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Abstract

Here, I produce the mathematically-precise equivalent of the natural
intuition that physics is the product and culmination of the scientific
method. To do so, I first produce a model of science using mathematics,
then I use it to derive the laws of physics by applying the (formalized)
scientific method to the model. Specifically, the laws of physics are derived
as the probability measure that maximizes the quantity of information
produced by the scientific method as the observer traces a path in the
space of all possible experiments. In this space, said probability measure
describes a general linear computation ensemble which is a foundation
sufficient to express all known physics. Since the definitions are purely
mathematical and contain no physical baggage, yet are nonetheless able
to derive the laws of physics, then it follows that the present derivation
of said laws, as it is ultimately the product of the (formalized) scientific
method, is the minimal foundation of physics as well as its philosophical
less controversial formulation. We end with applications of the model to
open problems of physics, and produce testable predictions.
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1 Introduction

In classical philosophy an axiom is a statement which is self-evidently true such
that it is accepted without controversy or question. But this definition has
been retired in modern usage. Any so-called ”self-evident” axiom can also be
posited to be false and either choice of its truth-value yields a different model;
the archetypal example being the parallel line postulate of Euclid, allowing for
hyperbolic/spherical geometry when it is false. Consequently, in modern logic
an axiom is simply a starting point for a premise, and in mathematics an axiom
is a sentence of a language that is held to be true by definition.

A long standing goal of philosophy has been to find necessarily true principles
that could be used as the basis of knowledge. For instance, the universal doubt
method of Descartes had such a goal in mind. The ’justified true belief’ theory
of epistemology is another attempt with a similar goal. But, so far, all such
attempts have exploits; the elimination of which is assumed, at best, to reduce
the theory to a handful of statements, rendering it undesirable as a foundation
to all knowledge.

In epistemology, the Gettier problem[1] is a well known objection to the belief
that knowledge is that which is both true and justified, relating to a family of
counter-examples. All such counter-examples rely on the same exploit; if the
justification is not ’air-tight’ then there exists a case where one is right by pure
luck, even if the claim were true and believed to be justified. For instance, if
one glances at a field and sees a shape in the form of a dog, one might think
he or she is justified in the belief that there is a dog in the field. Now suppose
there is a dog elsewhere in the field but hidden from view. The belief ”there
is a dog in the field” is justified and true, but it is not knowledge because it is
only true by pure luck.

Richard Kirkham[2] proposed to add the criteria of infallibility to the jus-
tification. This eliminates the exploit but it is an unpopular solution because
adding it reduces epistemology to radical skepticism in which almost nothing is
knowledge.

I propose the concept of the universal fact as new candidate to serve as
the foundation to knowledge. Due to their construction universal facts are
sufficiently strong to be infallible, yet are sufficiently expressive to form a Turing
complete theory. Universal facts will the primary subject matter of our model
of science and they are revealed/verified by the scientific method.

1.1 Universal Facts

Many philosophies discusses facts, but it appears they all missed the mark on
what a fact actually is (in terms of a precise exploit-free mathematical defini-
tion). The archetypal example of a fact given in many philosophical textbook:
”1 + 1 = 2”, is in fact not a fact. Here, I will provide what I believe to be the
correct definition of a fact, and since the definition is formal (and is universal of
the computer-theoretical sense) I will use the term universal fact to distinguish
the concept from other definitions.
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Specifically, the sentence ”1 + 1 = 2” halts on some Turing machine, but
not on others and thus is not a universal fact. Instead consider the sentence
PA ⊢ [1 + 1 = 2], to be read as ”Peano’s axioms proves that 1 + 1 = 2”. Such a
statement embeds as a prefix the set of axioms in which it is provable. One can
deny that 1 + 1 = 2 (for example, a trickster could claim binary numbers, in
which case 1+1 = 10), but if one specifies the exact axiomatic basis in which the
claim is provable, a trickster would find it harder to find an exploit. Nonetheless,
even with this improvement, an exploit always exists because in the general case
a trickster can provide a Turing machine for which PA ⊢ [1 + 1 = 2] does not
halt.

If we use the tools of theoretical computer science, and observe an equiva-
lence between facts and programs, we can cure the concept of a fact of all of its
exploits:

Definition 1 (Universal Fact). Let L be the set of all sentences with alphabet
Σ. A universal fact is a pair (TM, p) of sentences from L such that a universal
Turing machine UTM halts for it:

iff UTM(TM, p) halts, then (TM, p) is a universal fact (1)

A universal Turing machine UTM which takes a Turing machine TM and
a sentence p as inputs, will halt iff p halts on TM. Thus the fact that p
halts on TM is indeed a universal fact because it is verifiable on all univer-
sal Turing machine. This definition cures the concept of its exploits. ”I believe
{(TM1, p1), (TM2, p2), . . . , (TMn, pn)} are facts, why? Because I verified that
they halt on a universal Turing machine. You can too, by definition, therefore
I am infallibly justified in my belief in these facts hold and so should you.”

The second objection is that infallible justified true beliefs collapses episte-
mology to radical skepticism, where at best only a handful of statements con-
stitute knowledge. However, the set of all universal facts constitute the entire
domain of the universal Turing machine, and thus the expressiveness of univer-
sal facts must be on par with any Turing complete language. There exists no
greater expressivity for a formal language than Turing completeness.

1.2 Axiomatic foundation of finite theories

We can use universal facts to define a new significantly more flexible foundation
to mathematics, especially when it comes to formal theories that contain finitely
many theorems or sentences. When it comes to formulating a scientific theory
of a finite physical system one can intuit why that would be a desirable feature.
Working with finite theories using the typical tools of mathematics is mostly
ineffective, because all such theories are decidable and thus completely solvable
in principle. Furthermore, even tools such as complexity theory require the size
of the input to be n, allowing for indefinite sizes of input (in principle) to produce
an effective classification system. Instead of defining a mathematical theory as
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a finite system of axioms which typically entails infinitely many theorems, why
not define it as a finite (or in some cases even infinite) set of universal facts?

To distinguish our definition of a formal theory with that of the literature,
we will call our definition a manifest theory.

Definition 2 (Manifest Theory). A manifest theory T is defined as a set of
universal facts:

T := {(TM1, p1), (TM2, p2), . . . } (2)

The set can be either finite or infinite, and it can be either decidable or
non-decidable.

For a manifest theory, universal facts replaces the normal role of both axioms
and theorems and instead form a single verifiable atomic concept constituting
a unit of epistemological knowledge. Let me explicitly point out the difference
between the literature definition of a formal theory and ours: for the former its
theorems are a subset of the sentences of L — whereas for a manifest theory,
its elements are pairs of L× L which halts on a UTM.

Theorem 1 (Incompleteness Theorem). If T = Dom(UTM), then M is recur-
sively enumerable and not decidable. The proof follows from the domain of a
universal Turing machine being non-computable.

Note on the upcoming notation: we will designate f as elements of T, and
π1(f) and π2(f) designate the first and second projection of the tuple f , respec-
tively. Thus π1(f) is the TM associated with f , and π2(f) is the p associated
with f . If applied to a set of tuples, then π1(T) return the set of all p in T and
π2(T) returns the set of all TM in T.

Definition 3 (Valid Sentences). The valid sentences of T are defined as the set
of all p in T:

V := {p : p ∈ π2(T)} (3)

Definition 4 (Atomic Solver). The atomic solvers of T are defined as the set
of all TM in T:

A := {TM : TM ∈ π1(T)} (4)

Definition 5 (Composite Solver). Let r be the output of UTM(TM, p). If r ∈ V,
then the tuple (TM,TMr), where (TMr, r) ∈ T, is a composite solver. The size
of a tuple of composite solvers can extend to any finite number of elements.

Definition 6 (Spread (of a sentence)). The set of all atomic solvers in T in
which a sentence is repeated is called the spread of the sentence:

∀f ∈ T[π2(f) = p =⇒ π1(f) ∈ spread(p,T)] (5)

For instance if T = {(TM1, p1), (TM2, p1)}, then the spread of p1 is {TM1,TM2}.
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Definition 7 (Scope (of a solver)). The set of valid sentences in T in which a
solver is repeated is called the scope of the solver:

∀f ∈ T[π1(f) = TM =⇒ π2(f) ∈ scope(TM,T)] (6)

for instance if T = {(TM1, p1), (TM1, p2)}, then the scope of TM1 is {p1, p2}.

1.2.1 Connection to finitely axiomatic systems

We can, of course, connect our construction to a finitely axiomatic system:

Definition 8 (Finitely Axiomatic Representation). Let FAS be a finitely ax-
iomatic system, let T be a manifest theory and let solverFAS be a function which
recursively enumerates the theorems of FAS. Then FAS is a finitely axiomatic
representation of T iff:

∀(s1, s2) ∈ L× L [solverFAS(s1, s2) halts iff (s1, s2) ∈ T] (7)

Definition 9 (Domain (of FAS)). Let FAS be a finitely axiomatic system, let T
be a manifest theory and let solverFAS be a function which recursively enumerates
the theorems of FAS. Then the domain of FAS, denoted as Dom(FAS), is the
set of all pairs (s1, s2) ∈ L× L which halts for solverFAS.

Definition 10 (de-facto-isomorphism). Two finitely axiomatic representations
FAS1 and FAS2 are de-facto-isomorphic iff Dom(FAS1) = Dom(FAS2).

