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Abstract

It is normally expected that the laws of physics are the general end-
product of the scientific process. In this paper, consistently with said
expectation, I produce a model of science using mathematics, then I use
it to derive the laws of physics by applying the (formalized) scientific
method to the model. Specifically, the laws of physics are derived as the
probability measure that maximizes the quantity of information produced
by the scientific method as the observer traces a path in the space of all
possible experiments. In this space said probability measure describes a
general linear ensemble of programs which is a foundation sufficient to
express all known physics. Since the definitions are purely mathematical
and contain no physical baggage of any kind, yet are nonetheless able
to derive the laws of physics from first principles, then it follows that
the present derivation of said laws, as it is ultimately the product of the
(formalized) scientific method, is the minimal mathematical foundation of
physics as well as its philosophical less controversial formulation. We end
with applications of the model to open problems of physics and produce
testable predictions.
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1 Introduction

In classical philosophy an axiom is a statement which is self-evidently true such
that it is accepted without controversy or question. But this definition has
been retired in modern usage. Any so-called ”self-evident” axiom can also be
posited to be false and either choice of its truth-value yields a different model;
the archetypal example being the parallel line postulate of Euclid, allowing for
hyperbolic/spherical geometry when it is false. Consequently, in modern logic
an axiom is simply a starting point for a premise, and in mathematics an axiom
is a sentence of a language that is held to be true by definition.

A long standing goal of philosophy has been to find necessarily true principles
that could be used as the basis of knowledge. For instance, the universal doubt
method of Descartes had such a goal in mind. The ’justified true belief’ theory
of epistemology is another attempt with a similar goal. But, so far, all such
attempts have exploits; the elimination of which is assumed, at best, to reduce
the theory to a handful of statements, rendering it undesirable as a foundation
to all knowledge.

In epistemology, the Gettier problem[1] is a well known objection to the belief
that knowledge is that which is both true and justified, relating to a family of
counter-examples. All such counter-examples rely on the same exploit: if the
justification is not ’air-tight’ then there exists a case where one is right by pure
luck, even if the claim were true and believed to be justified. For instance, if
one glances at a field and sees a shape in the form of a dog, one might think
he or she is justified in the belief that there is a dog in the field. Now suppose
there is a dog elsewhere in the field, but hidden from view. The belief ”there
is a dog in the field” is justified and true, but it is not knowledge because it is
only true by pure luck.

Richard Kirkham[2] proposed to add the criteria of infallibility to the jus-
tification. This eliminates the exploit, but it is an unpopular solution because
adding it is assumed to reduce epistemology to radical skepticism in which al-
most nothing is knowledge.

Since the primary purpose of a scientific process is to gather knowledge
(about the world), then any serious attempt at the mathematization of such
will require a theory of knowledge that is also equally rigorous. I propose the
concept of the universal fact as a new candidate to serve as the foundation to
knowledge. As we will see in a moment, and due to their construction, universal
facts are sufficiently strong to be infallible, yet are sufficiently expressive to form
a Turing complete theory — thus they resolve the Gettier problem without
reducing epistemology. Universal facts be will the primary subject matter of
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our mathematical model of science and they are revealed and verified by the
(formalized) scientific method.

1.1 Universal Facts

Many philosophies discuss facts, but it appears they all missed the mark on what
a fact actually is (in terms of a precise exploit-free mathematical definition).
The archetypal example of a fact is given in many philosophical textbooks:
”1 + 1 = 2”, is in fact not a fact. Here I will provide what I believe to be the
correct definition of a fact, and since the definition is formal (and is universal in
the computer-theoretical sense) I will use the term universal fact to distinguish
the concept from other definitions.

Specifically, the sentence ”1 + 1 = 2” halts on some Turing machine, but
not on others and thus is not a universal fact. Instead consider the sentence
PA ⊢ [1 + 1 = 2] to be read as ”Peano’s axioms prove that 1 + 1 = 2”. Such a
statement embeds as a prefix the set of axioms in which it is provable. One can
deny that 1 + 1 = 2 (for example, a trickster could claim binary numbers, in
which case 1+1 = 10), but if one specifies the exact axiomatic basis in which the
claim is provable, a trickster would find it harder to find an exploit. Nonetheless,
even with this improvement, an exploit always exists because in the general case
a trickster can provide a Turing machine for which PA ⊢ [1 + 1 = 2] does not
halt.

If we use the tools of theoretical computer science and observe an equivalence
between facts and programs, we can cure the concept of a fact of all of its
exploits:

Definition 1 (Universal Fact). Let L be the set of all sentences with alphabet
Σ. A universal fact is a pair (TM, p) of sentences from L such that a universal
Turing machine UTM halts for it:

iff UTM(TM, p) halts, then (TM, p) is a universal fact (1)

A universal Turing machine UTM which takes a Turing machine TM and
a sentence p as inputs, will halt iff p halts on TM. Thus the fact that p
halts on TM is indeed a universal fact because it is verifiable on all univer-
sal Turing machines. This definition cures the concept of its exploits: ”I believe
{(TM1, p1), (TM2, p2), . . . , (TMn, pn)} are facts, why? Answer: I verified that
they halt on a universal Turing machine. Anyone else can too, by definition,
therefore I am infallibly justified in my belief that these facts hold.”

The second objection is that infallible justified true beliefs collapse epistemol-
ogy to radical skepticism, where at best only a handful of statements constitute
knowledge. However, the set of all universal facts constitute the entire domain
of the universal Turing machine, and thus the expressiveness of universal facts
must be on par with any Turing complete language. There exists no greater
expressivity for a formal language than Turing completeness.
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1.2 Axiomatic foundation of finite theories

We can use universal facts to define a new, significantly more flexible foundation
to mathematics, especially when it comes to formal theories that contain finitely
many theorems or sentences. When it comes to formulating a scientific theory
of a finite physical system one can intuit why that would be a desirable feature.
Working with finite theories using the typical tools of mathematics is mostly
ineffective, because all such theories are decidable and thus completely solvable
in principle. Furthermore, even tools such as complexity theory require the size
of the input to be n, allowing for arbitrarily large sizes of input to produce
an effective classification system. Instead of defining a mathematical theory
as a finite deductive system of axioms, which typically entails infinitely many
theorems, why not define it as a finite (or in some cases even infinite) set of
universal facts?

To distinguish our definition of a formal theory with that of the literature,
we will call our definition a manifest theory.

Definition 2 (Manifest Theory). A manifest theory M is defined as a set of
universal facts:

M := {(TM1, p1), (TM2, p2), . . . } (2)

The set can be either finite or infinite, and it can be either decidable or
non-decidable.

For a manifest theory, universal facts replace the normal role of both axioms
and theorems and instead form a single verifiable atomic concept constituting
a unit of mathematical knowledge. Let me explicitly point out the difference
between the literature definition of a formal theory and ours: for the former, its
theorems are a subset of the sentences of L — whereas for a manifest theory,
its elements are pairs of L× L which halts on a UTM.

Theorem 1 (Incompleteness Theorem). If M = Dom(UTM), then M is recur-
sively enumerable (and non-decidable). The proof follows from the domain of a
universal Turing machine being non-computable.

Note on the upcoming notation: we will designate f as elements of M,
and π1(f) and π2(f) designate the first and second projection of the tuple
f , respectively. Thus π1(f) is the TM associated with f , and π2(f) is the p
associated with f . If applied to a set of tuples, then π1(M) return the set of all
p in M and π2(M) returns the set of all TM in M.

Definition 3 (Theorems). The theorems of a manifest theory M are defined as
the set of all p in M:

T := π2(M) (3)
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Definition 4 (Atomic Solver). The atomic solvers of M are defined as the set
of all TM in M:

A := π1(M) (4)

Definition 5 (Spread (of a sentence)). The set of all atomic solvers in M in
which a sentence is repeated is called the spread of the sentence. For instance if
M = {(TM1, p1), (TM2, p1)}, then the spread of p1 is {TM1,TM2}.

Definition 6 (Scope (of a solver)). The set of all theorems in M in which
a solver is repeated is called the scope of the solver. For instance if M =
{(TM1, p1), (TM1, p2)}, then the scope of TM1 is {p1, p2}.

1.2.1 Connection to finitely axiomatic systems

We can, of course, connect our construction to a finitely axiomatic system:

Definition 7 (Finitely Axiomatic Representation). Let FAS be a finitely ax-
iomatic system, let M be a manifest theory and let solverFAS be a function which
recursively enumerates the theorems of FAS. Then FAS is a finitely axiomatic
representation of M iff:

∀(s1, s2) ∈ L× L [solverFAS(s1, s2) halts iff (s1, s2) ∈ M] (5)

Definition 8 (Domain (of FAS)). Let FAS be a finitely axiomatic system, let M
be a manifest theory and let solverFAS be a function which recursively enumerates
the theorems of FAS. Then the domain of FAS, denoted as Dom(FAS), is the
set of all pairs (s1, s2) ∈ L× L which halts for solverFAS.

Definition 9 (de-facto-isomorphism). Two finitely axiomatic representations
FAS1 and FAS2 are de-facto-isomorphic iff Dom(FAS1) = Dom(FAS2).

Theorem 2 (Principle of Computational Equivalence[3]). If M = Dom(UTM)
then all Turing complete finitely axiomatic systems are de-facto-isomorhic rep-
resentations of M. Furthermore, their solver function is a universal Turing
machine. The proof follows because Dom(UTM) includes all universal facts.

