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Abstract

It is generally expected that the laws of nature are obtained as the
end-product of the scientific process. In this paper, consistently with
said expectation, I produce a model of science using mathematics, then I
use it to derive the laws of nature by applying the (formalized) scientific
method to the model. Modern notions relating to mathematical undecid-
ability are utilized to create a ’trial and error’ foundation to the discovery
of new mathematical truths, such that one is required to run programs
to completion —essentially to perform ’mathematical experiments’— to
acquire knowledge about mathematics. The ’laws of nature’ are then
derived as the probability measure that maximizes the quantity of infor-
mation produced by the scientific method as it traces a path in the space
of all possible (mathematical) experiments. In this model, said laws have
the same probabilistic structure and domain (the set of all experiments) as
the modern laws of physics, and quite remarkably, the two are very similar
if not identical. Since the definitions start at the level of science and ex-
periments, are purely mathematical, yet are nonetheless able to derive the
laws of nature and do so from first principles, we argue that the present
derivation of said laws, as it is ultimately the product of the (formalized)
scientific method, is a plausible, conceptually minimal and purely math-
ematical foundation to the laws of physics. We end with applications of
the model to fundamental open problems of physics and produce testable
predictions.
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1 Introduction

In classical philosophy an axiom is a statement which is self-evidently true such
that it is accepted without controversy or question. But this definition has
been retired in modern usage. Any so-called ”self-evident” axiom can also be
posited to be false and either choice of its truth-value yields a different model;
the archetypal example being the parallel line postulate of Euclid, allowing for
hyperbolic/spherical geometry when it is false. Consequently, in modern logic
an axiom is simply a starting point for a premise, and in mathematics an axiom
is a sentence of a language that is held to be true by definition.

A long standing goal of philosophy has been to find necessarily true principles
that could be used as the basis of knowledge. For instance, the universal doubt
method of Descartes had such a goal in mind. The ’justified true belief’ theory
of epistemology is another attempt with a similar goal. But, so far, all such
attempts have flaws and loopholes, the elimination of which is assumed, at
best, to reduce the theory to a handful of statements, rendering it undesirable
as a foundation to all knowledge.

In epistemology, the Gettier problem[1] is a well known objection to the belief
that knowledge is that which is both true and justified, relating to a family of
counter-examples. All such counter-examples rely on the same loophole: if the



justification is not ’air-tight’ then there exists a case where one is right by pure
luck, even if the claim were true and believed to be justified. For instance, if
one glances at a field and sees a shape in the form of a dog, one might think
he or she is justified in the belief that there is a dog in the field. Now suppose
there is a dog elsewhere in the field, but hidden from view. The belief ”there
is a dog in the field” is justified and true, but it is not knowledge because it is
only true by pure luck.

Richard Kirkham[2] proposed to add the criteria of infallibility to the justi-
fication. This eliminates the loophole, but it is an unpopular solution because
adding it is assumed to reduce epistemology to radical skepticism in which al-
most nothing is knowledge.

Since the primary purpose of a scientific process is to gather knowledge
(about the world), then any serious attempt at the formalization of such will
require a theory of knowledge that is also equally rigorous. Here, we will propose
the concept of the universal fact as a new candidate to serve as the foundation to
knowledge. As we will see in a moment universal facts, due to their construction,
are sufficiently strong to be infallible, yet have sufficient expressive power to
form a Turing complete theory thus they resolve the Gettier problem without
reducing epistemology. Universal facts will be the primary subject matter of
our mathematical model of science and they are revealed and verified by the
(formalized) scientific method.

1.1 Universal Facts

Let us take the example of a statement that may appear as an obvious true
statement such as "1 + 1 = 2”7, but is in fact not infallible. Here, I will provide
what I believe to be the correct definition of an infallible statement, but equally
important, such that the set of all such statements is Turing complete, thus
forming a language of maximum expressive power (universal in the computer-
theoretical sense). I will use the term universal fact to refer to the concept.

Specifically, the sentence ”1 + 1 = 2”7 halts on some Turing machine, but
not on others and thus is not a universal fact. Instead consider the sentence
PA F [s(0)+5(0) = s(s(0))] to be read as ”Peano’s axioms prove that 1+1 = 2”.
Such a statement embeds as a prefix the set of axioms in which it is provable.
One can deny that 1+1 = 2 (for example, a trickster could claim binary numbers,
in which case 141 = 10), but if one specifies the exact axiomatic basis in which
the claim is provable, a trickster would find it harder to find a loophole to fail
the claim. Nonetheless, even with this improvement, a trickster can fail the
claim by providing a Turing machine for which PA + [s(0) + s(0) = s(s(0))]
does not halt.

If we use the tools of theoretical computer science and observe an equivalence
with programs, we can produce statements free of all loopholes, thus ensuring
they are infallible:

Definition 1 (Universal Fact). Let L be the set of all sentences with alphabet .
A universal fact is a pair (TM, p) of sentences from L x L such that a universal



Turing machine UTM halts for it:

iff UTM(TM, p) halts, then (TM, p) is a universal fact (1)

A universal Turing machine UTM which takes a Turing machine TM and a
sentence p as inputs, will halt if and only if p halts on TM. Thus a claim that p
halts on TM, if true, is a universal fact because it is verifiable on all universal
Turing machines.

The second objection is that infallible justified true beliefs collapse epistemol-
ogy to radical skepticism, where at best only a handful of statements constitute
knowledge. However, the set of all universal facts constitutes the entire domain
of the universal Turing machine, and thus the expressive power of universal facts
must be on par with any Turing complete language. Since there exists no greater
expressive power for a formal language than that of Turing completeness, then
no reduction takes place.

1.2 The Mathematics of Knowledge

We can use universal facts to redefine the foundations of mathematics to be
knowledge-based. When it comes to formulating a model of science whose goal
is to acquire more knowledge, one can intuit why that would be a desirable
reconstruction. A knowledge-based foundation further works well with theories
having only finitely many theorems, whereas working with such theories using
the typical tools of mathematics is mostly ineffective, because all such theories
are decidable and thus completely solvable in principle. Furthermore, even
tools such as complexity theory require the size of the input to be n, allowing
for arbitrarily large sizes of input to produce an effective classification system.
Instead of defining a mathematical theory as a finite deductive system of axioms,
which typically entails infinitely many theorems, let us define it as a finite (or
in some cases even infinite) set of universal facts.

Definition 2 (Knowledge base). A knowledge base KB is defined as a set of
universal facts:

KB := {(TMlapl)aa(TMnapn)} (2)

The set, in principle, can be empty (KB := {}), finite (n € N) or count-
ably infinite (n = 00), but, as we will see, finite non-empty sets will be more
interesting for us.

For a knowledge base, universal facts replace the normal role of both axioms
and theorems and instead form a single verifiable atomic concept constituting
a unit of mathematical knowledge. Let me explicitly point out the difference
between the literature definition of a formal theory and ours: for the former, its
theorems are a subset of the sentences of . — whereas for a knowledge base,
its elements are pairs of I x I which halts on a UTM.



Note on the upcoming notation: we will designate k as the pairs element of
KB, and proj, (k) and proj,(k) designate the first and second projection of the
pair k, respectively. Thus proj, (k) is the TM associated with k, and proj,(k)
is the input p associated with k. If applied to a set of pairs, then proj, (KB)
returns the set of all p in KB and proj,(KB) returns the set of all TM in KB.

Theorem 1 (Incompleteness Theorem). Let KB be a knowledge base. If KB =
Dom(UTM), then KB is recursively enumerable (and non-decidable). The proof
follows from the domain of a universal Turing machine being non-decidable.

Definition 3 (Atomic Enumerator). The atomic enumerators of KB are defined
as the set of all TM in KB:

A := proj, (KB) (3)

Definition 4 (Theorems). The theorems of a knowledge base KB are defined
as the set of all p in M:

T := proj, (KB) (4)

Definition 5 (Spread (of a theorem)). The set of all atomic enumerators in KB
in which a theorem is repeated is called the spread of the theorem. For instance
if KB = {(TMjy, p1), (TMa, p1)}, then the spread of p1 is {TMy, TMs}.

Definition 6 (Scope (of an enumerator)). The set of all theorems in KB in
which an enumerator is repeated is called the scope of the enumerator. For
instance if KB = {(TMy,p1), (TM1,p2)}, then the scope of TM; is {p1,p2}-

1.2.1 Connection to Formal Axiomatic Systems

We can, of course, connect our construction to a formulation in terms of a formal
axiomatic system (FAS):

Definition 7 (Enumerator (of a FAS)). A function enumeratorgag is an enu-
merator for FAS if it recursively enumerates the theorems of FAS. For instance:

1 FASF s
3/ does-not-halt otherwise

enumeratorpas(s) = { (5)
Definition 8 (Domain (of FAS)). Let FAS be a formal aziomatic system, let KB
be a knowledge base and let enumeratorpas be a function which recursively enu-
merates the theorems of FAS. Then the domain of FAS, denoted as Dom(FAS),
1s the set of all sentences s € L which halts for enumeratorpas.



Definition 9 (Formal Axiomatic Representation). Let FAS be a formal az-
tomatic system, let KB be a knowledge base and let enumeratorpas be a func-
tion which recursively enumerates the theorems of FAS. Then FAS is a formal
axiomatic representation of KB iff:

Dom(FAS) = proj,(KB) (6)

Definition 10 (Factual Isomorphism). Two formal aziomatic systems FAS;
and FASs are factually-isomorphic if and only if Dom(FAS;) = Dom(FAS,).

1.2.2 Axiomatic Information

Although we can connect the formulation of a knowledge base to a formal ax-
iomatic representation, we will find that it is more advantageous for the purposes
of constructing a model of science to study a knowledge base using the formal-
ism of universal facts that we have introduced. We can understand the elements
of any particular knowledge base as having been ’picked’, in some sense, from
the set of all possible universal facts. If the pick is random and described as
a probability measure p, we can quantify the information of the pick using the
entropy.

Definition 11 (Axiomatic Information). Let Q be the domain of a univer-
sal Turing machine Q = Dom(UTM) (full theory) or of a subset thereof Q C
Dom(UTM) (toy theory). Then, let p: Q — [0,1] be a probability measure over
Q. Finally, let KB be a knowledge base subset of Q. The axiomatic information
of a single element of KB is quantified as the entropy of p:

S=-=> plg)np(g) (7)

q€Q

For instance, a well-known (non-computable) probability measure regarding
a sum of prefix-free programs is the Halting probability[3] of computer science:

=Y 27— pp) =27 (®)
p€Dom(UTM)

The quantity of axiomatic information of a given knowledge base (and es-
pecially its maximization), rather than any particular set of axioms, will be
the primary quantity of interest for the production of a maximally informative
theory in this framework. A strategy to gather mathematical knowledge which
picks universal facts according to the probability measure which maximizes the
entropy is a maximally informative strategy.



1.3 Discussion — The Mathematics of Knowledge

Each element of a knowledge base is a program-input pair representing an algo-
rithm which is known to produce a specific result. Let us see a few examples.