Theorem 2 (Principle of Computational Equivalence[3]). If T = Dom(UTM)
then all Turing complete finitely axiomatic system are de-facto-isomorhic rep-
resentations of T. Furthermore, their solver function is a universal Turing
machine. The proof follows because Dom(UTM) includes all universal facts.

1.2.2 Axiomatic information

Although we *can* connect the formulation of a manifest theory to a finitely
axiomatic representation, we will find that it is more advantageous for the pur-
poses of constructing a model of science to study manifest theories using the
formalism of universal facts we have introduced (otherwise we would have just
used finitely axiomatic systems to begin with, right?). We can understand the
elements of any particular manifest theory as having been ’picked’, in some
sense, from the set of all possible universal facts. If the pick is random and
described as a probability measure ρ, we can quantify the quantity of infor-
mation of the pick using the entropy, and thus we can associate the notion of
information to the manifest theory.

Definition 11 (Axiomatic Information). Let D be the domain of a univer-
sal Turing machine D = Dom(UTM) (full theory) or of a subset thereof D ⊂
Dom(UTM) (toy theory). Then, let ρ : D → [0, 1] be a probability measure over
D. Finally, let T be a manifest theory subset of D. The axiomatic information
of a single element of T is quantified as the entropy of ρ:
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S = −
!

q∈D
ρ(q) ln ρ(q) (8)

For instance, a well-known (non-computable) probability measure regarding
a sum of prefix-free programs is the Halting probability[4] of computer science:

Ω =
!

p∈Dom(UTM)

2−|p| =⇒ ρ(p) = 2−|p| (9)

The quantity of axiomatic information of a given manifest theory —and
especially its maximization—, rather than any particular set of axioms, will be
the primary quantity of interest for the production of a maximally informative
theory in this framework.

1.3 Philosophy of facts

Now and before we enter section 2, we will try to ease the transition to a full
blown purely mathematical model of science.

Most are likely to fall in either one of two camps: the world is made of
things or is made of facts. The first option is definitely the mainstream belief,
but the second one nonetheless has a sizeable following. For instance, in the
Tractatus Logico-philosophicus, Wittgenstein produces these two statements:
1) ”The world is everything that is the case” and 2) ”The world is the totality
of facts, not of things”. For him, the world is clearly made of facts. So which is
it?

I submit that there is a fundamental problem with considering that the world
is made of things rather than facts, and I believe the problem is insurmountable.
I have tried to explain it before using a different formulation, however universal
facts now makes it incredibly difficult (I believe) for anyone not to see and
understand it.

1. Universal facts constitute the set of all infallible-justified-true-beliefs.

2. Person A claims to hold a conception of the world which is not supported
by universal facts alone (e.g. ice cream is a thing, not a fact).

3. It thus follows, necessarily, that person A’s conception of the world cannot
be an infallible-justified-true-belief.

4. Person A’s conception of the world must therefore be either; fallible, un-
justified or false.

Believing that the world is made of things rather than facts is a specific
version of the Gettier problem. Indeed, if person A is aware of some information
which transforms according to a certain type of rule (e.g. produces a certain
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shape or structure — say the shape of a dog in a field), but then believes there
is a ’thing’ that exists in addition to said information, then said belief cannot
constitute knowledge in the epistemological sense because A is not infallibly
justified in believing the existence of the ’additional thing’. The existence of
universal facts as a Turing complete theory, since it can express any concept
that can be expressed, precludes any and all belief in said ’additional thing’ to
be infaliable.

Consequently, I believe it to be simpler to reproduce all human knowledge
in terms of universal facts, than it is to overcome this problem. Doing so also
cures quite a lot of problems in philosophy, science and physics. To get the
program started, I have thus produced here, a formal theory of science which is
able to recover the laws of physics by using universal facts as the starting point.
It took me about five years to build this and an additional preliminary ten-ish
years of preliminary juggling with the concept of universal facts, but it appears
to be well worth the effort.

I, for one, will gladly trade in ice-cream as a thing for ice-cream as a fact, if
the later is infallible and the former isn’t.

1.3.1 State of affairs

There is another conceptual trap to avoid regarding how a fact of the world can
be a universal fact. For instance, one might say ”if I define the store next door
as having ice cream, it might not have it by the time I get there. Therefore, even
something as innocuous as the store having ice cream cannot be a universal fact
because there is always a possibility that the fact be violated in the future.”

The trap is that this is the incorrect way to use universal facts to define
reality. Instead of thinking about a situation as ’past implies present’ or ’present
implies future’, think about it as ’present implies past’. Think of yourself as a
forensic scientist; you walk into a crime scene, and to know what happened you
have to reconstruct a model of the past based on the evidence available to you
now. Thus, instead of thinking of ice cream as a thing they may or may not
have at the store and this determines whether you will or will not have some
later; instead axiomatically define your mouth as having ice cream in it, then
figure out a plausible origin story for said ice cream.

There is ice cream in your mouth, right now!... that is the state of affairs.
The ’program’ is the plausible origin story for this ice cream. The corresponding
universal fact would ressemble this (”Store had ice cream” + ”I bought the ice
cream” + (all other necessary conditions), ”I have ice cream in my mouth”).
You, having ice cream in your mouth, is verified by a logically-deducible causal
history which ’explains’ why it’s in your mouth now - and such causal history is
sufficiently detailed for ”you, having ice cream in your mouth” to be provable
from said history. You knowing there is ice cream in your mouth is axiomatic
information that you possess about the state of affairs.
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1.3.2 Intuition: on purely mathematical experimental systems

1. Assume you know (at least) one universal fact. For instance (solverPA, ”1+
1 = 2”), where solverPA is a solver for Peano’s axioms (PA).

2. How do you know it is a universal fact, and not just a false claim?

3. Either you verify it yourself, or you are satisfied that it has been verified.

4. How can one verify a universal fact?

5. Answer; one must bring the program to termination on a Turing machine.
For relatively simple facts, such as (solverPA, ”1 + 1 = 2”), one can do
it in one’s mind. But, for more complicated universal facts, it may take
considerably longer.

6. In any case, you having knowledge of a universal fact implies you are sat-
isfied that a sequence of computing has taken place somewhere somehow,
to verify it.

Comparatively, how much faith would you have in someone claiming to know
that an arbitrary program halts, without him or her showing you the proof nor
having verified it to completion on a Turing machine. Answer; none. Just like
positing axioms implies a collection of theorems; positing a state of affairs made
of universal facts, such that one is satisfied that they are indeed universal facts,
implies/necessitate a computational verification to these claims.

2 Formal Science

2.1 Axiomatic foundation of science

The fundamental object of study of science is not the electron, the quark or
even super-strings, but the reproducible experiment. An experiment represents
an ’atom’ of verifiable knowledge.

Definition 12 (Experiment). Let (TM, p) be a pair comprising two sentences
of a language L. The first sentence, TM, is called the protocol. The second
sentence, p, is called the hypothesis. Let UTM be a universal Turing machine.
If UTM(TM, p) halts then the pair (TM, p) is said to be an experiment. In this
case, we say that the protocol verifies the hypothesis. If UTM(TM, p) does not
halt, we say that the pair fails to verify the hypothesis.

UTM(TM, p)

"
HALT =⇒ the experiment verifies p

¬HALT =⇒ the pair fails verification
(10)

Of course, in the general case, as per the halting problem there exists no
decidable function which can determine which pair is an experiment and which
pair fails verification.
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An experiment, so defined, is formally reproducible. I can transmit, via fax
or other telecommunication medium, the pair (TM, p) to another experimen-
talist, and I would know with absolute certainty that he or she has everything
required to reproduce the experiment to perfection.

Theorem 3 (Formal Reproducibility). Experiments are formally reproducible.

Proof. Let UTM and UTM′ each be a universal Turing machine. For each pair
UTM(TM, p) which halts on UTM, then there exists a computable function,
called an encoding function, which maps said pairs as follows encode(TM, p) →
(TM′, p′) such that (TM′, p′) halts for UTM′. The existence of such function is
guaranteed by (and equivalent to) the statement that any UTM can simulate
any other.

In the peer-reviewed literature, the typical requirement regarding the repro-
ducibility of an experiment, is that an expert of the field be able to reproduce
the experiment, and this is of course a much lower standard than formal repro-
ducibility which is a mathematically precise definition. Here, for the protocol
TM to be a Turing machine, the protocol must specify all steps of the exper-
iment including the complete inner workings of any instrumentation used for
the experiment. The protocol must be described as an effective method equiv-
alent to an abstract computer program. Should the protocol fail to verify the
hypothesis, the entire experiment (that is the group comprising the hypothesis,
the protocol and including its complete description of all instrumentation) is
rejected. For these reasons and due to the generality of the definition, I conjec-
ture that the above definition is the only (sensible) definition of the experiment
that is formally reproducible (as opposed to say ”sufficiently reproducible for
practical purposes”).

Definition 13 (Empirical Evidence). The set of all pairs whose protocol TM
verifies p is defined as the empirical evidence Ev of p:

Ev(p) := Dom(UTM, p) (11)

where

Dom(UTM, p) := {(TM, p) : where UTM(TM, p) halts } (12)

Definition 14 (Scientific method). An algorithm which recursively enumerates
the empirical evidence, or parts thereof, of an hypothesis or a set thereof, is
called a scientific method.