1.2.2 Axiomatic information

Although we can connect the formulation of a manifest theory to a finitely
axiomatic representation, we will find that it is more advantageous for the pur-
poses of constructing a model of science to study manifest theories using the
formalism of universal facts we have introduced. We can understand the ele-
ments of any particular manifest theory as having been ’picked’, in some sense,
from the set of all possible universal facts. If the pick is random and described
as a probability measure ρ, we can quantify the quantity of information of the
pick using the entropy, and thus we can associate the notion of information to
the manifest theory.
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Definition 10 (Axiomatic Information). Let D be the domain of a univer-
sal Turing machine D = Dom(UTM) (full theory) or of a subset thereof D ⊂
Dom(UTM) (toy theory). Then, let ρ : D → [0, 1] be a probability measure over
D. Finally, let M be a manifest theory subset of D. The axiomatic information
of a single element of M is quantified as the entropy of ρ:

S = −
!

q∈D
ρ(q) ln ρ(q) (6)

For instance, a well-known (non-computable) probability measure regarding
a sum of prefix-free programs is the Halting probability[4] of computer science:

Ω =
!

p∈Dom(UTM)

2−|p| =⇒ ρ(p) = 2−|p| (7)

The quantity of axiomatic information of a given manifest theory (and es-
pecially its maximization), rather than any particular set of axioms, will be
the primary quantity of interest for the production of a maximally informative
theory in this framework. A strategy to gather mathematical knowledge which
picks universal facts according to the probability measure which maximizes the
entropy is a maximally informative strategy.

1.3 Philosophy of facts

Now and before we enter section 2, we will try to ease the transition to a full
blown purely mathematical model of science, by attempting to set and perhaps
even ’reset’ the intuition to be in line with the requirements of the model.

Most are likely to fall in either one of two camps: the world is made of things
or is made of facts. The first option is definitely the mainstream belief, but the
second one nonetheless has a sizeable following. For instance, in the Tractatus
Logico-philosophicus[5], Wittgenstein produces these two statements: 1) ”The
world is everything that is the case” and 2) ”The world is the totality of facts,
not of things”. For him, the world is clearly made of facts. We also note John
A. Wheeler in Information, physics, quantum: The search for links[6] stating
”[...] every physical quantity, every it, derives its ultimate significance from bits,
binary yes-or-no indications, a conclusion which we epitomize in the phrase, it
from bit”. So which is it: facts or things?

I submit that there is a fundamental problem with considering that the world
is made of things rather than facts, and I believe the problem is insurmountable.
I have tried to explain it before using a different formulation, however using
universal facts now makes it incredibly difficult (I believe) for anyone not to see
and understand it.

1. Universal facts constitute the set of all infallible-justified-true-beliefs.
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2. Person A claims to hold a conception of the world which is not supported
by universal facts alone (e.g. ice cream is a thing, not a fact).

3. It thus follows, necessarily, that person A’s conception of the world cannot
be an infallible-justified-true-belief.

4. Person A’s conception of the world must therefore be either fallible, un-
justified or false.

Believing that the world itself is made of things rather than facts is a ver-
sion of the Gettier problem (perhaps even its most general version). Indeed, if
person A is aware of some information which transforms according to a certain
type of rule (e.g. produces a certain shape or structure — say the shape of a
dog in a field), but then believes there is a ’thing’ that exists in addition to said
information, then said belief cannot constitute knowledge in the epistemologi-
cal sense because A is not infallibly justified in believing the existence of the
’additional thing’. The existence of universal facts as a Turing complete theory,
since it can express any concept that can be expressed, precludes any and all
belief in said ’additional thing’ to be infallible.

Consequently, I believe it to be simpler to reproduce all human knowledge in
terms of universal facts than it is to overcome this problem. Doing so also cures
quite a lot of problems in philosophy, science and physics. To get the program
started, I have thus produced here a formal theory of science which is able to
recover the laws of physics by using universal facts as the starting point. It took
me a preliminary period of ten-ish years juggling with the concept of universal
facts and similar notions, and a subsequent five year period to build the overall
model, but it appears to be well worth the effort.

I, for one, will gladly trade in ice cream as a thing for ice cream as a fact, if
the latter is infallible and the former isn’t.

1.3.1 State of affairs

There is another conceptual trap to avoid regarding how a fact of the world can
be a universal fact. For instance, one might say ”If I define the store next door
as having ice cream, it might not have it by the time I get there. Therefore, even
something as innocuous as the store having ice cream cannot be a universal fact
because there is always a possibility that the fact be violated in the future”.
As this could apply to any state of affairs, what, if anything, could truly be a
universal fact in nature?

The trap is that this is the incorrect way to use universal facts to define
reality. Instead of thinking about a situation as ’past implies present’ or ’present
implies future’, one ought to think about it as ’present implies past’. Think of
oneself as a forensic scientist: one walks into a crime scene, and to know what
happened one has to reconstruct a model of the past based on the evidence
available now. Thus, instead of thinking of ice cream as a thing they may or
may not have at the store and this determines whether one will or will not have
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some later; instead one ought to axiomatically define his or her mouth as having
ice cream in it, then figure out a plausible origin story for said ice cream.

The pick of the elements of the state of affairs from the set of all possible
elements is axiomatic information. Thus, the statement ”there is ice cream
in my mouth right now” along with its origin story are, as an element of the
state of affairs, axiomatic information. The corresponding universal fact would
resemble this: (”Store had ice cream” ∧ ”I bought the ice cream” ∧ (all other
necessary conditions), ”I have ice cream in my mouth”). The state of having ice
cream in ones mouth, is verified by a logically-deducible causal history which
’explains’ why it’s in one’s mouth now - and such causal history is sufficiently
detailed for ”I have ice cream in my mouth” to be provable from said history.

1.3.2 Inconsistencies in the state of affairs...?

A fatal inconsistency for this framework would be a proof that a given universal
fact both [HALT] and [NOT HALT] on a UTM. By definition of a UTM, this
cannot happen lest the machine was not a UTM to begin with. Thus, we should
be safe from contradictions at this level. But what about the other ”levels”?

What if the state of affairs contains both ”I have ice cream in my mouth”
and ”I do not have ice cream in my mouth” at the same time — how much of a
problem is it for the framework? For the record, let me state that I can construct
a computer program that halts for both ”I have ice cream in my mouth” and
”I do not have ice cream in my mouth” and the universe will not implode:

1. If (p=”I have ice cream in my mouth” or p=”I do not have ice cream in
my mouth”) then

2. return 1;

3. else (loop())

A-priori, the words ”I have ice cream in my mouth” are just symbols. The
tendency of the human mind to attribute a special meaning or a special exclu-
sionary requirement to these symbols is a step that occurs later in the frame-
work, after the selection of the finitely axiomatic representation. The appear-
ance of an irreconcilable contradiction is the result of attributing said special
meaning too soon and without ’respecting’ the steps of the framework. Let’s
see with an example.

Suppose one has a sizeable manifest theory which may contain a plurality of
valid sentences p1, p2, p3, p4, p5, p6, p7, p8 . . . such that the negation of some, but
not all, are also present as valid sentences: for instance, the sentences p6 and p7
might be p6 = ¬p4, p7 = ¬p5. In this case, a finitely axiomatic representation of
this theory could take the form of a para-consistent theory which would contain
some contradictory elements, yet would not support the principle of explosion (a
contradiction in a para-consistent theory is contained and does not necessarily
entail that everything else in the theory is also contradicted).

Now, let us call the p1, p2, p3, p4, p5, p6, p7, p8 . . . the various flavours or
recipes of ice cream. It could be that the Italians define ice cream in a certain
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way, and the British define it in a slightly different way. Recall that universal
facts are pairs which contain an atomic solver and a valid sentence. The atomic
solver of pi is the ’standard’ under which the flavour qualifies as real ice cream.
A pi with a large spread is considered real ice cream by most atomic solvers (i.e.
vanilla or chocolate ice cream), and one with a tiny spread would be considered
real ice cream by only a few (i.e. tofu-based ice cream). Then, within this
example, the state of both [having] and [not having] ice cream in ones mouth,
simply implies one is eating tofu-based ice cream; it’s ”real” ice cream, but then
again it’s not real ice-cream...

This multi-ice-cream-standard interpretation is only one example to reconcile
the situation. In principle, there may exist infinitely many alternative ways to
do so, and such is dependant on the choice of a de-facto-isomorphic finitely
axiomatic representation. Reality is of a complexity such that a one-size-fits-
all definition may not fit all concepts, and further competing definitions might
exist; a chair may be a chair according to a certain definition, but not according
to another. The existence of many definitions for one concept is a part of reality,
and the mathematical framework which correctly describes reality to ought be
sufficiently flexible to handle this, without itself exploding into a contradiction.

A special case occurs if both p8 and its negation ¬p8 were to be valid sen-
tences of M while also having the same atomic solver. In this case, a finitely
axiomatic representation of M which attributes a semantic to the ¬ symbol,
might qualify said atomic solver as being inconsistent. Is this a problem for the
framework? Answer: no, in fact it’s a necessary part thereof. Indeed, having
both p8 and ¬p8 with the same atomic solver be elements of M means one has
verified that said atomic solver is inconsistent. Knowing that an atomic solver
is inconsistent and also why it is inconsistent is valuable knowledge to have and
comes at a cost! One has to prove to oneself that a given definition is inconsis-
tent by trying it out against multiple instances of a concept, and those ’trials’
are all part of the state of affairs.

1.3.3 Intuition: an experimental system that is purely mathematical

1. Assume personA knows (at least) one universal fact. For instance (solverPA, ”1+
1 = 2”), where solverPA is a solver for Peano’s axioms (PA).

2. How does A knows it is a universal fact and not just a false claim?

3. Either A verifies it himself or herself, or A is satisfied that it has been
verified.

4. How can A verify a universal fact?

5. Answer: A must bring the program to termination on a Turing machine.
For relatively simple facts, such as (solverPA, ”1 + 1 = 2”), A can likely
verify it in his or her mind. But, for more complicated universal facts, it
may take considerably longer and could be quite difficult.
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6. In any case, A having knowledge of a universal fact implies A is satisfied
that a sequence of computing has taken place somewhere somehow to
verify that fact.

Comparatively, how much faith would A have in someone claiming to know
that an arbitrary program halts, without him or her showing A the proof nor
having verified it to completion on a Turing machine. Answer: none. Just like
positing axioms implies a collection of theorems, positing a state of affairs made
of universal facts, such that one is satisfied that they are indeed universal facts,
implies or necessitates a computational verification of these claims.