How does one know how to tie one’s shoes? One knows the algorithm re-
quired to produce a knot in the laces of the shoe. How does one train for a
new job? One learns the internal procedures of the shop, which are known to
produce the result expected by management. How does one impress manage-
ment? One learns additional skills outside of work and applies them at work
to produce results that exceed the expectation of management. How does one
create a state in which there is milk in the fridge? One ties his shoes, walks
to the store, pays for milk using the bonus from his or her job, then brings
the milk back home and finally places it in the fridge. How does a baby learn
about object permanence? One plays peak-a-boo repeatedly with a baby, until
it ceases to amuse the baby — at which point the algorithm which hides the
parent, then shows him or her again, is learned as knowledge. How does one
untie his shoes? One simply pulls on the tip of the laces. How does one untie
his shoes if, after partial pulling, the knot accidentally tangles itself preventing
further pulling? One uses his fingers or nails to untangle the knot, and then
tries pulling again.

Knowledge can also be in more abstract form — for instance in the form of
a definition that holds for a special case. How does one know that a specific
item fits a given definition of a chair? One iterates through all properties refer-
enced by the definition of the chair, each step confirming the item has the given
property — then if it does for all properties, it is known to be a chair according
to the given definition.

In all cases, knowledge is an algorithm along with an input, such that the
algorithm halts for it, lest it is not knowledge. The set of all known pairs forms
a knowledge base.

1.3.1 Special Cases, Inconsistencies, etc.

What if a knowledge base contains both ”A” and "not A” as theorems? For
instance, consider:

KB := {(TM,, A), (TM;, ~A)} (9)

Does allowing contradictions at the level of the theorems of KB create a
problem? Should we add a few restrictions to avoid this unfortunate scenario?
Let us try an experiment to see what happens — specifically, let me try to
introduce A A = A into my personal knowledge base, and then we will evaluate
the damage I have been subjected to by this insertion. Consider the following
program TM;:

1. If (p="A” or p="not A”) then

2. return 1;



3. else (loop())

It thus appears that I can have knowledge that the above program halts for
both ”A” and "not A” and still survive to tell the tale. A-priori, the sentences
”A” and "not A” just symbols. Our reflex to attribute the law of excluded mid-
dle to these sentences requires the adoption of a deductive system. This occurs
one step further at the selection of a specific formal axiomatic representation of
the knowledge base, and not at the level of the knowledge base itself.

The only inconsistency that would create problems for this framework would
be a proof that a given universal fact both [HALTS] and [NOT HALTS] on a
UTM. By definition of a UTM, this cannot happen lest the machine was not a
UTM to begin with. Thus, we should be safe from these contradictions.

Now, suppose one has a sizeable knowledge base which may contain a plu-
rality of pairs:

KB = {(TMLPI), (’1_‘1\/[27 _\p]_), (TM]_,])Q), (TMg,pl), (TMQ, _\pg)} (10)

Here, the negation of some, but not all, is also present across the pairs:
in this instance, the theorems p; and p3 are negated but for different atomic
enumerators. What interpretation can we give to such elements of a knowledge
base? For our example, let us call the sentences pq, p2, p3 the various flavours of
ice cream. It could be that the Italians define ice cream in a certain way, and the
British define it in a slightly different way. Recall that universal facts are pairs
which contain an atomic enumerator and a theorem. The atomic enumerator
is the ’definition’ under which the flavour qualifies as real ice cream. A flavour
with a large spread is considered real ice cream by most definitions (i.e. vanilla
or chocolate ice cream), and one with a tiny spread would be considered real
ice cream by only very few definitions (i.e. tofu-based ice cream). Then, within
this example, the presence of p; and its negation simply means that tofu-based
ice cream is ice cream according to one definition, but not according to another.

Reality is of a complexity such that a one-size-fits-all definition does not work
for all concepts, and further competing definitions might exist: a chair may be
a chair according to a certain definition, but not according to another. The
existence of many definitions for one concept is a part of reality, and the math-
ematical framework which correctly describes its knowledge base ought to be
sufficiently flexible to handle this, without itself exploding into a contradiction.

Even in the case where both A and its negation —A were to be theorems of
KB while also having the same atomic enumerator, is still knowledge. It means
one has verified that said atomic enumerator is inconsistent. One has to prove
to oneself that a given definition is inconsistent by trying it out against multiple
instances of a concept, and those ’trials’ are all part of the knowledge base.



2 Formal Science

2.1 Axiomatic Foundation of Science

The fundamental object of study of science is not the electron, the quark or
even super-strings, but the reproducible experiment. An experiment represents
an ’atom’ of verifiable knowledge.

Definition 12 (Experiment). Let (TM, p) be a pair comprising of two sentences
of a language L. The first sentence, TM, is called the protocol. The second
sentence, p, is called the hypothesis. Let UTM be a universal Turing machine.
If UTM(TM, p) halts then the pair (TM, p) is said to be an experiment. In this
case, we say that the protocol verifies the hypothesis. If UTM(TM, p) does not
halt, we say that the pair fails to verify the hypothesis.

HALT = the experiment verifies p
—“HALT = the pair fails verification

UTM(TM, p) { (11)

Of course, in the general case, as per the halting problem there exists no
decidable function which can determine which pair is an experiment and which
pair fails verification. In the general case, one must try them out to see which
one halts — this is why they are called experiments.

An experiment, so defined, is formally reproducible. I can transmit, via fax
or other telecommunication medium, the pair (TM, p) to another experimen-
talist, and I would know with absolute certainty that he or she has everything
required to reproduce the experiment to perfection.

Theorem 2 (Formal Reproducibility). Experiments are formally reproducible.

Proof. Let UTM and UTM’ each be a universal Turing machine. For each pair
UTM(TM, p) which halts on UTM, there exists a computable function, called
an encoding function, which maps said pairs as encode(TM, p) — (TM’, p) such
that (TM', p’) halts for UTM’. The existence of such function is guaranteed by
(and equivalent to) the statement that any UTM can simulate any other. [

In the peer-reviewed literature, the typical requirement regarding the repro-
ducibility of an experiment is that an expert of the field be able to reproduce
the experiment, and this is of course a much lower standard than formal repro-
ducibility which is a mathematically precise definition. Here, for the protocol
TM to be a Turing machine, the protocol must specify all steps of the exper-
iment including the complete inner workings of any instrumentation used for
the experiment. The protocol must be described as an effective method equiv-
alent to an abstract computer program. Should the protocol fail to verify the
hypothesis, the entire experiment (that is the group comprising the hypothesis,
the protocol and its complete description of all instrumentation) is rejected.
For these reasons and due to the generality of the definition, I conjecture that
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the above definition is the only (sensible) definition of the experiment that is
formally reproducible (as opposed to say ”sufficiently reproducible for practical
purposes”).

Definition 13 (Domain of science). We note S as the domain (Dom) of science.
We can define S in reference to a universal Turing machine UTM as follows:

S := Dom(UTM) (12)

Thus, for all pairs of sentences (TM, p), if UTM(TM, p) halts, then (TM, p) €
S. It follows that all experiments are elements of the domain of science.

Definition 14 (Experimental Manifest). An experimental manifest m, or just
a manifest, is a ’constructed’ knowledge base. Specifically, m is a n-tuple con-
structed as an element of the cartesian product applied to the domain of science.

m e S" (13)

o A manifest is therefore a tuple of experiments:

m = ((TMlapl)v"'a(TMnapn)) (14)

e The knowledge base of a manifest is recovered as the union of all projec-
tions:

KBy, := U proj;(m) (15)

i=1

e We note that since a manifest may contain repetitions (experiments are
formally reproducible) we have not defined m as a set, but instead as a
n-tuple to retain said repetitions. Quite remarkably, this tuple vs set (ex-
perimental manifest vs knowledge base) definition is the primary difference
between formal theories in math versus those in science — we will investi-
gate the consequences of this difference in great detail in the main results
section.

For a given manifest, the possibility exists that some hypotheses or, likewise,
some protocols be repeated in the other tuples of the manifest. For instance, it
could be the case that within a manifest ps = p5, or that TM; = TMg = TMoy,
etc. The set of all hypotheses for a given protocol is called the scope (of the
protocol), and the set of all protocols for a given hypothesis is called the spread
(of the hypothesis).

One use for repetitions, for instance, is as a quality check on the UTM.
Indeed, if one repeats many different experiments, and one finds they are indeed

11



correctly reproduced, then one has a high degree of confidence in the reliability in
one’s machine. Comparatively a knowledge base includes no repetitions (it is a
set), the existence of a reliable UTM is merely assumed and in fact conditional to
the framework, and as such cannot be inferred or proven. To prove with absolute
certainty that one’s machine is a (perfect) universal Turing machine using a
manifest, one has to repeat every pair infinitely many times. Consequently, in
any practical case one only infers, to a finite degree of certainty, that one has
access to such a machine. Using a tuple of experiments, as opposed to a set,
grants us the ability to discover the limits to computation of one’s machine (in
nature), should such limits exist.

Definition 15 (Experimental Space). Ezperimental space E is the "powertuple”
of the domain of science:

E:= G St (16)
=0

All elements of experimental space are manifests, and all manifests are ele-
ments of experimental space.

o A subset of experimental space is called a ’toy model’. Some toy models,
but not all, are be decidable. Almost all computable predictions of a theory
are constructed from toy models.

Definition 16 (Scientific method). An algorithm which recursively enumerates
experiments, is called a scientific method.

Theorem 3 (Scientific method (Existence of)). Existence of the scientific method.

Proof. Consider a dovetail program scheduler which works as follows.

1. Sort all pairs of sentences of L x I in shortlex. Let the ordered pairs
(TMlapl)u (TM2ap1)7 (TMlap2)7 (TM27p2)7 (TM37P1)7 ... be the ele-
ments of the sort.

2. Take the first element of the sort, UTM(TM;,p;), then run it for one
iteration.

3. Take the second element of the sort, UTM(TMs, p1), then run it for one
iteration.

4. Go back to the first element, then run it for one more iteration.

5. Take the third element of the sort, UTM(TMj,p3), then run it for one
iteration.

6. Continue with the pattern, performing iterations one by one, with each
cycle adding a new element of the sort.

12



7. Make note of any pair (TM,, p;) which halts.

This scheduling strategy is called dovetailing and allows one to enumerate
the domain of a universal Turing machine recursively, without getting stuck by
any singular program that may not halt. Progress will eventually be made on
all programs... thus producing a recursive enumeration. O

Dovetailing is of course a simple/non-creative approach to the scientific
method. The point here was only to show existence of such an algorithm, not
to find the optimal one. This will be done in the upcoming section regarding
nature.

2.1.1 Classification of Scientific Theories

Definition 17 (Scientific Theory). Let m be an experimental manifest, let KBy,
be its knowledge base and let ST be a formal axiomatic system. If

projs (KB ) N Dom(ST) # @ (17)
then ST is a scientific theory of m.