Empirical evidence is thus produced by the application of the scientific
method to an hypothesis.

Theorem 4 (Scientific method). Existence of the scientific method.

Proof. Consider a dovetail program scheduler which works as follows.
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1. Sort all sentences of L in shortlex. Let the ordered pairs (TM1, p1),
(TM2, p1), (TM1, p2), (TM2, p2), (TM3, p1), . . . be the elements of the
sort.

2. Take the first element of the sort, UTM(TM1, p1), then run it for one
iteration.

3. Take the second element of the sort, UTM(TM2, p1), then run it as for
one iteration.

4. Go back to the first element, then run it for one more iteration.

5. Take the third element of the sort, UTM(TM1, p2), then run it as for one
iteration.

6. Keep going with the pattern, performing iterations one by one, which cycle
adding a new element of the sort.

7. Make note of any pair (TMi, pj) which halt.

This scheduling strategy is called dovetailing, and allows one to enumerate
the domain of a universal Turing machine recursively without getting stuck by
any singular program that may not halt. Progress will eventually be made on
all programs... thus producing a recursive enumeration.

Dovetail is of course a simple/non-creative approach to the scientific method.
The point here was only to show existence of such an algorithm, not to find the
optimal such function.

Definition 15 (Scientific theory). Let ST be a finitely axiomatic representation.
If EE(p) = Dom(ST), then ST is a scientific theory of p.

2.1.1 The Fundamental Theorem of Science

With these definitions, we can prove, from first principle, that the possibility of
falsification is a necessary consequence of the scientific method.

Definition 16 (Predictive theory). Let D, called the ’collected scientific data’
or just ’the data’, be a subset of the empirical evidence of p:

D ⊂ Ev(p) (13)

A finitely axiomatized representation is called a predictive theory PT of p if
D ⊂ Dom(PT). The set P, called the predictions of PT, is defined as:

P := Dom(PT) \ D (14)

Predictive theories are thus supported by the data, but may diverge outside
of this support.
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Theorem 5 (The Fundamental Theorem of Science). If the empirical evidence
of p is recursively enumerable, but not decidable, then the empirical evidence of
p has measure 0 over the set of all possible predictive theories of p.

Proof. The empirical evidence of p is unique, yet —excluding a-typical cases
Ev(p) where it is decidable— there exists countably infinitely many predictive
theory of p, for any set of data D. Finally, the measure of one element of a
countably infinite set is 0.

Consequently, the fundamental theorem of science leads to the concept of
falsification, as commonly understood in the philosophy of science and as given
in the sense of Popper. It is (almost) certain that a non-decidable predictive
theory will eventually be falsified.

2.2 Axiomatic foundation of reality

Definition 17 (Domain of science). We note S as the domain (Dom) of science.
We can define S in reference to a universal Turing machine UTM as follows:

S := Dom(UTM) (15)

Thus, for all pairs of sentences (TM, h), if UTM(TM, h) halts, then (TM, h) ∈
S. It follows that all experiments are elements of the domain of science.

Definition 18 (Manifest). A manifest m is a n-tuple constructed from elements
of the domain of science.

m := Sn (16)

A manifest is therefore a tuple of experiments:

m := ((TM1, p1), . . . , (TMn, pn)) (17)

We note that since a manifest may contain repetitions (experiments are for-
mally reproducible) we have elected not to define m as a set, but instead as a
n-tuple to allow said repetitions. Quite remarkably, this tuple vs set (manifest vs
manifest-theory) definition is the primary difference between formal theories in
math versus those in science — heads-up: we will investigate the consequences
of this difference in great detail in the main results section.

For a given manifest, the possibility exists that some hypotheses, or likewise
some protocols, be repeated in the other tuples of the manifest. For instance it
could be the case that within a manifest: p2 = p5, or that TM1 = TM6 = TM21,
etc. The set of all hypotheses for a given protocol, is called the scope (of the
protocol), and the set of all protocols for a given hypothesis is called the spread
(of the hypothesis).
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Definition 19 (The Fundamental Assumption of Science). Experiments are
complete with respect to the state of affairs of reality.

• The state of affairs of reality is describable as a set of experiments. There-
fore, the state of affairs is describable as a manifest.

• To each state of affairs corresponds a manifest.

• The manifest is a complete description of the state of affairs.

• A manifest is a ”brute” description of reality in terms of experiments.

• If the assumption of science would be false, it would mean that there are
elements of the instantaneous state of nature that are outside the domain
of science... (intervention by an oracle?)

Definition 20 (Experimental Space). Experimental space E is the ”powertuple”
of the domain of science:

E :=

∞#

i=0

Si (18)

All elements of experimental space are manifests, and all manifests are ele-
ments of experimental space.

Definition 21 (Toy Model). A subset of experimental space is called a ’toy
model’. Note: some toy models may be decidable.

2.3 Axiomatic foundation of physics

Recall that earlier we used a dovetailing algorithm in Theorem 4 as an im-
plementation of the scientific method, and we claimed that although it was a
possible strategy, it was not necessarily the optimal one. So what then is the
optimal implementation of the scientific method applicable to a tuple of exper-
iments? Well, I suppose it depends on what we mean by optimal. One might
be tempted to search along the lines of an efficient algorithm, perhaps the most
elegant one, or the ones that uses the least amount of memory, etc., but think-
ing in those terms would be a trap — we must think a bit more abstractly
than postulating or arguing for a specific implementation. Potentially, every
manifest could in principle have its own best strategy. Every manifest is also
finite, thus any application of the scientific method in experimental space must
follow a path in it so as to continually acquire empirical evidence. It is there-
fore more strategic overall to identify a condition applicable to all cases and
allows for transformations between cases, which produces the implementation
as a maximization problem.

The best strategy will be to maximize the information gained from the sci-
entific method; and this means in the technical sense to maximize the entropy
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of a probability measure on experimental space. To embed the notion of infor-
mation into the scientific method, it must be connected to the mathematical
theory of information, and this involves the notion of a random selection of an
element from a set:

Definition 22 (The Fundamental Assumption of Physics). Let ρ(m) be a proba-
bility measure on experimental space (full model) or a subset thereof (toy model).
An observer, denoted as O, is a point randomly selected from experimental space.
Thus, with a probability measure that spawns the set E, every point in experi-
mental space qualifies as an observer. Specifically, an observer is:

Oi := (mi, ρ : E → [0, 1]) (19)

The definition of the observer is a specialization of the definition of the
manifest in the sense that a manifest is a point in experimental space, and the
observer is a randomly selected point in experimental space (and thus the no-
tion of information is associated to it). Note that even in typical physics, the
observer (which is not mathematically integrated into the formalism... lead-
ing to a family of open problems regarding the ’observer effect’) is associated
to a random selection of an element from a set of possible observations. This
’effect’ will eventually be revealed to be a consequence of the present defini-
tion. Here, the observer ’has knowledge’ of a randomly selected state from the
set of all possible experimental states, hence he or she is an observer in an
information-gathering sense, and consequently has the opportunity to imple-
ment an information-producing version of the scientific method so as to realize
its optimal implementation:

Definition 23 (Theory of Everything). The theory of everything (ToE) is the
probability measure that maximizes the entropy of a path in E traced by an
observer, for all possible observers.

The laws of physics are thus formally defined as the information-theoretical
maximum of the scientific method, for all possible observers. As we will see in
the main result, this will involve a sum of programs. Obviously, the path of an
observer in E is constrained to experimental space:

Definition 24 (The Fundamental Assumption of Nature). The set of all con-
straints1 on the entropy of the probability measure of the observer necessary to
keep and transform the path in experimental space, defines the universe (of the
observer).

Let us now discuss the philosophy of these definitions in more details. Let
us consider two conceptually similar cases in use in modern physics.

In a gauge theory the equivalent of the ’constraints on entropy’, although
seldom described in those terms, are a consequence that the Lagrangian of a

1The exact definition of the constraints requires setup and is provided as (Equation 35) on
page 19. Intuitively, it is simply the set of linear transformations of E onto itself.
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wave-function remains invariant under the action of a group. In this case, said
wave-function must remain within the ’space’ generated by this group in or-
der for the Lagrangian to retain its invariance. One may then gauge the local
action of said invariant transformation to get a gauge field. The idea that
said Lagrangian be invariant with respect to a certain group of transforma-
tions is the equivalent of the concept that a probability measure is bounded
to a certain ’space’, and the gauge field is what emerges as an element that
prevents/compensates so that the wave-function remains within the designated
’space’. In our framework, the constraint that an observer remains in experi-
mental space is to the universe, what a group-invariant transformation of the
Lagrangian is to a gauge field.

A similar concept also finds its way in statistical physics regarding the
role that the constraints on entropy play in it, and their meaning. Specifi-
cally, when one uses the method of the Lagrange multipliers to solve for ρ(q)
such that it maximizes the entropy subject to a constraint on the energy E =$

q∈Q ρ(q)E(q), one will obtain the Gibbs measure ρ(q) = 1
Z exp−βE(q). The

standard interpretation of the constraint is that it represents the set of all
possible measurements of this observable on the system such that it bounds
its macroscopic description to an average energy E. Additional constraints,
such a volume constraint V =

$
q∈Q ρ(q)V (q) or a particle number constraint

N =
$

q∈Q ρ(q)N(q), can also be added. In the case of a gas in a box at thermal
equilibrium, the constraint is realized by an corresponding instrument such as
a energy meter and a volume meter, and in the case of an observer bounded
by the laws of physics to remain in experimental space, the ”instrument” which
acts upon the measure to constrain it to its domain, is the largest possible
instrument: the universe.

