Maximizing the Entropy Under Geometric Constraint; A Technique to Solve for Quantum Gravity?

Alexandre Harvey-Tremblay[†]

[†]Independent scientist, aht@protonmail.ch June 12, 2022

Abstract

We introduce the notion of a geometric constraint. We then derive a quantum theory of the Einstein field equation by maximizing the entropy under said constraint. It is further shown that a quantum field theory of both the $SU(2) \times U(1)$ group and of the SU(3) group is naturally included. At the foundation level, the following results are obtained: the origin of the wave-function along with the Born rule are revealed, the wave-function collapse problem is dissolved, and a paradox-free interpretation of quantum mechanics is provided. The key idea is to connect geometry to probability theory using the trace. The trace can be seen as the expectation value of the eigenvalues of the matrix times the dimension of the vector space; and the eigenvalues as the ratios of the distortion of the geometric transformation associated with the matrix. By constraining the entropy with this expectation value and then by maximizing it we are able to obtain a geometric version of the wave-function along with the Born rule; this provides us with the means to connect quantum-mechanics, entropy and geometry, fluently.

1 Introduction

We introduce a new form of constraint into statistical mechanics which we call the *geometric constraint*. This constraint extends the scope of statistical mechanics to all geometric systems and all quantum systems.

Before we start, let us note that a link between entropy and gravity has been investigated by others. For instance, Jacobson[1] describes a relation between the Einstein field equations and an area law for entropy. We also note the results of Bekenstein[2] where the laws of black hole thermodynamics are introduced. Finally, we note the work of Erik Verlinde suggesting that gravity is an entropic force[3].

Our method is different in that it is also able to recover quantum systems in addition to geometric systems. The key is to connect geometry and probability theory using the trace. The trace admits a probability interpretation[4] as the expectation value of the eigenvalues times the dimension of the vector space. It also connects to geometry as the eigenvalues are the ratio of the distortion of the geometric transformation associated with the matrix.

The geometric constraint will be defined as follows:

$$\operatorname{tr} \overline{\mathbf{M}} = \sum_{q \in \mathbb{Q}} \rho(q) \operatorname{tr} \mathbf{M}(q) \tag{1}$$

where \mathbf{M} is an arbitrary $n \times n$ matrix, and where \mathbb{Q} is a statistical ensemble. Here, $\operatorname{tr} \overline{\mathbf{M}}$ denotes the expectation value of the statistically weighted sum of matrices $\mathbf{M}(q)$ parametrized over the ensemble \mathbb{Q} .

Using this equation as a constraint in statistical mechanics is a claim that we can observe the distortions produced by any geometric transformations in nature, and that the permissible statistics preserve the expectation value of these distortions.

Generally, how are constraints used in statistical mechanics?

Let us do a quick recap.

In statistical mechanics, the Gibbs measure is derived using the method of the Lagrange multipliers[5] by maximizing the entropy under constraints.

For instance, an energy constraint on the entropy:

$$\overline{E} = \sum_{q \in \mathbb{Q}} \rho(q) E(q) \tag{2}$$

is associated to an energy-meter measuring the system and producing a series of energy measurement E_1, E_2, \ldots converging to an expectation value \overline{E} .

Another common constraint is that of the volume:

$$\overline{V} = \sum_{q \in \mathbb{Q}} \rho(q) V(q) \tag{3}$$

associated to a volume-meter also acting on the system by producing a sequence of measurements of the volume V_1, V_2, \ldots converging to an expectation value \overline{V} .

And of course the sum over the statistical ensemble must equal 1:

$$1 = \sum_{q \in \mathbb{Q}} \rho(q) \tag{4}$$

With equations (2) and (4), the typical system of statistical mechanics is obtained by maximizing the entropy using its corresponding Lagrange equation, and the method of the Lagrange multipliers:

$$\mathcal{L} = -k_B \sum_{q \in \mathbb{Q}} \rho(q) \ln \rho(q) + \lambda \left(1 - \sum_{q \in \mathbb{Q}} \rho(q) \right) + \beta \left(\overline{E} - \sum_{q \in \mathbb{Q}} \rho(q) E(q) \right)$$
(5)

where λ and β are Lagrange multipliers. Then solving $\frac{\partial \mathcal{L}}{\partial \rho} = 0$ for ρ , we get the Gibbs measure:

