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Abstract

It is generally expected that the laws of nature are obtained as the
end-product of the scientific process. In this paper, consistently with
said expectation, I produce a model of science using mathematics, then I
use it to derive the laws of nature by applying the (formalized) scientific
method to the model. Modern notions relating to mathematical undecid-
ability are utilized to create a ’trial and error’ foundation to the discovery
of new mathematical truths, such that one is required to run programs
to completion —essentially to perform 'mathematical experiments’— to
acquire knowledge about mathematics. The ’laws of nature’ are then
derived as the probability measure that maximizes the quantity of infor-
mation produced by the scientific method as it traces a path in the space
of all possible (mathematical) experiments. In this model, said laws have
the same probabilistic structure and domain (the set of all experiments)
as the modern laws of physics, and quite remarkably, the two are identi-
cal. Since the definitions start at the level of science and experiments, are
purely mathematical, yet are nonetheless able to derive the laws of nature
and do so from first principles, we argue that the present derivation of said
laws, as it is ultimately the product of the (formalized) scientific method,
is a plausible, conceptually minimal and purely mathematical foundation
to the laws of physics. We end with applications of the model to funda-
mental open problems of physics and produce testable predictions.
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1 Introduction

In classical philosophy an axiom is a statement which is self-evidently true such
that it is accepted without controversy or question. But this definition has
been retired in modern usage. Any so-called ”self-evident” axiom can also be
posited to be false and either choice of its truth-value yields a different model;
the archetypal example being the parallel line postulate of Euclid, allowing for
hyperbolic/spherical geometry when it is false. Consequently, in modern logic
an axiom is simply a starting point for a premise, and in mathematics an axiom
is a sentence of a language that is held to be true by definition.

A long standing goal of philosophy has been to find necessarily true principles
that could be used as the basis of knowledge. For instance, the universal doubt
method of Descartes had such a goal in mind. The ’justified true belief’ theory
of epistemology is another attempt with a similar goal. But, so far, all such
attempts have flaws and loop-holes; the elimination of which is assumed, at
best, to reduce the theory to a handful of statements, rendering it undesirable
as a foundation to all knowledge.

In epistemology, the Gettier problem[1] is a well known objection to the belief
that knowledge is that which is both true and justified, relating to a family of
counter-examples. All such counter-examples rely on the same loop-hole: if the
justification is not ’air-tight’ then there exists a case where one is right by pure
luck, even if the claim were true and believed to be justified. For instance, if



one glances at a field and sees a shape in the form of a dog, one might think
he or she is justified in the belief that there is a dog in the field. Now suppose
there is a dog elsewhere in the field, but hidden from view. The belief ”there
is a dog in the field” is justified and true, but it is not knowledge because it is
only true by pure luck.

Richard Kirkham[2] proposed to add the criteria of infallibility to the justi-
fication. This eliminates the loop-hole, but it is an unpopular solution because
adding it is assumed to reduce epistemology to radical skepticism in which al-
most nothing is knowledge.

Since the primary purpose of a scientific process is to gather knowledge
(about the world), then any serious attempt at the formalization of such will
require a theory of knowledge that is also equally rigorous. Here, we will propose
the concept of the universal fact as a new candidate to serve as the foundation to
knowledge. As we will see in a moment, and due to their construction, universal
facts are sufficiently strong to be infallible, yet have sufficient expressive power to
form a Turing complete theory thus they resolve the Gettier problem without
reducing epistemology. Universal facts will be the primary subject matter of
our mathematical model of science and they are revealed and verified by the
(formalized) scientific method.

1.1 Universal Facts

Let us take the example of a statement that may appear as an obvious true
statement such as ”1 4+ 1 = 2”7, but is in fact not infallible. Here, I will provide
what I believe to be the correct definition of an infallible statement, but equally
important, such that the set of all such statements is Turing complete, thus
forming a language of maximum expressive power (universal in the computer-
theoretical sense). T will use the term universal fact to refer to the concept.

Specifically, the sentence ”1 + 1 = 2”7 halts on some Turing machine, but
not on others and thus is not a universal fact. Instead consider the sentence
PA F [s(0)+5(0) = s(s(0))] to be read as ”Peano’s axioms prove that 14+1 = 2”.
Such a statement embeds as a prefix the set of axioms in which it is provable.
One can deny that 1+1 = 2 (for example, a trickster could claim binary numbers,
in which case 1+1 = 10), but if one specifies the exact axiomatic basis in which
the claim is provable, a trickster would find it harder to find a loop-hole to fail
the claim. Nonetheless, even with this improvement, a trickster can fail the
claim by providing a Turing machine for which PA + [s(0) + s(0) = s(s(0))]
does not halt.

If we use the tools of theoretical computer science and observe an equivalence
with programs, we can produce statements free of all loop-holes, thus ensuring
they are infallible:

Definition 1 (Universal Fact). Let L be the set of all sentences with alphabet 2.
A universal fact is a pair (TM, p) of sentences from L x L such that a universal
Turing machine UTM halts for it:



iff UTM(TM, p) halts, then (TM, p) is a universal fact (1)

A universal Turing machine UTM which takes a Turing machine TM and a
sentence p as inputs, will halt if and only if p halts on TM. Thus a claim that p
halts on TM, if true, is a universal fact because it is verifiable on all universal
Turing machines.

The second objection is that infallible justified true beliefs collapse episte-
mology to radical skepticism, where at best only a handful of statements con-
stitute knowledge. However, the set of all universal facts constitute the entire
domain of the universal Turing machine, and thus the expressive power of uni-
versal facts must be on par with any Turing complete language. Since, there
exists no greater expressive power for a formal language than that of Turing
completeness, then no reduction takes place.

1.2 The Mathematics of Knowledge

We can use universal facts to re-define the foundations of mathematics to be
knowledge-based. When it comes to formulating a model of science whose goal
is to acquire more knowledge, one can intuit why that would be a desirable re-
construction. A knowledge-based foundation further works well with theories
having only finitely-many theorems, whereas working with such theories using
the typical tools of mathematics is mostly ineffective, because all such theories
are decidable and thus completely solvable in principle. Furthermore, even
tools such as complexity theory require the size of the input to be n, allowing
for arbitrarily large sizes of input to produce an effective classification system.
Instead of defining a mathematical theory as a finite deductive system of axioms,
which typically entails infinitely many theorems, let us define it as a finite (or
in some cases even infinite) set of universal facts.

Definition 2 (Knowledge base). A knowledge base KB is defined as a set of
universal facts:

KB := {(TM1,p1), ..., (TMp,pn)} (2)

The set, in principle, can be empty (KB := {}), finite (n € N) or count-
ably infinite (n = 00), but, as we will see, finite non-empty sets will be more
interesting for us.

For a knowledge base, universal facts replace the normal role of both axioms
and theorems and instead form a single verifiable atomic concept constituting
a unit of mathematical knowledge. Let me explicitly point out the difference
between the literature definition of a formal theory and ours: for the former, its
theorems are a subset of the sentences of . — whereas for a knowledge base,
its elements are pairs of I. x IL. which halts on a UTM.



Note on the upcoming notation: we will designate k as elements of KB,
and 71(k) and mo(k) designate the first and second projection of the pair k,
respectively. Thus (k) is the TM associated with k, and mo(k) is the input p
associated with k. If applied to a set of pairs, then 7 (KB) return the set of all
p in KB and 72(KB) returns the set of all TM in KB.

Theorem 1 (Incompleteness Theorem). Let KB be a knowledge base. If KB =
Dom(UTM), then KB is recursively enumerable (and non-decidable). The proof
follows from the domain of a universal Turing machine being non-decidable.

Definition 3 (Theorems). The theorems of a knowledge base KB are defined
as the set of all p in M:

T := m(KB) (3)

Definition 4 (Atomic Enumerator). The atomic enumerators of KB are defined
as the set of all TM in KB:

A =7 (KB) (4)

Definition 5 (Spread (of a theorem)). The set of all atomic enumerators in KB

in which a theorem is repeated is called the spread of the theorem. For instance
’Lf KB = {(TMl,pl), (TMg,pl)}, then the spread Ofpl 8 {TMl,TMQ}

Definition 6 (Scope (of an enumerator)). The set of all theorems in KB in
which an enumerator is repeated is called the scope of the enumerator. For
instance if KB = {(TMy,p1), (TM1,p2)}, then the scope of TMy is {p1,p2}-

1.2.1 Connection to Formal Axiomatic Systems

We can, of course, connect our construction to a formal axiomatic system:

Definition 7 (Formal Axiomatic Representation). Let FAS be a formal az-
tomatic system, let KB be a knowledge base and let enumeratorpas be a func-
tion which recursively enumerates the theorems of FAS. Then FAS is a formal
axiomatic representation of KB iff:

V(s1,82) € L x L [enumeratorpas(s1, s2) halts iff (s1,s2) € KB| (5)

Definition 8 (Domain (of FAS)). Let FAS be a formal aziomatic system, let KB
be a knowledge base and let enumeratorpag be a function which recursively enu-
merates the theorems of FAS. Then the domain of FAS, denoted as Dom(FAS),
is the set of all pairs (s1,s2) € L x L which halts for enumeratorpas.

Definition 9 (Factual Isomorphism). Two formal aziomatic systems FAS; and
FAS, are factually-isomorphic if and only if Dom(FAS;) = Dom(FAS,).



Theorem 2 (Principle of Computational Equivalence([3]). Let KB be a knowl-
edge base. If KB = Dom(UTM) then all Turing complete formal aziomatic
systems are factually-isomorphic representations of KB. Furthermore, their
enumerator function is a universal Turing machine, under an appropriate Te-
encoding of inputs. The proof follows because Dom(UTM) includes all universal
facts.

1.2.2 Axiomatic Information

Although we can connect the formulation of a knowledge base to a formal ax-
iomatic representation, we will find that it is more advantageous for the purposes
of constructing a model of science to study a knowledge base using the formal-
ism of universal facts we have introduced. We can understand the elements
of any particular knowledge base as having been ’picked’, in some sense, from
the set of all possible universal facts. If the pick is random and described as
a probability measure p, we can quantify the information of the pick using the
entropy.

Definition 10 (Axiomatic Information). Let Q be the domain of a univer-
sal Turing machine Q = Dom(UTM) (full theory) or of a subset thereof Q C
Dom(UTM) (toy theory). Then, let p : Q — [0,1] be a probability measure over
Q. Finally, let KB be a knowledge base subset of Q. The aziomatic information
of a single element of KB is quantified as the entropy of p:

S==> plg)np(q) (6)

q€Q

For instance, a well-known (non-computable) probability measure regarding
a sum of prefix-free programs is the Halting probability[4] of computer science:

0= Y ol — ) =o )
p€Dom (UTM)

The quantity of axiomatic information of a given knowledge base (and es-
pecially its maximization), rather than any particular set of axioms, will be
the primary quantity of interest for the production of a maximally informative
theory in this framework. A strategy to gather mathematical knowledge which
picks universal facts according to the probability measure which maximizes the
entropy is a maximally informative strategy.

1.3 Discussion — The Mathematics of Knowledge

Each element of a knowledge base is a program-input pair representing an algo-

rithm which is known to produce a specific result. Let us see a few examples.
How does one know how to tie one’s shoes? One knows the algorithm re-

quired to produce a knot in the laces of the shoe. How does one train for a



new job? One learns the internal procedures of the shop, which are known to
produce the result expected by management. How does one impresses manage-
ment? One learns additional skills outside of work, and applies them at work
to produce results that exceed the expectation of management. How does one
create a state in which there is milk in the fridge? One ties his shoes, walks
to the store, pays for milk using the bonus from his or her job, then brings
the milk back home and finally places it in the fridge. How does a baby learn
about object permanence? One plays peak-a-boo repeatedly with a baby, until
it ceases to amuse the baby — at which point the algorithm which hides the
parent, then shows him or her again, is learned as knowledge. How does one
unties his shoes? One simply pulls on the tip of the laces. How does one unties
his shoes if, after partial pulling, the knot accidentally mangles itself preventing
further pulling? One uses his fingers or nails to un-mangle the knot, and then
tries pulling again.

