)

Finally, we define the Clifford transpose.

Definition 5 (2D Clifford transpose). The Clifford transpose is the geometric
analog to the conjugate transpose, interpreted as a transpose followed by an
element-by-element application of the complex conjugate. Likewise, the Clifford
transpose is a transpose followed by an element-by-element application of the
Clifford conjugate.

7



󰀵

󰀹󰀹󰀷

u00 . . . u0n

...
. . .

...
um0 . . . umn

󰀶

󰀺󰀺󰀸

‡

=

󰀵

󰀹󰀹󰀷

u‡
00 . . . u‡

m0
...

. . .
...

um0 . . . u‡
nm

󰀶

󰀺󰀺󰀸 (16)

If applied to a vector, then

󰀵

󰀹󰀹󰀷

v1

...
vm

󰀶

󰀺󰀺󰀸

‡

=
󰁫
v‡
1 . . .v‡

m

󰁬
(17)

2.3 Geometric representation in 3+1D

Let G(R3,1) be the 3+1D geometric algebra over the real set.
A general multivector of G(R3,1) can be written as:

u = a+ x+ f + v + b, (18)

where a is a scalar, x is a vector, f is a bivector, v is a pseudo-vector, and
b is a pseudo-scalar.

Similarly, each multivector has a structure-preserving (addition/multiplication)
matrix representation.

The multivectors of G(R3,1) are represented as follows:

Definition 6 (4D geometric representation).

a+ tγ0 + xγ1 + yγ2 + zγ3

+ f01γ0 ∧ γ1 + f02γ0 ∧ γ2 + f03γ0 ∧ γ3 + f23γ2 ∧ γ3 + f13γ1 ∧ γ3 + f12γ1 ∧ γ2

+ vtγ1 ∧ γ2 ∧ γ3 + vxγ0 ∧ γ2 ∧ γ3 + vyγ0 ∧ γ1 ∧ γ3 + vzγ0 ∧ γ1 ∧ γ2

+ bγ0 ∧ γ1 ∧ γ2 ∧ γ3

∼=

󰀵

󰀹󰀹󰀹󰀷

a+ x0 − if12 − iv3 f13 − if23 + v2 − iv1 −ib+ x3 + f03 − iv0 x1 − ix2 + f01 − if02
−f13 − if23 − v2 − iv1 a+ x0 + if12 + iv3 x1 + ix2 + f01 + if02 −ib− x3 − f03 − iv0
−ib− x3 + f03 + iv0 −x1 + ix2 + f01 − if02 a− x0 − if12 + iv3 f13 − if23 − v2 + iv1

−x1 − ix2 + f01 + if02 −ib+ x3 − f03 + iv0 −f13 − if23 + v2 + iv1 a− x0 + if12 − iv3

󰀶

󰀺󰀺󰀺󰀸

(19)

Thus, the trace of u is a.
In 3+1D, we define the determinant solely using the constructs of geometric

algebra[4].
The determinant of u is
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Definition 7 (3+1D geometric representation of determinant).

det : G(R3,1) −→ R (20)

u 󰀁−→ ⌊u‡u⌋3,4u‡u, (21)

where u‡ is

Definition 8 (3+1D Clifford conjugate).

u‡ := 〈u〉0 − 〈u〉1 − 〈u〉2 + 〈u〉3 + 〈u〉4, (22)

and where ⌊u⌋{3,4} is the blade-conjugate of degrees three and four (the plus
sign is reversed to a minus sign for blades 3 and 4)

⌊u⌋{3,4} := 〈u〉0 + 〈u〉1 + 〈u〉2 − 〈u〉3 − 〈u〉4. (23)

3 Result

3.1 The entropy of complex-phase measurements

In this subsection, which serves as an introductory example, we recover non-
relativistic quantum mechanics using the Lagrange multiplier method and a
linear constraint on the entropy.

As previously mentioned, the relative Shannon entropy (in base e) is applied
instead of the Boltzmann entropy to achieve the aforementioned goal.

S = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
(24)

In statistical mechanics, we use scalar measurement constraints on the en-
tropy, such as energy and volume meters, which are sufficient for recovering
the Gibbs ensemble. However, applying such scalar measurement constraints is
insufficient to recover quantum mechanics.

A complex measurement constraint, an invariant for a complex phase, is used
to overcome this limitation. It is defined1 as

tr

󰀥
0 −b

b 0

󰀦
=

󰁛

q∈Q
ρ(q) tr

󰀗
0 −b(q)

b(q) 0,

󰀘
(25)

where

󰀗
a(q) −b(q)
b(q) a(q)

󰀘
∼= a(q)+ ib(q) is the matrix representation of the com-

plex numbers.

1We may wonder why we take n = 1 (in Equation ??) if the matrix is 2 × 2. Here, we
only use the imaginary part of the complex numbers a + ib |a→0= ib, making the constraint
one-dimensional.
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Similar to energy or volume meters, linear instruments produce a sequence of
measurements that converge to an expectation value but with phase invariance.
In our framework, this phase invariance originates from the trace.

The Lagrangian equation that maximizes the entropy subject to the complex
measurement constraint is

L = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
+ α

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ τ

󰀳

󰁃tr

󰀥
0 −b

b 0

󰀦
−

󰁛

q∈Q
ρ(q) tr

󰀗
0 −b(q)

b(q) 0

󰀘󰀴

󰁄

(26)

This equation is maximized for ρ by imposing the condition ∂L
∂ρ(q) = 0. The

following results are obtained:

∂L
∂ρ(q)

= − ln
ρ(q)

p(q)
− 1− α− τ tr

󰀗
0 −b(q)

b(q) 0

󰀘
(27)

0 = ln
ρ(q)

p(q)
+ 1 + α+ τ tr

󰀗
0 −b(q)

b(q) 0

󰀘
(28)

=⇒ ln
ρ(q)

p(q)
= −1− α− τ tr

󰀗
0 −b(q)

b(q) 0

󰀘
(29)

=⇒ ρ(q) = p(q) exp(−1− α) exp

󰀣
−τ tr

󰀗
0 −b(q)

b(q) 0

󰀘󰀤
(30)

=
1

Z(τ)
p(q) det exp

󰀣
−τ

󰀗
0 −b(q)

b(q) 0

󰀘󰀤
, (31)

where Z(τ) is obtained as:

1 =
󰁛

q∈Q
p(q) exp(−1− α) exp

󰀣
−τ tr

󰀗
0 −b(q)

b(q) 0

󰀘󰀤

(32)

=⇒
󰀃
exp(−1− α)

󰀄−1
=

󰁛

q∈Q
p(q) exp

󰀣
−τ tr

󰀗
0 −b(q)

b(q) 0

󰀘󰀤
(33)

Z(τ) :=
󰁛

q∈Q
p(q) det exp

󰀣
−τ

󰀗
0 −b(q)

b(q) 0.

󰀘󰀤
(34)

The exponential of the trace is equal to the determinant of the exponential
according to the relation det expA ≡ exp trA.

Finally, we obtain
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ρ(τ, q) =
1

Z(τ)
p(q) det exp

󰀣
−τ

󰀗
0 −b(q)

b(q) 0

󰀘󰀤
(35)

∼= p(q)| exp−iτb(q)|2 Born rule (36)

Renaming τ → t/󰄁 and b(q) → H(q) recovers the familiar form of

ρ(q) =
1

Z
p(q)

󰀏󰀏󰀏exp
󰀃
−itH(q)/󰄁

󰀄󰀏󰀏󰀏
2

. (37)

or

ρ(q) =
1

Z

󰀏󰀏ψ(q)
󰀏󰀏2 , where ψ(q) = exp

󰀃
−itH(q)/󰄁

󰀄
ψ0(q). (38)

where |ψ0(q)|2 = p(q) is the initial preparation.
We can show that all three Dirac Von–Neumann axioms and the Born rule

are satisfied, revealing the possible origin of quantum mechanics as the solution
to an optimization problem on the entropy of linear measurements.

From (38), we can identify the wavefunction as a vector of some orthogonal
space (here, a complex Hilbert space), and the partition function as its inner
product, expressed as:

Z = 〈ψ|ψ〉 . (39)

As the result is automatically normalized by the entropy-maximization pro-
cedure, the physical states are associated with the unit vectors, and the proba-
bility of any particular state is given by

ρ(q) =
1

〈ψ|ψ〉 (ψ(q))
†ψ(q). (40)

Finally, any self-adjoint matrix, defined as 〈Oψ|φ〉 = 〈ψ|Oφ〉, will corre-
spond to a real-valued statistical mechanics observable if measured in its eigen-
basis, thereby completing the equivalence.