Definition 18 (Empirical Theory). Let m be an experimental manifest, let
KBy, be its knowledge base and let ST be a scientific theory. If

proj, (KB, ) = Dom(ST) (18)
then ST is an empirical theory of m.

Definition 19 (Scientific Field). Let m be an experimental manifest, let KBy,
be its knowledge base and let ST be a scientific theory. If

Dom(ST) C profs(KByy,) (19)
then ST is a scientific field of m.

Definition 20 (Predictive Theory). Let m be an experimental manifest, let
KBy, be its knowledge base and let ST be a scientific theory. If

proj, (KB, ) € Dom(ST) (20)

then ST is a predictive theory of m.
Specifically, the predictions of ST are given as follows:

P = Dom(ST) \ KBy, (21)

Scientific theories that are predictive theories are supported by experiments,
but may diverge outside of this support.

13



2.1.2 The Fundamental Theorem of Science

With these definitions we can prove, from first principle, that the possibility of
falsification is a necessary consequence of the scientific method.

Theorem 4 (The Fundamental Theorem of Science). Let m; and mg be two
manifests, such that the knowledge base of the later is larger than the former:
KB, C KBm,. IfETs is an empirical theory of ma, then it follows that ET4 is
a predictive theory of my. Finally, up to factual-isomorphism, Dom(ETs2) has
measure 0 over the set of all distinct domains spawned by the predictive theories
Of mo.

Proof. Dom(ET32) is unique. Yet, the number of distinct domains spawned by
the set of all possible predictive theories of m; is infinite. Finally, the measure
of one element of an infinite set is 0. O

Consequently, the fundamental theorem of science leads to the concept of
falsification, as commonly understood in the philosophy of science and as given
in the sense of Popper. It is (almost) certain a predictive scientific theory will
eventually be falsified.

2.1.3 The Fundamental Assumption of Science

Definition 21 (State of Affairs). The aziomatic information associated to a
manifest (in addition to the manifest itself) constitutes a state of affairs.

1. The state of affairs (in philosophy) refers to the state the world must be
in for a proposition about it to be true.

2. Information (in information theory, and say in base 2) relates to the num-
ber of yes/no questions one must ask to identify an element randomly
selected from a set.

3. A yes/no statement referring to the inclusion of an experiment to be part
of a manifest, connects axiomatic information to the state of affairs.

4. By mazimizing the entropy, redundancies in the yes/no questions are elim-
inated.

Definition 22 (The Fundamental Assumption of Science). There exists a man-
ifest, called the reference manifest, which corresponds to the knowledge base of
the state of affairs of reality.

1. The fundamental assumption of science essentially implies that there are
no gaps of knowledge in the state of affairs; science can capture everything
the state of affairs has to offer in terms of knowledge.

2. If the assumption of science would be false, it would mean that there are
elements of the knowledge base of the state of affairs that are outside the
domain of science... (hyper-computation by an oracle guiding our life?)

14



2.2 Axiomatic Foundation of Nature

Although we can describe manifests in terms of FAS (scientific theories) we will
find it beneficial to retain the knowledge-based formulation.

Recall that earlier we used a dovetailing algorithm in Theorem 3 as an im-
plementation of the scientific method, and we claimed that although it was a
possible strategy, it was not necessarily the optimal one. So what then is the
optimal implementation of the scientific method applicable? Well, I suppose it
depends on what we mean by optimal. One might be tempted to search along
the lines of an efficient algorithm, perhaps the most elegant one, or the one that
uses the least amount of memory, etc., but thinking in those terms would be a
trap — we must think a bit more abstractly than postulating or arguing for a
specific implementation. Potentially, every manifest could in principle have its
own best strategy. It is therefore more strategic overall to identify a condition
applicable to all cases, which produces the implementation as a maximization
problem.

The best strategy will be to mazimize the axiomatic information gained from
the scientific method as an experimental manifest is produced, and this means,
in the technical sense, to maximize the entropy of a probability measure on the
paths in experimental space.

Definition 23 (The Fundamental Assumption of Nature). Let p be a probabil-
ity measure on the points in experimental space (full model) or a subset thereof
(toy model). An observer, denoted as O, is a point randomly selected from ex-
perimental space. Thus, with a probability measure that spawns the set E, every
point in experimental space qualifies as an observer. Specifically, an observer is:

O; == (my,p:E—[0,1]) (22)

The definition of the observer is a specialization of the definition of the
manifest in the sense that a manifest is a point in experimental space, and
the observer is a randomly selected point in experimental space (and thus the
notion of information is associated to it). Note that typically in physics, the
observer (which is not mathematically integrated into the formalism... leading
to a family of open problems regarding the ’observer effect’) is associated to a
random selection of an element from a set of possible observations. This ’effect’
will eventually be revealed to be a consequence of the present definition. Here,
the observer 'has information’ of a randomly selected point in experimental space
and consequently has the opportunity to implement an information producing
version of the scientific method so as to realize its optimal implementation.

2.2.1 Laws of Nature

Definition 24 (Laws of Nature). The laws of nature are the probability measure
that mazimizes the entropy of a path in E between observers.
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The laws of nature are thus defined formally as the information-theoretical
mazimum of the scientific method for an observer. The best strategy to max-
imize ones axiomatic knowledge of reality produces the laws of nature as the
solution.

The axioms required to formally define the practice of science may be min-
imal, but they nonetheless require a minimal structure for the practice to be
possible, and the laws of nature simply emerge as the rules which preserve this
structure over the transformation of the path of an observer. Each stop along the
path of the observer must be a knowledge base about reality. The appellation
"laws of nature’ in this context refers to the theory of all possible transformations
which preserve the structure necessary to accommodate the scientific method
— essentially, the laws of nature are the laws that preserve nature.

We note a distinction between a scientific theory obtained by inspection
of the manifest followed by subsequent inductive generalizations and the laws
of nature, as defined above. Scientific theories, as they represent a complete
formal axiomatic representation of the knowledge base, can ’explain’ up to the
totality of the manifest. However, the price to pay for this completeness is
that the theory is subject to future falsification as per the fundamental theorem
of science, as early as the very next transformation of the manifest, if one is
unlucky.

The laws of nature, in contrast, hold for all possible stops along experimental
space. To gain this resilience, the laws of nature must ’distance’ themselves
from the specifics of any singular manifest and thus can only ’explain’ a much
smaller fraction of reality than a scientific theory which can account for the
whole of the manifest. Indeed, anything which might appear true in the present
manifest, but could plausibly be false in another manifest, can be part of a
scientific theory, but cannot be part of the laws of nature, otherwise said laws
are susceptible to future falsification. For instance, a simple question such as
”do apples always fall downwards” may be quite easy to answer from a scientific
standpoint, but be very hard to answer from a ’laws of nature’ standpoint. From
the scientific standpoint, one may look at ten apples, note that all ten of them
fell downward, then a claim by induction that all apples will fall downwards
completes the scientific theory, but leaves it susceptible to future falsification.
To answer the same question with the laws of nature is much more difficult. One
must show that there exists no manifest in which an apple falls up (even ruling
out all possible statistical flukes), otherwise one has laws of nature claiming that
something cannot happen when in fact some experimental states exist in which
it does happen, leaving them vulnerable to eventual falsification. The laws of
nature are ”eternal” over experimental space.

For instance, take Newton’s theory of classical gravitation obtained by in-
specting a subset of experimental space and note that it was eventually falsified
when a larger subset of experimental space was inspected by Einstein to produce
general relativity. Here, we have a framework which allows us to look at the
whole of experimental space at once, thus giving us the opportunity to identify
laws of nature whose only requirement is that they preserve the structure of
nature.
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3 Main Result

Let us now use these definitions to derive the laws of nature from first principle,
and then show the overwhelming similarity to the laws of physics.

3.1 Overview
3.1.1 Halting Probability 2

Let us start by maximizing the entropy of the random selection of p from
Dom(UTM):

S=— Y pp)log;p(p) (23)

peDom(UTM)

subject to these constraints:

> ) =1 (24)

pEDom(UTM)

> o)l =1pl (25)

p€Dom(UTM)

Using the method of the Lagrange multipliers, the result is the Gibbs mea-
sure (where D is a Lagrange multiplier):

1
p(p) = 22_D|p|, where Z = Z 2~ DIl (26)

p€Dom(UTM)

This is the statistical-physics definition of a sum of programs. Unlike the
Halting probability of computer science 2, here it is p(s) (and NOT Z) that
is the probability. We note that it is not necessarily all choices of D which
causes Z to be non-computable (for instance if D = 0 then Z is very much so
computable; it is in fact infinite). To recover €, the Halting probability[3] of
computer science, we would pose the Lagrange multiplier D to 1, then take the
encoding of the program to be prefix-free and therefore, via the Kraft-inequality,
Z becomes itself a probability measure:

o= Y 27 (27)

p€Dom(UTM)

We further note the work of Tadaki[4] which identifies an ’algorithmic-
thermodynamics[5]” definition of © by adding D called a ’decompression-term’
as follows:
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> =27bW (28)

p€Dom(UTM)

In each of these cases, with the exception of [5], the connection to entropy is
lost because the expression of Z is reduced such that it, rather than p, acquires
the role of the probability measure. However, there is a gain to be had by retain-
ing the connection to an entropy maximum. Indeed, knowing a message from
a set of possible messages according to a probability measure that maximizes
the entropy, makes knowing said message maximally informative. Likewise, in
the case of the statistical physics version of a sum of programs, the probability
measure that maximizes the entropy for this system makes our knowledge of a
program that halts maximally informative.

3.1.2 Quantum Computing

Let us now investigate the basics of quantum computation. One starts with a
state vector:

[Ya) = | : (29)

n

Which evolves unitarily to a final state:

[vp) = UpUy ... Upy |[¢0a) (30)

Clever use of the unitary transformations, often arranged as simple ’gates’,
allows one to execute a program. The input to the program is the state |¢),) and
the output is the state |1)p). One would note that, so defined and if the sequence
of unitary transformation is finite, such a program must always halt, and thus
its complexity must be bounded. One can however get out of this predicament
by taking the final state |¢) to instead be an intermediary state, and then to
add more gates in order continue with a computation:

Step 1 |wb> = UOU1 e Up |¢a> (31)
step 2 [e) = UGUT ... Uy |t (32)
: (33)
step k ) = UgUT ... U [ (34)

(35)
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For a quantum computation to simulate a universal Turing machine it must
be able to add more steps until a halting state is reached (or continue to add
steps indefinitely if the program never halts). But note, that each step is itself
a completed program, and further it is the case that each step can be infinitely
divided, yielding an interesting property specific to quantum computations.

3.1.3 Program-Steps and Programs are indistinguishable

The property of interest in a quantum computation (for our purposes), is that
all intermediary steps of the quantum computation are computations in and of
themselves. This is because a measurement of a state can take place between any
unitary steps. Indeed, each program-step can be understood as a part of a larger
program, or as a program itself, or even subdivided further in infinitely small
steps. Quantum computing machines are a special design of a Turing machine
in which all program-steps, and all innerstates are also entire programs.