Knowledge can also be in more abstract form — for instance in the form of
a definition that holds for a special case. How does one knows that a specific
item fits a given definition of a chair? One iterates through all properties refer-
enced by the definition of the chair, each step confirming the item has the given
property — then if it does for all properties, it is known to be a chair according
to the given definition.

In all cases, knowledge is an algorithm along with an input, such that the
algorithm halts for it, lest it is not knowledge. The set of all known pairs forms
a knowledge base.

1.3.1 Special Cases, Inconsistencies, etc.

What if a knowledge base contains both ”A” and "not A” as theorems? For
instance, consider:

KB := {(TM;, A), (TM;, =A)} (8)

Does allowing contradictions at the level of the theorems of KB create a
problem? Should we add a few restrictions to avoid this unfortunate scenario?
Let us try an experiment to see what happens — specifically, let me try to
introduce A A A into my personal knowledge base, and then we will evaluate
the damage I have been subjected to by this insertion. Consider the following
program TM;y:

1. If (p="A” or p="not A”) then
2. return 1;

3. else (loop())

It thus appears that I can have knowledge that the above program halts for
both ”A” and "not A” and still survive to tell the tale. A-priori, the sentences
”A” and "not A” just symbols. Our reflex to attribute a special exclusionary



requirement to these symbols requires the adoption of a deductive system. This
occurs one step further at the selection of a specific formal axiomatic repre-
sentation of the knowledge base, and not at the level of the knowledge base
itself.

The only inconsistency that would create problems for this framework would
be a proof that a given universal fact both [HALT] and [NOT HALT] on a UTM.
By definition of a UTM, this cannot happen lest the machine was not a UTM
to begin with. Thus, we should be safe from these contradictions.

Now, suppose one has a sizeable knowledge base which may contain a plu-
rality of pairs:

KB := {(TM1,p1), (TM2, —=p1), (TMy, p2), (TMz, p1), (TM2, =p3)}  (9)

Here, the negation of some, but not all, are also present across the pairs:
in this instance, the theorems p; and p3 are negated but for different atomic
enumerators. What interpretation can we give to such elements of a knowledge
base? For our example, let us call the sentences py, p2, p3 the various flavours of
ice cream. It could be that the Italians define ice cream in a certain way, and the
British define it in a slightly different way. Recall that universal facts are pairs
which contain an atomic enumerator and a theorem. The atomic enumerator
is the ’definition’ under which the flavour qualifies as real ice cream. A flavour
with a large spread is considered real ice cream by most definitions (i.e. vanilla
or chocolate ice cream), and one with a tiny spread would be considered real
ice cream by only very few definitions (i.e. tofu-based ice cream). Then, within
this example, the presence of p; and its negation simply means that tofu-based
ice cream is ice cream according to one definition, but not according to another.

Reality is of a complexity such that a one-size-fits-all definition does not work
for all concepts, and further competing definitions might exist; a chair may be
a chair according to a certain definition, but not according to another. The
existence of many definitions for one concept is a part of reality, and the math-
ematical framework which correctly describes its knowledge base ought to be
sufficiently flexible to handle this, without itself exploding into a contradiction.

Even in the case where both A and its negation —A were to be theorems of
KB while also having the same atomic enumerator, is still knowledge. It means
one has verified that said atomic enumerator is inconsistent. One has to prove
to oneself that a given definition is inconsistent by trying it out against multiple
instances of a concept, and those ’trials’ are all part of the knowledge base.

2 Formal Science

2.1 Axiomatic Foundation of Science

The fundamental object of study of science is not the electron, the quark or
even super-strings, but the reproducible experiment. An experiment represents
an ’atom’ of verifiable knowledge.



Definition 11 (Experiment). Let (TM, p) be a pair comprising of two sentences
of a language .. The first sentence, TM, is called the protocol. The second
sentence, p, is called the hypothesis. Let UTM be a universal Turing machine.
If UTM(TM, p) halts then the pair (TM, p) is said to be an experiment. In this
case, we say that the protocol verifies the hypothesis. If UTM(TM, p) does not
halt, we say that the pair fails to verify the hypothesis.

HALT = the experiment verifies p

10
—-HALT = the pair fails verification (10)

UTM(TM, p) {

Of course, in the general case, as per the halting problem there exists no
decidable function which can determine which pair is an experiment and which
pair fails verification. In the general case, one must try them out to see which
one halts — this is why they are called experiments.

An experiment, so defined, is formally reproducible. I can transmit, via fax
or other telecommunication medium, the pair (TM, p) to another experimen-
talist, and I would know with absolute certainty that he or she has everything
required to reproduce the experiment to perfection.

Theorem 3 (Formal Reproducibility). Experiments are formally reproducible.

Proof. Let UTM and UTM’ each be a universal Turing machine. For each pair
UTM(TM, p) which halts on UTM, there exists a computable function, called
an encoding function, which maps said pairs as encode(TM, p) — (TM', p’) such
that (TM’, p’) halts for UTM’. The existence of such function is guaranteed by
(and equivalent to) the statement that any UTM can simulate any other. O

In the peer-reviewed literature, the typical requirement regarding the repro-
ducibility of an experiment is that an expert of the field be able to reproduce
the experiment, and this is of course a much lower standard than formal repro-
ducibility which is a mathematically precise definition. Here, for the protocol
TM to be a Turing machine, the protocol must specify all steps of the exper-
iment including the complete inner workings of any instrumentation used for
the experiment. The protocol must be described as an effective method equiv-
alent to an abstract computer program. Should the protocol fail to verify the
hypothesis, the entire experiment (that is the group comprising the hypothesis,
the protocol and its complete description of all instrumentation) is rejected.
For these reasons and due to the generality of the definition, I conjecture that
the above definition is the only (sensible) definition of the experiment that is
formally reproducible (as opposed to say ”sufficiently reproducible for practical
purposes”).

Definition 12 (Empirical Evidence). The set of all pairs whose protocol TM
verifies p is defined as the empirical evidence Ev of p:

Ev(p) := Dom(UTM, p) (11)

10



where
Dom(UTM, p) := {(TM, p) : where UTM(TM, p) halts } (12)

If we are referencing the empirical evidence of a set of hypothesis H, then
we note it as Ev(H).

Definition 13 (Scientific method). An algorithm which recursively enumerates
the empirical evidence, or parts thereof, of an hypothesis or a set thereof, is
called a scientific method.

Empirical evidence is thus produced by the application of the scientific
method to an hypothesis.

Theorem 4 (Scientific method (Existence of)). Ezxistence of the scientific method.

Proof. Consider a dovetail program scheduler which works as follows.

1. Sort all pairs of sentences of L x IL in shortlex. Let the ordered pairs
(TMi,p1), (TMa,p1), (TMy,p2), (TMa,p2), (TMs,p1), ... be the ele-
ments of the sort.

2. Take the first element of the sort, UTM(TM;y,p;), then run it for one
iteration.

3. Take the second element of the sort, UTM(TMa, p1), then run it for one
iteration.

4. Go back to the first element, then run it for one more iteration.

5. Take the third element of the sort, UTM(TMy,ps2), then run it for one
iteration.

6. Continue with the pattern, performing iterations one by one, with each
cycle adding a new element of the sort.

7. Make note of any pair (TM,, p;) which halts.

This scheduling strategy is called dovetailing and allows one to enumerate
the domain of a universal Turing machine recursively, without getting stuck by
any singular program that may not halt. Progress will eventually be made on
all programs... thus producing a recursive enumeration. O

Dovetailing is of course a simple/non-creative approach to the scientific
method. The point here was only to show existence of such an algorithm, not
to find the optimal one. This will be done in the upcoming section regarding
nature.

Definition 14 (Validated theory). Let VT be a formal axiomatic representa-
tion, and let H be a set of hypothesis. If Ev(H) = Dom(VT), then VT is a
validated theory of H.

11



2.1.1 The Fundamental Theorem of Science

With these definitions we can prove, from first principle, that the possibility of
falsification is a necessary consequence of the scientific method.

Definition 15 (Scientific theory). Let D, called the ’collected scientific data’ or
just ’the data’, be a subset of the empirical evidence of a set of hypothesis H.:

D c Ev(H) (13)

A finitely axiomatized representation is called a scientific theory ST of D iff
D C Dom(ST). The set P, called the predictions of ST, is defined as:

P := Dom(ST)\ D (14)

Definition 16 (Predictive theory). Let ST be a scientific theory of D. If the
predictions of ST are not empty, then ST is a predictive theory.

Definition 17 (Empirical theory). Let ST be a scientific theory of D. If the
predictions of ST are empty, then ST is a empirical theory.

Scientific theories are predictive theories that are supported by the data, but
may diverge outside of this support.

Theorem 5 (The Fundamental Theorem of Science). If the empirical evidence
of H is recursively enumerable, but not decidable, then the empirical evidence of
H has measure 0 over the set of all possible predictive scientific theories of H.

Proof. The empirical evidence of H is unique, yet —excluding atypical cases
Ev(H) where it is decidable— there exists countably infinitely many predictive
theories of H, for any set of data . Finally, the measure of one element of a
countably infinite set is 0. O

Consequently, the fundamental theorem of science leads to the concept of
falsification, as commonly understood in the philosophy of science and as given
in the sense of Popper. It is (almost) certain that a non-decidable predictive
scientific theory will eventually be falsified.

2.2 Axiomatic Foundation of Reality

Definition 18 (Domain of science). We note S as the domain (Dom) of science.
We can define S in reference to a universal Turing machine UTM as follows:

S := Dom(UTM) (15)

Thus, for all pairs of sentences (TM, p), if UTM(TM, p) halts, then (TM, p) €
S. It follows that all experiments are elements of the domain of science.

12



Definition 19 (Experimental Manifest). An experimental manifest is a ’con-
structed’ knowledge base. Specifically, an experimental manifest m, or just a
‘manifest’, is a n-tuple constructed as an element of the cartesian product ap-
plied to the domain of science.

meS" (16)

A manifest is therefore a tuple of experiments:

m := ((TMy, p1),.- ., (TMy, pn)) (17)

Note how similar this definition is to that of the knowledge base (repeated
here):

KB := {(TM,p1), ..., (TMy, pn)} (18)

We note that since a manifest may contain repetitions (experiments are for-
mally reproducible) we have not defined m as a set, but instead as a n-tuple
to retain said repetitions. Quite remarkably, this tuple vs set (experimental
manifest vs knowledge base) definition is the primary difference between formal
theories in math versus those in science — we will investigate the consequences
of this difference in great detail in the main results section.

For a given manifest, the possibility exists that some hypotheses or, likewise,
some protocols be repeated in the other tuples of the manifest. For instance it
could be the case that within a manifest ps = p5, or that TM; = TMg = TMoy,
etc. The set of all hypotheses for a given protocol is called the scope (of the
protocol), and the set of all protocols for a given hypothesis is called the spread
(of the hypothesis).

One use for repetitions, for instance, is as a quality check on the UTM.
Indeed, if one repeats many different experiments, and one finds they are indeed
correctly reproduced, then one has a high degree of confidence in the reliability in
one’s machine. Comparatively a knowledge base includes no repetitions (it is a
set), the existence of a reliable UTM is merely assumed and in fact conditional to
the framework, and as such cannot be inferred or proven. To prove with absolute
certainty that one’s machine is a (perfect) universal Turing machine using a
manifest, one has to repeat every pair infinitely many times. Consequently, in
any practical case one only infers, to a finite degree of certainty, that one has
access to such a machine. Using a tuple of experiments, as opposed to a set,
grants us the ability to discover the limits to computation of one’s machine (in
nature), should such limits exist.

Definition 20 (Experimental Space). Experimental space E is the "powertuple”
of the domain of science:

E:= GSi (19)
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All elements of experimental space are manifests, and all manifests are ele-
ments of experimental space.

Definition 21 (Toy Model). A subset of experimental space is called a ’toy
model’. Some toy models, but not all, are be decidable.

2.2.1 The Fundamental Assumption of Science

Definition 22 (State of Affairs). The aziomatic information associated to a
manifest (in addition to the manifest itself) constitute a state of affairs.