2 Formal Science

2.1 Axiomatic foundation of science

The fundamental object of study of science is not the electron, the quark or
even super-strings, but the reproducible experiment. An experiment represents
an ’atom’ of verifiable knowledge.

Definition 11 (Experiment). Let (TM, p) be a pair comprising of two sentences
of a language L. The first sentence, TM, is called the protocol. The second
sentence, p, is called the hypothesis. Let UTM be a universal Turing machine.
If UTM(TM, p) halts then the pair (TM, p) is said to be an experiment. In this
case, we say that the protocol verifies the hypothesis. If UTM(TM, p) does not
halt, we say that the pair fails to verify the hypothesis.

UTM(TM, p)

"
HALT =⇒ the experiment verifies p

¬HALT =⇒ the pair fails verification
(8)

Of course, in the general case, as per the halting problem there exists no
decidable function which can determine which pair is an experiment and which
pair fails verification.

An experiment, so defined, is formally reproducible. I can transmit, via fax
or other telecommunication medium, the pair (TM, p) to another experimen-
talist, and I would know with absolute certainty that he or she has everything
required to reproduce the experiment to perfection.

Theorem 3 (Formal Reproducibility). Experiments are formally reproducible.

Proof. Let UTM and UTM′ each be a universal Turing machine. For each pair
UTM(TM, p) which halts on UTM, there exists a computable function, called
an encoding function, which maps said pairs as encode(TM, p) → (TM′, p′) such
that (TM′, p′) halts for UTM′. The existence of such function is guaranteed by
(and equivalent to) the statement that any UTM can simulate any other.
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In the peer-reviewed literature, the typical requirement regarding the repro-
ducibility of an experiment is that an expert of the field be able to reproduce
the experiment, and this is of course a much lower standard than formal repro-
ducibility which is a mathematically precise definition. Here, for the protocol
TM to be a Turing machine, the protocol must specify all steps of the exper-
iment including the complete inner workings of any instrumentation used for
the experiment. The protocol must be described as an effective method equiv-
alent to an abstract computer program. Should the protocol fail to verify the
hypothesis, the entire experiment (that is the group comprising the hypothesis,
the protocol and its complete description of all instrumentation) is rejected.
For these reasons and due to the generality of the definition, I conjecture that
the above definition is the only (sensible) definition of the experiment that is
formally reproducible (as opposed to say ”sufficiently reproducible for practical
purposes”).

Definition 12 (Empirical Evidence). The set of all pairs whose protocol TM
verifies p is defined as the empirical evidence Ev of p:

Ev(p) := Dom(UTM, p) (9)

where

Dom(UTM, p) := {(TM, p) : where UTM(TM, p) halts } (10)

Definition 13 (Scientific method). An algorithm which recursively enumerates
the empirical evidence, or parts thereof, of an hypothesis or a set thereof, is
called a scientific method.

Empirical evidence is thus produced by the application of the scientific
method to an hypothesis.

Theorem 4 (Scientific method). Existence of the scientific method.

Proof. Consider a dovetail program scheduler which works as follows.

1. Sort all pairs of sentences of L × L in shortlex. Let the ordered pairs
(TM1, p1), (TM2, p1), (TM1, p2), (TM2, p2), (TM3, p1), . . . be the ele-
ments of the sort.

2. Take the first element of the sort, UTM(TM1, p1), then run it for one
iteration.

3. Take the second element of the sort, UTM(TM2, p1), then run it for one
iteration.

4. Go back to the first element, then run it for one more iteration.

5. Take the third element of the sort, UTM(TM1, p2), then run it for one
iteration.
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6. Continue with the pattern, performing iterations one by one, with each
cycle adding a new element of the sort.

7. Make note of any pair (TMi, pj) which halts.

This scheduling strategy is called dovetailing and allows one to enumerate
the domain of a universal Turing machine recursively, without getting stuck by
any singular program that may not halt. Progress will eventually be made on
all programs... thus producing a recursive enumeration.

Dovetailing is of course a simple/non-creative approach to the scientific
method. The point here was only to show existence of such an algorithm, not
to find the optimal one.

Definition 14 (Scientific theory). Let ST be a finitely axiomatic representation.
If Ev(p) = Dom(ST), then ST is a scientific theory of p.

2.1.1 The Fundamental Theorem of Science

With these definitions we can prove, from first principle, that the possibility of
falsification is a necessary consequence of the scientific method.

Definition 15 (Predictive theory). Let D, called the ’collected scientific data’
or just ’the data’, be a subset of the empirical evidence of p:

D ⊂ Ev(p) (11)

A finitely axiomatized representation is called a predictive theory PT of p if
D ⊂ Dom(PT). The set P, called the predictions of PT, is defined as:

P := Dom(PT) \ D (12)

Predictive theories are thus supported by the data, but may diverge outside
of this support.

Theorem 5 (The Fundamental Theorem of Science). If the empirical evidence
of p is recursively enumerable, but not decidable, then the empirical evidence of
p has measure 0 over the set of all possible predictive theories of p.

Proof. The empirical evidence of p is unique, yet —excluding atypical cases
Ev(p) where it is decidable— there exists countably infinitely many predictive
theories of p, for any set of data D. Finally, the measure of one element of a
countably infinite set is 0.

Consequently, the fundamental theorem of science leads to the concept of
falsification, as commonly understood in the philosophy of science and as given
in the sense of Popper. It is (almost) certain that a non-decidable predictive
theory will eventually be falsified.
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2.2 Axiomatic foundation of reality

Definition 16 (Domain of science). We note S as the domain (Dom) of science.
We can define S in reference to a universal Turing machine UTM as follows:

S := Dom(UTM) (13)

Thus, for all pairs of sentences (TM, h), if UTM(TM, h) halts, then (TM, h) ∈
S. It follows that all experiments are elements of the domain of science.

Definition 17 (Manifest). A manifest m is a n-tuple constructed from elements
of the domain of science.

m := Sn (14)

A manifest is therefore a tuple of experiments:

m := ((TM1, p1), . . . , (TMn, pn)) (15)

We note that since a manifest may contain repetitions (experiments are for-
mally reproducible) we have elected not to define m as a set, but instead as a
n-tuple to allow said repetitions. Quite remarkably, this tuple vs set (manifest
vs manifest-theory) definition is the primary difference between formal theories
in math versus those in science — we will investigate the consequences of this
difference in great detail in the main results section.

For a given manifest, the possibility exists that some hypotheses or, likewise,
some protocols be repeated in the other tuples of the manifest. For instance it
could be the case that within a manifest p2 = p5, or that TM1 = TM6 = TM21,
etc. The set of all hypotheses for a given protocol is called the scope (of the
protocol), and the set of all protocols for a given hypothesis is called the spread
(of the hypothesis).

Definition 18 (The Fundamental Assumption of Science). Experiments are
complete with respect to the state of affairs of reality.

• The state of affairs of reality is describable as a set of experiments. There-
fore, the state of affairs is describable as a manifest.

• To each state of affairs corresponds a manifest.

• The manifest is a complete description of the state of affairs.

• A manifest is a ”brute” description of reality in terms of experiments.

• If the assumption of science would be false, it would mean that there are
elements of the instantaneous state of nature that are outside the domain
of science... (intervention by an oracle?)
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Definition 19 (Experimental Space). Experimental space E is the ”powertuple”
of the domain of science:

E :=

∞#

i=0

Si (16)

All elements of experimental space are manifests, and all manifests are ele-
ments of experimental space.

Definition 20 (Toy Model). A subset of experimental space is called a ’toy
model’. Note: some toy models may be decidable.

2.3 Axiomatic foundation of physics

Recall that earlier we used a dovetailing algorithm in Theorem 4 as an im-
plementation of the scientific method, and we claimed that although it was a
possible strategy, it was not necessarily the optimal one. So what then is the
optimal implementation of the scientific method applicable to a tuple of exper-
iments? Well, I suppose it depends on what we mean by optimal. One might
be tempted to search along the lines of an efficient algorithm, perhaps the most
elegant one, or the one that uses the least amount of memory, etc., but think-
ing in those terms would be a trap — we must think a bit more abstractly
than postulating or arguing for a specific implementation. Potentially, every
manifest could in principle have its own best strategy. Every manifest is also fi-
nite, thus any application of the scientific method in experimental space, which
continually acquires empirical evidence must follow a path in it. It is there-
fore more strategic overall to identify a condition applicable to all cases and
allow for transformations between cases, which produces the implementation as
a maximization problem.

The best strategy will be to maximize the information gained from the scien-
tific method; and this means in the technical sense to maximize the entropy of a
probability measure on experimental space. To embed the notion of information
into the scientific method it must be connected to the mathematical theory of
information, and this involves the notion of a random selection of an element
from a set:

Definition 21 (The Fundamental Assumption of Physics). Let ρ(m) be a proba-
bility measure on experimental space (full model) or a subset thereof (toy model).
An observer, denoted as O, is a point randomly selected from experimental space.
Thus, with a probability measure that spawns the set E, every point in experi-
mental space qualifies as an observer. Specifically, an observer is:

Oi := (mi, ρ : E → [0, 1]) (17)

The definition of the observer is a specialization of the definition of the
manifest in the sense that a manifest is a point in experimental space, and the
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observer is a randomly selected point in experimental space (and thus the no-
tion of information is associated to it). Note that even in typical physics, the
observer (which is not mathematically integrated into the formalism... leading
to a family of open problems regarding the ’observer effect’) is associated to a
random selection of an element from a set of possible observations. This ’effect’
will eventually be revealed to be a consequence of the present definition. Here,
the observer ’has knowledge’ of a randomly selected state from the set of all
possible experimental states, hence he or she is an observer in an information
gathering sense, and consequently has the opportunity to implement an infor-
mation producing version of the scientific method so as to realize its optimal
implementation:

Definition 22 (Theory of Everything). The theory of everything (ToE) is the
probability measure that maximizes the entropy of a path in E traced by an
observer, for all possible observers.