We also note that τ emerges here for the same reason that T , the tem-
perature, emerges in ordinary statistical mechanics — as Lagrange multipliers.
Here, τ is the real parameter of the one-parameter group that maps a matrix
to a topological group: exp τM → G. Mathematically, it corresponds to a flow.
Thus, we name τ the entropic flow (of time).
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3.2 The entropy of all linear measurements

Here, we use the linear measurement constraint in its full generality:

1

n
trM =

󰁛

q∈Q
ρ(q)

1

n
trM(q), (41)

where M(q) is an arbitrary n× n real matrix.
The Lagrange equation used to maximize the entropy under this constraint

is expressed as:

L = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
+ α

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ τ

󰀳

󰁃 1

n
trM−

󰁛

q∈Q
ρ(q)

1

n
trM(q)

󰀴

󰁄 ,

(42)

where α and τ are the Lagrange multipliers.
Similarly, we maximize Equation (55) for ρ using the criterion ∂L

∂ρ(q) = 0 as

follows:

∂L
∂ρ(q)

= − ln
ρ(q)

p(q)
− 1− α− τ

1

n
trM(q) (43)

0 = ln
ρ(q)

p(q)
+ 1 + α+ τ

1

n
trM(q) (44)

=⇒ ln
ρ(q)

p(q)
= −1− α− τ

1

n
trM(q) (45)

=⇒ ρ(q) = p(q) exp(−1− α) exp

󰀕
−τ

1

n
trM(q)

󰀖
(46)

=
1

Z(τ)
p(q) det exp

󰀕
−τ

1

n
M(q)

󰀖
(47)

where Z(τ) is obtained as

1 =
󰁛

q∈Q
p(q) exp(−1− α) exp

󰀕
−τ tr

1

n
M(q)

󰀖
(48)

=⇒
󰀃
exp(−1− α)

󰀄−1
=

󰁛

q∈Q
p(q) exp

󰀕
−τ tr

1

n
M(q)

󰀖
(49)

Z(τ) :=
󰁛

q∈Q
p(q) det exp

󰀕
−τ

1

n
M(q)

󰀖
(50)

The resulting probability measure is

12



ρ(q, τ) =
1

Z(τ)
p(q) det exp

󰀕
−τ

1

n
M(q)

󰀖
, (51)

where

Z(τ) =
󰁛

q∈Q
p(q) det exp

󰀕
−τ

1

n
M(q)

󰀖
. (52)

Finally, we can pose

ρ(q, τ) = detψ(q, τ), where ψ(q, τ) = exp

󰀕
−τ

1

n
M(q)

󰀖
ψ0(q) (53)

Here, the determinant acts as a geometric Born rule, connecting, in this
case, a geometric amplitude to a real-valued probability.

The sophistication of the geometric amplitude and determinant acting as a
geometric Born rule will provide us with the platform to support fundamental
physics.

3.3 The entropy of all geometric measurements

We now use the geometric measurement constraint:

1

n
tru =

󰁛

q∈Q
ρ(q)

1

n
tru(q), (54)

where u(q) is an multivector of G(Rp,q), where p+ q = n.
The Lagrange equation used to maximize the entropy under this constraint

is expressed as:

L = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
+ α

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ τ

󰀳

󰁃 1

n
tru−

󰁛

q∈Q
ρ(q)

1

n
tru(q)

󰀴

󰁄 ,

(55)

where α and τ are the Lagrange multipliers.
Similarly, we maximize Equation (55) for ρ using the criterion ∂L

∂ρ(q) = 0.

The result is

ρ(q, τ) =
1

Z(τ)
p(q) det exp

󰀕
−τ

1

n
u(q)

󰀖
, (56)
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where

Z(τ) =
󰁛

q∈Q
p(q) det exp

󰀕
−τ

1

n
u(q)

󰀖
. (57)

3.4 Continuum case

In his original paper, Claude Shannon did not derive the differential entropy as
a theorem: instead, he posited that the discrete entropy ought to be extended
by replacing the sum with the integral:

−
󰁛

q∈Q
ρ(q) ln ρ(q) → −

󰁝

R
ρ(x) ln ρ(x) dx (58)

Unfortunately, it was later discovered that the differential entropy is not al-
ways positive, and neither is it invariant under a change of parameters. Specif-
ically, it transforms as follows:

−
󰁝

R
ρ(x) ln ρ(x) dx →−

󰁝

R
ρ̃(y(x))

dy

dx
ln

󰀕
ρ̃(y(x))

dy

dx

󰀖
dx (59)

= −
󰁝

R
ρ̃(y) ln

󰀕
ρ̃(y(x))

dy

dx

󰀖
dy (60)

Furthermore, due to an argument by Edwin Thompson Jaynes[5, 6], it is
known not to be the correct limiting case of the Shannon entropy. Rather, the
limiting case is the relative entropy:

S = −
󰁝

R
ρ(x) ln

ρ(x)

p(x)
dx (61)

where p(x) is the initial preparation.
The relative entropy, unlike the differential entropy, is invariant with respect

to a change of parameter:

−
󰁝

R
ρ(x) ln

ρ(x)

p(x)
dx →−

󰁝

R
ρ̃(y(x))

dy

dx
ln

ρ̃(y(x)) dydx
p̃(y(x)) dydx

dx (62)

= −
󰁝

R
ρ̃(y) ln

ρ̃(y)

p̃(y)
dy (63)

Let us also show that the normalization constraint is invariant with respect
to a change of parameter:

14



󰁝

R
ρ(x) dx →

󰁝

R
ρ̃(y(x))

dy

dx
dx (64)

=

󰁝

R
ρ̃(y) dy (65)

Let us now investigate the differential observable. A differential observable
is typically formulated as

O =

󰁝

R
O(x)ρ(x) dx (66)

But, this expression is not invariant with respect to a change of parameter:

󰁝

R
O(x)ρ(x) dx →

󰁝

R
Õ(y(x))

dy

dx
ρ̃(y(x))

dy

dx
dx (67)

=

󰁝

R
Õ(y)ρ̃(y(x))

dy

dx
dy (68)

To correct this, we now introduce the relative (with respect to a reference)
observable. For instance, if we stretch space by a factor of 2: x → 2x, then
the reference must also be stretched by the same amount for the observable
to remain invariant. The consequence is that we observe the ratio between a
quantity and its reference:

M/R =

󰁝

R

M(x)

R(x)
ρ(x) dx (69)

Where R is the reference and the ratio O = M/R is observable. We now
show that it is invariant with respect to a change of parameter:

󰁝

R

M(x)

R(x)
ρ(x) dx →

󰁝

R

M̃(y(x))dydx
R̃(y(x))dydx

ρ(y(x))
dy

dx
dx (70)

=

󰁝

R

M̃(y)

R̃(y)
ρ(y) dy (71)

With these definitions, the Lagrange equation becomes:

L = −
󰁝

R
ρ(x) ln

ρ(x)

p(x)
dx+ α

󰀕
1−

󰁝

R
ρ(x) dx

󰀖
+ τ

󰀕
1

n
tr

u

r
−
󰁝

R

1

n
tr

u(x)

r(x)
ρ(x) dx

󰀖

(72)

Maximizing this equation with respect to ρ gives
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ρ(x) =
1

Z(τ)
p(x) det exp

󰀕
− 1

n
τ
u(x)

r(x)

󰀖
(73)

where

Z(τ) =

󰁝

R
p(q) det exp

󰀕
− 1

n
τ
u(x)

r(x)

󰀖
dx (74)

Now ρ(x), including the observables it supports, is invariant with respect to
a change of parameter:

󰁕 b

a
p(x) det exp

󰀓
− 1

nτ
u(x)
r(x)

󰀔
dx

󰁕
R p(x) det exp

󰀓
− 1

nτ
u(x)
r(x)

󰀔
dx

→

󰁕 b

a
p̃(y(x))dydx det exp

󰀕
− 1

nτ
ũ(y(x)) dy

dx

r̃(y(x)) dy
dx

󰀖
dx

󰁕
R p̃(y(x))dydx det exp

󰀕
− 1

nτ
ũ(y(x)) dy

dx

r̃(y(x)) dy
dx

󰀖
dx

(75)

=

󰁕 b

a
p̃(y) det exp

󰀓
− 1

nτ
ũ(y)
r̃(y)

󰀔
dx

󰁕
R p̃(y) det exp

󰀓
− 1

nτ
ũ(y)
r̃(y)

󰀔
dy

(76)

We can now generalize this result to a manifold.
Let X4 be a world manifold. We can write the probability density as follows:

ρ(x, y, z, t) |ba=
1

Z(τ)

󰁝 b

a

p(x, y, z, t) det exp

󰀕
−1

4
τ
u(x, y, z, t)

r(x, y, z, t)

󰀖󰁳
|g| dx dy dz dt

(77)

where |g| is the absolute value of the determinant of the matrix representa-
tion of the metric tensor on the manifold.

Finally, we can define a wavefunction

φ(x, y, z, t) = exp

󰀕
−1

4
τ
u(x, y, z, t)

r(x, y, z, t)

󰀖
φ0(x, y, z, t) (78)

where det
󰀃
φ0(x, y, z, t)

󰀄
= p(x, y, z, t).