1. The state of affairs (in philosophy) refers to the state the world must be
in for a proposition about it to be true.

2. Information (in information theory, and say in base 2) relates to the num-
ber of yes/no questions one must ask to identify an element randomly
selected from a set.

3. A yes/no statement referring to the inclusion of an experiment to be part
of a manifest, connects axiomatic information to the state of affairs.

4. By mazimizing the entropy, redundancies in the yes/no questions are elim-
inated.

Definition 23 (The Fundamental Assumption of Science). There exists a man-
ifest, called the reference manifest, which corresponds to the knowledge base of
the state of affairs of reality.

1. The fundamental assumption of science essentially implies that there are
no gaps of knowledge in the state of affairs — science can capture every-
thing the state of affairs has to offer in terms of knowledge.

2. If the assumption of science would be false, it would mean that there are
elements of the knowledge base of the state of affairs that are outside the
domain of science... (hyper-computation by an oracle guiding our life?)

2.3 Axiomatic Foundation of Nature

Recall that earlier we used a dovetailing algorithm in Theorem 4 as an implemen-
tation of the scientific method, and we claimed that although it was a possible
strategy, it was not necessarily the optimal one. So what then is the optimal
implementation of the scientific method applicable to a tuple of experiments?
Well, I suppose it depends on what we mean by optimal. One might be tempted
to search along the lines of an efficient algorithm, perhaps the most elegant one,
or the one that uses the least amount of memory, etc., but thinking in those
terms would be a trap — we must think a bit more abstractly than postulating
or arguing for a specific implementation. Potentially, every manifest could in
principle have its own best strategy. It is therefore more strategic overall to
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identify a condition applicable to all cases, which produces the implementation
as a maximization problem.

The best strategy will be to mazimize the axiomatic information gained from
the scientific method, as an experimental manifest is produced; and this means
in the technical sense to maximize the entropy of a probability measure on the
paths in experimental space:

Definition 24 (The Fundamental Assumption of Nature). Let p be a probabil-
ity measure on the points in experimental space (full model) or a subset thereof
(toy model). An observer, denoted as O, is a point randomly selected from ex-
perimental space. Thus, with a probability measure that spawns the set E, every
point in experimental space qualifies as an observer. Specifically, an observer is:

O; :=(my,p:E—[0,1]) (20)

The definition of the observer is a specialization of the definition of the
manifest in the sense that a manifest is a point in experimental space, and the
observer is a randomly selected point in experimental space (and thus the notion
of information is associated to it). Note that typically in physics, the observer
(which is not mathematically integrated into the formalism... leading to a family
of open problems regarding the ’observer effect’) is associated to a random
selection of an element from a set of possible observations. This ’effect’ will
eventually be revealed to be a consequence of the present definition. Here, the
observer ’'has information’ of a randomly selected point in experimental states
and consequently has the opportunity to implement an information producing
version of the scientific method so as to realize its optimal implementation.

2.3.1 Laws of Nature

Definition 25 (Laws of Nature). The laws of nature are the probability measure
that mazimizes the entropy of a path in E between observers.

The laws of nature are thus defined formally as the information-theoretical
maximum of the scientific method, for an observer. The best strategy to max-
imize ones axiomatic knowledge of reality produces the laws of nature as the
solution.

The axioms required to formally define the practice of science may be min-
imal, but they nonetheless require a minimal structure for the practice to be
possible, and the laws of nature simply emerge as the rules which preserves
this structure over the transformation of the path of an observer. Each stop
along the path of the observer must be a knowledge base about reality. The
appellation ’laws of nature’ in this context refers to the theory of all possible
transformations which preserve the structure necessary to accommodate the
scientific method — essentially, the laws of nature are the laws that preserve
nature.

We note a distinction between a scientific theory obtained by inspection
of the manifest followed by subsequent inductive generalizations and the laws
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of nature, as defined above. Scientific theories, as they represent a complete
formal axiomatic representation of the knowledge base, can ’explain’ up to the
totality of the manifest. However, the price to pay for this completeness is
that the theory is subject to future falsification as per the fundamental theorem
of science, as early as the very next transformation of the manifest, if one is
unlucky.

The laws of nature, in contrast, hold for all possible stops along experimental
space. To gain this resilience, the laws of nature must ’distance’ themselves
from the specifics of any singular manifest and thus can only ’explain’ a much
smaller fraction of reality than a scientific theory which can account for the
whole of the manifest. Indeed, anything which might appear true in the present
manifest, but could plausibly be false in another manifest can be part of a
scientific theory, but cannot be part of the laws of nature, otherwise said laws
are susceptible to future falsification. For instance, a simple question such as
”do apples always fall downwards” may be quite easy to answer from a scientific
standpoint, but be very hard to answer from a ’laws of nature’ standpoint. From
the scientific standpoint, one may look at ten apples, note that all ten of them
fell downward, then a claim by induction that all apples will fall downwards
completes the scientific theory, but leaves it susceptible to future falsification.
To answer the same question with the laws of nature is much more difficult. One
must show that there exists no manifest in which an apple falls up (even ruling
out all possible statistical flukes), otherwise one has laws of nature claiming that
something cannot happen when in fact some experimental states exist in which
it does happen, leaving them vulnerable to eventual falsification. The laws of
nature are ”eternal” over experimental space.

For instance, take Newton’s theory of classical gravitation obtained by in-
specting a subset of experimental space and note that it was eventually falsified
when a larger subset of experimental space was inspected by Einstein to produce
general relativity. Here, we have a framework which allows us to look at the
whole of experimental space at once, thus giving us the opportunity to identify
laws of nature whose only requirement is that they preserve the structure of
nature.

3 Main Result

Let us now use these definitions to derive the laws of nature from first principle,
and then show the overwhelming similarity to the laws of physics.

3.1 Overview

3.1.1 Halting Probability (2

Let us start by maximizing the entropy of the random selection of p from
Dom(UTM):
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S=— > plp)log,p(p) (21)

peDom(UTM)

subject to these constraints:

> ) =1 (22)

pEDom(UTM)

> )l =1pl (23)

pEDom(UTM)

Using the method of the Lagrange multipliers, the result is the Gibbs mea-
sure (where D is a Lagrange multiplier):

1
p(p) = =27 Pl where Z = Z 9~ Dlvl (24)

Z
pEDom(UTM)

This is the statistical-physics definition of a sum of programs. Unlike the
Halting probability of computer science 2, here it is p(s) (and NOT Z) that
is the probability. We note that it is not necessarily all choices of D which
causes Z to be non-computable (for instance if D = 0 then Z is very much so
computable; it is in fact infinite). To recover €2, the Halting probability[4] of
computer science, we would pose the Lagrange multiplier D to 1, then take the
encoding of the program to be prefix-free and therefore, via the Kraft-inequality,
Z becomes itself a probability measure:

o= > 27 (25)

p€Dom(UTM)

We further note the work of Tadaki[5] which identifies an ’algorithmic-
thermodynamics[6]” definition of © by adding D called a ’decompression-term’
as follows:

> =27b (26)

p€Dom(UTM)

However, in each of these cases, with the exception of [6], the connection to
entropy is lost because the expression of Z is reduced such that it, rather that
p, acquires the role of the probability measure. However, there is a gain to be
had by retaining the connection to an entropy maximum. Indeed, knowing a
message from a set of possible messages according to a probability measure that
maximizes the entropy, makes knowing said message maximally informative.
Likewise, in the case of the statistical physics version of a sum of programs,
the probability measure that maximizes the entropy for this system makes our
knowledge of a program that halts maximally informative.
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3.1.2 Quantum Computing

Let us now investigate the basics of quantum computation. One starts with a
state vector:

[a) = | (27)

n

Which evolves unitarily to a final state:

|wb> = UOUl ce Um |¢a> (28)

Clever use of the unitary transformations, often arranged as simple ’gates’,
allows one to execute a program. The input to the program is the state |1,) and
the output is the state |1)p). One would note that, so defined and if the sequence
of unitary transformation is finite, such a program must always halt, and thus
its complexity must be bounded. One can however get out of this predicament
by taking the final state |¢;) to instead be an intermediary state, and then to
add more gates in order continue with a computation:

step 1 [Yp) = UoUs ... Up [a) (29)
step 2 [e) = UUL ..Ul L) (30)
: (31)
step k [trr) = ULUT ... U, ) (32)

(33)

For a quantum computation to simulate a universal Turing machine it must
be able to add more steps until a halting state is reached (or continue to add
steps indefinitely if the program never halts). But note, that each step is itself
a completed program, and further it is the case that each step can be infinitely
divided, yielding an interesting property specific to quantum computations:

3.1.3 Program-Steps and Programs are indistinguishable

The property of interest in a quantum computation (for our purposes), is that
all intermediary steps of the quantum computation are computations in and of
themselves. This is because a measurement of a state can take place between
any unitary steps. Indeed, each program-steps can be understood as a part of
a larger program, or as a program itself, or even subdivided further in infinitely
small steps. Quantum computing machines are a special design of a Turing
machine in which all program-steps, and all inner-states are also entire programs.
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Comparatively, the typical design of a Turing machine is that the machine
has an inner state, prints an output to a tape and the program either halts
or doesn’t. The transformations of the inner state of a Turing machine are
not considered programs even if such inner states are, obviously, computable.
Because of this property, as it fuses the notions of program, program-steps and
inner state of the Turing machine (and based on the fact that universe picked
this method of computation for its own computing needs...), I would submit
that quantum computing is a conceptually cleaner definition of a system of
computation than that of the typical Turing machine defined in terms of tape,
output and head — neither of which are programs.

3.1.4 Manifest-to-Manifest Computing... ?

Recall that we have defined a manifest as a tuple of experiments, that is, a tuple
of pairs (TM, p) that halt, and we have called that set of all such tuples, exper-
imental space. Now, consider a path in experimental space between manifests.
Such a path describes an accumulation of programs over the path, and describes
a computation that has the same property of interest as the quantum comput-
ing case. Due to the definition of the manifest, paths within experimental space
recover a generalized and abstract realization of said property. Any path by an
observer in experimental space is guaranteed to only encounter steps that are
formulated as completed computations.

3.2 Derivation

Distilled to its core, the laws of nature are simply given as the probability
measure that maximizes the entropy of a random selection of a tuple from a
space of possible tuples. But there is a caveat to deriving such a measure;
measure theory deals with subsets of sets, and not with tuples of tuple-spaces.

Nonetheless the two are very similar. The trick will be to 'fool’ measure
theory into thinking our tuple-space is a set by adding an invariance constraint
on the entropy with respect to a tuple re-ordering. Remarkably, this invariance
constraint will be quite impactful on the laws of nature as it will provide support
for constructing paths in experimental space in terms of transformations applied
to tuples.

Finally, requiring that our tuples contain only programs allows us to think
of each transformation as the addition of a new program-step to said programs,
which is sufficient to make the theory conceptually self-contained. Let us now
do it explicitly.

3.2.1 General Linear Ensemble

Let us start with a sum of programs (i.e. manifests that are comprised of a
single element). A probability measure would assign a real number (between
0 and 1) to each program of the sum, representing of course the probability
associated with the random selection of said program to be an element of the
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manifest. Extending this sum to manifests of multiple programs will be done in
Section 5.1 using the tensor product.
Let us therefore maximize this entropy:

=-=> ple)np(q (34)

q€Q

subject to these constraints:

> plg)=1 (35)
q€Q
Zp trM(q) = tr M (36)
q€Q

where M(q) are a matrix-valued maps! from S to F"*" representing the
linear transformations of the space, where M is a element-by-element average
matrix in F**" and where F is a field. Here, Q is an arbitrary sample space of
programs, either the full-theory if Q =S or a toy model if Q C S.