$$\rho(q,\beta) = \frac{1}{Z(\beta)} \exp(-\beta E(q)) \tag{6}$$

where

$$Z(\beta) = \sum_{q \in \mathbb{Q}} \exp(-\beta E(q)) \tag{7}$$

In the case of a geometric constraints on the entropy, we use the constraint tr $\overline{\mathbf{M}}$ instead of (2). Following this replacement, the interpretation of the measure will be slightly altered; the resulting probability measure will be interpreted as quantifying the information associated with the receipt of a message of measurements. As such, we replace the Boltzmann entropy with the Shannon entropy. This replacement does not change the form of the mathematical equation for the entropy (they are the same up to a multiplication constant), only the final interpretation (discussion, section 5). The corresponding Lagrange equation is:

$$\mathcal{L} = -\sum_{q \in \mathbb{Q}} \rho(q) \ln \rho(q) + \lambda \left(1 - \sum_{q \in \mathbb{Q}} \rho(q) \right) + \tau \left(\operatorname{tr} \overline{\mathbf{M}} - \sum_{q \in \mathbb{Q}} \rho(q) \operatorname{tr} \mathbf{M}(q) \right)$$
(8)

It now suffices to solve $\frac{\partial \mathcal{L}}{\partial \rho} = 0$ for ρ to obtain the solution. Let us now introduce our methods.

2 Methods

2.1 Notation

<u>Typography</u>: Sets, unless a prior convention assigns it another symbol, will be written using the blackboard bold typography (ex: L, W, Q, etc.). Matrices will be in bold upper case (ex: P, M), whereas tuples, vectors and multi-vectors will be in bold lower case (ex: u, v, g) and most other constructions (ex.: scalars, functions) will have plain typography (ex. a, A). The unit pseudo-scalar (of geometric algebra) will be i. The imaginary number will be i. The identity matrix will be I.

- <u>Sets</u>: The projection of a tuple **p** will be $\operatorname{proj}_i(\mathbf{p})$. As an example, let us denote the elements of $\mathbb{R}^2 = \mathbb{R}_1 \times \mathbb{R}_2$ as $\mathbf{p} = (x, y)$. The projection operators are $\operatorname{proj}_1(\mathbf{p}) = x$ and $\operatorname{proj}_2(\mathbf{p}) = y$. If projected over a set, the results are $\operatorname{proj}_1(\mathbb{R}^2) = \mathbb{R}_1$ and $\operatorname{proj}_2(\mathbb{R}^2) = \mathbb{R}_2$. The size of a set \mathbb{X} is $|\mathbb{X}|$. The symbol \cong indicates a group isomorphism relation between two sets. The symbol \cong indicates equality if defined, or both undefined otherwise.
- Analysis: The asterisk z^* denotes the complex conjugate of z.
- <u>Matrix</u>: The Dirac gamma matrices are $\gamma_0, \gamma_1, \gamma_2, \gamma_3$. The Pauli matrices are $\sigma_x, \sigma_y, \sigma_z$. The dagger \mathbf{M}^{\dagger} denotes the conjugate transpose of \mathbf{M} . The commutator is defined as $[\mathbf{M}, \mathbf{P}] : \mathbf{MP} \mathbf{PM}$ and the anti-commutator as $\{\mathbf{M}, \mathbf{P}\} : \mathbf{MP} + \mathbf{PM}$.
- Geometric Algebra: The basis elements of an arbitrary curvilinear geometric basis will be denoted $\mathbf{e}_0, \mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ (such that $\mathbf{e}_{\nu} \cdot \mathbf{e}_{\mu} = g_{\mu\nu}$) and if they are orthonormal as $\hat{\mathbf{x}}_0, \hat{\mathbf{x}}_1, \hat{\mathbf{x}}_2, \ldots, \hat{\mathbf{x}}_n$ (such that $\hat{\mathbf{x}}_{\mu} \cdot \hat{\mathbf{x}}_{\nu} = \eta_{\mu\nu}$). A geometric algebra of m dimensions over a field \mathbb{F} is noted as $\mathbb{G}(m, \mathbb{F})$. The grades of a multi-vector will be denoted as $\langle \mathbf{v} \rangle_k$. Specifically, $\langle \mathbf{v} \rangle_0$ is a scalar, $\langle \mathbf{v} \rangle_1$ is a vector, $\langle \mathbf{v} \rangle_2$ is a bi-vector, $\langle \mathbf{v} \rangle_{n-1}$ is a pseudo-vector and $\langle \mathbf{v} \rangle_n$ is a pseudo-scalar. A scalar and a vector $\langle \mathbf{v} \rangle_0 + \langle \mathbf{v} \rangle_1$ is a paravector, and a combination of even grades ($\langle \mathbf{v} \rangle_0 + \langle \mathbf{v} \rangle_2 + \langle \mathbf{v} \rangle_4 + \ldots$) or odd grades ($\langle \mathbf{v} \rangle_1 + \langle \mathbf{v} \rangle_3 + \ldots$) are even-multi-vectors or odd-multi-vectors, respectively.