4 Analysis

This section analyses the main result.
We introduce the algebra of geometric observables applicable to the geo-

metric wavefunction. The 2D definition of algebra constitutes a special case
reminiscent of the definitions of ordinary quantum mechanics yet includes grav-
ity. The 3+1D case is significantly more sophisticated than the 2D case and is
elucidated immediately after the 2D case analysis.
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4.1 Axiomatic definition of the algebra in 2D

Let V be an m-dimensional vector space over G(R2).
A subset of vectors in V forms an algebra of observables A(V) if the following

holds:

A) ∀ψ ∈ A(V), the sesquilinear map

〈·, ·〉 : V× V −→ G(R2)

〈u,v〉 󰀁−→ u‡v (79)

is positive-definite such that for ψ ∕= 0, 〈ψ,ψ〉 > 0

B) ∀ψ ∈ A(V). Then, for each element ψ(q) ∈ ψ, the function

ρ(ψ(q)) =
1

〈ψ,ψ〉ψ(q)
‡ψ(q) (80)

is either positive or equal to zero.

We note the following comments and definitions:

• From A) and B), it follows that ∀ψ ∈ A(V), the probabilities sum up to
unity:

󰁛

ψ(q)∈ψ

ρ(ψ(q)) = 1 (81)

• ψ is called a physical state.

• 〈ψ,ψ〉 is called the partition function of ψ.

• If 〈ψ,ψ〉 = 1, then ψ is called a unit vector.

• ρ(q) is called the probability measure (or generalized Born rule) of ψ(q).

• The set of all matrices T acting on ψ as Tψ → ψ′, such that the sum of
probabilities remains normalized.

〈Tψ,Tψ〉 = 〈ψ,ψ〉 (82)

are the physical transformations of ψ.
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• A matrix O such that ∀u ∈ V and ∀v ∈ V:

〈Ou,v〉 = 〈u,Ov〉 (83)

is called an observable.

• The expectation value of an observable O is

〈O〉 = 1

〈ψ,ψ〉 〈Oψ,ψ〉 (84)

4.2 Geometric self-adjoint operator in 2D

The general case of an observable in 2D is shown in this section. A matrix O is
observable if it is a self-adjoint operator defined as:

〈Oφ,ψ〉 = 〈φ,Oψ〉 (85)

∀φ ∈ V and ∀ψ ∈ V.

Setup: Let O =

󰀗
o00 o01

o10 o11

󰀘
be an observable.

Let φ and ψ be two two-state multivectors φ =

󰀗
φ1

φ2

󰀘
and ψ =

󰀗
ψ1

ψ2

󰀘
. Here,

the components φ1, φ2, ψ1, ψ2, o00, o01, o10, o11 are multivectors of G(R2).

Derivation: 1. Calculate 〈Oφ,ψ〉:

2〈Oφ,ψ〉 = (o00φ1 + o01φ2)
‡ψ1 +ψ‡

1(o00φ1 + o01φ2)

+ (o10φ1 + o11φ2)
‡ψ2 +ψ‡

2(o10φ1 + o11φ2) (86)

= φ1
‡o‡

00ψ1 + φ‡
2o

‡
01ψ1 +ψ‡

1o00φ1 +ψ‡
1o01φ2

+ φ‡
1o

‡
10ψ2 + φ‡

2o
‡
11ψ2 +ψ‡

2o10φ1 +ψ‡
2o11φ2 (87)

2. Next, calculate 〈φ,Oψ〉:

2〈φ,Oψ〉 = φ‡
1(o00ψ1 + o01ψ2) + (o00ψ1 + o01ψ2)

‡φ1

+ φ‡
2(o10ψ1 + o11ψ2) + (o10ψ1 + o11ψ2)

‡φ1 (88)

= φ‡
1o00ψ1 + φ‡

1o01ψ2 +ψ‡
1o

‡
00φ1 +ψ‡

2o
‡
01φ1

+ φ‡
2o10ψ1 + φ‡

2o11ψ2 +ψ‡
1o

‡
10φ1 +ψ‡

2o
‡
11φ1 (89)
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To realize 〈Oφ,ψ〉 = 〈φ,Oψ〉, the following relations must hold:

o‡
00 = o00 (90)

o‡
01 = o10 (91)

o‡
10 = o01 (92)

o‡
11 = o11. (93)

Therefore, O must be equal to its own Clifford transpose, indicating that O
is an observable if

O‡ = O, (94)

which is the geometric generalization of the self-adjoint operator O† = O of
complex Hilbert spaces.

4.3 Geometric spectral theorem in 2D

The application of the spectral theorem to O‡ = O such that its eigenvalues are
real is shown below:

Consider

O =

󰀗
a00 a− xx̂1 − yx̂2 − bx̂12

a+ xx̂1 + yx̂2 + bx̂12 a11

󰀘
, (95)

Then O‡ is

O‡ =

󰀗
a00 a− xx̂1 − yx̂2 − bx̂12

a+ xx̂1 + yx̂2 + bx̂12 a11

󰀘
, (96)

It follows that O‡ = O
This example is the most general 2× 2 matrix O such that O‡ = O.
The eigenvalues are obtained as:

0 = det(O− λI) = det

󰀗
a00 − λ a− xx̂1 − yx̂2 − bx̂12

a+ xx̂1 + yx̂2 + bx̂12 a11 − λ

󰀘
, (97)

This implies that

0 = (a00 − λ)(a11 − λ)− (a− xx̂1 − yx̂2 − bx̂12)(a+ xx̂1 + yx̂2 + bx̂12 + a11)
(98)

0 = (a00 − λ)(a11 − λ)− (a2 − x2 − y2 + b2), (99)
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Finally,

λ = {1
2

󰀓
a00 + a11 −

󰁳
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

󰀔
, (100)

1

2

󰀓
a00 + a11 +

󰁳
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

󰀔
} (101)

The roots would be complex if a2−x2−y2+b2 < 0. Since a2−x2−y2+b2 is
the determinant of the multivector, the complex case is ruled out for orientation-
preserving multivectors. Consequently, it follows O‡ = O constitutes an observ-
able with real-valued eigenvalues for orientation-preserving multivectors.

4.4 Invariant transformations in 2D

A left action on the wavefunctionT |ψ〉 connects to the bilinear form as 〈ψ|T‡T |ψ〉.
The invariance requirement on T is

〈ψ|T‡T |ψ〉 = 〈ψ|ψ〉 . (102)

Therefore, we are interested in the group of matrices that follow

T‡T = I. (103)

Let us consider a two-state system, with a general transformation repre-
sented by

T =

󰀗
u v
w x

󰀘
, (104)

where u, v, w, x are the 2D multivectors.
The expression T‡T is

T‡T =

󰀥
v‡ u‡

w‡ x‡

󰀦 󰀗
v w
u x

󰀘
=

󰀥
v‡v + u‡u v‡w + u‡x
w‡v + x‡u w‡w + x‡x

󰀦
(105)

For T‡T = I , the following relations must hold:

v‡v + u‡u = 1 (106)

v‡w + u‡x = 0 (107)

w‡v + x‡u = 0 (108)

w‡w + x‡x = 1 (109)
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This is the case if

T =
1√

v‡v + u‡u

󰀥
v u

−eϕu‡ eϕv‡

󰀦
, (110)

where u, v are the 2D multivectors, and eϕ is a unit multivector.
Comparatively, the unitary case is obtained when the vector part of the

multivector vanishes, i.e., x → 0, and we obtain

U =
1󰁳

|a|2 + |b|2

󰀥
a b

−eiθb† eiθa†

󰀦
. (111)

Here T is the geometric generalization (in 2D) of unitary transformations.

4.5 Gravity in 2D

Roger Penrose argued ”that the case for gravitizing quantum theory is at least
as strong as that for quantizing gravity”[7].

Gravitizing the quantum (rather than quantizing gravity) is the direction our
model leads us in. Indeed, we have attempted no changes to general relativity.
Instead, our entropy maximization procedure produced a wavefunction valued
in the orientation-preserving general linear group, whose geometric flexibility
exceeds the familiar unitary wavefunction. It is within this extra flexibility that
we will find gravity.

We will now investigate the quotient bundle associated with the structure
reduction from GL+(2,R) to SO(2).

Let X2 be a smooth orientable real-valued manifold in 2D. We consider its
tangent bundle TX and its associated frame bundle FX. Since X2 is orientable,
its structure group is GL+(2,R). The action by our wavefunction, valued in
expG(R2) ∼= expM(2,R) generates GL+(2,R), and is thus on FX. We now
consider a reduction of the structure group of FX to SO(2).

Let us begin by investigating the cosets of SO(2) in GL+(2,R). Let g1 ∈
GL+(2,R), g2 ∈ GL+(2,R) and s ∈ SO(2). We now identify the relation
g2 = g1s. We also note gT2 = sT gT1 . Finally, we note the product g2g

T
2 =

g1ss
T gT1 =⇒ g2g

T
2 = g1g

T
1 . Since g1g

T
1 and g2g

T
2 are symmetric positive-

definite 2×2 matrices, one verifies a diffeomorphism between GL+(2,R)/SO(2)
and the inner products.