3 Main Result (Physics)

My ”trap cards” have now been carefully injected within these definitions and
are ready to be activated at the opportune time to strike at the problem. The
theory of everything in physics will now follow easily (well almost) from the
application of these definitions.

3.1 Introductory investigation of key computing concepts

3.1.1 Halting probability of computer science

Let us start by maximizing the entropy of the random selection of p from
Dom(UTM):

S = −
!

p∈Dom(UTM)

ρ(p) log2 ρ(p) (20)

subject to these constraint:
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!

p∈Dom(UTM)

ρ(p) = 1 (21)

!

p∈Dom(UTM)

ρ(p)|p| = |p| (22)

Using the method of the Lagrange multipliers, the result is the Gibbs mea-
sure (where D is a Lagrange multiplier):

ρ(p) =
1

Z
2−D|p|, where Z =

!

p∈Dom(UTM)

2−D|p| (23)

This is the statistical-physics definition of a halting probability. Here, it
is ρ(s) (and NOT Z) that is the halting probability. We note that it is not
necessarily all choices of D which causes Z to be non-computable (for instance
if D = 0 then Z is very much so computable; it is in fact infinite). To recover
Ω, the Halting probability[4] of computer science, we would pose the Lagrange
multiplier D to 1, then take the encoding of the program to be prefix-free and
therefore, via the Kraft-inequality, Z becomes itself a probability measure:

Ω =
!

p∈Dom(UTM)

2−|p| (24)

We further note the work of Tadaki[5] which identifies an ’algorithmic-
thermodynamics[6]’ definition of Ω by adding D called a ’decompression-term’
as follows:

!

p∈Dom(UTM)

= 2−D|p| (25)

However, in each of these cases, with the exception of [6], the connection to
entropy is lost because the expression of Z is reduced such that it, rather that
ρ, acquires the role of the probability mesure. So what do we gain by retaining
the connection to an entropy maximum? The answer is in information theory.
Knowing a message from a set of possible messages according to a probability
measure that maximizes the entropy, makes knowing said message maximally
informative. Likewise, in the case of the statistical physics version of the Halting
probability, the probability measure that maximizes the entropy for this system
makes our knowledge of a program that halts, maximally informative.

3.1.2 Quantum computing

Let us now investigate how a quantum computation works (with a focus on spe-
cial but rarely discussed features. Most text would focus of the superposition or
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entanglement features — and although these are neat features, there is another
much more important one). For a quantum computation, one start with a state
vector:

|ψa〉 =

%

&&'

0
...
n

(

))* (26)

Which evolves unitarily to a final state:

|ψb〉 = U0U1 . . . Um |ψa〉 (27)

Clever use of the unitary transformations, often arranged as simple ’gates’,
allows one to execute a program. The input to the program is the state |ψa〉 and
the output is the state |ψb〉. One would note that, so defined and if the sequence
of unitary transformation is finite, such a program must always halt, and thus
its complexity must be bounded. One can however get out of this predicament
by taking the final state |ψb〉 to instead be an intermediary state, and then to
throw more gates at the state in order continue with a computation:

step 1 |ψb〉 = U0U1 . . . Up |ψa〉 (28)

step 2 |ψc〉 = U ′
0U

′
1 . . . U

′
q |ψb〉 (29)

... (30)

step k |ψk′〉 = U ′
0U

′
1 . . . U

′
v |ψk〉 (31)

... (32)

For a quantum computation to simulate a universal Turing machine, it must
be able to add more steps until a halting state is reached (or continue to add
steps indefinitely if the program never halts). Consequently we note a feature
of quantum computing that makes it quite special: all intermediary steps of
the computation are computations in and of themselves. See it? Programs in
quantum computations are sequences of halting programs applied end-to-end.
For instance, |ψa〉 → |ψb〉 and |ψb〉 → |ψc〉 are both a computation that has
halted, but so is |ψa〉 → |ψc〉.

Let us attempt the same but using the usual concepts of theoretical com-
puter science. One can chain the outputs of a halting program TM1(r0) = r1
to another program TM2(r1) = r2 and so on — then a program exists such
that can take r0 as input and produce r2 as output. Whats the difference be-
tween this and the chaining of quantum computing? Where the opacity of the
implementation of the TM inner workings is manifest in theoretical computer
science, in the quantum mechanical case however, it is guaranteed that one can
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subdivide the computing steps at the per gate/unitary-transformation (in some
cases infinitesimal) level. Quantum computing machines are a special design of
a Turing machine that need not reference inner states that are not themselves
pure states of computation. Compare this to a Turing machine comprised of a
head and a tape... neither of these items are programs themselves.

3.1.3 Manifest-based computing... ?

We now activate the first ”trap card”. Notice that we have defined a state of
affairs of reality as a manifest comprised of a set of experiments; that is, a set
of pairs (TM, p) that halt. Why did we not include any programs that don’t
halt? This requirement will necessitate that any state of affairs of reality be in a
completed state of computation. This imposes a restriction upon the construc-
tion of any Turing machine (the workings of its inner state) supported by these
definitions. One will not be able to embed a universal Turing machine within a
manifest, unless one chains future transformations of manifests until some halt-
ing state is reached... notice the similarity of this feature to that of quantum
computation which also chains its computations? My definition recovers a gen-
eralized/abstract realization of this feature in a manner that releases it from its
implementation. Any path by an observer in experimental space is guaranteed
to only encounter steps that are formulated as completed computations.

3.2 Derivation

3.2.1 General linear computing space

Let us start with a sum of programs (i.e. manifests that are comprised of a single
element). A probability measure would assign a real number to each programs
of the sum. Now, recall that a manifest is a tuple of experiments. Consequently,
it follows that the assignment of said real number to each element of said tuples
transforms experimental space into a vector space, where the programs com-
prises the basis elements of the space and the probabilities comprises the values
of the elements of its vectors.

Finally, recall another feature of quantum computation is that the inputs can
be a combination of multiple programs (via the tensor product of states). This
feature finds its way into our definitions in that any combination of manifests is
also a manifest and that each experiment individually forms a manifest. Thus,
the tensor product of elements of said vector space takes the product of the
probabilities and expands the basis elements, previously comprised of a single
program each, to manifests of multiple programs.

Consequently, it follows that the probability measure which constraints O
to remain in experimental space; such that the probability measure is able to
add/remove or combine manifest invariantly with respect both to single pro-
grams to to their tensor products, is the set of a linear transformations on this
space.

Let us therefore maximize the entropy:
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S = −
!

s∈S
ρ(s) ln ρ(s) (33)

subject to these constraints:

!

s∈S
ρ(s) = 1 (34)

!

s∈S
ρ(s) trM(s) = trM (35)

where M(q) is a matrix-valued map2 from S to Fn×n, and where M is a
element-by-element average matrix of Fn×n. We use the Lagrange multiplier
method to derive the expression for ρ that maximizes the entropy, subject to the
above mentioned constraints. Maximizing the following equation with respect
to ρ yields the answer.

L = −kB
!

s∈S
ρ(s) ln(s) + α

%

'1−
!

s∈S
ρ(s)

(

*+ τ

%

'trM−
!

s∈S
ρ(s) trM(s)

(

*

(36)

where α and τ are the Lagrange multipliers. The explicit derivation is made
available in Annex B. The result of the maximization process is:

ρ(q) =
1

Z
det exp−τM(q) (37)

where

Z =
!

q∈S
det exp−τM(q) (38)

As we will see, this probability measure not only includes all of quantum me-
chanics, but also extends it from the complex group to the general linear group.
It is therefore able support any geometry of nature, including general relativity,
the standard model, as well as a combinations of the two. It further embeds
the notion of a ’geometric collapse’ of the wave-function, and finally, settles the
interpretation of quantum mechanics to that of the ensemble interpretation[7].