Usage of the trace of a matrix as a constraint, imposes an invariance with
respect to a similarity transformation, accounting for all possible linear re-order
of the elements of the tuples of the sum, thus allowing the creation of a mea-
sure of a tuple or group of tuples form within a space of tuples. Similarity
transformation invariance on the trace is the result of this identity:

trM = tr BMB ™! (37)

We now use the Lagrange multiplier method to derive the expression for p
that maximizes the entropy, subject to the above mentioned constraints. Max-
imizing the following equation with respect to p yields the answer:

L=—kpY ps)ln(s) +a 1= plq) | +7 [trM =" p(g) tr M(q)

q€Q q€Q q€Q
(38)

IThere is a possibility of greater generality by considering maps between spaces of dif-
ferent dimensions S — F"*™. In quantum mechanics this is part of the subject matter of
’quantum operations’ which includes quantum channels. This mapping from differently-size
vector spaces would be required in the general case to account for all possible paths of the
observer in experimental space, and would likely come out as a general linear equivalent to a
quantum channel transmitting information between manifests as their sizes change. This is
likely interesting, but, as we will see, we will not be running out of applications for the general
linear ensemble as it is, and thus we have elected to limit the scope to maps in F**" in line
with the typical formulations of quantum mechanics.
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where « and 7 are the Lagrange multipliers. The explicit derivation is made
available in Annex B. The result of the maximization process is:

1
plq,7) = 701 det exp —7M(q) (39)
where
Z(1) = Z det exp —TM(q) (40)
q€Q
3.2.2 Prior

No good probability measure is complete without a prior. The prior, which
accounts for an arbitrary preparation of the ensemble, ought to be —for purposes
of preserving the scope of the theory— of the same kind as the elements of the
probability measure. Let us thus introduce the prior as the map P : Q — F™*"
and inject it into the probability measure as well as into the partition function:

p(q) = % det exp (P(g)) det exp (—7M(q)) (41)
where
7 = Z det exp (P(g)) det exp (—7M(q)) (42)
q€Q

4 Foundation

To study the properties of the probability amplitude of our measure, we will
introduce an algebra of natural states and we will use it to classify the linear
transformations on said amplitude. We will start with the 2D case, then the 4D
case, and finally, the n-dimensional case.

4.1 Overview
4.1.1 Matrix-Valued Vector and Transformations

We will use vectors whose elements are matrices. An example of such a vector
is:
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Likewise a linear transformation of this space will expressed is a matrix of
matrices:

MOO - MOm
Myo ... Mun

Note: The scalar element of the vector space are in F. For instance:

CLM1

av

Il
—
N
S
=

aM,,

4.1.2 Linear Transformations as Computations

We will be looking for the conditions under which linear paths in experimental
spaces are computations.

We begin with a rewriting of the probability measure such that it is ’split’
into a first step, which is linear with respect to a ’probability amplitude’, and
a second which connects the amplitude to the probability. We thus write the
probability measure as:

pla,7) = 7 detd(a,7) (46)

where

¥(q,7) = exp(P(q)) exp(—7M(q)) (47)

Here, the determinant is interpreted as a generalization of the Born rule,
and reduces to it when M is the matrix representation of the complex numbers.
In the general case where M are arbitrary n X n matrices, ¥ (g, 7) will be called
the general linear probability amplitude.

We can write 1(q, 7) as a column vector:

T/J(Qth ¢1
PRI h N s (48)
Y(qn, T) Yn

The transformation which leaves the probability measure p(q,7) invariant
will be reversible linear transformations and express the evolution from one
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statistical sum of programs |i,) to another |i¢3) corresponding to the path of
an observer in experimental space.
Paths are constructed by chaining transformations on those vectors:

|wb> = NT1...T, |1/}a> (49)

computing steps

As more steps are piled on, progressively richer manifests are constructed.
Paths in experimental space are realized by completing the missing computa-
tional steps required for a starting-point manifest to be the end-point manifest.

4.1.3 General Linear Group

The set of all complex n x n matrices connects, via the exponential map, to the
general linear group in C:

exp : M(n,C) — GL(n,C) (50)

The map is also possible in R, but in this case the general linear group is
reduced to the orientation-preserving general linear group, because the left-hand
side of the map cannot produce a matrix with a negative determinant and thus
is not surjective in the general case:

exp : M(n,R) — GLT (n,R) (51)

The entropy maximization procedure we have used produced a probability
measure which embeds the exponential map over matrices, thus connects the
arbitrary linear transformation of M(n,R) to the orientation-preserving linear
group GL*(n,R).

4.2 Algebra of Natural States, in 2D

The notation of our upcoming definitions will be significantly improved if we use
a geometric representation for matrices. Let us therefore introduce a geometric
representation of 2 x 2 matrices.

4.2.1 Geometric Representation of 2 x 2 matrices

Let G(2,R) be the two-dimensional geometric algebra over the reals. We can
write a general multi-vector of G(2,R) as follows:

u=A+X+B (52)

where A is a scalar, X is a vector and B is a pseudo-scalar. Each multi-vector
has a structure-preserving (addition/multiplication) matrix representation. Ex-
plicitly, the multi-vectors of G(2,R) are represented as follows:
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Definition 26 (Geometric representation of a matrix (2 x 2)).

A+ X —B+Y)

A+X>‘<+Yy+B>‘</\yN< (53)

B+Y A-X

And the converse is also true, each 2 x 2 real matrix is represented as a
multi-vector of G(2,R).
We can define the determinant solely using constructs of geometric algebra[7].

Definition 27 (Clifford conjugate (of a G(2,R) multi-vector)).
ut = (u)o — (u)1 — (u)e (54)
Then, the determinant of u is:

Definition 28 (Geometric representation of the determinant (of a 2 x 2 ma-
trix)).

det : G(2,R

—
u — ufu (55)
For example:
detu=(A-X-B)(4+X+B) (56)
=A?-X?2_Yv?4+B? (57)
_ A+X —-B+Y
_det<B+Y A—X) (58)

Finally, we define the Clifford transpose:

Definition 29 (Clifford transpose (of a matrix of 2 x 2 matrix elements)). The
Clifford transpose of the geometric analogue to the conjugate transpose. Like the
conjugate transpose can be interpreted as a transpose followed by an element-
by-element application of the complex conjugate, here the Clifford transpose is
a transpose, followed by an element-by-element application of the Clifford con-
jugate:

u u ' ul uf
00 On 00 m0

: = : - : (59)
Umo Umn Umo ufzm
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4.2.2 Axiomatic Definition of the Algebra, in 2D

Let V be a m-dimensional vector space over G(2,R). A subset of vectors in V

forms an algebra of natural states A(V) iff the following holds:
1. Vap € A(V), the bilinear map:

() ¢ VxV — G(2,R)
(u,v) +—— ulv

is positive-definite:

(¥, 9) € R>o

2. Vap € A(V), then for each element ¥ (q) € 1, the function:

1

_ t
p(¥(q), %) = <¢7¢>w(q) Y(q)

is positive-definite:
PW(Q)a ’lﬂ) € R>0

We note the following comments and definitions:

(61)

(62)

(63)

(64)

e From (1) and (2) it follows that Vi € A(V), the probabilities sum to

unity:

> pt(a), ) =1

P(q)€p

v is called a natural (or physical) state.

(1, 1)) is called the partition function of 1.

(65)

e p(q, ) is called the probability measure (or generalized Born rule) of ¥(q).

e The set of all matrices T acting on v, as T — ', which leaves the sum

of probabilities normalized (invariant):

> o). TY) = Y p(la) ) =1

Yv(q) ey Y(g) e
are the natural transformations of .
e A matrix O such that Yuvv € A(V) :
(Ou,v) = (u, Ov)
is called an observable.

e The expectation value of an observable O is:
1

©) = )

(O, )
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4.2.3 Reduction to Complex Hilbert Spaces

It is fairly easy to see that if we reduce the expression of our multi-vectors
(A4+X+B|x-0 = A+ B and further restrict (1, 1) € Rq to (¢, 1) = 1, then
we recover the unit vectors of the complex Hilbert spaces:

e Reduction to the conjugate transpose:

((u,v> =utv — (u,v)=ulv (69)

x—0
e Reduction to the unitary transformations:

((Tu, Tv) = (u, V)] — TIT=1 (70)

x—0

e Reduction to the Born rule:

_ 1 t _ 1 f .
(p(q,t/f) <w’ww(q) ¥(q) e p(q, ) w’w)v}(q) ¥(g) (T1)
e Reduction of observables to Hermitian operators:

((Ou,v) = (u,0v)|,_, = O'=0 (72)

Under this reduction, the formalism becomes equivalent to the Dirac-Von-
Neumann formalism of quantum mechanics.

4.2.4 Observable, in 2D — Self-Adjoint Operator

Let us now investigate the general case of an observable is 2D. A matrix O is
an observable iff it is a self-adjoint operator; defined as:

(00, v) = (¢, 09) (73)
Yuvv € V.
Setup: Let O = <OOO OOl) be an observable. Let ¢ and 1 be 2 two-state
O On
vectors ¢ = <§1> and ¥ = (il) Here, the components ¢1, ¢2, 11, V2, Ogo,
2 2

Oo1, O19, O11 are multi-vectors of G(2,R).
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Derivation: 1. Let us now calculate (O¢, 1)):

2(0¢, 1) = (Ogod1 + Oo1¢2)¥01 + ¥} (Oood1 + Oo162)

+ (01001 + O1169) by + Y3 (01061 + O11¢2) (74)
= ¢:{Ogo¢1 -+ ¢§Oé1¢1 + 1/%000(/)1 + lﬁfooﬂbz
+ @10t 2 + 50T by + 101061 + 13011 ¢ (75)

2. Now, (¢, Ov):

2¢p, Oh) = ¥ (Opoth1 + Op1v2) + (Ooothr + Oo1tba)

+ ¢5(010%1 + O1192) + (01091 + Or11902) 1 (76)
= ¢t Opot1 + ¢§001¢2 + inéocbl + ?/150814171
+ ¢501001 + 501112 + ¥ O}o61 + 1307 61 (77)

For (O¢, ) = (¢, O¢) to be realized, it follows that these relations must
hold:

0y = Ouo (78)
Ok, = 019 (79)
O}y = On (80)
O =on (81)

Therefore, it follows that it must be the case that O must be equal to its
own Clifford transpose. Thus, O is an observable iff:

of=0 (82)

which is the equivalent of the self-adjoint operator Of = O of complex
Hilbert spaces.

4.2.5 Observable, in 2D — Eigenvalues / Spectral Theorem

Let us show how the spectral theorem applies to Of = O, such that its eigen-
values are real. Consider:

ago a — xe; — yez — beqs
0O =
<a + zey + yes + bes a > (83)

27



In this case, it follows that Of = O:

t_ ago a — xe; — yez — beya
0 <a + zey + yes + bes aiq > (84)

This example is the most general 2 x 2 matrix O such that Of = O. The
eigenvalues are obtained as follows:

_ _ _ agg — A a — xep — yes — beqo
0 = det(O AI)ﬁdet<a+m+y62+be12 ar— A ) (85)
implies:

0= (app — A)(a11 — ) — (a — ze; — yea — beya)(a + wey + yea + bera + ar)

(36)

0= (ago — \)(a11 — ) — (a* — 2% — y* + b?) (87)
finally:

A= (5 (a0 +an — avo —an)? T4 22— 1 1), (55)

5 (ao0 + a1 + Voo —arP T a@ 7 — 2 159} (59)

We note that in the case where agg —a11 = 0, the roots would be complex iff
a’?—x2—y?+b? < 0, but we already stated that determinant of real matrices must
be greater than zero because the exponential maps to the orientation-preserving
general linear group— therefore it is the case that a? — 22 — y? + b2 > 0, as
this expression is the determinant of the multi-vector. Consequently, O =
O implies, for orientation-preserving? transformations, that its roots are real-
valued, and thus constitute a ’geometric’ observable in the traditional sense of

an observable whose eigenvalues are real-valued.