The global section of the quotient bundle FX/SO(2) is a tetrad field ha
µ(x)

and it associates to a Riemannian metric on X2 via the identity gµν = ha
µh

b
νηab.

The connection that preserves the structure SO(2) across the manifold are the
metric connections[8], and with the additional requirement of no torsion, the
connections reduce to the Levi-Civita connection. It has been shown recently[9]
that the Goldstone fields associated with the quotient bundle have enough de-
grees of freedom to create a metric and a covariant derivative. Finally, the frame
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bundle is a natural bundle that admits general covariant transformations, which
are the symmetries of the gravitation theory on X2[10].

In this work, we have merely maximized the entropy of all possible geometric
measurements, and we have arrived, without introducing any other assumptions,
at a general linear quantum theory holding in the GL+(2,R) group, whose
symmetry breaks into the theory of gravity (FX/SO(2)) and into a quantum
theory of the special orthogonal group (valued in SO(2)) which we will now
investigate.

4.6 Schrödinger equation in G(R2)

First, let us recall that the standard Schrödinger equation can be derived as
follows.

In the bra-ket notation, we recall that a one-parameter group evolves as
follows:

exp(−itH)
󰀏󰀏ψ(0)

󰀎
=

󰀏󰀏ψ(t)
󰀎
. (112)

Thus, an infinitesimal displacement of t is obtained as follows:

exp(−iδtH)
󰀏󰀏ψ(τ)

󰀎
=

󰀏󰀏ψ(τ + δτ)
󰀎
. (113)

Now, we approximate the exponential into a power series as

exp(−iδtH)
󰀏󰀏ψ(τ)

󰀎
≈ 1− iδtH

󰀏󰀏ψ(t)
󰀎
. (114)

The process is continued as follows:

(1− iδtH)
󰀏󰀏ψ(t)

󰀎
=

󰀏󰀏ψ(t+ δt)
󰀎

(115)
󰀏󰀏ψ(τ)

󰀎
− iδtH

󰀏󰀏ψ(t)
󰀎
=

󰀏󰀏ψ(t+ δt)
󰀎

(116)

−iδtH
󰀏󰀏ψ(t)

󰀎
=

󰀏󰀏ψ(t+ δt)
󰀎
−
󰀏󰀏ψ(t)

󰀎
(117)

−iH
󰀏󰀏ψ(t)

󰀎
=

󰀏󰀏ψ(t+ δt)
󰀎
−
󰀏󰀏ψ(t)

󰀎

δt
(118)

−iH
󰀏󰀏ψ(t)

󰀎
=

d
󰀏󰀏ψ(t)

󰀎

dt
. (119)

which is the Schrödinger equation.
We now return to our model.
Taking an arbitrary multivector u = a+x+b, we now perform the elimina-

tion a → 0,x → 0. The wavefunction, the observables, and the transformation
matrix T become valued in 〈G(R2)〉2 (which generates SO(2)), and consequently
the Stone theorem on one-parameter groups applies. We obtain

22



T(τ) |a→0,x→0= exp(iτO) (120)

where

(O‡ = O) |a→0,x→0 =⇒ O† = O (121)

The result has the same form as the Schrödinger equation (119):

−1

2
iO

󰀏󰀏ψ(τ)
󰀎
=

d
󰀏󰀏ψ(τ)

󰀎

dτ
, (122)

and the wavefunction is ψ(τ) = exp
󰀃
−τ 1

2 iO
󰀄

Compared to the Schrödinger equation, here i is not an imaginary unit but
a rotor in 2D. We recall that i = x̂1x̂2 and that rotors R = exp

󰀃
1
2θi

󰀄
are

exponentials of bivectors.
We thus arrived at a quantum theory of the special orthogonal group, where

the wavefunction defines the action on a vector, as follows:

ψ‡(τ)x̂0ψ(τ) = exp

󰀕
τ
1

2
iB

󰀖
x̂0 exp

󰀕
−τ

1

2
iB

󰀖
(123)

= exp

󰀕
τ
1

2
x̂0x̂1B

󰀖
x̂0 exp

󰀕
−τ

1

2
x̂0x̂1B

󰀖
(124)

where B is the value of O at the origin of the vector x̂0 tangent to the
manifold.

The expression exp
󰀃
τ 1
2 x̂0x̂1B

󰀄
x̂0 exp

󰀃
−τ 1

2 x̂0x̂1B
󰀄
maps x̂0 to a curvilinear

basis e0 via the application of the rotor and its reverse:

exp

󰀕
τ
1

2
x̂0x̂1B

󰀖
x̂0 exp

󰀕
−τ

1

2
x̂0x̂1B

󰀖
= e0(τ) (125)

Finally, in 2D, since Spin(2) = SO(2), and x̂0x̂1 anti-commutes with x̂0, we
can write the above action as a (left) SO(2) action instead of as a joint Spin(2)
action:

exp(τ x̂0x̂1B)x̂0 = e0(τ) (126)

4.7 Metric interference in 2D

We now consider a transformation T‡T = I and a wavefunction |ψ〉 =
󰀗
u
v

󰀘
such

that a multivector u is mapped to a linear combination of two multivectors. Let
us consider this transformation:
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1√
2

󰀗
1 1
−1 1

󰀘 󰀗
u
v

󰀘
=

1√
2

󰀗
u+ v
u− v

󰀘
(127)

We can now investigate the probability:

ρ(u+ v) =
1

Z
det(u+ v), where Z = det(u+ v) + det(u− v) (128)

We proceed as follows:

det(u+ v) = (u+ v)‡(u+ v) (129)

= (u‡ + v‡)(u+ v) (130)

= (u‡u+ u‡v + v‡u+ v‡v) (131)

= detu+ detv + u‡v + v‡u (132)

= detu+ detv + u · v (133)

where we have defined the dot product between multivectors as follows:

u · v = u‡v + v‡u (134)

Since detu > 0 and detv > 0, then u · v is always positive, thereby quali-
fying as a positive-definite inner product, but not greater than either detu or
detv (whichever is greater). Therefore, it also satisfies the conditions of an
interference term capable of destructive and constructive interference.

In the case x → 0, the interference pattern reduces to a form identical to
the unitary case:

det
󰀓
ψ1e

b1 + ψ2e
b2

󰀔
= detψ1 + detψ2 + 2ψ1ψ2e

b1+b2 (135)

= |ψ1|2 + |ψ2|2 + 2ψ1ψ2e
b1+b2 (136)

but, unlike the unitary case, here the interference is valued in SO(2).

4.8 A double-copy algebra of geometric observables in 4D

In 2D, the determinant can be expressed using only the product ψ‡ψ, which can
be interpreted as the inner product of two multivectors. This form allowed us to
extend the complex Hilbert space to a geometric Hilbert space. We then found
that the familiar properties of the complex Hilbert spaces were transferable to
the geometric Hilbert space, eventually yielding a 2D gravitized quantum theory
in the language of geometric algebra.
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Although a similar correspondence exists in 4D, it is less recognizable because
we need a double-copy inner product (i.e., ρ = ⌊φ‡φ⌋3,4φ‡φ) to produce a real-
valued probability in 4D.

Thus, in 4D, we cannot produce an inner product as in the 2D case. The
absence of a satisfactory inner product indicates no Hilbert space in the usual
sense of a complete inner product vector space.

We aim to find a construction that supports the geometric wavefunction in
4D.

To build the right construction, a double-copy inner product of four terms is
devised, superseding the inner product in the Hilbert space, mapping any four
vectors to an element of G(R3,1), and yielding a complete double-copy inner
product vector space — or simply, a double-copy Hilbert space.

We note that the construction will be more familiar than it may first appear.
Indeed, the familiar quantum mechanical features (linear transformations, unit
vectors, and linear superposition in the probability measure, etc.) will be sup-
ported in the construction, and just as it did in 2D, it will also here break into
a familiar inner-product Hilbert space and into a theory of gravity for charged
fermions.

Let V be an m-dimensional vector space over G(R3,1).
A subset of vectors in V forms a double-copy algebra of observables A(V) if

the following holds:

1. ∀φ ∈ A(V), the double-copy inner product form

〈·, ·, ·, ·〉 : V× V× V× V −→ G(R3,1)

〈u,w,y, z〉 󰀁−→
m󰁛

i=1

⌊u‡
iwi⌋3,4y‡i zi (137)

is positive-definite when φ ∕= 0; that is 〈φ,φ,φ,φ〉 > 0

2. ∀φ ∈ A(V), then for each element φ(q) ∈ φ, the function

ρ(φ(q)) =
1

〈φ,φ,φ,φ〉 detφ(q), (138)

is either positive or equal to zero.

We note the following properties, features, and comments:

• From A) and B), it follows that, ∀φ ∈ A(V), and the probabilities sum to
unity.

󰁛

φ(q)∈φ

ρ(φ(q)) = 1 (139)
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• φ is called a physical state.

• 〈φ,φ,φ,φ〉 is called the partition function of φ.

• If 〈φ,φ,φ,φ〉 = 1, then φ is called a unit vector.