2There is a possibility of greater generality by considering maps S → Fn×m. In quantum
mechanics this is part of the subject matter of ’quantum operations’ which includes quantum
channels. This mapping from differently-size vector spaces would be required in the general
case to account for all possible paths of the observer in experimental space, and would likely
come out as a general linear equivalent to a quantum channel transmitting information between
manifests as their sizes change. This is likely interesting, but as we will see we will not be
running out of applications for the general linear ensemble as it is, and thus we have elected to
limit the scope to maps in Fn×n in line with the typical formulations of quantum mechanics.
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3.2.2 Prior

No good probability measure is complete without a prior. The prior, which
accounts for an arbitrary preparation of the ensemble, ought to be —for purposes
of preserving the scope of the theory— of the same kind as the elements of the
probability measure. Let us thus introduce the prior as the map Mp : S → Fn×n

and inject it into the probability measure as well as into the partition function:

ρ(s) =
1

Z
det exp

+
Mp(s)

,
det exp

+
−τM(s)

,
(39)

where

Z =
!

s∈S
det exp

+
Mp(s)

,
det exp

+
−τM(s)

,
(40)

3.2.3 Representation

We will be well-served, naturally in terms of clutter-reduction and intuition-
improvements but also because it will provide a clear sequence of simplifications
from general linear amplitude to complex amplitude as well as intermediaries,
to represent Mp(s), M(s) and M with geometric algebra (GA). Let us now
introduce the desired GA-representation for 2 × 2 and 4 × 4 matrices. We can
write a general multi-vector of G(2,R) as follows:

m2 = a+ x+ b (41)

where a is a scalar, x is a vector and b is a pseudo-scalar. And we can write
a general multi-vector of G(4,R) as follows:

m4 = a+ x+ f + v + b (42)

where a is a scalar, x is a vector, f is a bivector, b is a pseudo-vector and
b is a pseudo-scalar. Each of these constructions admit a structure-preserving
(addition/multiplication) matrix representation. Explicitly, the multi-vectors of
G(2,R) are represented as follows:

A+Xx̂+ Y ŷ +Bx̂ ∧ ŷ ∼=

!
A+X −B + Y
B + Y A−X

"
(43)

and those of G(4,R) are represented as follows:
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A+ Tγ0 +Xγ1 + Y γ2 + Zγ3

+ F01γ0 ∧ γ1 + F02γ0 ∧ γ2 + F03γ0 ∧ γ3 + F23γ2 ∧ γ3 + F13γ1 ∧ γ3 + F12γ1 ∧ γ2

+ Vtγ1 ∧ γ2 ∧ γ3 + Vxγ0 ∧ γ2 ∧ γ3 + Vyγ0 ∧ γ1 ∧ γ3 + Vzγ0 ∧ γ1 ∧ γ2

+Bγ0 ∧ γ1 ∧ γ2 ∧ γ3

∼=

#

$$$%

A+X0 − iF12 − iV3 F13 − iF23 + V2 − iV1 −iB +X3 + F03 − iV0 X1 − iX2 + F01 − iF02

−F13 − iF23 − V2 − iV1 A+X0 + iF12 + iV3 X1 + iX2 + F01 + iF02 −iB −X3 − F03 − iV0

−iB −X3 + F03 + iV0 −X1 + iX2 + F01 − iF02 A−X0 − iF12 + iV3 F13 − iF23 − V2 + iV1

−X1 − iX2 + F01 + iF02 −iB +X3 − F03 + iV0 −F13 − iF23 + V2 + iV1 A−X0 + iF12 − iV3

&

'''(

(44)

Finally, I note that one can use curvilinear coordinates on said multi-vectors,
by using a basis defined as follows:

e0 := t0γ0 + x0γ1 + y0γ2 + z0γ3 (45)

e1 := t1γ0 + x1γ1 + y1γ2 + z1γ3 (46)

e2 := t2γ0 + x2γ1 + y2γ2 + z2γ3 (47)

e3 := t3γ0 + x3γ1 + y3γ2 + z3γ3 (48)

It is now interesting to note that the determinant of the matrix representa-
tion of those multi-vectors always produces a real number, even if the matrix
themselves may contain complex entries. The determinant can thus be defined
as the norm of said multi-vector. Said determinant can also be defined solely
using constructs of geometric algebra[8]. First, we define the Clifford conjugate
as:

m□ := 〈m〉0 − 〈m〉1 − 〈m〉2 + 〈m〉3 + 〈m〉4 (49)

and ⌊m⌋{3,4} as the blade-conjugate of degree 3 and 4 (flipping the plus sign to
a minus sign for blade 3 and blade 4):

⌊m⌋{3,4} := 〈m〉0 + 〈m〉1 + 〈m〉2 − 〈m〉3 − 〈m〉4 (50)

The determinant/norm of G(2,R) is:

det : G(2,F) −→ R
m -−→ m□m

(51)

whereas the determinant/norm of G(4,R) is:

det : G(4,F) −→ R
m -−→ ⌊m□m⌋{3,4}m□m

(52)
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Using GA, the probability measure and its companion partition function are
thus as follows:

ρ(s) =
1

Z
det exp

+
mp(s)

,
det exp

+
−τm(s)

,
(53)

where

Z =
!

s∈S
det exp

+
mp(s)

,
det exp

+
−τm(s)

,
(54)

3.3 Geometric Ensemble

Ensemble in the sense that an element of the sample space is randomly picked
upon a measurement, and geometric is the sense that the probability measure
is invariant with respect to a group of geometric transformations determined by
the choice of constraints on the entropy, up to the general linear group.

For all geometric ensembles, the opportunity is available to ’split’ the proba-
bility measure into a first step, where the sample space is re-defined as a vector
space admitting a linear evolution operator on a probability amplitude, and a fi-
nal step, known as a ’probability rule’ which connects the probability amplitude
to a probability via the determinant. Specifically, one can write the probability
amplitudes as vectors:

ψ(s) = exp
+
mp(s)

,
exp

+
−τm(s)

,
(55)

Then one connects this vector to the probability measure via a ’probability
rule’:

ρ(s) =
1

Z
detψ(s) (56)

This split is of course a ’trick’, in the sense that the frequency of all ob-
servations in the physical world are obtained with respect to the probability
measure, not the amplitude—, but nonetheless it provides the convenience of
linear operations to transform the vector space representing the sample space
one level down.

3.3.1 Manifests are tensor products of states

We can now create a sum over all over experimental space (finite-sized tuples).
A tensor product of wave-functions ψ1⊗ψ2 induces a replacement of the domain
of the sum from S → S×S. And a sequence of tensor products ψ1⊗ψ2⊗ · · ·⊗ψn

produces a sum over Sn.
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3.3.2 General linear wave-function

The set of all complex n× n matrices maps, via the exponential, to the general
linear group in C.

exp : M(n,C) → GL(n,C) (57)

The map is also possible for the reals, but in this case the general linear
group is reduced to the orientation-preserving general linear group, because the
left-hand side of the map cannot produce a matrix with a negative determinant
and thus is not surjective in the general case:

exp : M(n,R) → GL+(n,R) (58)

The entropy maximization procedure we have used produced a probability
measure which embeds the exponential map over matrices, thus connects the
arbitrary linear transformation of M(n,R) to the orientation-preserving linear
group GL+(n,R). This relationship also holds for geometric algebras (of even
dimensions), because their multi-vectors map to the set of matrices with real
determinant (even if such matrices may be a subset of the complex matrices),
and thus admit a group isomorphism with GL+(n,R):

exp : G(2n,R) ∼= GL+(2n,R) (59)

The group of the transformations of wave-function of GP is thus the gen-
eral linear group, reduced to orientation-preserving transformations (positive
determinant). Explicitly, and using geometric algebra as the representation,
the general linear probability measure in four dimensions is given as:

ρ(s) =
1

Z
det exp

+
ap + xp + fp + vp + bp

,
exp−τ(a+ x+ f + v + b) (60)

and the wave-function is:

ψ(s) = exp
+
ap + xp + fp + vp + bp

,
exp−τ(a+ x+ f + v + b) (61)

If we consider that ψ(s) is a general linear amplitude associated to an element
of the state vector Ψ of H, then we can write ρ as a map from the vector Ψ to
R:

ρ : H ×Ψ −→ R
(Ψ, s) -−→

+
detΨ(s)

,
/
-$

ϕ∈Ψ detϕ
.

(62)
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Then, if we multiply Ψ by a ’global’ general linear transformation G to each
element of Ψ, then clearly ρ(G ⊙ Ψ, s) = ρ(Ψ, s) since detGΨ = detG detΨ,
thereby cancelling detG as it is both in the numerator and in the denominator:

ρ(G⊙Ψ, s) = (detGΨ(s))/

%

'
!

ϕ∈Ψ

detGϕ

(

* = (detΨ(s))/

%

'
!

ϕ∈Ψ

detϕ

(

* (63)

where ⊙ is the element-wise application of G to the elements of Ψ. The
general linear probability measure is invariant with respect to a ’global’ general
linear transformation (G⊙Ψ) on the probability amplitude.

Finally, we note that the Lagrange multiplier of the evolution part of the
probability measure generates the group of said evolution part. The general
relation exp : g → G (where g is the algebra of the group G) is, in the probability
measure, of this form:

τ → exp(τM) ∈ GL+, τ ∈ R (64)

where τ is a real number.
We note that using a single geometric constraint produces a probability

measure whose evolution is in the form of one-parameter subgroup of G. A
multi-parameter probability measure generating the full group is also possible.
Consider the following constraints:

!

s∈Ω

ρ(s) = 1 (65)

!

s∈Ω

ρ(s) tr

/
a(s) 0
0 0

0
= tr

/
a 0
0 0

0
(66)

!

s∈Ω

ρ(s) tr

/
0 b(s)
0 0

0
= tr

1
0 b
0 0

2
(67)

!

s∈Ω

ρ(s) tr

/
0 0

c(s) 0

0
= tr

/
0 0
c 0

0
(68)

!

s∈Ω

ρ(s) tr

/
0 0
0 d(s)

0
= tr

1
0 0

0 d

2
(69)

Then the probability measure which maximizes the entropy subject to these
constraints would be:

ρ(s) =
1

Z
det exp

1
−τ00

/
a(s) 0
0 0

0
− τ01

/
0 b(s)
0 0

0
− τ10

/
0 0

c(s) 0

0
− τ11

/
0 0
0 d(s)

02

(70)

=
1

Z
det exp

+
τ ⊙M(s)

,
(71)
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where ⊙ is the element-wise matrix multiplication (or Hadamard product).
Here, we have obtained the lie algebra gk(2,R) including the 4 free parameters
required to generate the full group GL(2,R) via the exponential map.