Let $\mathbb{G}(2,\mathbb{R})$ be the two-dimensional geometric algebra over the reals. We can write a general multi-vector of $\mathbb{G}(2,\mathbb{R})$ as $\mathbf{u} = a + \mathbf{x} + \mathbf{b}$, where a is a scalar, \mathbf{x} is a vector and \mathbf{b} is a pseudo-scalar.

Let $\mathbb{G}(4, \mathbb{R})$ be the four-dimensional geometric algebra over the reals. We can write a general multi-vector of $\mathbb{G}(4, \mathbb{R})$ as $\mathbf{u} = a + \mathbf{x} + \mathbf{f} + \mathbf{v} + \mathbf{b}$, where a is a scalar, \mathbf{x} is a vector, \mathbf{f} is a bivector, \mathbf{v} is a pseudo-vector, and \mathbf{b} is a pseudo-scalar.

2.2 Geometric Constraints

Definition 1 (Geometric Constraints). Let **M** be a $n \times n$ matrix and let \mathbb{Q} be a statistical ensemble. Then, this equality constraint:

$$\operatorname{tr} \overline{\mathbf{M}} = \sum_{q \in \mathbb{Q}} \rho(q) \operatorname{tr} \mathbf{M}(q) \tag{9}$$

is called a geometric constraint.

2.3 Geometric Representation of Matrices

The notation will significantly improved if we use a geometric representation of matrices, which we introduce now.

2.3.1 Geometric Representation of 2x2 real matrices

Let $\mathbb{G}(2,\mathbb{R})$ be the two-dimensional geometric algebra over the reals. We can write a general multi-vector of $\mathbb{G}(2,\mathbb{R})$ as follows:

$$\mathbf{u} = a + \mathbf{x} + \mathbf{b} \tag{10}$$

where a is a scalar, \mathbf{x} is a vector and \mathbf{b} is a pseudo-scalar.

Each multi-vector has a structure-preserving (addition/multiplication) matrix representation:

Definition 2 (Geometric representation 2D).

$$a + x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + b\hat{\mathbf{x}} \wedge \hat{\mathbf{y}} \cong \begin{bmatrix} a + x & -b + y \\ b + y & a - x \end{bmatrix}$$
(11)

And the converse is also true; each 2×2 real matrix is represented as a multi-vector of $\mathbb{G}(2,\mathbb{R})$.

We can define the determinant solely using constructs of geometric algebra[6]. The determinant of \mathbf{u} is:

Definition 3 (Geometric Representation of the Determinant 2D).

det :
$$\mathbb{G}(2,\mathbb{R}) \longrightarrow \mathbb{R}$$

 $\mathbf{u} \longmapsto \mathbf{u}^{\dagger} \mathbf{u}$ (12)

where \mathbf{u}^{\ddagger} is:

Definition 4 (Clifford conjugate 2D).

$$\mathbf{u}^{\ddagger} \coloneqq \langle \mathbf{u} \rangle_0 - \langle \mathbf{u} \rangle_1 - \langle \mathbf{u} \rangle_2 \tag{13}$$

For example:

$$\det \mathbf{u} = (a - \mathbf{x} - \mathbf{b})(a + \mathbf{x} + \mathbf{b}) \tag{14}$$

$$=a^2 - x^2 - y^2 + b^2 \tag{15}$$

$$= \det \begin{bmatrix} a+x & -b+y\\ b+y & a-x \end{bmatrix}$$
(16)

Finally, we define the Clifford transpose:

Definition 5 (Clifford transpose 2D). The Clifford transpose is the geometric analogue to the conjugate transpose. Like the conjugate transpose can be interpreted as a transpose followed by an element-by-element application of the

complex conjugate, here the Clifford transpose is a transpose followed by an element-by-element application of the Clifford conjugate:

$$\begin{bmatrix} \mathbf{u}_{00} & \dots & \mathbf{u}_{0n} \\ \vdots & \ddots & \vdots \\ \mathbf{u}_{m0} & \dots & \mathbf{u}_{mn} \end{bmatrix}^{\dagger} = \begin{bmatrix} \mathbf{u}_{00}^{\dagger} & \dots & \mathbf{u}_{m0}^{\dagger} \\ \vdots & \ddots & \vdots \\ \mathbf{u}_{m0} & \dots & \mathbf{u}_{nm}^{\dagger} \end{bmatrix}$$
(17)

If applied to a vector, then:

$$\begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_m \end{bmatrix}^{\ddagger} = \begin{bmatrix} \mathbf{v}_1^{\ddagger} & \dots & \mathbf{v}_m^{\ddagger} \end{bmatrix}$$
(18)

2.3.2Geometric Representation of 4x4 real matrices

Let $\mathbb{G}(4,\mathbb{R})$ be the two-dimensional geometric algebra over the reals. We can write a general multi-vector of $\mathbb{G}(4,\mathbb{R})$ as follows:

$$\mathbf{u} = a + \mathbf{x} + \mathbf{f} + \mathbf{v} + \mathbf{b} \tag{19}$$

where a is a scalar, \mathbf{x} is a vector, \mathbf{f} is a bivector, \mathbf{v} is a pseudo-vector, and **b** is a pseudo-scalar.

Each multi-vector has a structure-preserving (addition/multiplication) matrix representation. Explicitly, the multi-vectors of $\mathbb{G}(4,\mathbb{R})$ are represented as follows:

Definition 6 (Geometric representation 4D).

 $a + t\gamma_0 + x\gamma_1 + y\gamma_2 + z\gamma_3$ $+ f_{01}\gamma_{0} \wedge \gamma_{1} + f_{02}\gamma_{0} \wedge \gamma_{2} + f_{03}\gamma_{0} \wedge \gamma_{3} + f_{23}\gamma_{2} \wedge \gamma_{3} + f_{13}\gamma_{1} \wedge \gamma_{3} + f_{12}\gamma_{1} \wedge \gamma_{2}$ $+ v_t \gamma_1 \wedge \gamma_2 \wedge \gamma_3 + v_x \gamma_0 \wedge \gamma_2 \wedge \gamma_3 + v_y \gamma_0 \wedge \gamma_1 \wedge \gamma_3 + v_z \gamma_0 \wedge \gamma_1 \wedge \gamma_2$ $+ b\gamma_0 \wedge \gamma_1 \wedge \gamma_2 \wedge \gamma_3$

$$\cong \begin{bmatrix} a+x_{0}-if_{12}-iv_{3} & f_{13}-if_{23}+v_{2}-iv_{1} & -ib+x_{3}+f_{03}-iv_{0} & x_{1}-ix_{2}+f_{01}-if_{02} \\ -f_{13}-if_{23}-v_{2}-iv_{1} & a+x_{0}+if_{12}+iv_{3} & x_{1}+ix_{2}+f_{01}+if_{02} & -ib-x_{3}-f_{03}-iv_{0} \\ -ib-x_{3}+f_{03}+iv_{0} & -x_{1}+ix_{2}+f_{01}-if_{02} & a-x_{0}-if_{12}+iv_{3} & f_{13}-if_{23}-v_{2}+iv_{1} \\ -x_{1}-ix_{2}+f_{01}+if_{02} & -ib+x_{3}-f_{03}+iv_{0} & -f_{13}-if_{23}+v_{2}+iv_{1} & a-x_{0}+if_{12}-iv_{3} \end{bmatrix}$$

$$(20)$$

· c - 7

Here the converse is not true; it is only a subset of 4×4 real matrix that can be represented as a multi-vector of $\mathbb{G}(4,\mathbb{R})$. Nonetheless as both the 4×4 matrices and the multi-vectors of $\mathbb{G}(4,\mathbb{R})$ have 16 independent variables, they share many properties.