Comparatively, the typical design of a Turing machine is that the machine
has an inner state, prints an output to a tape and the program either halts
or doesn’t. The transformations of the inner state of a Turing machine are
not considered programs even if such inner states are, obviously, computable.
Because of this property, as it fuses the notions of program, program-steps and
inner state of the Turing machine (and based on the fact that universe picked
this method of computation for its own computing needs...), I would submit
that quantum computing is a conceptually cleaner definition of a system of
computation than that of the typical Turing machine defined in terms of tape,
output and head — neither of which are programs.

3.1.4 Manifest-to-Manifest Computing... ?

Recall that we have defined a manifest as a tuple of experiments, and we have
called that set of all such tuples, experimental space. Now, consider a path in
experimental space between manifests. Such a path describes an accumulation of
programs over the path and describes a computation that has the same property
of interest as the quantum computing case. Due to the definition of the manifest,
paths within experimental space recover a generalized and abstract realization
of said property. Any path by an observer in experimental space is guaranteed
to only encounter steps that are formulated as completed computations.

3.2 Derivation

Distilled to its core, the laws of nature are simply given as the probability
measure that maximizes the entropy of a random selection of a tuple from a
space of possible tuples. But there is a caveat to deriving such a measure:
measure theory deals with subsets of sets and not with tuples of tuple-spaces.
Nonetheless the two are very similar. The trick will be to ’fool’ measure
theory into thinking our tuple-space is a set by adding an invariance constraint
on the entropy with respect to a tuple reordering. Remarkably, this invariance
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constraint will be quite impactful on the laws of nature as it will provide support
for constructing paths in experimental space in terms of transformations applied
to tuples.

Finally, requiring that our tuples contain only programs allows us to think
of each transformation as the addition of a new program-step to said programs,
which is sufficient to make the theory conceptually self-contained. Let us now
do it explicitly.

3.2.1 General Linear Ensemble

Let us start with a sum of programs (i.e. manifests that are comprised of a
single element). A probability measure would assign a real number (between
0 and 1) to each program of the sum, representing of course the probability
associated with the random selection of said program to be an element of the
manifest. Extending this sum to manifests of multiple programs will be done in
Section 3.3.3 using the tensor product.

Let us therefore maximize this entropy:

S==>plq)Inp(g) (36)

q€Q

subject to these constraints:

> plg) =1 (37)

q€Q

> plq)trM(g) = tr M (38)
q€Q

where M(q) are a matrix-valued maps! from S to F"*" representing the
linear transformations of the space, where M is a element-by-element average
matrix in F?*" and where F is a field. Here, Q is an arbitrary sample space of
programs, either the full-theory if Q =S or a toy model if Q C S.

Usage of the trace of a matrix as a constraint imposes an invariance with
respect to a similarity transformation, accounting for all possible linear reorder-
ing of the elements of the tuples of the sum, thus allowing the creation of a
measure of a tuple or group of tuples form within a space of tuples. Similarity
transformation invariance on the trace is the result of this identity:

IThere is a possibility of greater generality by considering maps between spaces of dif-
ferent dimensions S — F"*™. In quantum mechanics this is part of the subject matter of
’quantum operations’ which includes quantum channels. This mapping from differently-size
vector spaces would be required in the general case to account for all possible paths of the
observer in experimental space, and would likely come out as a general linear equivalent to a
quantum channel transmitting information between manifests as their sizes change. This is
likely interesting, but, as we will see, we will not be running out of applications for the general
linear ensemble as it is, and thus we have elected to limit the scope to maps in F**" in line
with the typical formulations of quantum mechanics.
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trM = tr BMB ™! (39)

We now use the Lagrange multiplier method to derive the expression for p
that maximizes the entropy, subject to the above mentioned constraints. Max-
imizing the following equation with respect to p yields the answer:

L=—kpY pls)In(s)+a|1=> plg) | +7 (M= p(q) trM(q)
q€Q q€Q q€Q
(40)

where o and 7 are the Lagrange multipliers. The explicit derivation is made
available in Annex B. The result of the maximization process is:

1
plq, ) = 0) det exp —TM(q) (41)
where
Z(1) = Z det exp —TM(q) (42)
q€Q
3.2.2 Prior

No good probability measure is complete without a prior. The prior, which
accounts for an arbitrary preparation of the ensemble, ought to be —for purposes
of preserving the scope of the theory— of the same kind as the elements of the
probability measure. Let us thus introduce the prior as the map P : Q — F™**"
and inject it into the probability measure as well as into the partition function:

p(q) = % det exp (P(q)) det exp (—7M(q)) (43)
where
Z = Z det exp (P(g)) det exp (—7M(q)) (44)
q€Q

3.3 Overview
3.3.1 Matrix-Valued Vector and Transformations

We will use vectors whose elements are matrices. An example of such a vector
is:
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v = : (45)

Likewise a linear transformation of this space will expressed as a matrix of
matrices:

MOO R, Mom
T=( + - (46)
Mo ... Mm

Note: The scalar element of the vector space are in F. For instance:

aM1

av

Il
—~
>~
EN|
~—

aM,,

3.3.2 Linear Transformations as Computations

We will be looking for the conditions under which linear paths in experimental
spaces are computations.

We begin with a rewriting of the probability measure such that it is ’split’
into a first step, which is linear with respect to a ’probability amplitude’, and
a second which connects the amplitude to the probability. We thus write the
probability measure as:

plg,7) = % det (g, 7) (48)

where

¥(q,7) = exp(P(q)) exp(—7M(q)) (49)

Here, the determinant is interpreted as a generalization of the Born rule and
reduces to it when M is the matrix representation of the complex numbers. In
the general case where M are arbitrary n x n matrices, ¥ (g, 7) will be called
the general linear probability amplitude.

We can write (g, 7) as a column vector:
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1/’(@11 ) T) 1/}1

Zb(q.% 7) _ w:z (50)

)] \tm

b= [) =

Paths will be constructed by chaining transformations on those vectors:

[vp) = ThTo... Ty |Ya) (51)

computing steps

As more transformations are chained, progressively richer manifests are con-
structed. Paths in experimental space are realized by completing the missing
computational steps required for a starting-point manifest to be the end-point
manifest.

3.3.3 Sums of Paths

So far, the sums of programs we have used were over manifests comprised of a
single program each. How do we extend this to a sum of manifests containing
multiple programs? We have to use a Cartesian product on the sets of manifests
and a tensor product on the probability amplitudes. For instance, let us consider
the following sets of manifests:

Qi = {(P1a); ()} (52)
Q2 = {(p24), (p20)} (53)

The Cartesian product produces manifests comprised of two elements:

Q= Q1 x Q2 = {(P1a,P24), (P1asP2b), (P165P2a)s (P16, P2) } (54)

At the level of the probability amplitude we must apply the tensor product.
For instance, we start with a wave-function of one program;

;= (eXp P(Qm)) (55)

expP(q1p)

Adding a program-step via a linear transformation produces:

Too exp P(qia) + To1 exp P(le))
T = 56
Yy <T10 exp P(q1a) + T11 exp P(q1p) (56)
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If we tensor product this wave-function:

by = (eXp P(QQ@)) (57)

exp P(qa2p)

along with a program-step:

1o exp P(gaa) + T exp P(gas)
Tlab. — [ 100 a 01 58
¥o (Tl'o exp P(ga2q) + 11 exp P(q2p) (58)

Then the tensor product of these states produces manifests as follows:

Too exp P(q1a) + Torexp P

( ) d1b
Too exp PEQM; +Torexp P
(1a)

N (Too exp P(q2a) + Ty exp P(gas))
q1v))(T1g exp P(qaa) + T11 exp P(gap))
Ty exp P(qia) + Th1 exp P(q1p)) (15 (g24) (g2p))
Ty exp P(qia) + 111 exp P(qup) (q24) (g2v))

q1b
q1b

Too exp P(qa) + Ty exp P(gap
Toexp P(q2q) + T exp P (g2
(59)

(
Ty e T, = ||
(

o~~~

)(
)(
)
)

Now, each element of the resulting vector is a manifest of two programs, but
its probability is a sum over a path. One can repeat the process n, and even
take to limit to infinity.

4 Foundation

To study the properties of the probability amplitude of our measure, we will
introduce an algebra of natural states and we will use it to classify the linear
transformations on said amplitude. We will start with the 2D case, then the
4D case, and finally, the n-dimensional case. In all cases, the probability ampli-
tude transforms linearly with respect to general linear transformations and the
probability measure, obtained from the determinant, is positive-definite.

4.1 Algebra of Natural States, in 2D

The notation of our upcoming definitions will be significantly improved if we use
a geometric representation for matrices. Let us therefore introduce a geometric
representation of 2 X 2 matrices.

4.1.1 Geometric Representation of 2 x 2 matrices

Let G(2,R) be the two-dimensional geometric algebra over the reals. We can
write a general multi-vector of G(2,R) as follows:

u=A+X+B (60)
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where A is a scalar, X is a vector and B is a pseudo-scalar. Each multi-vector
has a structure-preserving (addition/multiplication) matrix representation. Ex-
plicitly, the multi-vectors of G(2,R) are represented as follows:

Definition 25 (Geometric representation of a matrix (2 x 2)).

A+X —-B+Y
B+Y A-X

And the converse is also true, each 2 x 2 real matrix is represented as a
multi-vector of G(2,R).
We can define the determinant solely using constructs of geometric algebral6].

Definition 26 (Clifford conjugate (of a G(2,R) multi-vector)).
uf = (u)o — (u); — (u) (62)

Then the determinant of u is:

A+X§<+Y§+B>}Ayg< (61)

Definition 27 (Geometric representation of the determinant (of a 2 x 2 ma-
trix)).

det : G(2,R) — R
u — ufu (63)
For example:
detu=(A-X-B)(4+X+B) (64)
=A?-X?2_Yv?4+B? (65)
- A+X —-B+4Y
_det<B+Y A—X) (66)

Finally, we define the Clifford transpose:

Definition 28 (Clifford transpose (of a matrix of 2 x 2 matrix elements)). The
Clifford transpose is the geometric analogue to the conjugate transpose. Like the
conjugate transpose can be interpreted as a transpose followed by an element-
by-element application of the complex conjugate, here the Clifford transpose is
a transpose, followed by an element-by-element application of the Clifford con-
jJugate:

i
oo Uon ugg uan
: = : - : (67)
Umo .- WUmn Umo .- ufzm

If applied to a vector, then:

Vi
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4.1.2 Axiomatic Definition of the Algebra, in 2D

Let V be an m-dimensional vector space over G(2,R). A subset of vectors in V

forms an algebra of natural states A(V) iff the following holds:
1. Vap € A(V), the bilinear map:

() ¢ VxV — G(2,R)
(u,v) +—— ulv

is positive-definite:

(¥, 9) € R>o

2. Vap € A(V), then for each element ¥ (q) € 1, the function:

1

_ t
p(¥(q), %) = <¢7¢>w(q) Y(q)

is positive-definite:
PW(Q)a ’lﬂ) € R>0

We note the following comments and definitions:

(71)

(72)

e From (1) and (2) it follows that Vi € A(V), the probabilities sum to

unity:

> pt(a), ) =1

P(q)€p

v is called a natural (or physical) state.