4.3 Algebra of Natural States, in 3D (brief)

The 3D case will be a stepping stone for the 4D case. A general multi-vector of
G(3,R) can be written as follows:

u=A+X+V+B (90)

where A is a scalar, X is a vector, V is a pseudo-vector and B is a pseudo-
scalar. Such multi-vectors form a complete representation of 2 x 2 complex
matrices:

2We note the exception that a geometric observable may have real eigenvalues even in the
case of a transformation that reverses the orientation if the elements agg — a11 are not zero
and up to a certain magnitude, whereas transformations in the natural orientation are not
bounded by a magnitude — thus creating an orientation-based asymmetry.
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A+ Xoy+ Yoo+ Zos + Vyioy + Voioo + Viios + Boy A oa A o3 (91)

L A+iB+iVa+Z Vi+iVa+ X —iY

_(—V1+z'V3+X+iY A+iB—z‘V2—Z) (92)

and the determinant of this matrix, connects to the determinant of the multi-
vector as follows:

det- : GB,R) — C
u — ufu (93)
where ut is the Clifford conjugate in 3D:
ut = (u)o — (u); — (w2 + (u)s (94)

To produce a real number, a further multiplication by its complex conjugate
is required:

| @ GB,R) — R
u — (utu)futu (95)
where u' is defined as:
ut = (u)o + (u)1 + (u)s — (u)s3 (96)

4.3.1 Axiomatic Definition of the Algebra, in 3D

Let V be a m-dimensional vector space over G(3,R). A subset of vectors in V
forms an algebra of natural states A(V) iff the following holds:

1. Vi € A(V), the quadri-linear map:
() ¢+ VXV XxVxV — G(3,R)

(v, w,x) > (uiv)iwix ©7)
is positive-definite:
(¥, 9) € Rxo (98)
2. Wap € A(V), then for each element 9(q) € 4, the function:
p0). %) = T () () ) (0 (99)
is positive-definite:
p(16(0), ) € Rog (100)
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4.3.2 Reduction to Complex Hilbert Spaces

If we consider an algebra of natural states that comprises only those multi-
vectors of the form u’ oc utu. We also consider, as we obtain an exponential
map due to our entropy maximization process, we only take multi-vectors of
this form which are exponentiated, then the algebra reduces to the foundation of
quantum mechanics on complex Hilbert spaces (with an extra geometric internal
structure). For example, a wave-function would be of this form:

(exp zu1)* exp guy
Y= : (101)

(exp %um)fF exp %um

Each element of v are of this form:

1 1 1 1
(exp 5u)I expju=exp (A =X -V +B)exp (A+X+V+B) (102)
1 1
= exp(4 + B)exp 5(—X —V)exp E(X +V) (103)
= exp(4 + B) (104)

Restricting the algebra to such states reduces the quadri-linear map to a
bilinear form:

() 1 AV) X AV) — C
(¥, ¢) — Yo

yielding, when applied to said reduced subset of vectors, the same theory
as that of quantum mechanics on complex Hilbert space, but with an extra
geometric structure for its observables. The 3D case is a stepping stone for the
4D case, where this extra geometric structure will be revealed to be (in the 4D
case) the relativistic wave-function given in the form of a spinor field.

(105)

4.4 Algebra of Natural States, in 4D

We will now consider the general case for a vector space over 4 X 4 matrix.

4.4.1 Geometric Representation (in 4D)

The notation will be significantly improved if we use a geometric representation
of matrices. Let G(4,R) be the two-dimensional geometric algebra over the
reals. We can write a general multi-vector of G(4,R) as follows:

u=A+X+F+V+B (106)
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where A is a scalar, X is a vector, F is a bivector, V is a pseudo-vector,

and B is a pseudo-scalar. Each multi-vector has a structure-preserving (ad-
dition/multiplication) matrix representation. Explicitly, the multi-vectors of
G(4,R) are represented as follows:

Definition 30 (Geometric representation of a matrix (4 x 4)).

A+Tyo+ X+ Y2+ Zys

+ Fo1vo A1 + Foayo A y2 + Fosyo A vz + Fazya A s + Fizyi A vz + Fiayr Aye
+Vimi Av2 A3+ Vayo Ay Aya+ Vyvo Ay Ays + Veyo Ay Ay
+ By Ay1i Ay2 A3
A+ Xo—iF12 —iV3 Fig —iFo3 + Vo — V3 —iB + X3 + Foz —iVo
—Fi3 —iF3 — Vo — iV A+ Xo+iFi2 +iV3 X1+ 11X+ Fo1 + iFo2
—iB — X3+ Fos+iVo  —X1+1iXo+ Fo1 — iFoe A—Xo—iF12+1iV3
—X1 —iXo+ Fo1 +iFo2  —iB+ X3 —Foz +iVo  —Fiz3 —ifes + Vo +iV1

(107)

And the converse is also true, each 4 x 4 real matrix is represented as a

multi-vector of G(4,R).

We can define the determinant solely using constructs of geometric algebra[7].

Definition 31 (Clifford conjugate (of a G(4, R) multi-vector)).

ut = (u)g — (u); — (u) + ()3 + (u)y (108)

and [m] 34y as the blade-conjugate of degree 3 and 4 (flipping the plus sign to

a minus sign for blade 8 and blade 4):

[u) (5,43 1= (Wo + (W1 + (w)2 — (W)3 — (u)q (109)

The, the determinant of u is:

Definition 32 (Geometric representation of the determinant (of a 4 x 4 ma-
trix)).

det : G(4,R) — R

u — [ufujzgutu (110)

4.4.2 Axiomatic Definition of the Algebra, in 4D

Let V be a m-dimensional vector space over the 4 x 4 real matrices. A subset
of vectors in V forms an algebra of natural states A(V) iff the following holds:

1. Yy € A(V), the quadri-linear form:

(v ¢ VxVxVxV — GH4R)

(u,v,w,x) — |utv]zawix (111)

is positive-definite:

(¥, 9,9,9) €R>o (112)
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2. Vi € A(V), then for each element 1(q) € 1), the function:

1

v PO @k 113)

p(v(q), ) =
is positive-definite:
p(¥(a),¥) € Ry (114)

We note the following properties, features and comments:

e 1) is called a natural (or physical) state.
o (WY,1p, 1, 1) is called the partition function of .

e p(1(q),v) is called the probability measure (or generalized Born rule) of
¥(a)-

e The set of all matrices T acting on 1 such as T4y — 1’ which leaves the
sum of probabilities normalized (invariant):

> (). Ty) = > pib(q), ) =1 (115)

v(g) ey Y(a)ed
are the natural transformations of .
e A matrix O such that VuvvVwVx € V :
(Ou,v,w,x) = (u,0v,w,x) = (u,v,Ow,x) = (u,v,w,0x) (116)
is called an observable.

e The expectation value of an observable O is:

(O, 9,4, ¢)
(¥, 9, 9,9)

4.4.3 Reduction to Complex Hilbert Space

(0) = (117)

David Hestenes[8] proposes a geometric algebra formulation of the relativistic
wave-function, given as ¢ = \/ﬁezB/ 2¢F/2 David Hestenes connects his wave-

function to a complex number via the reverse 1; = ﬁeiB/Qe_F/z, such that
Y1) = pe'B. Then, via the Born rule, |¢1)|2 = p2.

David Hestenes’ representation constitute an algebra of natural states in
our framework — in fact, the largest one in 4D which reduces to the complex
Hilbert space. Let us select a subset of multi-vectors. The subset will contain
all multi-vectors resulting from the multiplication of an even-multi-vector by its
own Clifford conjugate. Consistent with our entropy maximization procedure,
the elements will also be exponentiated.
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(exp %ul)i exp %ul

(exp %um)i exp %um

The form of the elements of 1 are.

1 1
z/Jiz/):eXp§(A—F—|—B)eXp§(A—|—F+B) (119)
1 1 1 1 1 1
= exp §Aexp—§Fexp §Bexp §Aexp §Fexp §B (120)
=expAexpB (121)
= pe'B (122)

On such states, the quadri-linear map is reduced to the Born rule (a bilinear
map):

() 0 AV)xAV) — C
(h,0) — Vo

In our example, and with this bilinear map, (¥, ) = p?.

Of course, the most interesting applications will be when we do not reduce
the framework to the complex Hilbert space and keep the full expressive power
of the algebra...

(123)

5 Applications (Physics)

5.1 Paths in E are Path Integrals

Let us now reprise our main result. So far, all sums of programs we have used
were over manifests comprised of a single program each:

Z = Z det exp —TM(q) (124)
q€Q

How do we extend this to a sum of manifests containing multiple programs?
We have to use a Cartesian product on the sets, and a tensor product on the
probability amplitudes. For instance, let us consider the following sets of man-
ifests:

Q1 = {(p1a), (P1s) } (125)
Q2 = {(an)a (p2b)} (126>



The Cartesian product produces manifests comprised of two elements:

Q= Q1 x Q2 = {(P1a>P24); (P1as P2b); (P16, P2a)s (P16, P2b) } (127)

At the level of the probability amplitude, we must apply the tensor product.
For instance, we start with a wave-function of one program;

(5 i

Adding a program-step via a linear transformation produces:

TOO exp P(qla) + T01 exp P(q1b)
Ty, = 129
Y (Tlo exp P(qia) + 111 exp P(qup) (129)
If we tensor product this wave-function:
exp P(q2a)
= 130
N Pt (130)
along with a program-step:
Toexp P(q2q) + T}, exp P(q2b)>
T4y = [ ,9° “ ot 131
2 <T1/0 exp P(g2q) + 111 exp P(q2p) (131)

Then the tensor product of these states produces manifests as follows:

(Too exp P(qia) + Tor exp P(qus))(Too exp P(q2a) + Ty exp P(qap

Top, © T'ep, = (Too exp P(q1a) + To1 exp P(q1p))(T1g exp P(gaa) + 17, exp P(g2p
! 2 (ThoexpP(qra) + Th1 expP(q15)) (T6o exp P(q2q) + Ty exp P(q2p
(Tro exp P(q1a) + T11 exp P(q1p)) (T1o exp P(g24) + 17, exp P(q2p

(132)

Now, each element of the resulting vector is a manifest of multiple programs,
but its probability is a sum over a path. Finally, under an appropriate limiting
process, both the number of programs in a vector and the number of tensor
products grows to infinity resulting in the conventional path integral used in
physics.

The probability measure associated to manifests of multiple programs are
sum of paths, and recover the path integral in the limiting case.
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5.2 Gauge Completeness

The typical gauge theory in quantum mechanics is obtained by the production
of a gauge covariant derivative over a U(1) invariance:

Y = ey (133)

Localizing the invariance group 6 — 6(z) yields the corresponding covariant
derivative:

D, =0, — i%A#(sc) (134)

Where A, (x) is the gauge field, in this case associated with electromag-
netism. The U(1) invariance results from the usage of the complex norm to
construct a probability measure in a quantum theory, and the presence of the
derivative is the result of specifically constructing said probability measure as a
Lagrangian.

However, there exists some gauge for which quantum mechanics using the
complex norm is unable to support: for instance, the gauge of the general
linear group cannot be supported without breaking the linear evolution of the
complex probability amplitude. This is were the increased expressive power
of our framework shows its value; in fact, all possible matrix-group gauge can
be supported without breaking said linearity. This is because the wave-function
connects to the probability measure via a quadri-linear form and can thus remain
linear even under the application of the general linear group (in 4D). Extensions
to more dimensions are possible.

The fundamental invariance group of our measure is the orientation-preserving
general linear group GL™ (n,R), if the algebra is even, or the complex general
linear group GL(n,C) if the algebra is odd, rather than U(1). Gauging the
GL*(n,R) group is known to substantially connect to general relativity, as the
resulting GL(4,R)-valued field can be viewed as the Christoffel symbols I'#.

Let us first show the general linear invariance.

5.2.1 General Linear Invariance

Consider an arbitrary probability measure from our algebra of natural states in
4D:

p(¥(q), ) = LY (q)*(q)3,4¢ () (q) (135)

1
(¥, 9,9,9)

1
TRTRR AL (136)

A global orientation-preserving general linear transformation G is applied
as follows:
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Gy = o/ (137)

where G is a 4 x 4 matrix, and where v is a m-dimensional vector whose
elements are 4 x 4 matrices. Thus, G entails an element-wise multiplication.