• ρ(q) is called the probability measure (or generalized Born rule) of φ(q).

• The set of all matrices T acting on φ such as Tφ → φ′ makes the sum of
probabilities normalized (invariant):

〈Tφ,Tφ,Tφ,Tφ〉 = 〈φ,φ,φ,φ〉 (140)

are the physical transformations of φ.

• A matrix O such that ∀u∀w∀y∀z ∈ V:

〈Ou,w,y, z〉 = 〈u,Ow,y, z〉 = 〈u,w,Oy, z〉 = 〈u,w,y,Oz〉 (141)

is called an observable.

• The expectation value of an observable O is

〈O〉 = 〈Oφ,φ,φ,φ〉
〈φ,φ,φ,φ〉 (142)

4.9 Geometric observables in 4D

In 4D, an observable must satisfy equation 141. For simplicity, let us take m in
equation 153 to be 1. Then,

⌊(Ou)‡w⌋3,4y‡z = ⌊u‡Ow⌋3,4y‡z = ⌊u‡w⌋3,4(Oy)‡z = ⌊u‡w⌋3,4y‡Oz (143)

where u1, w1, y1 and z1 are multivectors.
Let us investigate.
If O contained a vector, bivector, pseudo-vector, or pseudo-scalar, the equal-

ity would not be satisfied as these terms do not commune with the multivectors
and cannot be factored out. The equality is satisfied if O ∈ R. Indeed, as a
real value, O commutes with all multivectors, and hence, can be factored out
to satisfy the equality.

We thus find that the observables are real-valued in the general 4D case.
If we subscribe to the philosophy that real-valued observables are ”classical”,

and operator-valued (or matrix-valued) observables are ”quantum”, we may
prematurely conclude that the 4D case, unlike the 2D, is classical. However,
we will see that the ”quantumness” of the observables emerges as we break the
symmetry.
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4.10 Wavefunction in 3+1D

In the David Hestenes’ notation[11], the 3+1D wavefunction is expressed as:

ψ =
󰁳
ρe−ibR, (144)

where ρ represents a scalar probability density, eib is a complex phase, and
R is a rotor. In David Hestenes’ formulation, τ is a general parametrization and
does not appear to be necessarily a one-parameter group.

Comparatively, our wavefunction in G(R3,1) is:

φ = e−
1
4 τ(a+x+f+v+b)φ0 (145)

To approach David Hestenes’ formulation of the wavefunction, it suffices to
eliminate the terms a → 0, x → 0 and v → 0, and to perform a substitution of
the entries of the double-copy inner product (Equation 153), as follows:

w → u‡ (146)

y → z‡ (147)

As one of the copies is destroyed by the substitution, the double-copy inner
product reduces to an inner product. Furthermore, with the elimination, the
blade-3,4 conjugate is also reduced to the blade-4 conjugate, yielding

〈u,w,y, z〉 → 〈u,u‡, z‡, z〉 ∼= 〈u, z〉 =
m󰁛

i=1

⌊u2
i ⌋2,4(z2i ) (148)

Consequently, our wavefunction φ reduces to

φ2 = e−
1
2 τ(f+b)φ2

0 (149)

This shows that the 3+1D wavefunction (comprising a rotor R(τ) = e−
1
2 τf ,

a pseudo-scalar e−
1
2 τb and a prior probability φ2

0 =
√
ρ) is a sub-structure of

the general G(R3,1) wavefunction.
In this sub-structure, the observables are satisfied when

⌊O⌋2,4 = O (150)

As we recall, in the double-copy inner product case, the observables satisfied
Equation 143 only if they are real-valued. Comparatively, a structure reduction
(a → 0, x → 0,v → 0) has increased the quantity of geometry that is observ-
able. In fact, this equation of observables captures the totality of the remaining
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geometry. The wavefunction is the largest statistical structure in 3+1D that is
entirely observable geometrically.

Let us now analyze the symmetry group of this wavefunction.
First, we note that the term b commutes with f . They can be factored out

as

e−
1
2 τ(f+b)φ2

0 = e−
1
2 τbe−

1
2 τfφ2

0 (151)

Second, the term exp f can be understood as the exponential map from the
bivectors to the Spin+(3, 1) group and the term expb to U(1).

Finally, since Spin+(3, 1)∩expb = {±1}, it must be removed from the group
product[12].

We conclude that the wavefunction corresponds to a one-parameter flow (τ)
of the following group

U(1)× (Spin+(3, 1)/{±1}) ∼= Spinc(3, 1) (152)

4.11 Algebra of geometric observables in 3+1D (broken
symmetry)

Specifically, the substitution Equation 148 yields the following algebra of geo-
metric observables.

Let V be an m-dimensional vector space over G(R3,1).
A subset of vectors in V forms an algebra of observables A(V) if the following

holds:

1. ∀ψ ∈ A(V), the inner product form

〈·, ·〉 : V× V −→ G(R3,1)

〈u,w〉 󰀁−→
m󰁛

i=1

⌊u2
i ⌋2,4w2

i (153)

is positive-definite when ψ ∕= 0; that is 〈ψ,ψ〉 > 0

2. ∀ψ ∈ A(V), then for each element ψ(q) ∈ ψ, the function

ρ(ψ(q)) =
1

〈ψ,ψ〉 detψ(q), (154)

is either positive or equal to zero.

We note the following properties, features, and comments:
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• From A) and B), it follows that, ∀ψ ∈ A(V), and the probabilities sum to
unity.

󰁛

ψ(q)∈ψ

ρ(ψ(q)) = 1 (155)

• ψ is called a physical state.

• 〈ψ,ψ〉 is called the partition function of φ.

• If 〈ψ,ψ〉 = 1, then ψ is called a unit vector.

• ρ(q) is called the probability measure (or generalized Born rule) of ψ(q).

• The set of all matrices T acting on ψ such as Tψ → ψ′ makes the sum
of probabilities normalized (invariant):

〈Tψ,Tψ〉 = 〈ψ,ψ〉 (156)

are the physical transformations of ψ.

• A matrix O such that ∀u∀w ∈ V:

〈Ou,w〉 = 〈u,Ow〉 (157)

is called an observable.

• The expectation value of an observable O is

〈O〉 = 〈Oψ,ψ〉
〈ψ,ψ〉 (158)

4.12 Gravity and electromagnetism in 3+1D

In 2D, we benefited from a coincidence of low dimensions, where the matrix
representation of G(R2) was in M(2,R). As such, our wavefunction generated
GL+(2,R) which acted as the structure group of the frame bundle FX, and
following a structure reduction from GL+(2,R) to SO(2), a tetrad field was
associated with the global section of the quotient bundle FX/SO(2) which led
to a gravitized quantum theory.

In 4D, unlike in 2D where SO(2) = Spin(2), the geometry of the wavefunction
is not in SO but rather in Spinc. And since Spinc is not, in general, in GL+, we
cannot benefit from the same coincidences as in 2D.
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Typically, to reach Spin(p, q) from the structure group GL(p+ q), one would
reduce GL(p+ q) to O(p, q), then lift it to Spin(p, q). Here, however, we will use
a different approach to get the spin connection.

Remarkably, 4D admits a coincidence that will allow us to embed the Spinc(3, 1)
group into the GL+(4,R) group, then take its quotient FX/Spinc(3, 1) without
having to lift; our model already contains what is necessary to take this quotient.

The coincidence comes from the standard classification of real Clifford algebra[13]
and from the fact that exp(f + b) ∼= Spinc(3, 1) ⊂ expG(R3,1). The diagram

G(R3,1) M(4,R)

expG(R3,1) GL+(4,R)

exp

f

exp

f

(159)

commutes by group homomorphisms. Since exp(f + b) ∼= Spinc(3, 1) ⊂
expG(R3,1), the map f embeds Spinc(3, 1) into GL+(4,R). The inclusion of
Spinc(3, 1) in expG(R3,1) is required to break the symmetry into exactly a the-
ory of gravity of charged fermions and into a Spinc(3, 1)-valued quantum theory.
We are now ready.

Let X4 be a world manifold.
We first consider the tangent bundle TX along with its associated frame

bundle FX. Our wavefunction acts on the frame bundle using the exponential
map of multivectors expG(R3,1) ∼= expM(4,R) which generates GL+(4,R).

The desired reduction is from expG(R3,1) to the Spinc(3, 1) group. With its
symmetry reduced, the wavefunction will assign an element of Spinc(3, 1) to each
event x ∈ X4, and it ”lives” in the 3+1D geometric Hilbert space previously
mentioned. The connection that preserves the structure is a Spinc(3, 1) preserv-
ing connection. It relates to a theory of gravity for charged fermions. We note
that since SO(3, 1)×U(1) is a quotient Spinc(3, 1), the cosets are further asso-
ciable with the inner products. Thus, the global section of the quotient bundle
FX/SO(3, 1) associates with a tetrad field that uniquely determines a pseudo-
Riemannian metric. Electromagnetism is also included from the U(1)-bundle.
Finally, the frame bundle is a natural bundle that admits general covariant
transformations, which are the symmetries of the gravitation theory on X4[10].