(1, 1)) is called the partition function of 1.

(73)

e p(q, ) is called the probability measure (or generalized Born rule) of ¥(q).

e The set of all matrices T acting on v, as T — ', which leaves the sum

of probabilities normalized (invariant):

> o). TY) = Y p(la) ) =1

Yv(q) ey Y(g) e
are the natural transformations of .
e A matrix O such that Yuvv € A(V) :
(Ou,v) = (u, Ov)
is called an observable.

e The expectation value of an observable O is:
1

©) = )

(O, )
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4.1.3 Reduction to Complex Hilbert Spaces

It is fairly easy to see that if we reduce the expression of our multi-vectors
(A4+X+B|x-0 = A+ B and further restrict (1, 1) € Rq to (¢, 1) = 1, then
we recover the unit vectors of the complex Hilbert spaces:

e Reduction to the conjugate transpose:

((u,v> =utv — (u,v)=ulv (77)

x—0
e Reduction to the unitary transformations:

((Tu, Tv) = (u, V)] — TIT=1 (78)

x—0

e Reduction to the Born rule:

_ 1 t _ 1 f .
(p(q,t/f) <w’ww(q) ¥(q) e p(q, ) w’w)v}(q) ¥(q) (79)
e Reduction of observables to Hermitian operators:

((Ou,v) = (u,0v)|,_, = O'=0 (80)

Under this reduction, the formalism becomes equivalent to the Dirac-Von-
Neumann formalism of quantum mechanics.

4.1.4 Observable, in 2D — Self-Adjoint Operator

Let us now investigate the general case of an observable is 2D. A matrix O is
an observable iff it is a self-adjoint operator; defined as:

(00, v) = (¢, 09) (81)
Yuvv € V.
Setup: Let O = <OOO OOl) be an observable. Let ¢ and 1 be 2 two-state
O On
vectors ¢ = <§1> and ¥ = (il) Here, the components ¢1, ¢2, 11, V2, Ogo,
2 2

Oo1, O19, O11 are multi-vectors of G(2,R).
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Derivation: 1. Let us now calculate (O¢, 1)):

2(0¢, 1) = (Ogod1 + Oo1¢2)¥01 + ¥} (Oood1 + Oo162)

+ (01001 + O1169) by + Y3 (01061 + O11¢2) (82)
= ¢:{Ogo¢1 -+ ¢§Oé1¢1 + 1/%000(/)1 + lﬁfooﬂbz
+ @10t 2 + 50T by + 101061 + 13011 ¢ (83)

2. Now, (¢, Ov):

2¢p, Oh) = ¥ (Opoth1 + Op1v2) + (Ooothr + Oo1tba)

+ ¢5(010%1 + O1192) + (01091 + Or11902) 1 (84)
= ¢t Opot1 + ¢§001¢2 + inéocbl + ?/150814171
+ ¢501001 + 501112 + ¥ O}o61 + 1307 61 (85)

For (O¢, ) = (¢, O¢) to be realized, it follows that these relations must
hold:

0y = Ouo (86)
O}, = 010 (87)
O}y = On (88)
ol =o0n (89)

Therefore, it follows that it must be the case that O must be equal to its
own Clifford transpose. Thus, O is an observable iff:

of=0 (90)

which is the equivalent of the self-adjoint operator Of = O of complex
Hilbert spaces.

4.1.5 Observable, in 2D — Eigenvalues / Spectral Theorem

Let us show how the spectral theorem applies to Of = O, such that its eigen-
values are real. Consider:

ago a — xe; — yez — beqs
0= 91
<a + xey + yea + bera an > (91)
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In this case, it follows that Of = O:

t_ ago a — xe; — yez — beya
0 <a + zey + yes + bes aiq > (92)

This example is the most general 2 x 2 matrix O such that Of = O. The
eigenvalues are obtained as follows:

_ _ _ agg — A a — xep — yes — beqo
0 = det(O AI)ﬁdet<a+m+y62+be12 ar— A ) (93)
implies:

0= (app — A)(a11 — ) — (a — ze; — yea — beya)(a + wey + yea + bera + ar)

(94

0= (ago — \)(a11 — ) — (a* — 2% — y* + b?) (95)
finally:

A= (5 (a0 +an — avo —an)? T4 22— 1 1), (96)

5 (ao0 + a1 + Voo —arP T a@ 7 — 2 159} (o7)

We note that in the case where agg —a11 = 0, the roots would be complex iff
a’?—2%—y?+b? < 0, but we already stated that the determinant of real matrices
must be greater than zero because the exponential maps to the orientation-
preserving general linear group— therefore it is the case that a® —z2—1324b% > 0,
as this expression is the determinant of the multi-vector. Consequently, O = O
— implies, for orientation-preserving? transformations, that its roots are real-
valued, and thus constitute a ’geometric’ observable in the traditional sense of

an observable whose eigenvalues are real-valued.

4.2 Algebra of Natural States, in 3D (brief)

The 3D case will be a stepping stone for the 4D case. A general multi-vector of
G(3,R) can be written as follows:

u=A+X+V+B (98)

where A is a scalar, X is a vector, V is a pseudo-vector and B is a pseudo-
scalar. Such multi-vectors form a complete representation of 2 x 2 complex
matrices:

2We note the exception that a geometric observable may have real eigenvalues even in the
case of a transformation that reverses the orientation if the elements agg — a11 are not zero
and up to a certain magnitude, whereas transformations in the natural orientation are not
bounded by a magnitude — thus creating an orientation-based asymmetry.
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A+ Xo1+ Yoy + Zos + Vyiioy + Vaioo + Vaios + Boyp A oa A o3 (99)

L A+iB+iVa+Z Vi+iVa+ X —iY

_(—V1+iV3+X+iY A+iB—iV2—Z) (100)

and the determinant of this matrix connects to the determinant of the multi-
vector as follows:

det- : GB,R) — C
u — ufu (101)
where ut is the Clifford conjugate in 3D:
ut = (u)o — (u); — (w2 + (u)s (102)

To produce a real number a further multiplication by its complex conjugate
is required:

| @ GB,R) — R
u — (utu)futu (103)
where u' is defined as:
ut = (u)o + (u)1 + (u)s — (u)s3 (104)

4.2.1 Axiomatic Definition of the Algebra, in 3D

Let V be an m-dimensional vector space over G(3,R). A subset of vectors in V
forms an algebra of natural states A(V) iff the following holds:

1. Vi € A(V), the quadri-linear map:
() ¢+ VXV XxVxV — G(3,R)

v, w,x) — (wiv)iwix (109
is positive-definite:
(¥, 9) € Rxo (106)
2. Vap € A(V), then for each element 1(q) € 1, the function:
p0). ) = oo (@) @ el (107)
is positive-definite:
p(16(a), %) € Rog (108)
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4.2.2 Reduction to Complex Hilbert Spaces

We now consider an algebra of natural states that comprises only those multi-
vectors of the form u’ oc u'u (called a sub-algebra, sub-ring, or ’ideal’ of
the algebra). We also consider, as we obtain an exponential map from our
entropy maximization procedure, only multi-vectors which are exponentiated.
Then, the algebra reduces to the foundation of quantum mechanics on complex
Hilbert spaces (with an extra internal geometric structure). For example, a
wave-function would be of this form:

(exp %u1)3t exp %ul
= z (109)

(exp %um)fF exp %um

Each element of v are of this form:

1 1 1 1
(exp iu)iexp g = exp §(A —X-V+B)exp i(A +X+V+B) (110
:exp(A+B)exp%(—X—V)exp%(X—l—V) (111)
= exp(A + B) (112)

Restricting the algebra to such states reduces the quadri-linear map to a
bilinear form:

() 1 AV) X AV) — C
(¥, ¢) — Yo

yielding, when applied to said reduced subset of vectors, the same theory
as that of quantum mechanics on complex Hilbert space, but with an extra
geometric structure for its observables. The 3D case is a stepping stone for the
4D case, where this extra geometric structure will be revealed to be (in the 4D
case) the relativistic wave-function given in the form of a spinor field.

(113)

4.3 Algebra of Natural States, in 4D

We will now consider the general case for a vector space over 4 X 4 matrices.

4.3.1 Geometric Representation (in 4D)

The notation will be significantly improved if we use a geometric representation
of matrices. Let G(4,R) be the two-dimensional geometric algebra over the
reals. We can write a general multi-vector of G(4,R) as follows:

u=A+X+F+V+B (114)
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where A is a scalar, X is a vector, F is a bivector, V is a pseudo-vector,

and B is a pseudo-scalar. Each multi-vector has a structure-preserving (ad-
dition/multiplication) matrix representation. Explicitly, the multi-vectors of
G(4,R) are represented as follows:

Definition 29 (Geometric representation of a matrix (4 x 4)).

A+Tyo+ X+ Y2+ Zys

+ Fo1vo A1 + Foayo A y2 + Fosyo A vz + Fazya A s + Fizyi A vz + Fiayr Aye
+Vimi Av2 A3+ Vayo Ay Aya+ Vyvo Ay Ays + Veyo Ay Ay
+ By Ay1i Ay2 A3
A+ Xo—iF12 —iV3 Fig —iFo3 + Vo — V3 —iB + X3 + Foz —iVo
—Fi3 —iF3 — Vo — iV A+ Xo+iFi2 +iV3 X1+ 11X+ Fo1 + iFo2
—iB — X3+ Fos+iVo  —X1+1iXo+ Fo1 — iFoe A—Xo—iF12+1iV3
—X1 —iXo+ Fo1 +iFo2  —iB+ X3 —Foz +iVo  —Fiz3 —ifes + Vo +iV1

(115)

And the converse is also true, each 4 x 4 real matrix is represented as a

multi-vector of G(4,R).

We can define the determinant solely using constructs of geometric algebra[6].