3.4 Geometric Hilbert space

Let H(m,G(n,F)) be a vector space of m dimensions over G(n,F), and let
G(n,F) be a n dimensional group over a field F, representable as n×n matrices.

3.4.1 H is a vector space

To prove that H is a vector space, we need to prove the following axioms.

1. Associativity of addition

2. Commutativity of addition

3. Identity element of addition

4. Inverse elements of addition

5. Compatibility of scalar multiplication with field multiplication

6. Identity element of scalar multiplication

7. Distributivity of scalar multiplication with respect to vector addition

8. Distributivity of scalar multiplication with respect to field addition

All 8 axioms (trivially) follows from the fact that tuples of matrices are
vector spaces in addition and scalar multiplication, which itself follows from the
fact that n× n matrices form a vector space.

3.4.2 H is a Hilbert space

We need to show thatH admits an inner product, then show thatH is complete.
For any vector v ∈ H, such as v := (g1, g2, . . . , gn) , we define a norm as a sum
over of the determinant of each of its elements:

‖v‖2 :=
!

g∈v

det g (72)

Then the inner product is given by the polarization identity:

〈u,v〉 = 1

4

-
‖u+ v‖2 −‖u− v‖2

.
(73)

Finally, in the case where n is finite, then said vector space is necessarily
complete. Since we have a vector space that contains an inner product and is
complete, it then follows that it is a Hilbert space.
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3.4.3 Inner product — Example in G(2,R)

As an example, let us calculate the inner product of two multi-vectors of G(2,R).
The norm of H(n,G(2,R)) is given as:

‖v‖2 := v□v (74)

where we define v□ as the Clifford transpose of v:

%

&&'

g1
...
gn

(

))*

□

:=
-
g□1 . . . g□n

.
(75)

Therefore, its inner product is:

4〈u,v〉 : = (u+ v)□(u+ v)− (u− v)□(u− v) (76)

= u□u+ u□v + v□u+ v□v − (u□u− u□v − v□u+ v□v) (77)

= u□u+ u□v + v□u+ v□v − u□u+ u□v + v□u− v□v (78)

= 2(u□v + v□u) (79)

=⇒ 〈u,v〉 = 1

2
(u□v + v□u) (80)

(81)

The inner product of two multi-vectors of G(2,R):

m1 = a1 + x1e1 + y1e2 + b1e12 (82)

m2 = a2 + x2e1 + y2e2 + b2e12 (83)

is:

=⇒ 1

2
(m□

1 m2 +m□
2 m1) = a1a2 − x1x2 − y1y2 + b1b2 (84)

3.4.4 Observable

A linear operator A acting on the geometric Hilbert space is an observable iff it
is a self-adjoint operator; defined as:

〈Av,u〉 = 〈v, Au〉 (85)
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3.4.5 Observable — Example in G(2,R)

Let us now introduce an observable A =

/
A00 A01

A10 A11

0
, and two two-state vec-

tors u =

/
u1

u2

0
and v =

/
v1
v2

0
where u1, u2, v1, v2, A00, A01, A10, A11 are multi-

vectors of G(2,R). Let us now calculate 〈Au,v〉:

2〈Au,v〉 = (A00u1 +A01u2)
□v1 + v□1 (A00u1 +A01u2)

+ (A10u1 +A11u2)
□v2 + v□2 (A10u1 +A11u2) (86)

= u□
1 A

□
00v1 + u□

2 A
□
01v1 + v□1 A00u1 + v□1 A01u2

+ u□
1 A

□
10v2 + u□

2 A
□
11v2 + v□2 A10u1 + v□2 A11u2 (87)

Now, 〈u, Av〉:

2〈u, Av〉 = u□
1 (A00v1 +A01v2) + (A00v1 +A01v2)

□u1

+ u□
2 (A10v1 +A11v2) + (A10v1 +A11v2)

□u1 (88)

= u□
1 A00v1 + u□

1 A01v2 + v□1 A
□
00u1 + v□2 A

□
01u1

+ u□
2 A10v1 + u□

2 A11v2 + v□1 A
□
10u1 + v□2 A

□
11u1 (89)

For 〈Au,v〉 = 〈u, Av〉 to be realized, it follows that these relations must
hold:

A□
00 = A00 (90)

A□
01 = A10 (91)

A□
10 = A01 (92)

A□
11 = A11 (93)

Therefore, it follows that it must be the case that A must be equal to its
own Clifford transpose. Thus, A is an observable iff:

A□ = A (94)

which is the geometric Hilbert space equivalent of the Hermitian opera-
tor AH = A of the complex Hilbert space. All geometric Hilbert spaces have
self-adjoint operators but the expression for them may differ; A□ = A is only
applicable for G(2,R), just like AH = A is only applicable to complex Hilbert
spaces.
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3.4.6 Observable — Geometric spectral theorem

Let us show how the spectral theorem applies to A□ = A, such that its eigen-
values are real. Consider:

A =

/
a00 a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11

0
(95)

In this case, it follows that A□ = A:

A□ =

/
a00 a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11

0
(96)

This example is the most general 2 × 2 matrix A such that A□ = A. The
eigenvalues are obtained as follows:

0 = det(A− λI) = det

/
a00 − λ a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11 − λ

0
(97)

implies:

0 = (a00 − λ)(a11 − λ)− (a− xe1 − ye2 − be12)(a+ xe1 + ye2 + be12 + a11)
(98)

0 = (a00 − λ)(a11 − λ)− (a2 − x2 − y2 + b2) (99)

finally:

λ = {1
2

-
a00 + a11 −

3
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

.
, (100)

1

2

-
a00 + a11 +

3
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

.
} (101)

We note that in the case where a00 − a11 = 0, the roots would be complex
iff a2 − x2 − y2 + b2 < 0, but! we already stated that the manifold must be
orientable — therefore it is the case that a2−x2−y2+b2 ≥ 0, as this expression
is the determinant of the multi-vector. Consequently, A□ = A implies, for an
orientable3 geometric Hilbert space, that its roots are real-valued, and thus
constitute a ’geometric’ observable in the traditional sense of an observable in
a Hilbert space.

3We note the exception that an geometric observable may have real eigen-values even in
the case of a transformation that reverses the orientation if the elements a00−a11 are not zero
up to a certain magnitude,, whereas transformations in the natural direction are not bounded
by a magnitude — thus creating an orientation-based asymmetry.
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4 Applications

4.1 The complex Hilbert space is a special case

The geometric Hilbert space G(2,R) reduces to the complex Hilbert space under
the following elimination:

(A+X+B|X→0 = A+B (102)

The observables become Hermitian operator and the evolution is unitary.

4.2 Spinor group wave-function

This representation of the general linear wave-function in geometric algebra ad-
mits multiple reductions to simpler systems. An important reduction was the
one done in the previous section, from the general linear group in two dimen-
sions to the complex, yielding the familiar quantum mechanics by annulling the
geometric components of the multi-vector. Another reduction is from the gen-
eral linear group to the spinor group, yielding a geometric formulation of the
relativistic wave-function, by annulling both the x and the v component of the
general linear group. Let us do this reduction right now.

Posing:

(a+ x+ f + v + b|x→0,v→0 = a+ f + b (103)

the wave-function becomes:

ψ(s) = exp
+
ap + fp + bp

,
exp−τ(f + b) (104)

Application of the ’probability rule’ via the determinant produces:

ρ(s) =
1

Z
exp 4ap (105)

where Ψ is the sample space (which is also a vector space).
We note that the prior of this wave-function is of the same form as that iden-

tified by David Hestenes as the geometric algebra formulation of the relativistic
wave-function[9], which he defines as ψ = ρeiBR, where R = e−F/2 is a rotor.

4.3 The probability density of an event

So far we have considered Ω to be a discrete and finite vector space. However,
it is preferable to select a parametrization in the same category as the domain
of the transformations of the theory. In this case, as the transformations are
general linear (and thus geometric), consequently the parametrization will also
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be over the geometry of the system; thereby creating a normalization condition
self-contained to the scope of the theory. One selects the parametrization to be
continuous and uncountable:

Z =

4

M

detψ(x, τ)
3
|g| dx (106)

where x is taken to be a n-vector, and where n is of the same value as that
of the n × n matrix M(q), and where M is the domain of integration. The
probability density would then be:

ρ(m) =

5
m
detψ(x, τ)

3
|g| dx

5
M

detψ(x, τ)
3
|g| dx

(107)

where m ⊂ M . We note that for this parametrization, one needs a metric
g (and also for M to be orientable). This gives the probability density that
a geometrically-extended instruments (for instance the screen at the end of a
double-slit experiment) ’clicks’ at event (x0, x1, . . . , xn), and this probability
density further remains invariant with respect to any geometric transformation
available to the observer including arbitrary change of coordinates (general lin-
ear transformations).