Let us now show that invariance with respect to said transformation. The
determinant of G factors out:

1
(G, Gy, Gy, Gyp)

Finally, since the partition function is simply a sum of determinant, then
det G can be factored out on the denominator, and the terms cancel:

p(GY(q), Gp) =

det G det ¥(q) (138)

pCH0).CY) = e s da Gdet i) (139
1

= e Y (140)

= p(¥(q), ) (141)

5.2.2 Lagrangian

This general linear invariance finds itself in any probability measure we might
construct from this algebra. Let us now consider the case of a Lagrangian.

A typical Lagrangian density in quantum mechanics relies upon the existence
of a measure of the momentum:

— 1 §
P= | Pewe v dx (142)

and a measure of the potential energy:

= 1
7= [ 7006 v dx (143)
Z Iy
Now, if and only if there exists a p and a basis of 1(x) such that P(x)y(x) =

p(x), then p is called the momentum operator. In relativistic quantum me-
chanics p = 4°hIp. Then, the Lagrangian density is a measure of the energy:

L(x) = 9" (x)p1(x) — ¥ (x)70me’(x) (144)

A similar probability measure can be constructed for our framework, using
the determinant instead of the complex norm:
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P= m /M P(x)det (x, 1) dx (145)
And the potential energy as:
V= ;/ V(%) det b (x, 7) dx (146)
<¢a ¢7 wa ¢> M ’

resulting, for the general case, in the Lagrangian density:

1
(¥, 9,9, )

Since we have a determinant on top, and a partition function as a sum of
determinants at the bottom, the measure is invariant with respect to the general
linear group as det G will factor out and cancel.

L(x,7)= (P(x) — V(x))dety(x,T) (147)

5.2.3 Example Gauge

Since all finite dimensional groups have matrix representations, it then follows
that our framework —as it works with any matrices— is able to create a linear
probability amplitude for said group; including, of course, those groups result-
ing from the direct product of groups such as the affine group, producing the
metric-affine theory of gravity[9] when gauged, or the Poincaré group producing
the Einstein—Cartan gravity theory[10] when gauged. Furthermore, all groups
resulting from the direct product of groups are also supported by the framework.
Here is a list of examples of groups that are supported by a linear probability
amplitude in our framework, but are not with the complex norm only:

Gauge group Name Theory
GLT(n,R) general linear group general relativity
T(n,R) x GL(n,R) affine group metric-affine gravity
T(n,R) x SO(n,R) Poincaré group Einstein—Cartan gravity theory
T(n,R) x SO(n,R) x U(1) x SU(2) x SU(3) sm+gr group ”toy unification”
G any matrix group general case
(148)

We are not necessarily claiming that these gauges all lead to physically re-
alized theories. Our primary goal here is simply to show that our framework
supports any gauge.

In the general case, let g be the matrix representation lie algebra of any group
G which may include any of the above groups or direct products of groups. Then,
consider the following constraints:
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> plg) =1 (149)

q€Q

> p(@)tralq) = tra(q) (150)

q€Q

Solving the Lagrange equation, we obtain:

p(a) =  detexp ~7(a(a)) (151)

and the wave-function as:

¥(q) = exp —7(g(q)) (152)

Here, as before, the exponential map generates the group associated with
the algebra:

exp:7g — G (153)

and contains an evolution term as the Lagrangian multiplier 7 which forms a
one-parameter sub group of G. Multi-parameter constructions are also possible,
as shown in the Annexes.

Regardless of the group used, the probability amplitude will be linear, and
said amplitude connects to the probability via the determinant, here acting as
a generalization of the Born rule. Consequently, the map from ¥(q) to p(q) is
invariant with respect to a global transformation of said group. Then, producing
a gauge-invariant derivative for the local action of the group G — G(q) induces
a number of compensating gauge fields associated to these groups.

6 Testable Prediction

Certain linear transformations of the wave-function, under the general linear
group and its subgroups, would produce richer interference patterns that what is
possible merely with complex interference. The possibility of richer interference
patterns have been proposed before; specifically, I note the work of B. I. Lev.[11]
which suggest (theoretically) the possibility of an extended interference pattern
associated with the David Hestenes form of the relativistic wave-function and
for the subset of rotors.

We note that interference experiments have paid off substantial dividends in
the history of physics and are somewhat easy to construct and more affordable
that many alternative experiments.
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6.1 Geometric Interference

Let us start by introducing a notation for a dot product, then we will list the
various possible interference patterns.

6.1.1 Geometric Algebra Dot Product

Let us introduce a notation. We will define a bilinear form using the dot product
notation, as follows:

G(2n,R) x G(2n,R) — R (154)
u-v — i(det(u+v)—detu—detv)
For example,
u=A; + Xje; + Yies + Bieis (155)
VvV = A2 + X261 + Y2€2 + 32612 (156)
= u-v=A41A+ BB, — X; X5 — 1Y, (157)

Iff det u > 0 and det v > 0 then u-v is always positive, and therefore qualifies
as a positive inner product (over the positive det group), but no greater than
either detu or detv, whichever is larger. This definition of the dot product
extends to multi-vectors of 4 dimensions.

2D: In 2D, the dot product is equivalent to this form:
1 1 : fy— vl
5(det(u+v) —detu—detv) = 3 ((quv) (u+v)—utu-—v v) (158)

=vutu +utv + viu+ viv —utu - viv (159)
=utv +viu (160)

4D: In 4D, it is substantially more verbose:
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1
2

—(det(u+v) — detu — det v)

DN | =

(Luiu +utv + viu+ viv]z s (utu + utv + viu 4 viv) -

DN | =

Luiunguiu + L uls, Jautv 4+ Lu us, viu+ L J3’4viv
+ LuivJ3,4uiu + Lu VJ37411 v+ Lu VJ374V u-+ L Vs, Vv

+ Lving,Auiu + LviuJ374uiv + LviuJ374viu + L us, vy

+ [viv]zautu + [viv]zutv + [viv]zaviu 4 [viv]zaviv—

= Luiuj 374uiv + LuiuJ374viu + LuiuJ3,4viv

+ LuiVJ374u¢u + Luing autv + [u i v]s, Aviu+ |u i J3’4v¢v
+LviuJ34uiu+L i J34u V+L J34v u+L J374v¢v

+Lv VJ34u u+Lv VJ34u v+ ijF J34v u

6.1.2 Geometric Interference (General Form)

One can thus write a general two-state system as follows:

w = 1/)1 + 1[)2 = e%Ale%sl —+ e%Aze%s2

The general interference pattern will be of the following form:

where det )y 4 det s is a sum of probabilities, and where 1,
interference pattern.

det 91 + 1o = det 1 + det 2 + 1 - P2
=M+ e 4 gy

6.1.3 Complex Interference (Recall)

Consider a two-state wave-function:

b =1 + Py = 1B 4 e2ePe
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(161)

( u+v)iu+v)|zs(u+v)iu+v) - |utuzutu— I_VIVJ3)4V1V)

(162)
(163)

(164)

(165)

A multi-vector can be written as u = a + s, where a is a scalar and s is the
multi-vectorial part. In this case the exponential of exp u = exp a exp s because
it commutes exp a commutes with exps.

(166)
(167)

(168)
(169)

. 1/)2 is the

(170)



The interference pattern familiar to quantum mechanics is the result of the

complex norm.

W = iy + i + Pl + Pl

(171)

=M BigAipBr | pA2pmBopAaoBe o1 pmBu oAz By | pAs o —Bapdi By

= 241 4 o242 + eA1tA2 (€_B1+B2 + 6—(—B1+B2))

= 241 4 o242 4 9eM1H A2 ¢o5(B) — By)
—_————

sum

interference

6.1.4 Geometric Interference in 2D

Consider a two-state wave-function:

) =1hy + 1hy = eMeXitBr g A2 KXot By
To lighten the notation we will write it as follows:

P =1 + 1o = eMeS 4 265
where

S=X+B

(172)
(173)
(174)

(175)

(176)

(177)

The interference pattern for a full general linear transformation on a two-

state wave-function, in 2D is:

i = iy + Pivs + s + Pl

(178)

— (esl)ieAlesl + A2 (652)16A2652 + e/t (681)16A26S2 + ez (eSQ)ieAlesl

— 241 + e2A2 + eA1+A2((esl)1esz + (esz)iesl)
€2A1 + eQAz +6A1+A2 (e—xl—B1eX2+Bz +€—X2—Bzex1+B1)

sum interference

6.1.5 Geometric Interference in 4D

Consider a two-state wave-function:

=11+ 1y = 6%Ale%(X1+Fl+V1+B1) + e%A26%(X2+F2+V2+B2)

To lighten the notation we will write it as follows:

’¢1 = 1/}1 + ’(/)2 = e%Aleésl + e%A2e%S2
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where
S=X+F+V+B (184)

The geometric interference patterns for a full general linear transformation
in 4D is given by the product:

[ |5 9% = (i ] s atfn + [Paiho)a athbths + 1 - o (185)
= 241 4 242 4 (e%Ale%&) . (e%AQe%S"‘> (186)

In many cases of interested, the pattern simplifies nicely.

6.1.6 Geometric Interference in 4D (Shallow Phase Rotation)

If we consider a sub-algebra in 4D comprised of even-multi-vector products ¥,
then a two-state system is given as:

Y =11+ 1o (187)

where
Py = (e241e3F1e3B1) (e3413F103B1) = oA1B1 (188)
o = (e%Ale%Fle%Bl)I(e%Ale%Fle%Bl) = eA2¢B2 (189)

Thus
P = eM1eBr 4 eA2eB2 (190)

The quadri-linear map, becomes a bilinear map:

Pl = (eMeBr 4 eA2eBr)(A1eBr 4 eA2eP2) (191)
_ eAleiBleAleBl + 6A1€7B1€A26B2 + 6A267B26A16B1 + 6A267B2€A2€B2
(192)
= 241 | 242 | 9oAi+A2 oog(B) — By) (193)
——

sum complex interference

6.1.7 Geometric Interference in 4D (Deep Phase Rotation)

A phase rotation on the base algebra (rather than the sub-algebra), produces a
difference interference pattern. Consider a two-state wave-function:

=11 + Py = e241¢3B1 | 3424382 (194)
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The sub-product part is:

1 1 1 1 1 1 1 1
Yy = (€2A1€2B1 + 62A262B2)(€2A162B1 —|—62A262B2) (195)
= e%AleéBle%Ale%Bl + e%Ale%Ble%AQQ%Bz + e%AQe%BQe%Ale%Bl + e%AQQ%BQe%AQe%BQ
(196)
— eA1eBr 4 gA2¢B2 4 9p3(A1+42) 3 (Bi+B2) (197)

The final product is:

|t |3 a0t ep = (eAre™Br 4 eA2e B2 2e3(A1t42) =5 (B1+B2))
X (eAleBl + eA2eB2 4 26%(A1+A2)6%(B1+B2)) (198)

— eAe=BigAi B | (A1 —BigAs Ba | (A1 ~Big,d(A1+42) 3 (Bi+By)
+eAzeB2edioBr | A2 Bapdr By eA2eB29p3(A1142) o3 (B1+B2)
+ 26%(A1+A2)e—%(B1+B2)eAleB1

+ 9¢3(A1+42) ,—5(B1+B2) oAz ,Bo
1 9e3(A1HA2) 3 (Bi+B2) gy 3 (Ai1+42) 3 (B1+By) (199)
= 241 4 o242 | 9N A2 o5(B) — By)
1 eA1e=Bi9g3(A1+42) 5 (B1+B2)
1 A2~ B29e3(A1+42) 5 (Bi+B2)
+ 22 (A1+42) o~ 3(B1+B2) A1 By
+ 2e3(A1H42) o= 3(B14B2) o4z Ba
+ 4€A1+A2 (200)

= 21 4 o242 4 9eMH A2 ¢o5(B) — By)
—_——

sum

complex interference

1
+2e3(A1t42) (gA1 4 ¢42) cog 5(31 — By) + 4ei2 (201)

deep phase interference

6.1.8 Geometric Interference in 4D (Deep Spinor Rotation)

Consider a two-state wave-function (we note that [F,B] = 0):
P =y + o = er1eaF1gaB1 | o34205F203B: (202)

The geometric interference patterns for a full general linear transformation
in 4D is given by the product:
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[ )3 a0t (203)
Let us start with the sub-product:
wi¢ = (e%Ale_%FleﬁBl + e%A2€_%F2€%B2)(e%A1e%Fle%Bl + e%A2€%F26%B2)
(204)
3410 3F1 3B 341 3F1 3B | 341~ 3F1 3B 5 A 5Fs 1By

1 1 1 1 1 1 1 1 1 1 1
+ 65A26_5F265B265A165F165B1 +e242¢72F202B2g3A203F203B:

(

— eA1B1 + eAz B2 + e%(AH‘Az)e%(Bl-i-Bz)( __F162F2) + 6_%F2€ Fl)
(206)

= eM1eB1 4 eA2eB2 4 e%(AﬁA?)e%(BlJFB?)(RlRQ + R2R1) (

where R = e%F, and where R = ¢~ 2F.