Definition 30 (Clifford conjugate (of a G(4, R) multi-vector)).

ut = (u)o — ()1 — (u)2 + (u)s + (u)s (116)

and [m] 34y as the blade-conjugate of degree 3 and 4 (flipping the plus sign to

a minus sign for blade 8 and blade 4):

[u) (5,43 1= (Wo + (W1 + (w)2 — (W)3 — (u)q (117)

The, the determinant of u is:

Definition 31 (Geometric representation of the determinant (of a 4 x 4 ma-
trix)).

det : G(4,R) — R

u — [ufujzgutu (118)

4.3.2 Axiomatic Definition of the Algebra, in 4D

Let V be a m-dimensional vector space over the 4 x 4 real matrices. A subset
of vectors in V forms an algebra of natural states A(V) iff the following holds:

1. Yy € A(V), the quadri-linear form:

(v ¢ VxVxVxV — GH4R)

(u,v,w,x) — |utv]zawix (119)

is positive-definite:

(¥, 9,9,9) €R>o (120)
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2. Vi € A(V), then for each element 1(q) € 1), the function:

1

po g PO @kaw@ive a2

p(v(q), ) =
is positive-definite:
p(¥(q), ) € Ro (122)

We note the following properties, features and comments:
e 1) is called a natural (or physical) state.
o (1,1, 1, 1) is called the partition function of 1.

e p(1¥(q),v) is called the probability measure (or generalized Born rule) of
¥(q)-

e The set of all matrices T acting on 1 such as T4y — 1’ which leaves the
sum of probabilities normalized (invariant):

> (@), Ty) = > pib(q), ) =1 (123)

OIS Y(9)eP
are the natural transformations of .
e A matrix O such that YuVvvVwvx € V :
(Ou,v,w,x) = (u,Ov,w,x) = (u,v,Ow,x) = (u,v,w,O0x) (124)
is called an observable.

e The expectation value of an observable O is:

(. 9,9, %)

4.3.3 Reduction to Complex Hilbert Space

(0) = (125)

Let us select a subset of multi-vectors. The subset will contain all multi-vectors
resulting from the multiplication of an even-multi-vector by its own Clifford
conjugate. Consistent with our entropy maximization procedure, the elements
will also be exponentiated.

(exp zu1)* exp guy

P = : (126)

(exp %um)i exp %um

The form of the elements of 1 is:

33



z/Jiz/)zexp%(A—F—l—B)eXp%(A—i-F—i—B) (127)

1 1 1 1 1 1
= exp §Aexp—§Fexp §Bexp §Aexp §Fexp §B (128)

=expAexpB (129)

On such states, the quadri-linear map is reduced to the Born rule (a bilinear
map):

() AV)xAV) — C

W) — Ylo (130)

In our example, and with this bilinear map, (1/¥), 1)) = exp 2A4.

We note the similarity of this sub-algebra to David Hestenes[7]’s geometric
algebra formulation of the relativistic wave-function, given as ¢ = \/ﬁeiB 12eF /2,
David Hestenes connects his wave-function to a complex number via the reverse
Y= V/pe'B/2e=F/2 such that Yip = pe'B.

5 Applications (Physics)

Due to the similarity invariance of the trace, the general linear group will because
the primary invariance group of interest.

5.1 General Linear Group

The set of all complex n x n matrices connects, via the exponential map, to the
general linear group in C:

exp : M(n,C) — GL(n,C) (131)

The map is also possible in R, but in this case the general linear group is
reduced to the orientation-preserving general linear group, because the left-hand
side of the map cannot produce a matrix with a negative determinant and thus
is not surjective in the general case:

exp : M(n,R) — GL*(n,R) (132)
The entropy maximization procedure we have used produced a probability
measure which embeds the exponential map over matrices, thus connects the

arbitrary linear transformation of M(n,R) to the orientation-preserving linear
group GL*(n, R).

34



5.1.1 General Linear Invariance

Consider an arbitrary probability measure from our algebra of natural states in
4D:

1

ot Y@ (@D]aav (@) (@) (133)

p(¥(q),¥) =

det ¥ (q) (134)

1
(P, 9,1, )

A global orientation-preserving general linear transformation G is applied
as follows:

Gy =9 (135)

where G is a 4 x 4 matrix, and where v is an m-dimensional vector whose
elements are 4 x 4 matrices. Thus, G entails an element-wise multiplication.

Let us now show that invariance with respect to said transformation. The
determinant of G factors out:

1
(G, Gy, Gy, Gyp)

Finally, since the partition function is simply a sum of determinants, then
det G can be factored out on the denominator and the terms cancel:

p(GY(q), Gep) = det G det 1(q) (136)

1 1

pGU(0), GY) = qia s det Get (o) (137)
1

= Wvv @ (138)

= p(th(a). %) (139)

5.2 Unitary-like evolution

We are interested in a unitary-like relation, such that

GG =1 (140)

Let us consider a two-state system:

G = (;‘/ ;) (141)
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where u, v, w, x are multi-vectors of 2 dimensions. The unitary-like relation
is:

vt ud vow\ vio + vty vtw +ute (142)
wh 2t \u 2) \whv+atu wiw+ 2tz

For the results to be the identity, it must be the case that:

v +utu =1 (143)
vhw 4+ ute =0 (144)
who + 2ty =0 (145)
whw + otr =1 (146)

This is the case if

1 v U
G - \/’Ui’l) + uiu <—€¢ui e‘pvi) (147)
1 b —e %u v U
i —
= G'G= viv + ulu (ui e v ) <—e“"ui e“"vi> (148)

_ 1 vio + vt viu — vty (149)
T vt 4 udu \ vt —uto wtu 4ot

=1 (150)

where u, v are multi-vectors of 2 dimensions, and where e¥ is a unit multi-
vector.

It is also possible to represent G using self-adjoint matrices. First, consider
a diagonal matrix:

eT1X+y1y+iby 0 0
D= 0 eraXtuy b (151)
0 0
where G = PDP~!. Then,
InD :dlag(xlﬁ+y1y+zb1,x2§(+y2y+zb2,) (152)

Since each component of the vectors are real-valued, each multi-vector com-
ponent forms a self-adjoint matrix.
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Consequently, we can write

G = FnMx+iMs (153)

Mx contains the vector components and Mg contains the pseudo-scalar
components, and are self-adjoint matrices. This is similar to how a complex
matrix can be written as the sum of its real and imaginary part Z = Re{Z} +
iIm{Z}

5.3 General Linear Schrodinger equation

The Schrédinger equation can be derived as follows. First, assume U(t) = e~ %
and its Taylor expansion to the first linear term: U(§t) ~ 1 —i0tH. Then:
yw (t+0t)) = U(dt) |¢ )) ~ (1 —idtH) |[¢) (154)
= |(t+6t)) — [¢) = —idtH |¢)) (155)
Pt + 5t) >
| > | ~ H |v) (156)
= 1 ‘1?% > = H [¢) (157)

Now, we wish to use the same derivation, but apply it to the 2D general
linear version of the unitary group:

U'v=1-G'G=1 (158)
G can be expressed as an exponential G(7) = e~ ™.
For G(7)*G(r) = I, it must be the case that the matrix M cannot have a

scalar part and thus M4 = 0. It can be expressed as:

G(r) = e~ uMx+iMn) (159)
— G(r)iG(r) =1 (161)

We note that when Mx — 0, we recover the unitary case:

G(7)|Mx—0 — U(t) (162)

Then, the general linear Schrodinger equation is:

|o(T +07)) = G(67) |[9(7)) = (1 — 67M) |(7)) (163)
a“gi >:M|’L/)(T)> (164)

In the case where Mix — 0, this reduces to the typical Schrodinger equation.
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5.3.1 Conservation of Probability (2D)

For a parametrization of 1, the probability must normalize. For instance, a x
parametrization would yield:

/w(r, x)iip(T, x)dz = N(1) (165)
To lighten the notation we will not explicitly write the dependance of 1 in
(1, ).
dN(r) _ o _ [
dr _0_/ or (166)
= [Wpars [P (167)

We now inject the following relation (derived from the general linear Schrodinger
equation):

¥
aaiT = (My)! = ¢* (%, My +iMp)F = —! (ku(Mg‘()i + z‘MiB) (168)

o

5. = My = (%M +iMg) (169)

Injecting them, we get:

d]Zf) :/—wd +/wiaw (170)

:/(M¢) ¢dm+/¢idex (171)
—/wi (%, (M5)* + M ) ¢daz+/¢i (%, MY + iMg) ¢ dz

(172)

0 (173)

The general linear form of the Schrodinger equation is a conservation of
probability law of the general linear case.

5.3.2 Conservation of Probability (4D)

In 4D, we have:

38



dN( ) / wawiw (174)

/a 34Lw* 34ty (175)
_/aL J“W J34q/)iwdx+/m34 v* J341/) fpda

- [ Jaalvt s 2 p o + [Wlaalvowt GEas are)

In 4D, we can write M = My + %, M + f,M¥% + v, Mg + iMg, denoting
the scalar, vector, bivector, pseudo-vector and pseudo-scalar parts, respectively.
The operator G(7) (where M4 = 0) is:

G(r) = e~ tERuMEHE ME+9a MY +iMn) (177)

The relations from the general linear Schrodinger equation in 4D are:

O]

L4 = My (7s)
:
A Jad | ()t (179
5 = (My) (180)
o
5 =My (181)
where
M = %, M + f, M4 + voM$, + iMp (182)
M* = —%,(My)" — £, (Mg)! + 9o (MY)* +i(Mp)* (183)
M3, = %, | Mk |54 + £, [M§ ]34 — Vo [M$ |54 — [ Mg]3.4 (184)
[M* ]34 = —%, [(M5) 5.4 — £, [(M%) 54 — Vo [(M$) 3.4 — i[(MB)¥]5.4
(185)

Here again, we require that M4 = 0, so that |G(7)*]34G(7) =
Injecting them into the conservation of probability, we obtain:
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dN (1)
dr

— [ Myl vt vds + [ 10)sal (M9 st de
4 [t My vds + [0l o ™Mode  (150)
= /L¢J3,4LMJ3,4 [0* J3,40"e) d$+/W)J3,4LMIJ3,4 [0t [sapty da
+ [1laalet v Mivde + [16)aalvon™Muds (187
=— /WJ:%A(% MY 5.4+ i[MB ]34 + Va [ (M) 54 + i (MB)*|3.4) |9 340" dz
b [l o (9 (M) + i(Ma)* + VoMY + M) da
(188)
Finally, since My and Mg are self-adjoint, they cancel:
=0 (189)

We now have a probability measure for which the probability is conserved
even by actions of the general linear group in 4D.

5.4 General Linear Gauge
5.4.1 Lagrangian Density

This general linear invariance finds itself in any probability measure we might
construct from this algebra. Let us now consider the case of a Lagrangian.

A typical Lagrangian density in quantum mechanics relies upon the existence
of a measure of the momentum:

P=_ [ Peoweo (x) dx (190)
M

and a measure of the potential energy:

_ 1 i}
T3 | T i) ax (191)

Now, if and only if there exists a p and a basis of 1(x) such that P(x)y(x) =
p(x), then p is called the momentum operator. In relativistic quantum me-
chanics p = 7°hI). Then the Lagrangian density is a measure of the energy:

L(x) = 9" (x)p1(x) — ¥ (x)10me*(x) (192)
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A similar probability measure can be constructed for our framework, using
the determinant instead of the complex norm:

— 1
P=——— P(x)d d 93
) PO el 0 (193
And the potential energy as:
V= m /M V(x)dety(x,7)dx (194)
resulting, for the general case, in the Lagrangian density:
L) = o (P09 = V() det v, 7) (195)

Since we have a determinant on top and a partition function as a sum of
determinants at the bottom, the measure is invariant with respect to the general
linear group as det G will factor out and cancel.