The laws of physics are thus formally defined as the information-theoretical
maximum of the scientific method for all possible observers. As we will see in
the main result, this will involve a sum of programs. Obviously, the path of an
observer in E is constrained to experimental space:

Definition 23 (The Fundamental Assumption of Nature). The set of all con-
straints1 on the entropy of the probability measure of the observer necessary to
keep and transform the path in experimental space defines the universe (of the
observer).

Let us now discuss the philosophy of these definitions in more detail. Let us
consider two conceptually similar cases in use in modern physics.

In a gauge theory the equivalent of the ’constraints on entropy’, although
seldom described in those terms, is a consequence that the Lagrangian of a
wave-function remains invariant under the action of a group. In this case, said
wave-function must remain within the ’space’ generated by this group in order
for the Lagrangian to retain its invariance. One may then gauge the local
action of said invariant transformation to get a gauge field. The idea that said
Lagrangian be invariant with respect to a certain group of transformations is
the equivalent of the concept that a probability measure is bounded to a certain
’space’, and the gauge field is what emerges as an element that prevents or
compensates so that the wave-function remains within the designated ’space’.
In our framework, the constraint that an observer remains in experimental space
is to the universe what a group-invariant transformation of the Lagrangian is
to a gauge field.

A similar concept also finds its way in statistical physics regarding the
role that the constraints on entropy play in it and their meaning. Specifi-
cally, when one uses the method of the Lagrange multipliers to solve for ρ(q)
such that it maximizes the entropy subject to a constraint on the energy E =

1The exact definition of the constraints requires setup and is provided as (Equation 33) on
page 20. Intuitively, it is simply the set of linear transformations of E onto itself.
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$
q∈Q ρ(q)E(q), one will obtain the Gibbs measure ρ(q) = 1

Z exp−βE(q). The
standard interpretation of the constraint is that it represents the set of all pos-
sible measurements of this observable on the system such that it bounds its
macroscopic description to an average energy E. Additional constraints, such
as a volume constraint V =

$
q∈Q ρ(q)V (q) or a particle number constraint

N =
$

q∈Q ρ(q)N(q), can also be added. In the case of a gas in a box at
thermal equilibrium, the constraint is realized by a corresponding instrument
such as an energy-meter and a volume-meter, and in the case of an observer
bounded by the laws of physics to remain in experimental space, the ”instru-
ment” which acts upon the measure to constrain it to its domain is the largest
possible instrument: the universe.

3 Main Result (Physics)

Let us now use these definitions to derive the laws of physics from first principle.

3.1 Introductory investigation of key computing concepts

3.1.1 Halting probability of computer science

Let us start by maximizing the entropy of the random selection of p from
Dom(UTM):

S = −
!

p∈Dom(UTM)

ρ(p) log2 ρ(p) (18)

subject to these constraints:

!

p∈Dom(UTM)

ρ(p) = 1 (19)

!

p∈Dom(UTM)

ρ(p)|p| = |p| (20)

Using the method of the Lagrange multipliers, the result is the Gibbs mea-
sure (where D is a Lagrange multiplier):

ρ(p) =
1

Z
2−D|p|, where Z =

!

p∈Dom(UTM)

2−D|p| (21)

This is the statistical-physics definition of a halting probability. Here, it
is ρ(s) (and NOT Z) that is the halting probability. We note that it is not
necessarily all choices of D which causes Z to be non-computable (for instance
if D = 0 then Z is very much so computable; it is in fact infinite). To recover
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Ω, the Halting probability[4] of computer science, we would pose the Lagrange
multiplier D to 1, then take the encoding of the program to be prefix-free and
therefore, via the Kraft-inequality, Z becomes itself a probability measure:

Ω =
!

p∈Dom(UTM)

2−|p| (22)

We further note the work of Tadaki[7] which identifies an ’algorithmic-
thermodynamics[8]’ definition of Ω by adding D called a ’decompression-term’
as follows:

!

p∈Dom(UTM)

= 2−D|p| (23)

However, in each of these cases, with the exception of [8], the connection to
entropy is lost because the expression of Z is reduced such that it, rather that
ρ, acquires the role of the probability measure. So what do we gain by retaining
the connection to an entropy maximum? The answer is in information theory.
Knowing a message from a set of possible messages according to a probability
measure that maximizes the entropy, makes knowing said message maximally
informative. Likewise, in the case of the statistical physics version of the Halting
probability, the probability measure that maximizes the entropy for this system
makes our knowledge of a program that halts maximally informative.

3.1.2 Quantum computing

Let us now investigate how a quantum computation works (with a focus on
special, but rarely discussed features: Most text would focus on the superposi-
tion or entanglement features — and although these are neat features, there is
another much more important one for our goal). For a quantum computation,
one starts with a state vector:

|ψa〉 =

%

&&'

0
...
n

(

))* (24)

Which evolves unitarily to a final state:

|ψb〉 = U0U1 . . . Um |ψa〉 (25)

Clever use of the unitary transformations, often arranged as simple ’gates’,
allows one to execute a program. The input to the program is the state |ψa〉 and
the output is the state |ψb〉. One would note that, so defined and if the sequence
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of unitary transformation is finite, such a program must always halt, and thus
its complexity must be bounded. One can however get out of this predicament
by taking the final state |ψb〉 to instead be an intermediary state, and then to
throw more gates at the state in order continue with a computation:

step 1 |ψb〉 = U0U1 . . . Up |ψa〉 (26)

step 2 |ψc〉 = U ′
0U

′
1 . . . U

′
q |ψb〉 (27)

... (28)

step k |ψk′〉 = U ′
0U

′
1 . . . U

′
v |ψk〉 (29)

... (30)

For a quantum computation to simulate a universal Turing machine it must
be able to add more steps until a halting state is reached (or continue to add
steps indefinitely if the program never halts). Consequently, we note a feature
of quantum computing that makes it quite special: all intermediary steps of
the computation are computations in and of themselves. Programs in quan-
tum computations are sequences of halting programs applied end-to-end. For
instance, |ψa〉 → |ψb〉 and |ψb〉 → |ψc〉 are both a computation that has halted,
but so is |ψa〉 → |ψc〉. Quantum computing machines are a special design of a
Turing machine that need not reference inner states that are not themselves pure
states of computation. Compare this to a Turing machine comprised of auxil-
iary concepts such as a head and a tape... neither of these items are programs
themselves.

3.1.3 Manifest-based computing... ?

Recall that we have defined a state of affairs as a manifest comprised of a set
of experiments; that is, a set of pairs (TM, p) that halt. This requirement
will necessitate that any state of affairs of reality be in a completed state of
computation. This imposes a restriction upon the construction of any Turing
machine and to its inner workings. One will not be able to embed a universal
Turing machine within a manifest, unless one chains future transformations of
manifests until some halting state is reached... notice the similarity of this
feature to that of quantum computation which also chains its computations?
This definition of the manifest recovers a generalized and abstract realization of
said feature. Any path by an observer in experimental space is guaranteed to
only encounter steps that are formulated as completed computations.

3.2 Derivation

3.2.1 General linear ensemble of programs

Let us start with a sum of programs (i.e. manifests that are comprised of a
single element). A probability measure would assign a real number (between
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0 and 1) to each program of the sum, representing of course the probability
associated with the random selection of said program to be an element of the
manifest. How do we then get to manifests of multiple programs?

A procedure often employed in statistical physics, usually regarding the pro-
duction of an ensemble of n identical ’particles’, is to multiply copies of the
probability measure. This extends a sum of singular elements to a sum over
pairs, and generally to a sum over n-tuples. For instance ρ(a)ρ(b) = ρ′(a, b)
implies that ρ′ is now over the following domain ρ′ : D× D → [0, 1].

Although the multiplication procedure does produce a sum over all tuples of
D × D, there are certain transformations of the space generated by D × D, for
instance the linear transformations of D × D onto itself, that are not captured
by the resulting probability measure. Under simple multiplication, ρ′ treats its
extended domain as a set with repetitions, rather than as a space of tuples where
ordering also matters. For instance, a two-state system has the following states
{(a1, b1), (a1, b2), (a2, b1), (a2, b2)}), and the repetition of the cross terms are
commutative ρ(a2, b1) = ρ(a1, b2), thus creating a degeneracy of the partition
function between these states in which the order is equated.

Now, recall that a manifest is defined as a tuple (and not a set) of exper-
iments. When working with tuples, then any assignment of a numerical value
to each element of said tuples transforms it into a vector and the space of the
tuple into a vector space, where the elements of the tuple comprise the basis
of the space. It is then the tensor product of elements of said vector space,
rather than simple multiplication, that extends said space to a larger space.

Consequently, it follows that the probability measure which transforms the
position of O in experimental space, a space of tuples, and further plays nicely
with the tensor product, is related to the set of all linear transformations of this
space onto itself.

Let us therefore maximize the entropy:

S = −
!

q∈Q
ρ(q) ln ρ(q) (31)

subject to these constraints:

!

q∈Q
ρ(q) = 1 (32)

!

q∈Q
ρ(q) trM(q) = trM (33)

where M(q) are a matrix-valued maps2 from S to Fn×n, where M is a
element-by-element average matrix in Fn×n and where F is a field. Here, Q

2There is a possibility of greater generality by considering maps between spaces of dif-
ferent dimensions S → Fn×m. In quantum mechanics this is part of the subject matter of
’quantum operations’ which includes quantum channels. This mapping from differently-size
vector spaces would be required in the general case to account for all possible paths of the
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is an arbitrary sample space of programs, either the full-theory if Q = S or
a toy model if Q ⊂ S. We use the Lagrange multiplier method to derive the
expression for ρ that maximizes the entropy, subject to the above mentioned
constraints. Maximizing the following equation with respect to ρ yields the
answer:

L = −kB
!

q∈Q
ρ(s) ln(s) + α

%

'1−
!

q∈Q
ρ(q)

(

*+ τ

%

'trM−
!

q∈Q
ρ(q) trM(q)

(

*

(34)

where α and τ are the Lagrange multipliers. The explicit derivation is made
available in Annex B. The result of the maximization process is:

ρ(q) =
1

Z
det exp−τM(q) (35)

where

Z =
!

q∈Q
det exp−τM(q) (36)

3.2.2 Prior

No good probability measure is complete without a prior. The prior, which
accounts for an arbitrary preparation of the ensemble, ought to be —for purposes
of preserving the scope of the theory— of the same kind as the elements of the
probability measure. Let us thus introduce the prior as the map P : Q → Fn×n

and inject it into the probability measure as well as into the partition function:

ρ(q) =
1

Z
det exp

+
P(q)

,
det exp

+
−τM(q)

,
(37)

where

Z =
!

q∈Q
det exp

+
P(q)

,
det exp

+
−τM(q)

,
(38)

observer in experimental space, and would likely come out as a general linear equivalent to a
quantum channel transmitting information between manifests as their sizes change. This is
likely interesting, but, as we will see, we will not be running out of applications for the general
linear ensemble as it is, and thus we have elected to limit the scope to maps in Fn×n in line
with the typical formulations of quantum mechanics.
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3.2.3 Quick overview

Let us state that the statistical-physics version of the Halting probability is a
special case of this probability measure. It is obtained when one sums over
individual programs, expand the domain from a toy model to the full model
Q → S, then reduces the matrix M to simply be a real number.