4.13 Metric interference in 3+1D

A geometric wavefunction would allow a larger class of interference patterns
than complex interference. The geometric interference pattern includes the ways
in which the geometry of a probability measure can interfere constructively or
destructively and includes interference from rotations, boosts, shears, spins, and
dilations.

In the case of 4D metric interference (shown below), the interference pattern
is associated with a superposition of elements of the group Spinc(3, 1), whose
subgroup SO(3, 1) associates to a superposition of inner products in the quotient.
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It is possible that a sensitive Aharonov–Bohm effect experiment on gravity[14]
could detect special cases of the geometric phase and interference patterns iden-
tified in this section.

An interference pattern follows from a linear combination of u and v, and
the application of the determinant:

det(u+ v) = detu+ detv + u · v (160)

The determinants detu and detv are a sum of probabilities, whereas the
dot product term u · v represents the interference term.

Such can be obtained following a transformation of a wavefunction |ψ〉 =󰀗
u
v

󰀘
such that the multivectors are mapped to a linear combination of two

multivectors:

1√
2

󰀗
1 1
−1 1

󰀘 󰀗
u
v

󰀘
=

1√
2

󰀗
u+ v
u− v

󰀘
(161)

The dot product defines a bilinear form.

· : G(Rm,n)× G(Rm,n) −→ R (162)

u · v 󰀁−→ 1

2
(det(u+ v)− detu− detv) (163)

If detu > 0 and detv > 0, then u · v is always positive, thereby qualify-
ing as a positive-definite inner product, but not greater than either detu or
detv (whichever is greater). Therefore, it also satisfies the conditions of an
interference term.

In 2D, the dot product has this form

1

2
(det(u+ v)− detu− detv) (164)

=
1

2

󰀓
(u+ v)‡(u+ v)− u‡u− v‡v

󰀔
(165)

= u‡u+ u‡v + v‡u+ v‡v − u‡u− v‡v (166)

= u‡v + v‡u (167)

In 3+1D, it has this form.

1

2
(det(u+ v)− detu− detv) (168)

=
1

2

󰀓
⌊(u+ v)‡(u+ v)⌋3,4(u+ v)‡(u+ v)− ⌊u‡u⌋3,4u‡u− ⌊v‡v⌋3,4v‡v

󰀔

(169)

=
1

2

󰀓
⌊u‡u+ u‡v + v‡u+ v‡v⌋3,4(u‡u+ u‡v + v‡u+ v‡v)− . . .

󰀔
(170)
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= ⌊u‡u⌋3,4u‡u+ ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u+ ⌊v‡v⌋3,4v‡v − . . . (171)

= ⌊u‡u⌋3,4u‡v + ⌊u‡u⌋3,4v‡u+ ⌊u‡u⌋3,4v‡v

+ ⌊u‡v⌋3,4u‡u+ ⌊u‡v⌋3,4u‡v + ⌊u‡v⌋3,4v‡u+ ⌊u‡v⌋3,4v‡v

+ ⌊v‡u⌋3,4u‡u+ ⌊v‡u⌋3,4u‡v + ⌊v‡u⌋3,4v‡u+ ⌊v‡u⌋3,4v‡v

+ ⌊v‡v⌋3,4u‡u+ ⌊v‡v⌋3,4u‡v + ⌊v‡v⌋3,4v‡u (172)

We now consider simpler interference patterns.
Metric interference in 4D:
As seen previously, the substituted double-copy inner product reduces to an

inner product (Equation 148). The interference pattern[15] is given as follows:

det(u+ v) = ⌊u+ v⌋2,4(u+ v) (173)

= ⌊u⌋2,4(u+ v) + ⌊v⌋2,4(u+ v) (174)

= ⌊u⌋2,4u+ ⌊u⌋2,4v + ⌊v⌋2,4u+ ⌊v⌋2,4v (175)

= detu+ detv + ⌊u⌋2,4v + ⌊v⌋2,4u (176)

Now replacing u = ρue
− 1

2 τbue−
1
2 τfu and v = ρve

− 1
2 τbve−

1
2 τfv

= |ρu|2 + |ρv|2 + ρuρv

󰀓
e

1
2 τbue

1
2 τfue−

1
2 τbve−

1
2 τfv + e

1
2 τbve

1
2 τfve−

1
2 τbue−

1
2 τfu

󰀔

(177)

Due to the presence of f and b, the geometric richness of the interference pat-
tern exceeds that of the 2D case. The term f associates with a non-commutative
interference effect in the interference pattern, which distinguishes it from com-
plex interference.

4.14 Dirac current

David Hestenes[11] defines the Dirac current in the language of geometric alge-
bra as:

j = ψ‡(τ)γ0ψ(τ) = ρ(τ)R‡(τ)γ0R(τ) = ρ(τ)e0(τ) = ρ(τ)v(τ) (178)

where v is the proper velocity.
In our formulation, this relation also holds; the Dirac current represents the

action of the wavefunction on the unit timelike vector in the tangent space on
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X4. Specifically, the Dirac current is a statistically weighted Lorentz action on
γ0:

j = ψ‡γ0ψ (179)

= e−
1
2 τf+

1
2 τbφ0γ0e

1
2 τf+

1
2 τbφ0 (180)

= φ2
0e

− 1
2 τfγ0e

1
2 τf (181)

= ρ(τ)e0(τ) (182)

= ρ(τ)v(τ) (183)

We now have all the tools required to construct particle physics by exhaust-
ing the remaining geometry of our model.

4.15 SU(2) × U(1) group

Our wavefunction transforms as a group under multiplication. We now ask, what
is the most general multivector eu which leaves the Dirac current invariant?

ψ‡(eu)‡γ0e
uψ = ψ‡γ0ψ ⇐⇒ (eu)‡γ0e

u = γ0 (184)

When is this satisfied?
The bases of the bivector part f of u are γ0γ1, γ0γ2, γ0γ3, γ1γ2, γ1γ3, and

γ2γ3. Among these, only γ1γ2, γ1γ3, and γ2γ3 commute with γ0, and the rest
anti-commute; therefore, the rest must be made equal to 0. Finally, the base
γ0γ1γ2γ3 anti-commutes with γ0 and cancels out.

Consequently, the most general exponential multivector of the form eu where
u = f + b which preserves the Dirac current is

eu = exp

󰀕
1

2
F12γ1γ2 +

1

2
F13γ1γ3 +

1

2
F23γ2γ3 +

1

2
b

󰀖
(185)

We can rewrite the bivector basis with the Pauli matrices

γ2γ3 = iσx (186)

γ1γ3 = iσy (187)

γ1γ2 = iσz (188)

b = ib (189)

After replacements, we obtain

eu = exp
1

2
i(F12σz + F13σy + F23σx + b) (190)

The terms F23σx + F13σy + F12σz and b are responsible for SU(2) and U(1)
symmetries, respectively[16, 17].
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4.16 SU(3) group

The invariance transformation identified by the 3+1D algebra of geometric ob-
servables (Equation 156) are T‡T = I, T†T = I and ⌊T⌋2,4T = I. In the first
case, the identified evolution is bivectorial rather than unitary.

As we did for the SU(2) × U(1) case, we ask, in this case, what is the most
general bivectorial evolution that leaves the Dirac current invariant?

f‡γ0f = γ0 (191)

where f is a bivector:

f = F01γ0γ1 + F02γ0γ2 + F03γ0γ3 + F23γ2γ3 + F13γ1γ3 + F12γ1γ2 (192)

Explicitly, the expression f‡γ0f is

f‡γ0f = −fγ0f = (F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12)γ0 (193)

+ (−2F02F12 + 2F03F13)γ1 (194)

+ (−2F01F12 + 2F03F23)γ2 (195)

+ (−2F01F13 + 2F02F23)γ3 (196)

For the Dirac current to remain invariant, the cross-product must vanish:

−2F02F12 + 2F03F13 = 0 (197)

−2F01F12 + 2F03F23 = 0 (198)

−2F01F13 + 2F02F23 = 0 (199)

leaving only

f‡γ0f = (F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12)γ0. (200)

Finally, F 2
01 + F 2

02 + F 2
03 + F 2

13 + F 2
23 + F 2

12 must equal 1.
We note that we can re-write f as a 3-vector with complex components:

f = (F01 + iF23)γ0γ1 + (F02 + iF13)γ0γ2 + (F03 + iF12)γ0γ3 (201)

Then, with the nullification of the cross-product and equating F 2
01 + F 2

02 +
F 2
03+F 2

13+F 2
23+F 2

12 to unity, we can understand the bivectorial evolution when
constrained by the Dirac current to be a realization of the SU(3) group[17].
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4.17 Geometric observables in 6D

Let us now investigate what happens in dimensions higher than 4.
First, let us recap.
The observables in 4D must satisfy a more constraining equality relation

than in 2D. This reduced the geometric expressivity that such observables could
support. Specifically, in 2D, the relation was satisfied for O‡ = O capturing the
full geometry, but was reduced to O ∈ R in 4D, which is a small subset of the
available geometry.