5.4.2 Unitary Gauge

The typical gauge theory in quantum electrodynamics is obtained by the pro-
duction of a gauge covariant derivative over a U(1) invariance associated with
the use of the complex norm in any probability measure of quantum mechanics.
Localizing the invariance group 6 — 6(z) yields the corresponding covariant
derivative:

D, = 0, +iqA,(x) (196)

Where A, (z) is the gauge field. The U(1) invariance results from the usage
of the complex norm to construct a probability measure in a quantum theory,
and the presence of the derivative is the result of constructing said probabil-
ity measure as the Lagrangian of a Dirac field. If one then applies a gauge
transformation to ¢ and A,:

Y — e 9@y and A, — A, +9,0(x) (197)

Then, applies the covariant derivation, one gets:

D,tﬂ[) = ,uﬂ;[} + iQA,ﬂ/} (198)
= 0 (€7 Y) +ig(A, + 0,0(x)) (e ) (199)
= 7 10@ D g (200)

Finally the Dirac field, as it is wrapped in a complex norm, cancels out the
complex phase factor.
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5.4.3 General Linear Gauge

The fundamental invariance group of our measure is the orientation-preserving
general linear group GL™(n,R), if the algebra is even, or the complex general
linear group GL(n,C) if the algebra is odd, rather than U(1). Gauging the
GL*(n,R) group is known to substantially connect to general relativity, as the
resulting GL(4,R)-valued field can be viewed as the Christoffel symbols I'#.

In the case of a general linear gauge, we consider the application of a gauge
transformation to ¢ and G;:

dg(z)

Y —g(z)y and G, — g(z)Gug(x)~' — g(z)™! (201)

5.4.4 Gauge Completeness

Since all finite dimensional groups have matrix representations, it then follows
that our framework —as it works with any matrices— is able to create a linear
probability amplitude for said group, including, of course, those groups resulting
from the direct product of groups such as the affine group, producing the metric-
affine theory of gravity[8] when gauged, or the Poincaré group producing the
Einstein—Cartan gravity theory[9] when gauged, or simply the Lorentz group
[10], etc. Furthermore, all groups resulting from the direct product of groups
are also supported by the framework. Here is a list of examples of groups that
are supported by a linear probability amplitude in our framework, but are not
with the complex norm only:

Gauge group Name Theory
GL*(n,R) general linear group general relativity
T(n,R) x GL(n,R) affine group metric-affine gravity
T(n,R) x O(n,R) Poincaré group Einstein—Cartan gravity theory
T(n,R) x O(n,R) x U(1) x SU(2) x SU(3) sm-+gr group ”toy unification”
G any matrix group general case
(202)

We are not necessarily claiming that these gauges all lead to physically re-
alized theories. Our goal here is simply to show that our framework supports
any gauge.

In the general case, let g be the matrix representation lie algebra of any group
G which may include any of the above groups or direct products of groups. Then,
consider the following constraints:
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> plg) =1 (203)

q€Q

> p(@)tralq) = tra(q) (204)

q€Q

Solving the Lagrange equation, we obtain:

p(a) =  detexp ~7(a(a)) (205)

and the wave-function as:

¥(q) = exp —7(g(q)) (206)

Here, as before, the exponential map generates the group associated with
the algebra:

exp:7g — G (207)

and contains an evolution term as the Lagrangian multiplier 7 which forms a
one-parameter sub group of G. Multi-parameter constructions are also possible,
as shown in the Annexes.

Regardless of the group used, the probability amplitude will be linear and
said amplitude connects to the probability via the determinant, acting here as
a generalization of the Born rule. Consequently, the map from ¥(q) to p(q) is
invariant with respect to a global transformation of said group. Then, producing
a gauge-invariant derivative for the local action of the group G — G(q) induces
a number of compensating gauge fields associated to these groups.

6 Testable Prediction

Certain linear transformations of the wave-function, under the general linear
group and its subgroups, would produce richer interference patterns that what is
possible merely with complex interference. The possibility of richer interference
patterns has been proposed before; specifically, I note the work of B. I. Lev.[11]
which suggests (theoretically) the possibility of an extended interference pattern
associated with the David Hestenes form of the relativistic wave-function and
for the subset of rotors.

We note that interference experiments have paid off substantial dividends in
the history of physics and are somewhat easy to construct and more affordable
that many alternative experiments.
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6.1 Geometric Interference

Let us start by introducing a notation for a dot product, then we will list the
various possible interference patterns.

6.1.1 Geometric Algebra Dot Product

Let us introduce a notation. We will define a bilinear form using the dot product
notation, as follows:

G(2n,R) x G(2n,R) — R (208)
u-v — i(det(u+v)—detu—detv)
For example,
u=A; + Xje; + Yies + Bieis (209)
vV = A2 + X2€1 + Y2€2 + 32612 (210)
— U'V:A1A2+BlB27X1X2 -YY, (211)

Iff det u > 0 and det v > 0 then u-v is always positive, and therefore qualifies
as a positive inner product (over the positive det group), but no greater than
either detu or detv, whichever is larger. This definition of the dot product
extends to multi-vectors of 4 dimensions.

2D: In 2D the dot product is equivalent to this form:
1 1 : fy— vl
5(det(u+v) —detu —detv) = B ((quv) (u+v)—uu—v v) (212)

= vtu +utv + viu + viv —ufu - viv (213)
=ulv +vtu (214)

4D: In 4D it is substantially more verbose:
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1
2

—(det(u+v) — detu — det v)

DN | =

(Luiu +utv + viu+ viv]z s (utu + utv + viu 4 viv) -

DN | =

Luiunguiu + L uls, Jautv 4+ Lu us, viu+ L J3’4viv
+ LuivJ3,4uiu + Lu VJ37411 v+ Lu VJ374V u-+ L Vs, Vv

+ Lving,Auiu + LviuJ374uiv + LviuJ374viu + L us, vy

+ [viv]zautu + [viv]zutv + [viv]zaviu 4 [viv]zaviv—

= Luiuj 374uiv + LuiuJ374viu + LuiuJ3,4viv

+ LuiVJ374u¢u + Luing autv + [u i v]s, Aviu+ |u i J3’4v¢v
+LviuJ34uiu+L i J34u V+L J34v u+L J374v¢v

+Lv VJ34u u+Lv VJ34u v+ ijF J34v u

6.1.2 Geometric Interference (General Form)

One can thus write a general two-state system as follows:

w = 1/)1 + 1[)2 = e%Ale%sl —+ e%Aze%s2

The general interference pattern will be of the following form:

where det 1y + det 1, is a sum of probabilities and where 1
interference pattern.

det 91 + 1o = det 1 + det 2 + 1 - P2
=M+ e 4 gy

6.1.3 Complex Interference (Recall)

Consider a two-state wave-function:

b =1 + Py = 1B 4 e2ePe
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(215)

( u+v)iu+v)|zs(u+v)iu+v) - |utuzutu— I_VIVJ3)4V1V)

(216)
(217)

(218)

(219)

A multi-vector can be written as u = a + s, where a is a scalar and s is the
multi-vectorial part. In general, the exponential exp u equals exp a exp s because
a commutes with s.

(220)
(221)

(222)
(223)

. ’(/JQ is the

(224)



The interference pattern familiar to quantum mechanics is the result of the

complex norm:

W = iy + i + Pl + Pl

(225)

=M BigAipBr | pA2pmBopAaoBe o1 pmBu oAz By | pAs o —Bapdi By

= 241 4 o242 + eA1tA2 (€_B1+B2 + 6—(—B1+B2))

= 241 4 o242 4 9eM1H A2 ¢o5(B) — By)
—_————

sum

interference

6.1.4 Geometric Interference in 2D

Consider a two-state wave-function:

) =1hy + 1hy = eMeXitBr g A2 KXot By
To lighten the notation we will write it as follows:

P =1 + 1o = eMeS 4 265
where

S=X+B

(226)
(227)
(228)

(229)

(230)

(231)

The interference pattern for a full general linear transformation on a two-

state wave-function in 2D is:

i = iy + Pivs + s + Pl

(232)

— (esl)ieAlesl + A2 (652)16A2652 + e/t (681)16A26S2 + ez (eSQ)ieAlesl

— 241 + e2A2 + eA1+A2((esl)1esz + (esz)iesl)
€2A1 + eQAz +6A1+A2 (e—xl—B1eX2+Bz +€—X2—Bzex1+B1)

sum interference

6.1.5 Geometric Interference in 4D

Consider a two-state wave-function:

=11+ 1y = 6%Ale%(X1+Fl+V1+B1) + e%A26%(X2+F2+V2+B2)

To lighten the notation we will write it as follows:

’¢1 = 1/}1 + ’(/)2 = e%Aleésl + e%A2e%S2
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(
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where
S=X+F+V+B (238)

The geometric interference patterns for a full general linear transformation
in 4D is given by the product:

[ |5 9% = (i ] s atfn + [Paiho)a athbths + 1 - o (239)
= 241 4 242 4 (e%Ale%&) . (e%AQe%S"‘> (240)

In many cases of interest, the pattern simplifies.

6.1.6 Geometric Interference in 4D (Shallow Phase Rotation)

If we consider a sub-algebra in 4D comprised of even-multi-vector products ¥,
then a two-state system is given as:

=1+ (241)

where
P = (e%Ale%Fle%Bl)i(e%Ale%Fle%Bl) = eA1eBn (242)
Py = (e241e3F1e3B1) (3 4103F103B1) = oA2B2 (243)

Thus
P = eM1eBr 4 eA2eB2 (244)

The quadri-linear map becomes a bilinear map:

Pl = (eMe P etie PP 4 et2eP?) (245)
_ 6A167B1€A1 e]31 + eAleiBleAQ 6B2 + 6A267B2 eA16B1 + 6AzefBz €A2 eBz
(246)
= 241 | 242 | 9oAi+A2 oog(B) — By) (247)
——

sum complex interference

6.1.7 Geometric Interference in 4D (Deep Phase Rotation)

A phase rotation on the base algebra (rather than the sub-algebra) produces a
difference interference pattern. Consider a two-state wave-function:

=11 + Py = e241¢3B1 | 3424382 (248)
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The sub-product part is:

1 1 1 1 1 1 1 1
Yy = (€2A1€2B1 + 62A262B2)(€2A162B1 —|—62A262B2) (249)
= e%AleéBle%Ale%Bl + e%Ale%Ble%AQQ%Bz + e%AQe%BQe%Ale%Bl + e%AQQ%BQe%AQe%BQ
(250)
= eM1eB1 4 eA2eB2 4 903 (A1142) 03 (B1+B2) (251)

The final product is:

|t |3 a0t ep = (eAre™Br 4 eA2e B2 2e3(A1t42) =5 (B1+B2))
X (eAleBl + eA2eB2 4 26%(A1+A2)6%(B1+B2)) (252)