Let us also state that the resulting probability has computing features that
are of the same nature as that of quantum computation. Specifically, the linear
transformations will acquire the role of the steps of the program, and organized
as a sequence, represents an evolution of machine-states. It is the general linear
analogue of the unitary transformations of quantum computing.

Finally, let us state that the probability measure has quite interesting appli-
cations. As we will see, this probability measure supports the largest possible
group of linear probability amplitudes, and thus offers the highest possible
flexibility to describe physical systems consistently with the tenets of quantum
mechanics. This probability measure not only includes quantum mechanics as
a special case, but also extends it from the complex group to the general linear
group. With this extension the probability measure has gauge-theoretical com-
pleteness in the sense that it is able to support any gauge theory that is a lie
group, and not just those that have unitary representations. Consequently, it is
able support any geometry of nature: including general relativity (metric-affine
or Poincaré gauge), the standard model, as well as any direct product of group
(including of the two thereof). It further embeds the notion of a ’geometric
collapse’ of the wave-function and, finally, settles the interpretation of quantum
mechanics to that of the ensemble interpretation[9].

3.2.4 Generalized Born rule

The opportunity is available to ’split’ the probability measure into a first step,
where the sample space is re-defined as a vector space admitting a linear evo-
lution operator on a probability amplitude, and a final step, known as a ’prob-
ability rule’ which connects the probability amplitude to a probability via the
determinant. Specifically, one can write the probability amplitudes as a matrix:

ψ(q) = exp
+
P(q)

,
exp

+
−τM(q)

,
(39)

Then one connects this matrix to the probability measure via a ’probability
rule’:

ρ(q) =
1

Z
detψ(q) (40)

This split provides the convenience of linear transformation in the vector
space, yet allows a final connection to a real-valued probability regarding the
possible measurements of said sample space. The determinant is to general
linear sample space, what the Born rule is to quantum mechanics. In fact, if
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M(q) is the matrix representation of a complex number then the determinant

reduces to the Born rule: det

-
a −b
b a

.
= a2+b2 is the same as (a+ib)(a−ib) =

a2 + b2.

3.2.5 Computations as transformations in experimental space

A transformation from one manifest ma to another manifest mb corresponds
to the path of an observer in experimental space, and is obtained by chaining
transformations on this space end-to-end:

|mb〉 = G1G2 . . . Gn/ 01 2
computing steps

|ma〉 (41)

A manifest mb is build out of computing steps adding to ma.

4 Geometric Ensemble

The probability measure and its associated partition function describes a ’geo-
metric ensemble’: Ensemble in the sense that an element of the sample space is
randomly picked upon a measurement of said space, and geometric in the sense
that the probability measure is invariant with respect to a group of geometric
transformations determined by the choice of constraints on the entropy, up to
the general linear group.

4.1 Representation

We will be well-served (in regards to clutter-reduction and intuition-improvements
but also because it will provide a clear sequence of simplifications from general
linear amplitude to complex amplitude as well as intermediaries), to represent
P(s), M(s) and M with geometric algebra (GA). Let us now introduce the de-
sired GA-representation for 2 × 2 and 4 × 4 matrices. We can write a general
multi-vector of G(2,R) as follows:

m2 = a+ x+ b (42)

where a is a scalar, x is a vector and b is a pseudo-scalar. And we can write
a general multi-vector of G(4,R) as follows:

m4 = a+ x+ f + v + b (43)

where a is a scalar, x is a vector, f is a bivector, b is a pseudo-vector and
b is a pseudo-scalar. Each of these constructions admit a structure-preserving
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(addition/multiplication) matrix representation. Explicitly, the multi-vectors of
G(2,R) are represented as follows:

A+Xx̂+ Y ŷ +Bx̂ ∧ ŷ ∼=

!
A+X −B + Y
B + Y A−X

"
(44)

and those of G(4,R) are represented as follows:

A+ Tγ0 +Xγ1 + Y γ2 + Zγ3

+ F01γ0 ∧ γ1 + F02γ0 ∧ γ2 + F03γ0 ∧ γ3 + F23γ2 ∧ γ3 + F13γ1 ∧ γ3 + F12γ1 ∧ γ2

+ Vtγ1 ∧ γ2 ∧ γ3 + Vxγ0 ∧ γ2 ∧ γ3 + Vyγ0 ∧ γ1 ∧ γ3 + Vzγ0 ∧ γ1 ∧ γ2

+Bγ0 ∧ γ1 ∧ γ2 ∧ γ3

∼=

#

$$$%

A+X0 − iF12 − iV3 F13 − iF23 + V2 − iV1 −iB +X3 + F03 − iV0 X1 − iX2 + F01 − iF02

−F13 − iF23 − V2 − iV1 A+X0 + iF12 + iV3 X1 + iX2 + F01 + iF02 −iB −X3 − F03 − iV0

−iB −X3 + F03 + iV0 −X1 + iX2 + F01 − iF02 A−X0 − iF12 + iV3 F13 − iF23 − V2 + iV1

−X1 − iX2 + F01 + iF02 −iB +X3 − F03 + iV0 −F13 − iF23 + V2 + iV1 A−X0 + iF12 − iV3

&

'''(

(45)

Finally, I note that one can use curvilinear coordinates on said multi-vectors
by using a basis defined as follows:

e0 := t0γ0 + x0γ1 + y0γ2 + z0γ3 (46)

e1 := t1γ0 + x1γ1 + y1γ2 + z1γ3 (47)

e2 := t2γ0 + x2γ1 + y2γ2 + z2γ3 (48)

e3 := t3γ0 + x3γ1 + y3γ2 + z3γ3 (49)

It is now interesting to note that the determinant of the matrix representa-
tion of those multi-vectors always produces a real number, even if the matrices
themselves may contain complex entries. The determinant can thus be defined
as the norm of said multi-vector. Said determinant can also be defined solely
using constructs of geometric algebra[10]. We define the Clifford conjugate as:

m‡ := 〈m〉0 − 〈m〉1 − 〈m〉2 + 〈m〉3 + 〈m〉4 (50)

and ⌊m⌋{3,4} as the blade-conjugate of degree 3 and 4 (flipping the plus sign to
a minus sign for blade 3 and blade 4):

⌊m⌋{3,4} := 〈m〉0 + 〈m〉1 + 〈m〉2 − 〈m〉3 − 〈m〉4 (51)

The determinant of G(2,R) is:

det : G(2,F) −→ R
m .−→ m‡m

(52)
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whereas the determinant of G(4,R) is:

det : G(4,F) −→ R
m .−→ ⌊m‡m⌋{3,4}m‡m

(53)

Using GA, the probability measure and its companion partition function are
thus as follows:

ρ(q) =
1

Z
det exp

+
p(q)

,
det exp

+
−τm(q)

,
(54)

where

Z =
!

q∈Q
det exp

+
p(q)

,
det exp

+
−τm(q)

,
(55)

4.2 General linear wave-function

The set of all complex n× n matrices maps, via the exponential, to the general
linear group in C:

exp : M(n,C) → GL(n,C) (56)

The map is also possible in R, but in this case the general linear group is
reduced to the orientation-preserving general linear group, because the left-hand
side of the map cannot produce a matrix with a negative determinant and thus
is not surjective in the general case:

exp : M(n,R) → GL+(n,R) (57)

The entropy maximization procedure we have used produced a probability
measure which embeds the exponential map over matrices, thus connects the
arbitrary linear transformation of M(n,R) to the orientation-preserving linear
group GL+(n,R). This relationship also holds for geometric algebras (of even
dimensions), because their multi-vectors map to the set of matrices with real
determinant (even if such matrices may be a subset of the complex matrices),
and thus admit a group isomorphism with GL+(n,R):

exp : G(2n,R) ∼= GL+(2n,R) (58)

The group of the transformations of the general linear wave-function is thus
the general linear group, reduced to orientation-preserving transformations (pos-
itive determinant). Explicitly, and using geometric algebra as the representa-
tion, the general linear probability measure in four dimensions is given as:
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ρ(q) =
1

Z
det exp

+
ap + xp + fp + vp + bp

,
exp−τ(a+ x+ f + v + b) (59)

and the wave-function is:

ψ(q) = exp
+
ap + xp + fp + vp + bp

,
exp−τ(a+ x+ f + v + b) (60)

If we consider that ψ(q) is a general linear amplitude associated to an element
of the state vector Ψ of some space H, then we can write ρ as a map from the
vector Ψ to R:

ρ : H ×Ψ −→ R
(Ψ, s) .−→

+
detΨ(s)

,
/
3$

ϕ∈Ψ detϕ
4

(61)

Then, if we multiply Ψ by a ’global’ general linear transformation G to
each element of Ψ, then clearly ρ(GΨ, s) = ρ(Ψ, s) since detGΨ = detG detΨ,
thereby cancelling detG as it is both in the numerator and in the denominator:

ρ(G⊙Ψ, s) = (detGΨ(s))/

%

'
!