What happens if we increase the dimensions even further to 6 and above?
At dimensions of 6 or above, the corresponding observable relation cannot

be satisfied. To see why, we look at the results[18] of Acus et al. regarding
the 6D multivector norm. The authors performed an exhaustive computer-
assisted search for the geometric algebra expression for the determinant in 6D;
as conjectured, they found no norm defined via self-products. The norm is a
linear combination of self-products.

The system of linear equations is too long to list in its entirety; the author
gives this mockup:

a40 − 2a20a
2
47 + b2a

2
0a

2
47p412p422 + 〈72 monomials〉 = 0 (202)

b1a
3
0a52 + 2b2a0a

2
47a52p412p422p432p442p452 + 〈72 monomials〉 = 0 (203)

〈74 monomials〉 = 0 (204)

〈74 monomials〉 = 0 (205)

The author then produces the special case of this norm that holds only for
a 6D multivector comprising a scalar and grade 4 element:

s(B) = b1Bf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) (206)

Even in this simplified special case, formulating a linear relationship for
observables is doomed to fail. Indeed, the real portion of the observable cannot
be extracted from the equation. We find that for any function fi and gi, the
coefficient b1 and b2 will frustrate the equality:

b1OBf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) (207)

= b1Bf5(f4(B)f3(f2(B)f1(B))) + b2OBg5(g4(B)g3(g2(B)g1(B))) (208)

Equations 207 and 208 can only be equal if b1 = b2; however, the norm s(B)
requires both to be different. Consequently, the relation for observables in 6D
is unsatisfiable even by real numbers.

Thus, in our framework, the 6D geometry leads to the absence of observables.
Furthermore, since the norms involve more sophisticated systems of linear

equations in higher dimensions, this result is likely to generalize to all dimensions
above 6.
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4.18 Defective probability measure in 3D and 5D

The 3D and 5D cases (and possibly all odd-dimensional cases of higher dimen-
sions) contain a number of irregularities that make them defective to use in this
framework. Let us investigate.

In G(R3), the matrix representation of a multivector

u = a+ xσx + yσy + zσz + qσyσz + vσxσz + wσxσy + bσxσyσz (209)

is

u ∼=
󰀗
a+ ib+ iw + z iq − v + x− iy
iq + v + x+ iy a+ ib− iw − z

󰀘
(210)

and the determinant is

detu = a2 − b2 + q2 + v2 + w2 − x2 − y2 − z2 + 2i(ab− qx+ vy − wz) (211)

The result is a complex-valued probability. Since a probability must be real-
valued, the 3D case is defective in our model and cannot be used. In theory, it
can be fixed by defining a complex norm to apply to the determinant:

〈u,u〉 = (detu)† detu (212)

However, defining such a norm would entail a double-copy inner product of
4 multivectors, but the space is only 3D, not 4D (so why four?). It would also
break the relationship between trace and probability that justified its usage in
statistical mechanics.

Consequently, this case appears to us to be defective.
Perhaps, instead of G(R3) multivectors, we ought to use 3×3 matrices in 3D?

Alas, 3 × 3 matrices do not admit a geometric algebra representation because
they are not isomorphic with G(R3). Indeed, G(R3) has 8 parameters and 3× 3
matrices have 9. 3× 3 matrices are not representable geometrically in the same
sense that 2× 2 matrices are with G(R2).

In G(R4,1), the algebra is isomorphic to complex 4 × 4 matrices. In this
case, the determinant and probability would be complex-valued, making the
case defective. Furthermore, 5 × 5 matrices have 25 parameters, but G(R4,1)
multivectors have 32 parameters.

4.19 Specialness of 3+1D

Our approach to maximizing the entropy of linear measurements is non-defective
in the following dimensions:

• R: This case corresponds to familiar statistical mechanics. The constraints
are scalar E =

󰁓
q∈Q ρ(q)E(q), and the probability measure is the Gibbs

measure ρ(q) = 1
Z(β) exp

󰀃
−βE(q)

󰀄
.
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• C ∼=
󰀗
0 b
−b 0

󰀘
: This case corresponds to familiar non-relativistic quantum

mechanics.

• G(R2): This case corresponds to the geometric quantum theory in 2D. Its
GL+(2) symmetry breaks into a theory of gravity FX/SO(2) and into a
quantum theory valued in SO(2).

• G(R3,1): This case is valid. Like the 2D case, it also corresponds to a
geometric quantum theory. As such, its symmetry will break into a theory
of gravity and a relativistic wavefunction. But unlike the 2D case, the
wavefunction further admits an invariance with respect to the SU(2)×U(1)
and SU(3) gauge groups.

In contrast, our approach is defective in the following dimensions:

• G(R3): In this case, the probability measure is complex-valued.

• G(R4,1): In this case, the probability measure is complex-valued.

• 6D and above: For G(Rn), where n ≥ 6, no observables satisfy the corre-
sponding observable equation, in general.

We may thus say that 5D fails to normalize, and 6D and above fail to satisfy
observables. Consequently, in the general case of our approach, it is the case
that normalizable geometric observables cannot be satisfied beyond 4D. This
suggests an intrinsic limit to the dimensionality of observable geometry.

5 Discussion

We recovered a geometric quantum theory using the tools of statistical me-
chanics to maximize the entropy under the effect of a geometric measurement
constraint. Important to the interpretation, we replaced the Boltzmann en-
tropy with the relative Shannon entropy to do so. We will now discuss the
interpretation of our model in more detail.

Contrary to multiple interpretations of quantum mechanics, the interpre-
tation of statistical mechanics is singular, free of paradoxes, and without a
measurement problem; by necessity, this will be inherited by our interpretation
of quantum mechanics.

Definition 9 (Metrological interpretation). There exist instruments that record
sequences of measurements on systems. These measurements are unique up to a
geometric phase, and the Born rule (including its geometric generalization to the
determinant) is the entropy-maximizing measure constrained by the expectation
eigenvalue of these measurements.

The Lagrange multiplier method, which maximizes the entropy subject to
the geometric measurement constraint, is the mathematical backbone of this
interpretation.
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We now discuss the definition of the measuring apparatus entailed by this
interpretation.

Integrating formally into physics the notion of an instrument or measuring
apparatus has been a long-standing difficulty. One of the pitfalls is attributing
too much “detailing” to this instrument (for instance, defining the instrument as
a macroscopic system that amplifies quantum information), which increases the
risk of capturing only a fraction of all possible instruments in nature. Fractional
capture is to be avoided because the instruments are our only “eyes into nature”;
consequently, the generality of their definition must be on a level similar to the
laws of physics themselves, lest it hampers our chances of deriving the laws of
physics from measurements alone.

In statistical mechanics, instruments and their effects on systems are in-
corporated into mathematical formalism. For instance, an energy or volume
meter can produce a sequence of measurements whose average converges to-
wards an expectation value, constituting a constraint on the entropy. However,
the generalizability of this definition to all physical systems (including quantum
and geometrical) was overlooked. This study capitalized on this definition and
extended it appropriately.

The instrument is defined as follows:

Definition 10 (Instrument/Measuring Apparatus). An instrument, or mea-
suring apparatus, is a device that constrains the entropy of a message of mea-
surements to an expectation eigenvalue (or simply to an expectation value if the
instrument is a scalar constraint).

For instance, a scalar instrument could simply be a rubber balloon constrain-
ing a gas to a given expected volume.

However, nature allows for geometrically richer measurements and instru-
mentations that cannot be expressed with simple “scalar” or “phase-less” in-
struments. For instance, a protractor or boost meter also admits numerical
measurements; however, they also contain geometric phase invariances, such as
the rotational or Lorentz invariance, respectively. These invariances must be
accounted for by the probability measure.

In the metrological interpretation, the existence of such instruments, not
the wavefunction, is taken as axiomatic. The laws of physics are uniquely de-
termined by the geometrical richness (invariance) of the instruments available
in nature.

This study interpreted the trace as the expectation eigenvalue of the eigen-
values of a matrix transformation multiplied by the dimension of the vector
space. Maximizing the entropy under the constraint of this expectation eigen-
value introduces various phase invariances into the resulting probability mea-
sure, consistent with the available measuring apparatuses.

As we have seen, the constraint

tr

󰀥
0 −b

b 0

󰀦
=

󰁛

q∈Q
tr ρ(q)

󰀗
0 −b(q)

b(q) 0

󰀘
(213)
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induces a complex phase invariance into the probability measure ρ(q) =󰀏󰀏󰀏exp
󰀃
−iτb(q)

󰀄󰀏󰀏󰀏
2

, which gives rise to the Born rule and wavefunction.