— eAe=BigAi B | (A1 —BigAs Ba | (A1 ~Big,d(A1+42) 3 (Bi+By)
+eAzeB2edioBr | A2 Bapdr By eA2eB29p3(A1142) o3 (B1+B2)
+ 26%(A1+A2)e—%(B1+B2)eAleB1

+ 9¢3(A1+42) ,—5(B1+B2) oAz ,Bo
1 9e3(A1HA2) 3 (Bi+B2) gy 3 (Ai1+42) 3 (B1+By) (253)
= 241 4 o242 | 9N A2 o5(B) — By)
1 eA1e=Bi9g3(A1+42) 5 (B1+B2)
1 A2~ B29e3(A1+42) 5 (Bi+B2)
+ 22 (A1+42) o~ 3(B1+B2) A1 By
+ 2e3(A1H42) o= 3(B14B2) o4z Ba
+ 4€A1+A2 (254)

= 21 4 o242 4 9eMH A2 ¢o5(B) — By)
—_——

sum

complex interference

1
+2e3(A1t42) (gA1 4 ¢42) cog 5(31 — By) + 4ei2 (255)

deep phase interference

6.1.8 Geometric Interference in 4D (Deep Spinor Rotation)

Consider a two-state wave-function (we note that [F,B] = 0):
P =) + Py = er1eaF1gaB1 | o34205F203B: (256)

The geometric interference pattern for a full general linear transformation
in 4D is given by the product:

48



[ )3 a0t (257)
Let us start with the sub-product:
wi¢ = (e%Ale_%FleﬁBl + e%A2€_%F2€%B2)(e%A1e%Fle%Bl + e%A2€%F26%B2)
(258)
3410 3F1 3B 341 3F1 3B | 341~ 3F1 3B 5 A 5Fs 1By

1 1 1 1 1 1 1 1 1 1 1
+ 65A26_5F265B265A165F165B1 +e242¢72F202B2g3A203F203B:

(

— eA1B1 + eAz B2 + e%(AH‘Az)e%(Bl-i-Bz)( __F162F2) + 6_%F2€ Fl)
(260)

= eM1eB1 4 eA2eB2 4 e%(AﬁA?)e%(BlJFB?)(RlRQ + R2R1) (

where R = e%F, and where R = ¢~ 2F.

The full product is:

¥ )5 a1ptep = (eAle—Bl +efze B2 o3t A) 3(-Bi-Ba) (R R, 4 Rle))

X (e“heB1 +e2eB2 e%(AﬁAZ)e%(Bl*B?)(RlRQ + RgRl))

(262)

_ _ B, 1 1 5 ~
= Mg BredieBr  piemBipAa By oA pmBuos (it Aoz (BitBa) (R Ry + RyR))

+ eA2€—B2 eAl eB1 + eAze—Bz €A2€B2 + eAze—Bze%(A1+A2)e%(B1+B2) (R1R2 4 RgR])

+ e%(A1+A2)e%(—B1—BZ)(R1R2 + Rle)eAleBl
+ 6%(A1+A2)6%(_B1_B2)(R1R2 + RQRl) A26B2

+6%(A1+A2)62( B;—-B2) (R1R2+R2R1)62(A1+A2)62(B1+B2) R

(
(263

)

= eQAl -+ 62A2 -+ 2€A1+A2 COS(Bl — BQ) (264)
+ e%(A1+A2)(R1R2 + Rle)( (265)
A1 (e%(—Bﬁ-Bz) + e%(Bl_BQ)) (266)

+ eA2(e2(B1B2) 4 ¢3(~BitB2)y) (267)

+ eA1+A2 (RlRZ + R2R1)2 (268)

= 241 4 o242 | 9o A1+ A2 cos(By — B3)
—_—————

sum

complex interference

- - 1 N N
+ 22t A2) (A1 4 oA2) (R Ry + RyRy)(cos §(B1 — By)) + et 2 (R Ry + RyR;)?

deep spinor interference

(269)
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6.1.9 Geometric Interference Experiment (Sketch)

In the case of the general linear group, the interference pattern is much more
complicated than the simple cosine of the standard Born rule, but that is to be
expected as it comprises the full general linear group and not just the unitary
group. It accounts for the group of all geometric transformations which preserves
the probability distribution p for a two-state general linear system.

General linear interference can be understood as a generalization of complex
interference, which is recovered under a ”shallow” phase rotation in 4D and
under just a plain normal phase rotation in 2D. Furthermore, when all elements
of the odd-sub-algebra are eliminated (by posing X — 0, V. — 0), then the
wave-function reduces to the geometric algebra form of the relativistic wave-
function identified by David Hestenes, in terms of a spinor field.

Such reductions produce a series of interference patterns of decreasing com-
plexity, and as such they provide a method to experimentally identify which
group of geometric transformations the world obeys, using interference exper-
iments as the identification tool. Identification of the full general linear inter-
ference pattern (with all the elements A, X, F, V,B) in a lab experiment would
suggest a gauge-theoretical theory of gravity, whereas identification of a reduced
interference pattern (produced by A, F,B) and subsequently showing a failure
to observe the full general linear interference (X — 0,V — 0) would suggest at
most spinor-level interference.

In any such case, a general experimental setup would send a particle into
two distinct paths. Then, either: a) one of the paths undergoes a general linear
transformation, while the other doesn’t or b) both paths undergo a different
general linear transformation. Then, the paths are recombined to produce an
interference pattern on a screen. Depending on the nature of the transformation,
a deformation of the interference pattern based on the geometry of the setup
should be observed.

One can further utilize the non-commutativity of the general linear transfor-
mations to identify only the difference between complex-interference and general
linear interference. One would apply the same general linear transformations to
each path, but would reverse the order in which the transformations are applied.
The resulting interference pattern would then be compared to a case where both
paths are transformed in the same order. Then, complex-interference, as it is
fully commutative, would predict the same interference pattern irrespective of
the order the transformations are applied in — whereas, with general linear
interference, as it is non-commutative, would predict different interference pat-
terns.

To achieve this it may be necessary to use a three-dimensional detector,
whose idealized construction is a homogeneous bath of impurities (allowing
photons to ’click’ anywhere within the volume of the detector), instead of a
two-dimensional screen, since the opportunity for non-commutative behaviour
often kicks in at three dimensions or higher. In a real experiment, it is probably
easier to use a 2d x-y screen, and stepping it along an orthogonal z-axis, cap-
turing the 2d interference pattern at each step, then numerically reconstructing
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the volumetric interference pattern out of the steps.
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Notation

S will denote the entropy, A the action, L the Lagrangian, and £ the La-
grangian density. Sets, unless a prior convention assigns it another symbol, will
be written using the blackboard bold typography (ex: L, W, Q, etc.). Matrices
will be in bold upper case (ex: A,B), whereas vectors and multi-vectors will
be in bold lower case (ex: u,v,g) and most other constructions (ex.: scalars,
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functions) will have plain typography (ex. a,A). The identity matrix is I,
the unit pseudo-scalar (of geometric algebra) is I and the imaginary number
is 4. The Dirac gamma matrices are 7, y1,72,73 and the Pauli matrices are
0z,0y,0. The basis elements of an arbitrary curvilinear geometric basis will be
denoted e, ey, es,...,e, (such that e, - e, = g,,) and if they are orthonormal
as Xo,X1,Xa2, ..., X, (such that X, -%, = 1,,,). The asterisk z* denotes the com-
plex conjugate of z, and the dagger AT denotes the conjugate transpose of A. A
geometric algebra of m dimensions over a field F is noted as G(m, F). The grades
of a multi-vector will be denoted as (v);. Specifically, (v)g is a scalar, (v); is a
vector, (V) is a bi-vector, (v),,_1 is a pseudo-vector and (v),, is a pseudo-scalar.
Furthermore, a scalar and a vector (v)o + (v)1 is a para-vector, and a combina-
tion of even grades ((v)o + (V)2 + (v)a+...) or odd grades ((v)1 + (v)s+...)
are even-multi-vectors or odd-multi-vectors, respectively. The commutator is de-
fined as [A,B] := AB — BA and the anti-commutator as {A, B} := AB + BA.
We use the symbol = to relate two sets that are related by a group isomorphism.
We denote the Hadamard product, or element-wise multiplication, of two ma-
trices using ®, and is written for instance as M ® P, and for a multivector as
u © v; for instance: (ap + zoX + Yoy + boX A Y) © (a1 + ©1X + 115 + bolxX A Y)
would equal aga; + xox1X + Yor1y + bob1X A y.

B Lagrange equation

The Lagrangian equation to maximize is:

Lip,a,7) =~k Y _ plg)Inplg) + o (1= plg) | +7tr [ M= p(g)M(q)
q€Q q€Q q€Q
(270)

where « and 7 are the Lagrange multipliers. We note the usage of the
trace operator for the geometric constraint such that a scalar-valued equation is
maximized. Maximizing this equation for p by posing 8%;; y = 0, where p € Q,

we obtain:

% =—kplnp(p) — kp — a — 7tr M(p) (271)
0=rkplnp(p)+ ks + a+ 7tr M(p) (272)

= Ilnp(p) = é (—kp — a— TtrM(p)) (273)
— p(p) = eXp(%) exp (—é trM@)) (274)
= %det eXp(—éM(p)) (275)
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where Z is obtained as follows:

1= Zexp(%) exp (—é trM(q)> (276)

q€Q
= <exp(%>) h = q%exp (-é trM(q)) (277)
Z = q%det exp <—éM(q)> (278)

We note that the Trace in the exponential drops down to a determinant, via
the relation det exp A = exp tr A.

B.1 Multiple constraints

Consider a set of constraints:

M, = p(q)Mi(q) (279)
q€Q

: (280)

M, = p(g)Mn(q) (281)
q€Q

Then the Lagrange equation becomes:

L=—kpY pla)nplg)+a|1=> plg) | +mtr {Mi—=> p(@Mi(q) | +...

qeQ q€Q q€Q

+ratr ( My, = > p(g)Mi(g)
q€Q
(282)

and the measure references all n constraints:
1 1
p(q) = — detexp| ———Mi(q) — - — 7—Myu(q) (283)
Z kg
B.2 Multiple constraints - General Case

In the general case of a multi-constraint system, each entry of the matrix cor-
responds to a constraint:
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1...0 1..0
Moo(;g;)=Zp(q)Moo(Q)<:~.,;> (284)

0..0 qcQ 0..0
: (285)
_[01..0 01 ..0
M01<::'.':>ZZP(Q)MM(Q)(ZI'..:) (286)
00 .. 0 q€Q 00 ..0
: (287)
o 0..0 0..0
0.1 g€ 0.1
For a n x n matrix, there are n? constraints.
The probability measure which maximizes the entropy is as follows:
1 1
p(q) = = detexp| ——7 © M(q) (289)
Z kp

where T is a matrix of Lagrange multipliers, and ®, the element-wise multi-
plication, assigns the corresponding Lagrange multiplier to each constraint.
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