ϕ∈Ψ

detGϕ

(

* = (detΨ(s))/

%

'
!

ϕ∈Ψ

detϕ

(

* (62)

The general linear probability measure is invariant with respect to a ’global’
general linear transformation (GΨ) on the probability amplitude.

Finally, we note that the Lagrange multiplier of the evolution part of the
probability measure generates the group of said evolution part. The general
relation exp : g → G (where g is the algebra of the group G) is, in the probability
measure, of this form:

τ → exp(τM) ∈ GL+, τ ∈ R (63)

where τ is a real number.
We note that using a single geometric constraint produces a probability

measure whose evolution is in the form of one-parameter subgroup of G. A
multi-parameter probability measure generating the full group is also possible.
Consider the following constraints:
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!

s∈Ω

ρ(s) = 1 (64)

!

s∈Ω

ρ(s) tr

-
a(s) 0
0 0

.
= tr

-
a 0
0 0

.
(65)

!

s∈Ω

ρ(s) tr

-
0 b(s)
0 0

.
= tr

5
0 b
0 0

6
(66)

!

s∈Ω

ρ(s) tr

-
0 0

c(s) 0

.
= tr

-
0 0
c 0

.
(67)

!

s∈Ω

ρ(s) tr

-
0 0
0 d(s)

.
= tr

5
0 0

0 d

6
(68)

Then the probability measure which maximizes the entropy subject to these
constraints would be:

ρ(s) =
1

Z
det exp

5
−τ00

-
a(s) 0
0 0

.
− τ01

-
0 b(s)
0 0

.
− τ10

-
0 0

c(s) 0

.
− τ11

-
0 0
0 d(s)

.6

(69)

=
1

Z
det exp

+
τ ⊙M(s)

,
(70)

where ⊙ is the element-wise matrix multiplication (or Hadamard product).
Here, we have obtained the lie algebra gk(2,R) including the 4 free parameters
required to generate the full group GL(2,R) via the exponential map.

4.3 Geometric Hilbert space

Let H(m,G(n,F)) be a vector space of m dimensions over G(n,F), and let
G(n,F) be a n dimensional group over a field F, representable as n×n matrices.

4.3.1 H is a vector space

To prove that H is a vector space, we need to prove the following axioms.

1. Associativity of addition

2. Commutativity of addition

3. Identity element of addition

4. Inverse elements of addition

5. Compatibility of scalar multiplication with field multiplication
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6. Identity element of scalar multiplication

7. Distributivity of scalar multiplication with respect to vector addition

8. Distributivity of scalar multiplication with respect to field addition

All 8 axioms follow from the fact that tuples of matrices are vector spaces in
addition and scalar multiplication, which itself follows from the fact that n× n
matrices form a vector space.

4.3.2 H is a Hilbert space

We need to show thatH admits an inner product, then show thatH is complete.
For any vector v ∈ H, such as v := (g1, g2, . . . , gn) we define a norm as a sum
over of the determinant of each of its elements:

‖v‖2 :=
!

g∈v

det g (71)

Then the inner product is given by the polarization identity:

〈u,v〉 = 1

4

3
‖u+ v‖2 −‖u− v‖2

4
(72)

Finally, in the case where n is finite, said vector space is necessarily complete.
Since we have a vector space that contains an inner product and is complete, it
then follows that it is a Hilbert space.

4.3.3 Inner product — Example in G(2,R)

As an example, let us calculate the inner product of two multi-vectors of G(2,R).
The norm of H(n,G(2,R)) is given as:

‖v‖2 := v‡v (73)

where we define v‡ as the Clifford transpose of a vector v as:

%

&&'

g1
...
gn

(

))*

‡

:=
3
g‡1 . . . g‡n

4
(74)

Therefore, its inner product is:
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4〈u,v〉 : = (u+ v)‡(u+ v)− (u− v)‡(u− v) (75)

= u‡u+ u‡v + v‡u+ v‡v − (u‡u− u‡v − v‡u+ v‡v) (76)

= u‡u+ u‡v + v‡u+ v‡v − u‡u+ u‡v + v‡u− v‡v (77)

= 2(u‡v + v‡u) (78)

=⇒ 〈u,v〉 = 1

2
(u‡v + v‡u) (79)

(80)

The inner product of two multi-vectors of G(2,R):

m1 = a1 + x1e1 + y1e2 + b1e12 (81)

m2 = a2 + x2e1 + y2e2 + b2e12 (82)

is:

=⇒ 1

2
(m‡

1m2 +m‡
2m1) = a1a2 − x1x2 − y1y2 + b1b2 (83)

4.3.4 Observable

A linear operator A acting on the geometric Hilbert space is an observable iff it
is a self-adjoint operator; defined as:

〈Av,u〉 = 〈v, Au〉 (84)

4.3.5 Observable — Example in G(2,R)

Let us now introduce an observable A =

-
A00 A01

A10 A11

.
, and two two-state vec-

tors u =

-
u1

u2

.
and v =

-
v1
v2

.
where u1, u2, v1, v2, A00, A01, A10, A11 are multi-

vectors of G(2,R). Let us now calculate 〈Au,v〉:

2〈Au,v〉 = (A00u1 +A01u2)
‡v1 + v‡1(A00u1 +A01u2)

+ (A10u1 +A11u2)
‡v2 + v‡2(A10u1 +A11u2) (85)

= u‡
1A

‡
00v1 + u‡

2A
‡
01v1 + v‡1A00u1 + v‡1A01u2

+ u‡
1A

‡
10v2 + u‡

2A
‡
11v2 + v‡2A10u1 + v‡2A11u2 (86)

Now, 〈u, Av〉:
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2〈u, Av〉 = u‡
1(A00v1 +A01v2) + (A00v1 +A01v2)

‡u1

+ u‡
2(A10v1 +A11v2) + (A10v1 +A11v2)

‡u1 (87)

= u‡
1A00v1 + u‡

1A01v2 + v‡1A
‡
00u1 + v‡2A

‡
01u1

+ u‡
2A10v1 + u‡

2A11v2 + v‡1A
‡
10u1 + v‡2A

‡
11u1 (88)

For 〈Au,v〉 = 〈u, Av〉 to be realized, it follows that these relations must
hold:

A‡
00 = A00 (89)

A‡
01 = A10 (90)

A‡
10 = A01 (91)

A‡
11 = A11 (92)

Therefore, it follows that it must be the case that A must be equal to its
own Clifford transpose. Thus, A is an observable iff:

A‡ = A (93)

which is the geometric Hilbert space equivalent of the Hermitian opera-
tor AH = A of the complex Hilbert space. All geometric Hilbert spaces have
self-adjoint operators but the expression for them may differ; A‡ = A is only
applicable for G(2,R), just like AH = A is only applicable to complex Hilbert
spaces.

4.3.6 Observable — Geometric spectral theorem

Let us show how the spectral theorem applies to A‡ = A, such that its eigen-
values are real. Consider:

A =

-
a00 a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11

.
(94)

In this case, it follows that A‡ = A:

A‡ =

-
a00 a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11

.
(95)

This example is the most general 2 × 2 matrix A such that A‡ = A. The
eigenvalues are obtained as follows:
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0 = det(A− λI) = det

-
a00 − λ a− xe1 − ye2 − be12

a+ xe1 + ye2 + be12 a11 − λ

.
(96)

implies:

0 = (a00 − λ)(a11 − λ)− (a− xe1 − ye2 − be12)(a+ xe1 + ye2 + be12 + a11)
(97)

0 = (a00 − λ)(a11 − λ)− (a2 − x2 − y2 + b2) (98)

finally:

λ = {1
2

3
a00 + a11 −

7
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

4
, (99)

1

2

3
a00 + a11 +

7
(a00 − a11)2 + 4(a2 − x2 − y2 + b2)

4
} (100)

We note that in the case where a00 − a11 = 0, the roots would be complex
iff a2 − x2 − y2 + b2 < 0, but we already stated that the manifold must be
orientable — therefore it is the case that a2−x2−y2+b2 ≥ 0, as this expression
is the determinant of the multi-vector. Consequently, A‡ = A implies, for an
orientable3 geometric Hilbert space, that its roots are real-valued, and thus
constitute a ’geometric’ observable in the traditional sense of an observable in
a Hilbert space.

5 Applications

5.1 The complex Hilbert space is a special case

The geometric Hilbert space G(2,R) reduces to the complex Hilbert space under
the following elimination:

(A+X+B|X→0 = A+B (101)

The observables become Hermitian operator and the evolution is unitary.

5.2 Spinor group wave-function

This representation of the general linear wave-function in geometric algebra ad-
mits multiple reductions to simpler systems. An important reduction was the
one done in the previous section, from the general linear group in two dimen-
sions to the complex, yielding the familiar quantum mechanics by annulling the

3We note the exception that a geometric observable may have real eigenvalues even in the
case of a transformation that reverses the orientation if the elements a00 − a11 are not zero
and up to a certain magnitude, whereas transformations in the natural orientation are not
bounded by a magnitude — thus creating an orientation-based asymmetry.
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geometric components of the multi-vector. Another reduction is from the gen-
eral linear group to the spinor group, yielding a geometric formulation of the
relativistic wave-function, by annulling both the x and the v component of the
general linear group. Let us do this reduction right now.

Posing:

(a+ x+ f + v + b|x→0,v→0 = a+ f + b (102)

the wave-function becomes:

ψ(q) = exp
+
ap(q) + fp(q) + bp(q)

,
exp−τ(f(q) + b(q)) (103)

Application of the ’probability rule’ via the determinant produces:

ρ(q) =
1

Z
exp 4ap(q) (104)

where Ψ is the sample space (which is also a vector space).
We note that the prior of this wave-function is of the same form as that iden-

tified by David Hestenes as the geometric algebra formulation of the relativistic
wave-function[11], which he defines as ψ = ρeiBR, where R = e−F/2 is a rotor.