4.4 The collapse

So what happens during a measurement that causes the wave-function to col-
lapse to a point in spacetime? The wave-function collapse has been a tough
pill to swallow because, before these results, we did not know that the ori-
gin of the wave-function was in entropy under geometric constraint — we, at
best, believed it was a measure over a postulated unitary sample space, and
any geometric properties it may have (space-time normalization/Lorentz invari-
ance) were strapped on as a secondary set of axioms tied in to a normalization
condition in space-time, then we noticed to our surprise that such geometric
properties ought to be represented in the same unitary space as the rest of the
theory. In this framework, the collapse is simply the result of selecting an ele-
ment of the geometric sample space. All geometric features of the wave-function
are part of the sample space, and thus its geometry behave in the same manner
as any other observables under measurement. From this, it is then obvious (even
trivial) that the wave-function ought to ’collapse’ to a single point in space-time
upon a measurement of its sample space. Just like measuring a coin-toss causes
the system to pick [HEAD] or [TAILS], a measurement of a geometric sample
space causes the system to pick (t0, x1, x2, x3), (t′0, x

′
1, x

′
2, x

′
3), etc., from the

sample space.

4.5 Quantum gravity (probability measure support)

Since all finite dimensional groups have matrix representations, it then follows
that our framework —as it works with any matrices— is able to tackle any such
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group; including, of course, those groups resulting from the direct product of
groups such as the affine group: A(n,R) = T (n,R) × GL(n,R). Let us now
consider the metric-affine theory of gravity[10], which is obtained as the result
of gauging the affine group A(n,R). We will now create a linear geometric
amplitude over said affine group and a corresponding probability rule. Let a be
the lie algebra of A(n,R), and consider the following set of constraints:

!

s∈Ω

ρ(s) = 1 (108)

!

s∈Ω

ρ(s) tr a(s) = tr a (109)

After we solve the Lagrange equation, we get:

ρ(s) =
1

Z
det exp

+
−τ(a(s)

,
(110)

where

Z =
!

s∈Ω

det exp
+
−τ(a(s)

,
(111)

We note that exp−τa(s) is the exponential map of the algebra to the group
A(n,R). Consequently, it follows that ρ(s) is invariant with respect to a global
transformation of the affine group. A gauge-invariant derivative is obtained by
gauging a ’local’ application of the group A → A(s) and identifying a compen-
sating field, called a gauge-field, which maintains the invariance. This produces
the metric-affine theory of gravitation[10] or if the gauge group is the Poincaré
group T (n,R)× SO(n,R) produces the Einstein–Cartan gravity theory[11].

4.6 Quantum gravity + Standard model (probability mea-
sure support)

The flexibility provided by our methodology allows us to combine the gravity
(for instance the metric-affine gauge theory, or the Einstein–Cartan theory of
gravity resulting from gauging the Poincaré group) to the standard model using
a unifying probability measure specifically for this purpose, which adheres to
the rules of geometric probabilities — themselves a superset of unitary QM. For
instance and as a curiosity, we will create the geometric probability measure
associated to this group:

SM := T (4)× SO(4)× U(1)× SU(2)× SU(3) (112)

where we take T (4)×SO(4) to be the Poincaré group (alternatively we could
have picked the affine group here) and U(1)× SU(2)× SU(3) to be the (gauge
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group of the) standard model. Let sm be the lie algebra of the above group.
Then, consider the following constraints:

!

s∈Ω

ρ(s) = 1 (113)

!

s∈Ω

ρ(s) tr sm(s) = tr sm(s) (114)

Solving the Lagrange equation, we obtain:

ρ(s) =
1

Z
det exp−τ(sm(s)) (115)

and the wave-function as:

ψ(s) = exp−τ(sm(s)) (116)

Here again, the exponential map generates the group associated with the
algebra. The probability amplitude is linear within the associated geometric
Hilbert space, and said amplitude connects to the probability via the determi-
nant. Consequently the map from ψ(s) to ρ(s) is invariant with respect to a
global transformation of said group. Then, as per the methodology, producing
a gauge-invariant derivative for this group SM → SM(s) induces a number of
compensating gauge fields associated to these groups.

The ’physically-correct’ representation of the standard-model-group× general-
relativity-group likely depends upon the choice of lie algebra such that it cor-
rectly maps the algebra to the observed particle population, and this is a differ-
ent problem than merely showing that geometric Hilbert spaces, unlike complex
Hilbert spaces, are sufficiently flexible to support any choice (good or bad) con-
sistently with the core tenets of quantum mechanics.

4.7 Lagrangian

A typical Lagrangian density relies upon the existence of a measure of the
momentum:

P =
1

Z

4

M

P (x)ψ(x)∗ψ(x) dx (117)

Now, iff there exists a p̂ such that P (x)ψ(x) = p̂ψ(x), then p̂ is called the
momentum operator. In relativistic quantum mechanics, p̂ = γ0! /D. Then one
can support a Lagrangian density as a measure of the energy:

L(x) = ψ∗(x)p̂ψ(x)− ψ∗(x)γ0mc2ψ(x) (118)
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A similar probability measure can be constructed for a geometric Hilbert
space, using the determinant instead of the complex norm:

P =
1

Z

4

M

P (x) detψ(x, τ) dx (119)

And the potential energy as:

V =
1

Z

4

M

V (x) detψ(x, τ) dx (120)

resulting in the Lagrangian density:

L(x) = (P (x)− V (x)) detψ(x, τ) (121)

4.8 Testable Prediction

We are all familiar with the probabilities of a coin toss, whose sample space is
{[HEAD], [TAILS]}. Sampling the space returns an element [HEAD] or [TAILS]
with a probability of 50%/50%. But this system ignores the geometry of actu-
ally tossing a coin in the air, which is a luxury we do not necessarily have in the
physical universe. If we do account for the geometry and the state of relative
observers, then said probability ought to preserve the probabilities for any geo-
metric transformations available to said observers. For instance, what if the coin
is tossed in a spaceship, traveling away from earth at near the speed of light;
what if it is accelerated; what if it is tossed in the presence of a strong gravi-
tational field? Will all observer report the same probability? They should, but
for that we need a general linear invariant probability measure and a geometric
Hilbert space.

We can tackle such cases with a general linear probability amplitude and a
probability rule that together describe the probability density of a (coin landing)
event in space-time, then additionally attribute one of two possible value to this
landing event. Measuring the sample space triggers a pick of [HEAD] or [TAILS],
of course, but also a picks of an event in space-time where the coin lands — thus
also triggers a collapse of the wave-function. To tackle this case or other similar
cases, we will consider the ideal case of a ’general linear two-state system’, which
one may call a ’general linear qubit’ or perhaps even a ’general linear coin-toss’.

4.8.1 Geometric interference

In this section we propose a falsifiable experiments that could be used, in the
lab, to confirm/infirm this theory. Specifically, for a two-state system geometric
interference is possible as a new predicted form of interference. Suppose a two-
state system comprised of a linear combination of ψ1 and ψ2:
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ψ1 = exp(A1 +X1 + F1 +V1 +B1I) (122)

ψ2 = exp(A2 +X2 + F2 +V2 +B2I) (123)

Such a system can be obtained by using a transformation T to transform
the wave-function:

Z = detψ1 + detψ2 (124)

transformation by T → det (ψ1 + ψ2) (125)

→ (eA1)4 + (eA2)4 + interference-pattern... (126)

To find an explicit expression for the interference pattern it is more conve-
nient to express the determinant entirely in the language of geometric algebra
using the following norm:

‖m‖2 := ⌊m□m⌋3,4m□m (127)

We are now ready to produce the expression for the interference pattern.
With straightforward algebraic manipulations, the probability addition rules for
a two-state system reduce to a sum of two states ⌊ψ□

1 ψ1⌋3,4(ψ□
1 ψ1) = (eA1)4 and

⌊ψ□
2 ψ2⌋3,4(ψ□

2 ψ2) = (eA2)4, along with an accompanying interference pattern.
We note that both the geometric conjugate and the 3,4 blade conjugate are
distributive.

Z = det(ψ1 + ψ2) (128)

= ⌊(ψ1 + ψ2)
□(ψ1 + ψ2)⌋3,4(ψ1 + ψ2)

□(ψ1 + ψ2) (129)

= (eA1)4 + (eA2)46 78 9
sum of two states

+
⌊ψ□

1 ψ1⌋3,4(ψ□
1 ψ2+ψ□

2 ψ1+ψ□
2 ψ2)+⌊ψ□

2 ψ2⌋3,4(ψ□
1 ψ1+ψ□

1 ψ2+ψ□
2 ψ1)

+⌊ψ□
1 ψ2+ψ□

2 ψ1⌋3,4(ψ□
1 ψ1+ψ□

1 ψ2+ψ□
2 ψ1+ψ□

2 ψ2)6 78 9
general linear interference pattern

(130)

In this case the interference pattern is much more complicated than the
simple cosine of the standard Born rule but that is to be expected as it com-
prises the full general linear group, and not just the unitary group. It accounts
for the group of all geometric transformations which preserves the probability
distribution ρ for a two-state general linear system.