The full product is:

¥ )5 a1ptep = (eAle—Bl +efze B2 o3t A) 3(-Bi-Ba) (R R, 4 Rle))

X (e“heB1 +e2eB2 e%(AﬁAZ)e%(Bl*B?)(RlRQ + RgRl))

(208)

_ _ B, 1 1 5 ~
= Mg BredieBr  piemBipAa By oA pmBuos (it Aoz (BitBa) (R Ry + RyR))

+ eA2€—B2 eAl eB1 + eAze—Bz €A2€B2 + eAze—Bze%(A1+A2)e%(B1+B2) (R1R2 4 RgR])

+ e%(A1+A2)e%(—B1—BZ)(R1R2 + Rle)eAleBl
+ 6%(A1+A2)6%(_B1_B2)(R1R2 + RQRl) A26B2

+ 6%(A1+A2)€2( B1-B2) (R1R2 + R2R1)€2(A1+A2)62(B1+B2)(R
(209)

= 2 4 242 | 9ot A2 05(B) — By) (210)
et (R Ry 4 RoRy)( (211)
eAl(e%(—BﬁBz) + e%(Bl—Bz)) (212)

+ A2 (e%(BlfBz) + e%(*Bl+B2))) (213)

¢ A2y Ry 4 By o1

= 241 4 o242 | 9o A1+ A2 cos(By — B3)
—_—————

sum

complex interference

- - 1 N N
+ 22t A2) (A1 4 oA2) (R Ry + RyRy)(cos §(B1 — By)) + et 2 (R Ry + RyR;)?

deep spinor interference

(215)
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6.1.9 Geometric Interference Experiment (Sketch)

In the case of the general linear group, the interference pattern is much more
complicated than the simple cosine of the standard Born rule, but that is to be
expected as it comprises the full general linear group and not just the unitary
group. It accounts for the group of all geometric transformations which preserves
the probability distribution p for a two-state general linear system.

General linear interference can be understood as a generalization of complex
interference, which is recovered under a ”shallow” phase rotation in 4D, and
under just a plain normal phase rotation in 2D. Furthermore, when all elements
of the odd-sub-algebra are eliminated (by posing X — 0, V. — 0), then the
wave-function reduces to the geometric algebra form of the relativistic wave-
function identified by David Hestenes, in terms of a spinor field.

Such reductions produce a series of interference patterns of decreasing com-
plexity, and as such they provide a method to experimentally identify which
group of geometric transformations the world obeys, using interference exper-
iments as the identification tool. Identification of the full general linear inter-
ference pattern (with all the elements A, X, F, V,B) in a lab experiment would
suggest a gauge-theoretical theory of gravity; whereas identification of a reduced
interference pattern (produced by A, F,B) and subsequent showing a failure to
observe the full general linear interference (X — 0,V — 0), would suggest at
most spinor-level interference.

In any such case, a general experimental setup would send a particle into
two distinct paths. Then, either: a) one of the paths undergoes a general linear
transformation, while the other doesn’t or b) both paths undergo a different
general linear transformation. Then, the paths are recombined to produce an
interference pattern on a screen. Depending on the nature of the transformation,
a deformation of the interference pattern based on the geometry of the setup
should be observed.

One would can further utilize the non-commutativity of the general linear
transformations to identify only the difference between complex-interference and
general linear interference. One would apply the same general linear transfor-
mations to each path, but would reverse the order in which the transformations
are applied. The resulting interference pattern would then be compared to a
case where both paths are transformed in the same order. Then, complex-
interference, as it is fully commutative, would predict the same interference
pattern irrespective of the order the transformations are applied in — whereas,
with general linear interference, as it is non-commutative, would predict differ-
ent interference patterns.

To achieve this, it may be necessary to use a three-dimensional detector,
whose idealized construction is a homogeneous bath of impurities (allowing
photons to ’click’ anywhere within the volume of the detector), instead of a
two-dimensional screen, since the opportunity for non-commutative behaviour
often kicks in at three dimensions or higher. In a real experiment, it is probably
easier to use a 2d x-y screen, and stepping it along an orthogonal z-axis, cap-
turing the 2d interference pattern at each step, then numerically reconstructing
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the volumetric interference pattern out of the steps.

7 Discussion (Science + Physics)

An interesting consequence of integrating both science and physics into a singu-
lar mathematical theory is that one can speak, with some amount of mathemati-
cal rigour, about subject matters which exceeds the normal scope of physics, but
not necessarily that of science 4+ physics. For instance, it is in this increased
scope that the interpretation of quantum mechanics including the collapse of
the wave-function resides... further explaining why physics, by itself, is and was
unable to settle these questions. In this section, we attack problems that specifi-
cally are unresolvable in physics alone, but where the union of physics + science
may provide direction. Please note that this section is a bit more ”relaxed” and
”speculative” that the other sections, and is meant to make the reader think,
pounder and to encourage discussion, rather than provide final answers.

7.1 Observer Bias — An Origin Story

We have defined the laws of nature as the solution to an entropy maximization
problem. In contrast, the definition of the observer references only a probability
measure in general and as such is not necessarily entropy-maximized. The laws
of nature are consequently the preferred solution only to a subset of all possi-
ble observers; called the natural, or unbiased observers. Other so-called biased
observers may find that alternative explanations are "better’ or 'preferred’ than
the laws of nature, for a myriad of reasons. This can open up quite the can of
worm, but here we will restrict our investigation to a small subset of the biased
observers; specifically those that remarkably manage to improve upon the laws
of nature as an explanatory tool. This subset of observers still maximizes the
entropy, and thus do recover the laws of nature, but also induces a bias on exper-
imental space, such that said bias is ’felt” as an entropic force. The modification
is an improvement because a specific type of bias, called the survivorship bias,
must be accounted for, so as to produce a complete description of reality (from
the perspective of a random observer).

For an example of bias, consider that I certainly think of myself as an ob-
server. Then, it is perhaps the case that I consider certain experiments to be of
special interest to me, such as possibly those experiments that involve my own
body. For instance, I may wish to know if I have an allergy to pollen. To know
that, I might go for a summer in a rural area, versus a summer in an urban
area, and see if I develop any allergies in the rural area but none in the urban
area, thereby making pollen the prime suspect. In contrast, the question ”can I
out-swim a shark?” can be legitimately interesting as a scientific question, but
it goes against my observer bias to try it — the well known maxim being that if
one dies in experimental space, then one dies in real life. A natural observer who
might find the experiment ”can I out-swim a shark?” to be equally desirable
to grab as a unit of knowledge as any other experiments, could be expected to
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terminate faster on average than one who is biased, thus overall producing a less
informative path in experimental space. Since the length of an observer’s path
in experimental space is subject to the choice of experiments, an entropy maxi-
mization procedure which attempts to maximize knowledge must also maximize
survivorship bias to achieve the best possible result.

At the statistical-physics level, this biased selection on the level of program-
steps, is expressed as an entropic force on the path of the observer pointing
towards regions of experimental space preferential to said bias. Consider a
function BIAS(q) which assigns a real value to each program-step. Maximizing
the entropy with a constraint in the direction of BIAS:

> V(p(q) BIAS(q)) = VBIAS (216)
qun

produces, in the probability measure, an exponential suppression term for
each path running counter to the direction of said bias. One might get the
impression that an observer must be able to exert control on a physical system
to steer its path willfully along the direction of increased bias, but fear not,
one does not actually need to postulate such an ability. The symmetry of
the situation does not require more than a mere correlation. Indeed, one can
simply take as a starting point the set of all observers, and since the length of
a path of each observer is in [0, 00], where 0 could mean a Boltzmann brain
spontaneously forming then disintegrating, and oo means an observer lucky
enough to experience immortality, then a survivorship bias, as an entropic force,
is necessarily present for such set, iff the average path length is greater than 0.
This is certainly always the case if the number of observers is finite, and if it is
infinite, we may select a limiting condition which preserves the average length
given by the entropy for finite cases. A correlation, —thankfully, no causation is
necessary—, between high survivorship bias and a random selection of a typical
observer is thus statistically expected.

In the general computing case, knowing the length of ones’ path in advance
is either undecidable, or at least highly unfeasible. If the complexity may grow
unbounded, a plausibly optimal general strategy is to maximize future freedom
of action, defined as an entropic force F' = T'V.S7T and previously proposed as a
general definition of intelligence[12]. In this case, the intelligence bias would be
a specific implementation of a survivorship bias.

The entropic force resulting from survivor bias gives us an opportunity to
re-interpret the anthropic principle (a mere truism) as an emergent entropic
force (thus improving its explanatory power), and to further rethink the odds
of the Boltzmann brain (thus attributing a minimalistic origin to the observer).
First, let us recall that the anthropic principle, in its minimal version, attributes
a binary [YES] or [NO] value to possible universes regarding whether they sup-
port life or not, and concludes self-evidently that only [YES] universes admit
observers — and in a slightly less minimal formulation, the anthropic principle
is a claim on the numerical value of the constants of nature. Second, rather than
thinking of a minimal brain randomly generated in a thermal soup (Boltzmann
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brain), we will switch the space from the thermal soup to a random path in ex-
perimental space. A postulated algorithmic-Boltzmann brain is overwhelmingly
favoured, statistically, to be situated in a region of experimental space of high
survivorship bias, rather than in a region of very little. For example, a ’society’
of X billion members, each member being the culmination of Y billion years of
natural selection pressure, would represent a state of experimental space where
the cumulative entropic force of survivorship bias outclasses, by many orders
of magnitude, the force generated by a singular Boltzmann brain in a thermal
soup, rendering the former overwhelmingly likelier to contain observers than the
latter. Observers are favoured by entropy to occupy the ’algorithmic niche’ of
highest survivorship bias. Comparatively, a thermal soup, the preferred envi-
ronment of the Boltzmann brain, is an environment of no (or even negative)
survivor bias. Although it may be possible, in principle, for a Boltzmann brain
to be spontaneously produced, it cannot do so without the system countering
a massive negative survivorship bias penalty on the entropy, thus making the
occurrence of such incredibly unlikely overall.

Since the laws of nature are obtained under the assumption of an unbiased
observer, they will invariably make the universe appear "unnaturally” fit, with
respect to the random expectation, for a spontaneously emerging algorithmic-
Boltzmann brain which has said bias.

7.2 Interpretation of Quantum Mechanics

In statistical physics, one considers a number of constraint on the entropy, such
as:

> n(@) =1 (217)

q€Q
> p(@E(q) =E (218)
q€Q
> p@)Vig) =V (219)
q€Q

Maximizing the entropy produces the Gibbs measure:

1

pla) = 7 exp(=B(E(g) +pV(9))) (220)

Our framework admits an origin in the same entropy maximization procedure
as that of statistical physics. The contraints are:
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> plg) =1 (221)

q€Q

Zp(q) tr (h?q) —f:)(q)) =tr (% _OE> (222)

q€Q

In the statistical physics interpretation, the constraints simply refer to vari-
ous instruments that are acting on the system. For instance, an energy constrain
implies an energy measure tool, and a volume constrain likewise implies a vol-
ume measure tool, each yielding a sequence of measurements on the system.