5.3 The probability density of an event

So far we have considered Ω to be a discrete and finite vector space. However,
it is preferable to select a parametrization in the same category as the domain
of the transformations of the theory. In this case, as the transformations are
general linear (and thus geometric), consequently the parametrization will also
be over the geometry of the system, thereby creating a normalization condition
self-contained to the scope of the theory. One selects the parametrization to be
continuous and uncountable:

Z =

8

M

detψ(x, τ)
7
|g| dx (105)

where x is taken to be a n-vector, and where n is of the same value as that
of the n × n matrix M(q), and where M is the domain of integration. The
probability density would then be:

ρ(m) =

9
m
detψ(x, τ)

7
|g| dx

9
M

detψ(x, τ)
7
|g| dx

(106)

where m ⊂ M . We note that for this parametrization, one needs a metric
g (and also for M to be orientable). This gives the probability density that
a geometrically-extended instruments (for instance the screen at the end of a
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double-slit experiment) ’clicks’ at event (x0, x1, . . . , xn), and this probability
density further remains invariant with respect to any geometric transformation
available to the observer including arbitrary change of coordinates (general lin-
ear transformations).

5.4 The collapse

So what happens during a measurement that causes the wave-function to col-
lapse to a point in spacetime? The wave-function collapse has been a tough
pill to swallow because, before these results, we did not know that the ori-
gin of the wave-function was in entropy under geometric constraint — we, at
best, believed it was a measure over a postulated unitary sample space, and
any geometric properties it may have (space-time normalization/Lorentz invari-
ance) were strapped on as a secondary set of axioms tied in to a normalization
condition in space-time, then we noticed to our surprise that such geometric
properties ought to be represented in the same unitary space as the rest of the
theory. In this framework, the collapse is simply the result of selecting an ele-
ment of the geometric sample space. All geometric features of the wave-function
are part of the sample space, and thus its geometry behaves in the same manner
as any other observables under measurement. From this, it is then obvious (even
trivial) that the wave-function ought to ’collapse’ to a single point in space-time
upon a measurement of its sample space. Just like measuring a coin-toss causes
the system to pick [HEAD] or [TAILS], a measurement of a geometric sample
space causes the system to pick (t0, x1, x2, x3), (t′0, x

′
1, x

′
2, x

′
3), etc., from the

sample space.

5.5 Lagrangian

A typical Lagrangian density relies upon the existence of a measure of the
momentum:

P =
1

Z

8

M

P (x)ψ(x)∗ψ(x) dx (107)

Now, iff there exists a p̂ and a basis of ψ(x) such that P (x)ψ(x) = p̂ψ(x),
then p̂ is called the momentum operator. In relativistic quantum mechanics,
p̂ = γ0! /D. Then one can support a Lagrangian density as a measure of the
energy:

L(x) = ψ∗(x)p̂ψ(x)− ψ∗(x)γ0mc2ψ(x) (108)

A similar probability measure can be constructed for a geometric Hilbert
space, using the determinant instead of the complex norm:

P =
1

Z

8

M

P (x) detψ(x, τ) dx (109)
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And the potential energy as:

V =
1

Z

8

M

V (x) detψ(x, τ) dx (110)

resulting, for the general case, in the Lagrangian density:

L(x, τ) = (P (x)− V (x)) detψ(x, τ) (111)

5.6 Gauge-theoretical completeness

The general linear amplitude is able to support any gauge theory and any gauge
transformation over a lie group, provided that said gauge transformation be
expressible as a matrix at the lie algebra level. Let us see a few examples.

5.6.1 Quantum gravity (probability measure support)

Since all finite dimensional groups have matrix representations, it then follows
that our framework —as it works with any matrices— is able to tackle any such
groups; including, of course, those groups resulting from the direct product of
groups such as the affine group: A(n,R) = T (n,R) × GL(n,R). Let us now
consider the metric-affine theory of gravity[12], which is obtained as the result
of gauging the affine group A(n,R). We will now create a linear geometric
amplitude over said affine group and a corresponding probability rule. Let a be
the lie algebra of A(n,R), and consider the following set of constraints:

!

q∈Q
ρ(q) = 1 (112)

!

q∈Q
ρ(q) tr a(q) = tr a (113)

After we solve the Lagrange equation, we get:

ρ(q) =
1

Z
det exp

+
−τ(a(q)

,
(114)

where

Z =
!

q∈Q
det exp

+
−τ(a(q)

,
(115)

We note that exp−τa(q) is the exponential map of the algebra to the group
A(n,R). Consequently, it follows that ρ(q) is invariant with respect to a global
transformation of the affine group. A gauge-invariant derivative is obtained by
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gauging a ’local’ application of the group A → A(q) and identifying a compen-
sating field, called a gauge-field, which maintains the invariance. This produces
the metric-affine theory of gravitation[12] or, if the gauge group is the Poincaré
group T (n,R)× SO(n,R), produces the Einstein–Cartan gravity theory[13].

5.6.2 Quantum gravity + Standard model (probability measure sup-
port)

The flexibility provided by our methodology allows us to combine the gravity
(for instance the metric-affine gauge theory or the Einstein–Cartan theory of
gravity resulting from gauging the Poincaré group) to the standard model using
a unifying probability measure specifically for this purpose, which adheres to
the rules of geometric probabilities — themselves a superset of unitary QM. For
instance and as a curiosity, we will create the geometric probability measure
associated to this group:

SM := T (4)× SO(4)× U(1)× SU(2)× SU(3) (116)

where we take T (4)×SO(4) to be the Poincaré group (alternatively we could
have picked the affine group here) and U(1)× SU(2)× SU(3) to be the (gauge
group of the) standard model. We are not necessarily suggesting that this is
the ’correct’ way to combine the standard model with general relativity; our
primary goal here is simply to show that the framework supports any gauge.
Let sm be the lie algebra of the above group. Then, consider the following
constraints:

!

q∈Q
ρ(q) = 1 (117)

!

q∈Q
ρ(q) tr sm(q) = tr sm(q) (118)

Solving the Lagrange equation, we obtain:

ρ(q) =
1

Z
det exp−τ(sm(q)) (119)

and the wave-function as:

ψ(q) = exp−τ(sm(q)) (120)

Here, as before, the exponential map generates the group associated with
the algebra. The probability amplitude is linear within the associated geometric
Hilbert space, and said amplitude connects to the probability via the determi-
nant. Consequently, the map from ψ(q) to ρ(q) is invariant with respect to a
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global transformation of said group. Then, as per the methodology, producing
a gauge-invariant derivative for this group SM → SM(q) induces a number of
compensating gauge fields associated to these groups.

A ’physically-correct’ representation of the standard-model-group × general-
relativity-group likely depends upon the choice of lie algebra such that it cor-
rectly maps the algebra to the observed particle population, and this is a differ-
ent problem than merely showing that geometric Hilbert spaces, unlike complex
Hilbert spaces, are sufficiently flexible to support any choice of gauge (good or
bad) such that the (general linear) probability amplitude remains linear under
the action of said gauge.

5.7 Testable Prediction

We are all familiar with the probabilities of a coin toss, whose sample space is
{[HEAD], [TAILS]}. Sampling the space returns an element [HEAD] or [TAILS]
with a probability of 50%/50%. But this system ignores the geometry of actu-
ally tossing a coin in the air, which is a luxury we do not necessarily have in the
physical universe. If we do account for the geometry and the state of relative
observers, then said probability ought to preserve the probabilities for any geo-
metric transformations available to said observers. For instance, what if the coin
is tossed in a spaceship, traveling away from Earth at near the speed of light;
what if it is accelerated; what if it is tossed in the presence of a strong gravita-
tional field? Will all observers report the same probability? They should, but
for that we need a general linear invariant probability measure and a geometric
Hilbert space.

We can tackle such cases with a general linear probability amplitude and a
probability rule that together describe the probability density of a (coin landing)
event in space-time, then additionally attribute one of two possible values to
this landing event. Measuring the sample space triggers a pick of [HEAD] or
[TAILS], of course, but also a pick of an event in space-time where the coin
lands — thus also triggers a collapse of the wave-function. To tackle this case
or other similar cases, we will consider the ideal case of a ’general linear two-
state system’, which one may call a ’general linear coin-toss’ or perhaps even a
’general linear qubit’.

5.7.1 Geometric interference

In this section we propose a falsifiable experiment that could be used, in the
lab, to confirm/infirm this theory. Specifically, for a two-state system geometric
interference is possible as a new predicted form of interference. Suppose a two-
state system comprised of a linear combination of ψ1 and ψ2:

ψ1 = exp(A1 +X1 + F1 +V1 +B1I) (121)

ψ2 = exp(A2 +X2 + F2 +V2 +B2I) (122)
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Such a system can be obtained by using a transformation T to transform
the wave-function:

Z = detψ1 + detψ2 (123)

transformation by T → det (ψ1 + ψ2) (124)

→ (eA1)4 + (eA2)4 + interference-pattern... (125)

To find an explicit expression for the interference pattern it is more conve-
nient to express the determinant entirely in the language of geometric algebra:

detm := ⌊m‡m⌋3,4m‡m (126)

We are now ready to produce the expression for the interference pattern.
With straightforward algebraic manipulations, the probability addition rules for
a two-state system reduce to a sum of two states ⌊ψ‡

1ψ1⌋3,4(ψ‡
1ψ1) = (eA1)4 and

⌊ψ‡
2ψ2⌋3,4(ψ‡

2ψ2) = (eA2)4, along with an accompanying interference pattern.
We note that both the geometric conjugate and the 3,4 blade conjugate are
distributive.

Z = det(ψ1 + ψ2) (127)

= ⌊(ψ1 + ψ2)
‡(ψ1 + ψ2)⌋3,4(ψ1 + ψ2)

‡(ψ1 + ψ2) (128)

= (eA1)4 + (eA2)4/ 01 2
sum of two states

+
⌊ψ‡

1ψ1⌋3,4(ψ‡
1ψ2+ψ‡

2ψ1+ψ‡
2ψ2)+⌊ψ‡

2ψ2⌋3,4(ψ‡
1ψ1+ψ‡

1ψ2+ψ‡
2ψ1)

+⌊ψ‡
1ψ2+ψ‡

2ψ1⌋3,4(ψ‡
1ψ1+ψ‡

1ψ2+ψ‡
2ψ1+ψ‡

2ψ2)/ 01 2
general linear interference pattern

(129)

In this case the interference pattern is much more complicated than the
simple cosine of the standard Born rule, but that is to be expected as it com-
prises the full general linear group and not just the unitary group. It accounts
for the group of all geometric transformations which preserves the probability
distribution ρ for a two-state general linear system.