Moreover, the constraint

1

n
tru =

󰁛

q∈Q
ρ(q)

1

n
tru(q) (214)

induces the full geometric phase invariance in the probability measure ρ(q) =
det exp

󰀃
− 1

nτu(q)
󰀄
. The resulting probability measure supports a geometric

quantum theory.
In each case, we can interpret the constraint as an instrument acting on the

system.
In the complex phase case, we interpret the constraint as an incidence

counter measuring a particle or photon. Moreover, in the geometric case, we
interpret the constraint as a measure that is invariant with respect to natural
transformations, such as measurements of the geometry of spacetime events.

The complete correspondence between an ordinary system of statistical me-
chanics and ours is as follows.

Table 1: Correspondence

Concept Statistical Mechanics Geometric Measurements

Entropy Boltzmann Shannon
Measure Gibbs Born rule
Constraint Energy meter Phase-invariant instrument
Micro-state Energy values Measurement results
Lagrange multiplier Temperature Entropic flow
Experience Ergodic Message

In the correspondence, using the Shannon entropy instead of the Boltzmann
entropy changes the experience from ergodic to a message (in the sense of the
communication theory of Claude Shannon[19]) of measurements. The receipt
of such a message by an observer carries information; it is associated to the
registration of a “click”[20] on a screen or an incidence counter.

Since the message is received by the observer, the experience is not merely
ergodic but actually carries information. As such, we can understand physics
in relation to the information as opposed to entropy. That is, physics can
be understood as the model that maximizes the information associated with
receiving the message. At its most fundamental level, physics is the model of
nature that provably renders geometric measurements maximally informative
to the observer.
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The probabilistic interpretation of the wavefunction via the Born rule is
inherited from statistical mechanics and results from maximizing the entropy
under a geometric measurement constraint.

The wavefunction is also entailed and consequently, is not considered ax-
iomatic. Instead, it is the receipt of a message about the measurements by an
observer, along with the geometric measurement constraint, that is considered
axiomatic.

Specifically, the axioms of quantum mechanics are recoverable as theorems
from the solution ∂L

∂ρ = 0 for ρ, where

L = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
+ λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ τ

󰀳

󰁃 1

n
tru−

󰁛

q∈Q
ρ(q)

1

n
tru(q)

󰀴

󰁄 .

(215)

Due to a failure to produce normalizable observables in most dimensions, the
maximizing solution is sensible only in a few dimensions, including 0D (statis-
tical mechanics), 0+1D (non-relativistic quantum mechanics), 2D, and 3+1D.
In consideration that there are finitely many sensible cases, we propose the
following naming convention:

Table 2: Proposed Naming Convention

Constraint Entailed Quantum Theory

Linear Measurement Constraint M(2,R) General Linear Quantum Theory
- with symmetry breaking to SO(2) Gravitized Quantum Theory

Geometric Measurement Constraint G(R3,1) Geometric Quantum Theory
- with symmetry breaking to Spinc(3, 1) Gravitized Standard Model

Using the naming convention, one would say the general linear quantum
theory breaks to a gravitized quantum theory in FX/SO(2), and the geometric
quantum theory breaks to a gravitized standard model in FX/Spinc(3, 1).

Now, let us discuss the wavefunction collapse problem.
Specifically, the mathematical foundation of quantum mechanics contains

the following axiom: If the measurement of a quantity O on ψ gives the result
on, then the state immediately after the measurement is given by the normalized
projection of ψ onto the eigensubspace of on as

ψ =⇒ Pn |ψ〉󰁳
〈ψ|Pn |ψ〉

(216)

40



The difficulty of providing a mechanism to explain why this occurs is known
as the wavefunction collapse problem.

The measurement-collapse problem is, in our framework, superseded as fol-
lows: Before deriving the wavefunction, measurements are assumed to have been
registered by an instrument and are associated with a geometric measurement
constraint, which is axiomatic. Registering new measurements, in this case,
does not mean that a wavefunction has collapsed but implies that we need to
adjust the constraints and derive a new wavefunction consistent with the new
measurements. Because the wavefunction is derived by maximizing the entropy
constrained by the registered measurements, it never updates from an uncol-
lapsed to a collapsed state. The collapse problem is a symptom of attributing
an axiomatic status to the wavefunction; however, this status belongs to the
instruments and their measurements — not to the wavefunction. As measure-
ments do not update the wavefunction, but rather form the constraints that
define it, the measurement postulate is not part of our model.

Since our knowledge of nature comes from the available instruments, pos-
tulating these instruments (rather than the wavefunction) to be the axioms of
physics makes the mathematics of physics entirely consistent with it being an
empirical science.

The full correspondence is also consistent with the general intuition that
random information must be axiomatic, as, by definition, it cannot be derived
from any earlier principles. Ultimately, it is viable to consider the message of
random measurements, rather than the wavefunction (a derivable mathematical
equation), to be the axiomatic foundation of the theory. As shown, the latter
can be derived from the former but not vice versa.

5.1 Axioms

We propose that the laws of physics are ultimately entailed by the following
minimal axioms related exclusively to measurements and instruments.

Context 1 (Ontology). The experience of the observer in nature is defined as
the receipt of a message m of n measurements:

m = Dom(O)n (217)

1. where O : Q → R is an observable of Q,

2. and where Q is a statistical ensemble.

Axiom 1 (Geometricity). A geometric measuring device constrains the entropy
of the elements of a message of measurement according to:

1

n
tru =

󰁛

q∈Q
ρ(q)

1

n
tru(q) (218)

where tru(q) is an observable (i.e. O(q) = tru(q)), where tru is its average,
and where u corresponds to a multivector of G(Rp,q) such that p+ q = n.
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Theorem 1 (Laws of Physics as a Theorem). Maximizing the entropy of the
elements of a message of measurements constrained by a geometric measuring
device yields the theory of physics that maximizes the information acquired by
the observer from each such measurement:

L = −
󰁛

q∈Q
ρ(q) ln

ρ(q)

p(q)
+ λ

󰀳

󰁃1−
󰁛

q∈Q
ρ(q)

󰀴

󰁄+ τ

󰀳

󰁃 1

n
tru−

󰁛

q∈Q
ρ(q)

1

n
tru(q)

󰀴

󰁄

(219)

Solving for ∂L/∂ρ = 0 implies

ρ(q, τ) =
1

Z(τ)
p(q) det exp

󰀕
−τ

1

n
u(q)

󰀖
, (220)

where

Z(τ) =
󰁛

q∈Q
p(q) det exp

󰀕
−τ

1

n
u(q)

󰀖
. (221)

which, as discussed in this paper, identifies with a general linear quantum
theory in 2D, and in 3+1D with a geometric quantum theory whose princi-
pal symmetry is generated by expG(R3,1). The latter breaks into a gravitized
standard model in FX/Spinc(3, 1) associating to a theory of gravity of charged
fermions and into Spinc(3, 1) associating to a quantum theory whose Dirac cur-
rent is invariant for the SU(3) and SU(2)×U(1) gauge groups. The theory fails
to admit general observables above 4D. We note that no additional assumptions
beyond the Geometricity axiom need to be added to obtain this result as a theo-
rem.

We also note the continuum case given by equation 77.

With this foundation, the pervasive platonic defect of placing laws as ax-
ioms, rather than the measurements they are derived from, is now corrected.
Theoretical physics is, in this formulation, completely consistent with physics
being an empirical science because its laws follow exclusively from the geometric
measurements that are in principle possible.

6 Conclusion

We proposed to maximize the entropy under the constraint of a geometric mea-
surement apparatus. The resulting probability measure supports a geometry
richer than what could previously be supported in either statistical physics or
quantum mechanics. Accommodating all possible geometric measurements en-
tails a geometric wavefunction, for which the Born rule is extended to the deter-
minant. This substantially extends the opportunity to capture all fundamental
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physics within a single framework. The framework produces models for 2D and
4D in which general observables are normalizable. 4D stands out as the largest
geometry that satisfies the conditions for having normalizable observables in the
general case. A gravitized standard model results from the frame bundle FX
of a world manifold, whose structure group is generated by expG(R3,1) (which
is isomorphic to expM(4,R) and as such generates to GL+(4,R) up to isomor-
phism), undergoing symmetry breaking to Spinc(3, 1). The global sections of
the quotient bundle FX/SO(3, 1) identify with a pseudo-Riemannian metric and
the natural bundles to general covariant transformations. The connection is a
Spinc-preserving connection. The groups SU(2)× U(1) and SU(3) are recovered
in the broken symmetry and associated with the invariant transformations un-
der the action of the wavefunction on a unit timelike vector of the tangent space,
yielding the preservation of the Dirac current for these gauge groups. Finally,
an interpretation of quantum mechanics, i.e., the metrological interpretation,
is proposed; the existence of instruments and the measurements they produce
acquire the foundational role, and the wavefunction is derived as a theorem. In
this interpretation, it is considered that an observer receives a message (the-
ory of communication/Shannon entropy) of phase-invariant measurements, and
the probability measure, maximizing the information of this message, is the
geometric wavefunction accompanied by the geometric Born rule. Finally, as
the solution to an optimization problem on entropy, we concluded that physics,
distilled to its conceptually simplest expression, is the model of nature that prov-
ably makes geometric measurements maximally informative to the observer.
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