Let us note that as elements of the algebra are nullified, then the interfer-
ence pattern correspondingly reduces in complexity to eventually recover or-
dinary complex interference. Therefore, the general linear interference can be
understood as a generalization of complex interference. Specifically, when all
elements of the odd-sub-algebra are eliminated (by posing X → 0, V → 0),
then the wave-function reduces to the geometric algebra form of the relativis-
tic wave-function identified by David Hestenes, in terms of a spinor field. Of
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course, setting a full sector of the multi-vector to 0 is a very brute restriction;
more subtle conditions can be imposed on the relations of the elements of the
multi-vectors without necessarily posing them equal to zero, and such restric-
tions would entail a slightly different interference pattern.

These reductions produces a series of interference patterns of decreasing
complexity, and as such they provide a method to experimentally identify which
group of geometric transformations the world obeys, using interference exper-
iments on space-time. We note that interference experiments have paid off
substantial dividends in the history of physics and are usually easier to con-
struct that alternatives. Identification of the general linear interference pattern
(A,X,F,V,B) in a lab experiment would suggest the world obeys the metric-
affine gravitational theory; whereas identification of a reduced interference pat-
tern (A,F,B), and subsequent showing a failure to observe the full general linear
interference, would suggest at most Poincaré gauge theory, and so on.

In any such case, a general experimental setup would send a particle into
two distinct paths. Then, either: a) one of the paths undergoes a general linear
transformation, while the other doesn’t or b) both paths undergo a different
general linear transformation. Then, the paths are recombined to produce an
interference pattern on a screen. Depending on the nature of the transformation,
a deformation of the interference pattern, based on the geometry of the setup
should be observed.

In a possibly even better construction of such an experiment, one would
exploit the non-commutativity of the general linear transformations to identify
only the difference between complex-interference and general linear interference.
One would apply the same general linear transformations to each path, but
would reverse the order in which the transformations are applied. The resulting
interference pattern would then be compared to a case where both paths are
transformed in the same order. Then, complex-interference, as it is fully com-
mutative, would predict the same interference pattern irrespective of the order
the transformations are applied in — whereas, with general linear interference,
as it is non-commutative, would predict different interference patterns.

To achieve this, it may be necessary to use a three-dimensional detector,
whose idealized example is an homogeneous bath of impurities - allowing pho-
tons to ’click’ anywhere within the volume of the detector -, instead of a two-
dimensional screen, since the opportunity for non-commutative behaviour often
kicks in at three dimensions or higher. In a real experiment, it is probably easier
to use a 2d x-y screen, and stepping it along an orthogonal z-axis, capturing
the 2d interference pattern at each step, then numerically reconstructing the
volumetric interference pattern out of the steps.

To my knowledge, such experiments have not been carried out to date. Fi-
nally, I note the work of B. I. Lev.[12] which suggest (theoretically) the possi-
bility of an extended interference pattern associated with the David Hestenes
form of the relativistic wave-function and for the subset of rotors.
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A Notation

S will denote the entropy, A the action, L the Lagrangian, and L the La-
grangian density. Sets, unless a prior convention assigns it another symbol, will
be written using the blackboard bold typography (ex: L,W,Q, etc.). Matrices
will be in bold upper case (ex: A,B), whereas vectors and multi-vectors will
be in bold lower case (ex: u,v,g) and most other constructions (ex.: scalars,
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functions) will have plain typography (ex. a,A). The identity matrix is I,
the unit pseudo-scalar (of geometric algebra) is I and the imaginary number
is i. The Dirac gamma matrices are γ0, γ1, γ2, γ3 and the Pauli matrices are
σx,σy,σz. The basis elements of an arbitrary curvilinear geometric basis will be
denoted e0, e1, e2, . . . , en (such that eν · eµ = gµν) and if they are orthonormal
as x̂0, x̂1, x̂2, . . . , x̂n (such that x̂µ · x̂ν = ηµν). The asterisk z∗ denotes the
complex conjugate of z, and the dagger A† denotes the conjugate transpose of
A. A geometric algebra of n dimensions over a field F is noted as Gn,F. We
note the matrix representation of a multi-vector g as M [g], defined as a map
M : Gn,F → Mn,F which preserves the geometric product via the matrix prod-
uct, and thus benefits from group isomorphism. The grades of a multi-vector
will be denoted as 〈v〉k. Specifically, 〈v〉0 is a scalar, 〈v〉1 is a vector, 〈v〉2 is a
bi-vector, 〈v〉n−1 is a pseudo-vector and 〈v〉n is a pseudo-scalar. Furthermore,
a scalar and a vector 〈v〉0 + 〈v〉1 is a para-vector, and a combination of even
grades (〈v〉0 + 〈v〉2 + 〈v〉4 + . . . ) or odd grades (〈v〉1 + 〈v〉3 + . . . ) are even-
multi-vectors or odd-multi-vectors, respectively. The commutator is defined as
[A,B] := AB−BA and the anti-commutator as {A,B} := AB+BA. We use
the symbol ∼= to relate two sets that are related by a group isomorphism (ex:
G4,C ∼= M4,C). We denote the Hadamard product, or element-wise multiplica-
tion, of two matrices using⊙, and is written for instance asM⊙P, and for a mul-
tivector as u⊙v; for instance: (a0+x0x̂+y0ŷ+b0x̂∧ŷ)⊙(a1+x1x̂+y1ŷ+b01x̂∧ŷ)
would equal: a0a1 + x0x1x̂+ y0y1ŷ + b0b1x̂ ∧ ŷ.

B Lagrange equation

The Lagrangian equation to maximize is:

L(ρ,α, τ) = −kB
!

q∈Q
ρ(q) ln ρ(q) + α

%

'1−
!

q∈Q
ρ(q)

(

*+ τ tr

%

'M−
!

q∈Q
ρ(q)M(q)

(

*

(131)

where α and τ are the Lagrange multipliers. We note the usage of the
trace operator for the geometric constraint such that a scalar-valued equation is
maximized. Maximizing this equation for ρ by posing ∂L

∂ρ(p) = 0, where p ∈ Q,

we obtain:
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∂L
∂ρ(p) = −kB ln ρ(p)− kB − α− τ trM(p) (132)

0 = kB ln ρ(p) + kB + α+ τ trM(p) (133)

=⇒ ln ρ(p) =
1

kB

+
−kB − α− τ trM(p)

,
(134)

=⇒ ρ(p) = exp

/
−kB − α

kB

0
exp

/
− τ

kB
trM(p)

0
(135)

=
1

Z
det exp

/
− τ

kB
M(p)

0
(136)

where Z is obtained as follows:

1 =
!

q∈Q
exp

/
−kB − α

kB

0
exp

/
− τ

kB
trM(q)

0
(137)

=⇒
1
exp

/
−kB − α

kB

02−1

=
!

q∈Q
exp

/
− τ

kB
trM(q)

0
(138)

Z :=
!

q∈Q
det exp

/
− τ

kB
M(q)

0
(139)

We note that the Trace in the exponential drops down to a determinant, via
the relation det expA ≡ exp trA.

B.1 Multiple constraints

Consider a set of constraints:

M1 =
!

q∈Q
ρ(q)M1(q) (140)

... (141)

Mn =
!

q∈Q
ρ(q)Mn(q) (142)

Then the Lagrange equation becomes:

L = −kB
!

q∈Q
ρ(q) ln ρ(q) + α

%

'1−
!

q∈Q
ρ(q)

(

*+ τ1 tr

%

'M1 −
!

q∈Q
ρ(q)M1(q)

(

*+ . . .

+τn tr

%

'Mn −
!

q∈Q
ρ(q)Mn(q)

(

*

(143)
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and the measure references all n constraints:

ρ(q) =
1

Z
det exp

/
− τ1
kB

M1(q)− · · ·− τn
kB

Mn(q)

0
(144)

B.2 Multiple constraints - general case

In the general case of a multi-constraint system, each entry of the matrix cor-
responds to a constraint:

M00

1
1 ... 0
...
. . .

...
0 ... 0

2
=

!

q∈Q
ρ(q)M00(q)

1
1 ... 0
...
. . .

...
0 ... 0

2
(145)

... (146)

M01

1
0 1 ... 0
...
...
. . .

...
0 0 ... 0

2
=

!

q∈Q
ρ(q)M01(q)

1
0 1 ... 0
...
...
. . .

...
0 0 ... 0

2
(147)

... (148)

Mnn

1
0 ... 0
...
. . .

...
0 ... 1

2
=

!

q∈Q
ρ(q)Mnn(q)

1
0 ... 0
...
. . .

...
0 ... 1

2
(149)

For a n× n matrix, there are n2 constraints.
The probability measure which maximizes the entropy is as follows:

ρ(q) =
1

Z
det exp

/
− 1

kB
τ ⊙M(q)

0
(150)

where τ is a matrix of Lagrange multipliers, and ⊙, the element-wise multi-
plication, assigns the corresponding Lagrange multiplier to each constraint.

C Quackery (intermission)

Definition 25 (Quack). A function of p which does NOT recursively enumerate
the empirical evidence of p is a quack function for p.

Theorem 6 (The Fundamental Theorem of Quackery). In the general case,
one cannot prove if an arbitrary function of p is a quack or a scientific method.
The proof follows directly from the halting problem.

We do note that it is the case that for some specific functions one can prove
they are scientific methods, such as the dovetail scheduler, or are quacks, such
as a function that works on a single non-halting program indefinitely. As an
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example, consider one who attempts to square the circle using only compass and
straightedge by continuously trying new permutations of such. Since this person
will be trying forever, then a function which model this behaviour constitute a
quack function.
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