In the case of the trace, and since the trace remains invariant to a simi-
larity transformations, the interpretation of statistical physics remain valid but
must be adjusted to account for an ’instrument’ which is unable to measure
the phase. With said constraint, consider how simple and how free of clutter,
this foundation to quantum mechanics is: A statistical physics ensemble whose
entropy is constrained by an unmeasured phase, is mathematically identical to
quantum mechanics. Everything we need for quantum mechanics follows from
this; complex Hilbert space, measurements, states as rays of an Hilbert space,
observables, unitary transformation, time evolution, etc. are all a consequence
of maximizing the entropy under this simple constraint. Finally, under this
constraint, the wave-function is simply a special case of the Gibbs measure.

1

p(¥(q),¥) = ) det 1(q) (223)

7.2.1 Interpretation of the Collapse

In our interpretation, the collapse of the wave-function is a behaviour inherited
from how the laws of nature are derived, and results from a clash between two
scientifically valid, but different, definition of the observer.

Let us first define two observers: one called the trivial observer, and the other
called the natural observer. We are already familiar with the natural observer:
it is the observer which maximizes the entropy of the random selection of the
reference manifest, thus identifying the laws of nature as a result. Now, for
the trivial observer: it is one who assigns a probability measure of one to the
reference manifest on the grounds that it happened, and zero to all others on
the grounds that they did not happen.

Let us now start with simple examples, then we will ramp up the complexity
as we go along. The goal is to identify a pattern.

Example 1 - Coin toss: Let us take the example of the following sequence
of HEAD (H) or TAILS (T):

HHT (224)
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How can one associate a probability measure to this sequence? The possi-
bilities boil down to two mutually exclusive ways. The first is simply to claim
the sequence HHT is the one that has happened in reality and thus its proba-
bility is post-facto given the value of 1. Its main disadvantage is that it is quite
trivial. The second way has the advantage that it much less trivial: we assume
that there could have been alternatives to what has happened, then solve for a
probability measure over these alternatives:

1. We start by listing all possible sequences we assume could have been al-
ternatives to the actual sequence (and also add the actual sequence to the
set):

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT (225)

2. Then, we create a probability measure which assumes, all other things
being equal, that each sequence is equally likely (there are other plausible
assumptions, unfair coin toss, maximizing entropy, etc.):

plg) = - (226)

Note the difference of 'model-depth’ between the first and second approach.
The first approach, although a completely correct description of what has oc-
curred is nonetheless very trivial and quite uninformative, but the second one
which includes a plurality of sequences that never happened, is much more in-
teresting!

Example 2 - Statistical physics: This logic is repeated for any system that
are attributed a probabilistic measure, including those of statistical physics. For
instance, if one measures the volume of a gas in a box, and its energy, one would
get two finite sequences of measurements:

ViVaVsViVs Vs (227)
B\ By B3 EyEs Eg (228)

One can then claim that the probability of each of these sequences is 1 be-
cause they are the ones that have actually happened, but here again it feels
quite trivial to do so. A much less trivial approach is to list all possible alterna-
tives to this sequence, then solve for a probability measure that maximizes the
entropy of this ensemble of possibilities. In this case, the alternative sequences
are presented in the form of two constrains on the entropy:

V=> p@)V(q) (229)

q€Q

E=> p(q)E(q) (230)
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The probability measure, obtained by maximizing the entropy under these
constraints is the familiar Gibbs measure:

p(a) = - exp—B(B (@) + PV (4)) (231)

Example 3 - Quantum mechanics: The same occurs if we use the con-
strains of a unmeasured phase of a system of statistical physics, as we have
used in this work to recover quantum mechanics from entropy maximization. In
nature, we would be presented with a sequence of measurements, each having
an unmeasured phase:

(h1ha), (h3ha), (h3hs), (hihi) (232)

One could normalize the probability of this sequence to 1, after-all it is indeed
the one that has happened! However, here also, it is much more interesting to
assume there could have alternatives to this sequence. Then, maximizing the
entropy for the set of all possible sequences, expressed as a constraint:

)

produces the wave-function has the probability measure. Then, playing with
a wave-function is much less trivial that playing with a singular fixed sequence,
and thus we find intellectual satisfaction.

Example 4 - Relativistic wave-function Even in the case of the full-blown
relativistic wave-function, the logic is the same. One experimentally measures
a sequence of numbers:

tr Mhtl‘ Mg,tr M3 (234)

But, to avoid triviality, one assumes that, rather that being normalized
to one, those numbers ought to be the result of a random selection between
alternatives, in this case given as:

trM = p(q) tr M(q) (235)
q€Q

and obtains the general linear wave-function as a result of maximizing the
entropy:

p(¥(q), ¥) = det ¥ (q) (236)

1
(Y, 9,1, )
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Discussion - Statistical interpretation: The statistical interpretation[13]
of quantum mechanics is, in essence, an attempt to justify why and when it is
acceptable for us to assume alternative sequences (even if only one happened), by
restricting the domain of applicability to similarly prepared ensembles. Then, if
similarly prepared ensembles produces different sequences, it implies there could
have been alternatives. This is an improvement, but it has the loop-hole that
one can always claim that any group of similarly prepared ensembles is itself a
larger uniquely prepared ensemble, and thus sending us directly back to square
one. What is then the correct way to think about this?

Discussion - Manifests: The largest sequence associated with any physical
system is the manifest of the present reality. We have access to only one such
sequence and we are unable to produce similarly prepared ensembles on that
scale. Yet, the same entropy maximization process is required to get the laws
of nature. Here as well, we could claim the path to the actual manifest is
normalized to a probability of one, because it is the one that has occurred.
However, if one assumes as alternatives all possible paths between all possible
manifests, then maximizes of entropy over the selection of one path from this
set, then one obtains the laws of nature. As we have, by definition, only one
”similarly prepared ensemble”, the statistical interpretation requiring a plurality
of similarly prepared ensembles cannot help us make sense of this.

The question then is: why do we need alternative possibilities to define the
laws of physics? Do we need not just reference the present manifest — are they
not the laws that pertain to the present reality? An answer is available and
palatable but only if the totality of the laws of nature are obtained by entropy
maximization (as in the present case) — otherwise it is a near impossible pill
to swallow. Remarkably, the laws of nature are not the laws of the reality that
has occurred (the probability of such normalizes to one) —a more appropriate
construction to understand what has occurred would be to use a scientific theory
which is an axiomatic representation of the manifest, and subject to future
falsification—, but instead are the laws regarding what could have been, or what
could be. It is the boundaries of what we assume ’could have been’, post entropy
maximization, that constitutes the laws of nature. Finally, our assumption of
what 'could have been’ is made unique by assuming all possible manifests, and
those boundaries are also made unique by entropy maximization.

For instance, if I claim to be a physicist, then it is plausible to claim that
I could have instead been a doctor, even if the later did not occur because,
presumably, 'being a doctor’ does not in principle violate the laws of nature.
However, it is not plausible to claim I could have instead been superman, because
in this case the laws of nature would presumably be violated. In this example,
the laws of nature rules out superman but not the doctor, even if reality rules
out both the doctor and superman. The laws of nature rules out less than what
reality rules out. The laws of nature, since they are the same for all possible
manifests, cannot not rule out what could have plausibly happened.

The appearance of a wave-function collapse is the result of a clash between
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two valid definitions of observers: the trivial (yielding at most a scientific theory
of the manifest) vs the natural observer (yielding the laws of nature). There
exists no link between the two from a physics stand-point —because one is
physics, and the other isn’t—, but the link exists from a science+physics stand-
point —because they are both sicence—.
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A Notation

S will denote the entropy, A the action, L the Lagrangian, and £ the La-
grangian density. Sets, unless a prior convention assigns it another symbol, will
be written using the blackboard bold typography (ex: L, W, Q, etc.). Matrices
will be in bold upper case (ex: A,B), whereas vectors and multi-vectors will
be in bold lower case (ex: u,v,g) and most other constructions (ex.: scalars,
functions) will have plain typography (ex. a,A). The identity matrix is I,
the unit pseudo-scalar (of geometric algebra) is I and the imaginary number
is . The Dirac gamma matrices are 7y, 71,772,773 and the Pauli matrices are
0z,0y,0. The basis elements of an arbitrary curvilinear geometric basis will be
denoted eg, €1, e, ...,€, (such that e, - e, = g,,) and if they are orthonormal
as Xo,X1,Xa, ..., X, (such that X,,-%X, = 1,,,). The asterisk z* denotes the com-
plex conjugate of z, and the dagger AT denotes the conjugate transpose of A. A
geometric algebra of m dimensions over a field IF is noted as G(m, F). The grades
of a multi-vector will be denoted as (v)j. Specifically, (v)g is a scalar, (v); is a
vector, (V) is a bi-vector, (v),—1 is a pseudo-vector and (v),, is a pseudo-scalar.
Furthermore, a scalar and a vector (v)o + (v)1 is a para-vector, and a combina-
tion of even grades ((v)o + (V)2 + (v)a+...) or odd grades ((v)1 + (v)s+...)
are even-multi-vectors or odd-multi-vectors, respectively. The commutator is de-
fined as [A,B] := AB — BA and the anti-commutator as {A,B} := AB+BA.
We use the symbol 2 to relate two sets that are related by a group isomorphism.
We denote the Hadamard product, or element-wise multiplication, of two ma-
trices using ®, and is written for instance as M ® P, and for a multivector as
u © v; for instance: (ag 4+ oX + Yoy + boX AY) © (a1 + x1X + 11y + bolX A Y)
would equal aga; + xpx1X 4+ Yoy1 ¥ + bob1X A y.

B Lagrange equation

The Lagrangian equation to maximize is:

L(p,a,m) = —kp Y _plg)np(g) +a | 1= plg) | +7tr { M= p(g)M(q)
q€Q q€Q q€Q
(237)

where o and 7 are the Lagrange multipliers. We note the usage of the
trace operator for the geometric constraint such that a scalar-valued equation is
maximized. Maximizing this equation for p by posing %(Ep) = 0, where p € Q,
we obtain:
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9L — _kplnp(p) — kp — a —7tr M(p) (238)

ap(p) —
0=kplnp(p)+kp + o+ 7tr M(p) (239)
= Inp(p) = é (—kp —a —7trM(p)) (240)
— plp) = eXP(T) exp (kTB tr M(p)) (241)
- %det exp<—éM(p)> (242)

where Z is obtained as follows:

1= Zexp<%) exp (—é trM(q)) (243)

q€Q
= (exp(%)) h = qze(:@exp (-é trM(q)> (244)
7= q;@det exp <—éM(q)> (245)

We note that the Trace in the exponential drops down to a determinant, via
the relation det exp A = exp tr A.

B.1 Multiple constraints

Consider a set of constraints:

M, =) p(g)Mi(q) (246)
q€Q

(247)

M, =Y p(q)Ma(g) (248)
q€Q

Then the Lagrange equation becomes:

qeQ q€Q q€Q

L=—kp Zp(q) Inp(q) + (1 - Zp(q)) +7tr (Ml - ZP(Q)Ml(Q)) +...

T tr (Mn - p(q)Mn(Q))

(249)

q€Q
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and the measure references all n constraints:

) = pdetep(~ M) < - EML@)  (250)

B.2 Multiple constraints - General Case

In the general case of a multi-constraint system, each entry of the matrix cor-
responds to a constraint:

Moo(g ) = ZP(Q)MOO(Q)<§ ) (251)

0..0 q€Q 0..0
: (252)
_/01..0 01 ... 0
M01<::-..:>ZZP(Q)M01(Q)<::~._:> (253)
00 ... 0 q€Q 00 .0
: (254)
L 0.0 0.0
Mnn<: ) =Zp(q)M7m(q)<:~.,:> (255)
0 .. 1 q€Q 0. 1
For a n x n matrix, there are n? constraints.
The probability measure which maximizes the entropy is as follows:
1 1
p(q) = = detexp| ——7 © M(q) (256)
7 kg

where 7T is a matrix of Lagrange multipliers, and ®, the element-wise multi-
plication, assigns the corresponding Lagrange multiplier to each constraint.
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