Let us note that as elements of the algebra are nullified, then the interfer-
ence pattern correspondingly reduces in complexity to eventually recover or-
dinary complex interference. Therefore, the general linear interference can be
understood as a generalization of complex interference. Specifically, when all
elements of the odd-sub-algebra are eliminated (by posing X → 0, V → 0),
then the wave-function reduces to the geometric algebra form of the relativistic
wave-function identified by David Hestenes, in terms of a spinor field. Of course,
setting a full sector of the multi-vector to 0 is a very brute restriction — more
subtle conditions can be imposed on the relations of the elements of the multi-
vectors without necessarily posing them equal to zero, and such restrictions
would entail a slightly different interference pattern.
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These reductions produce a series of interference patterns of decreasing com-
plexity, and as such they provide a method to experimentally identify which
group of geometric transformations the world obeys, using interference exper-
iments on space-time. We note that interference experiments have paid off
substantial dividends in the history of physics and are usually easier to con-
struct than alternatives. Identification of the general linear interference pattern
(A,X,F,V,B) in a lab experiment would suggest the world obeys the metric-
affine gravitational theory; whereas identification of a reduced interference pat-
tern (A,F,B) and subsequent showing a failure to observe the full general linear
interference, would suggest at most Poincaré gauge theory and so on.

In any such case, a general experimental setup would send a particle into
two distinct paths. Then, either: a) one of the paths undergoes a general linear
transformation, while the other doesn’t or b) both paths undergo a different
general linear transformation. Then, the paths are recombined to produce an
interference pattern on a screen. Depending on the nature of the transformation,
a deformation of the interference pattern based on the geometry of the setup
should be observed.

In a possibly even better construction of such an experiment, one would
exploit the non-commutativity of the general linear transformations to identify
only the difference between complex-interference and general linear interference.
One would apply the same general linear transformations to each path, but
would reverse the order in which the transformations are applied. The resulting
interference pattern would then be compared to a case where both paths are
transformed in the same order. Then, complex-interference, as it is fully com-
mutative, would predict the same interference pattern irrespective of the order
the transformations are applied in — whereas, with general linear interference,
as it is non-commutative, would predict different interference patterns.

To achieve this, it may be necessary to use a three-dimensional detector,
whose idealized example is a homogeneous bath of impurities (allowing pho-
tons to ’click’ anywhere within the volume of the detector), instead of a two-
dimensional screen, since the opportunity for non-commutative behaviour often
kicks in at three dimensions or higher. In a real experiment, it is probably easier
to use a 2d x-y screen, and stepping it along an orthogonal z-axis, capturing
the 2d interference pattern at each step, then numerically reconstructing the
volumetric interference pattern out of the steps.

To my knowledge, such experiments have not been carried out to date. Fi-
nally, I note the work of B. I. Lev.[14] which suggest (theoretically) the possi-
bility of an extended interference pattern associated with the David Hestenes
form of the relativistic wave-function and for the subset of rotors.
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A Notation

S will denote the entropy, A the action, L the Lagrangian, and L the La-
grangian density. Sets, unless a prior convention assigns it another symbol, will
be written using the blackboard bold typography (ex: L,W,Q, etc.). Matrices
will be in bold upper case (ex: A,B), whereas vectors and multi-vectors will
be in bold lower case (ex: u,v,g) and most other constructions (ex.: scalars,
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functions) will have plain typography (ex. a,A). The identity matrix is I,
the unit pseudo-scalar (of geometric algebra) is I and the imaginary number
is i. The Dirac gamma matrices are γ0, γ1, γ2, γ3 and the Pauli matrices are
σx,σy,σz. The basis elements of an arbitrary curvilinear geometric basis will be
denoted e0, e1, e2, . . . , en (such that eν · eµ = gµν) and if they are orthonormal
as x̂0, x̂1, x̂2, . . . , x̂n (such that x̂µ · x̂ν = ηµν). The asterisk z∗ denotes the
complex conjugate of z, and the dagger A† denotes the conjugate transpose of
A. A geometric algebra of n dimensions over a field F is noted as Gn,F. We
note the matrix representation of a multi-vector g as M [g], defined as a map
M : Gn,F → Mn,F which preserves the geometric product via the matrix prod-
uct, and thus benefits from group isomorphism. The grades of a multi-vector
will be denoted as 〈v〉k. Specifically, 〈v〉0 is a scalar, 〈v〉1 is a vector, 〈v〉2 is a
bi-vector, 〈v〉n−1 is a pseudo-vector and 〈v〉n is a pseudo-scalar. Furthermore,
a scalar and a vector 〈v〉0 + 〈v〉1 is a para-vector, and a combination of even
grades (〈v〉0 + 〈v〉2 + 〈v〉4 + . . . ) or odd grades (〈v〉1 + 〈v〉3 + . . . ) are even-
multi-vectors or odd-multi-vectors, respectively. The commutator is defined as
[A,B] := AB−BA and the anti-commutator as {A,B} := AB+BA. We use
the symbol ∼= to relate two sets that are related by a group isomorphism (ex:
G4,C ∼= M4,C). We denote the Hadamard product, or element-wise multiplica-
tion, of two matrices using⊙, and is written for instance asM⊙P, and for a mul-
tivector as u⊙v; for instance: (a0+x0x̂+y0ŷ+b0x̂∧ŷ)⊙(a1+x1x̂+y1ŷ+b01x̂∧ŷ)
would equal a0a1 + x0x1x̂+ y0y1ŷ + b0b1x̂ ∧ ŷ.

B Lagrange equation

The Lagrangian equation to maximize is:

L(ρ,α, τ) = −kB
!

q∈Q
ρ(q) ln ρ(q) + α

%

'1−
!

q∈Q
ρ(q)

(

*+ τ tr

%

'M−
!

q∈Q
ρ(q)M(q)

(

*

(130)

where α and τ are the Lagrange multipliers. We note the usage of the
trace operator for the geometric constraint such that a scalar-valued equation is
maximized. Maximizing this equation for ρ by posing ∂L

∂ρ(p) = 0, where p ∈ Q,

we obtain:
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∂L
∂ρ(p) = −kB ln ρ(p)− kB − α− τ trM(p) (131)

0 = kB ln ρ(p) + kB + α+ τ trM(p) (132)

=⇒ ln ρ(p) =
1

kB

+
−kB − α− τ trM(p)

,
(133)

=⇒ ρ(p) = exp

-
−kB − α

kB

.
exp

-
− τ

kB
trM(p)

.
(134)

=
1

Z
det exp

-
− τ

kB
M(p)

.
(135)

where Z is obtained as follows:

1 =
!

q∈Q
exp

-
−kB − α

kB

.
exp

-
− τ

kB
trM(q)

.
(136)

=⇒
5
exp

-
−kB − α

kB

.6−1

=
!

q∈Q
exp

-
− τ

kB
trM(q)

.
(137)

Z :=
!

q∈Q
det exp

-
− τ

kB
M(q)

.
(138)

We note that the Trace in the exponential drops down to a determinant, via
the relation det expA ≡ exp trA.

B.1 Multiple constraints

Consider a set of constraints:

M1 =
!

q∈Q
ρ(q)M1(q) (139)

... (140)

Mn =
!

q∈Q
ρ(q)Mn(q) (141)

Then the Lagrange equation becomes:

L = −kB
!

q∈Q
ρ(q) ln ρ(q) + α

%

'1−
!

q∈Q
ρ(q)

(

*+ τ1 tr

%

'M1 −
!

q∈Q
ρ(q)M1(q)

(

*+ . . .

+τn tr

%

'Mn −
!

q∈Q
ρ(q)Mn(q)

(

*

(142)
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and the measure references all n constraints:

ρ(q) =
1

Z
det exp

-
− τ1
kB

M1(q)− · · ·− τn
kB

Mn(q)

.
(143)

B.2 Multiple constraints - general case

In the general case of a multi-constraint system, each entry of the matrix cor-
responds to a constraint:

M00

5
1 ... 0
...
. . .

...
0 ... 0

6
=

!

q∈Q
ρ(q)M00(q)

5
1 ... 0
...
. . .

...
0 ... 0

6
(144)

... (145)

M01

5
0 1 ... 0
...
...
. . .

...
0 0 ... 0

6
=

!

q∈Q
ρ(q)M01(q)

5
0 1 ... 0
...
...
. . .

...
0 0 ... 0

6
(146)

... (147)

Mnn

5
0 ... 0
...
. . .

...
0 ... 1

6
=

!

q∈Q
ρ(q)Mnn(q)

5
0 ... 0
...
. . .

...
0 ... 1

6
(148)

For a n× n matrix, there are n2 constraints.
The probability measure which maximizes the entropy is as follows:

ρ(q) =
1

Z
det exp

-
− 1

kB
τ ⊙M(q)

.
(149)

where τ is a matrix of Lagrange multipliers, and ⊙, the element-wise multi-
plication, assigns the corresponding Lagrange multiplier to each constraint.

C Quackery (intermission)

Definition 24 (Quack). A function of p which does NOT recursively enumerate
the empirical evidence of p is a quack function for p.

We do note that it is the case that for some specific functions one can prove
there are scientific methods, such as the dovetail scheduler, or are quacks, such
as a function that works on a single non-halting program indefinitely. As an
example, consider one who attempts to square the circle using only compass and
straightedge by continuously trying new permutations of such. Since this person
will be trying forever, then a function, which models this behaviour, constitutes
a quack function.
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Theorem 6 (The Fundamental Theorem of Quackery). In the general case,
one cannot prove if an arbitrary function of p is a quack or a scientific method.
The proof follows directly from the halting problem.
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