In 4D as well we can define the determinant solely using constructs of geometric algebra[6]. The determinant of \mathbf{u} is:

Definition 7 (Geometric Representation of the Determinant 4D).

det :
$$\mathbb{G}(4,\mathbb{R}) \longrightarrow \mathbb{R}$$
 (21)

$$\mathbf{u} \longmapsto \lfloor \mathbf{u}^{\ddagger} \mathbf{u} \rfloor_{3,4} \mathbf{u}^{\ddagger} \mathbf{u}$$
(22)

where \mathbf{u}^{\ddagger} is:

Definition 8 (Clifford conjugate 4D).

$$\mathbf{u}^{\ddagger} \coloneqq \langle \mathbf{u} \rangle_0 - \langle \mathbf{u} \rangle_1 - \langle \mathbf{u} \rangle_2 + \langle \mathbf{u} \rangle_3 + \langle \mathbf{u} \rangle_4 \tag{23}$$

and where $\lfloor \mathbf{m} \rfloor_{\{3,4\}}$ is the blade-conjugate of degree 3 and 4 (flipping the plus sign to a minus sign for blade 3 and blade 4):

$$[\mathbf{u}]_{\{3,4\}} \coloneqq \langle \mathbf{u} \rangle_0 + \langle \mathbf{u} \rangle_1 + \langle \mathbf{u} \rangle_2 - \langle \mathbf{u} \rangle_3 - \langle \mathbf{u} \rangle_4 \tag{24}$$

2.4Unitary Gauge (Recap)

Quantum electrodynamics is obtained by gauging the wave-function with U(1). The U(1) invariance results from the usage of the complex norm in ordinary quantum theory. A parametrization of ψ over a differentiable manifold is required to support this derivation. Localizing the invariance group $\theta \to \theta(x)$ over said parametrization, yields the corresponding covariant derivative:

$$D_{\mu} = \partial_{\mu} + iqA_{\mu}(x) \tag{25}$$

where $A_{\mu}(x)$ is the gauge field.

If one then applies a gauge transformation to ψ and A_{μ} :

$$\psi \to e^{-iq\theta(x)}\psi$$
 and $A_{\mu} \to A_{\mu} + \partial_{\mu}\theta(x)$ (26)

The covariant derivative is:

$$D_{\mu}\psi = \partial_{\mu}\psi + iqA_{\mu}\psi \tag{27}$$

$$\rightarrow \partial_{\mu}(e^{-iq\theta(x)}\psi) + iq(A_{\mu} + \partial_{\mu}\theta(x))(e^{-iq\theta(x)}\psi)$$

$$= e^{-iq\theta(x)}D_{\mu}\psi$$
(28)
(29)

$$=e^{-iq\theta(x)}D_{\mu}\psi\tag{29}$$

Finally, the field is given as follows:

$$F_{\mu\nu} = [\mathcal{D}_{\mu}, \mathcal{D}_{\nu}] \tag{30}$$

where \mathcal{D}_{μ} is the covariant derivative with respect to the potential one-form $A_{\mu} = A_{\mu}^{\alpha}T_{\alpha}$, and where T_{α} are the generators of the lie algebra of U(1).

3 Result

3.1 Non-Relativistic Quantum Mechanics

We will now recover non-relativistic quantum mechanics by using the method of the Lagrange multipliers and a geometric constraint.

Instead of the Boltzmann entropy we will use the Shannon entropy:

$$S = -\sum_{q \in \mathbb{Q}} \rho(q) \ln \rho(q) \tag{31}$$

What constraint will we use on this entropy?

In statistical mechanics we use "scalar" constraints on the entropy such as the energy-meter and the volume-meter. Such are sufficient to recover the Gibbs ensemble, but are insufficient to recover quantum mechanics. Let us introduce the "phase-invariant" constraint, which for a complex-phase, is defined as follows:

$$\operatorname{tr}\begin{bmatrix} 0 & -\overline{b} \\ \overline{b} & 0 \end{bmatrix} = \sum_{q \in \mathbb{Q}} \rho(q) \operatorname{tr}\begin{bmatrix} 0 & -b(q) \\ b(q) & 0 \end{bmatrix}$$
(32)

where $\begin{bmatrix} a(q) & -b(q) \\ b(q) & a(q) \end{bmatrix} \cong a(q) + ib(q)$ is the matrix representation of the complex numbers. Like the energy-meter or the volume-meter, a phase-invariant instruments also produces a sequence of measurements converging to an expectation value, but such measurements have a phase-invariance. The trace here grants and enforces said phase-invariance.

The Lagrangian equation that maximizes the entropy subject to this constraint is:

$$\mathcal{L} = -\sum_{q \in \mathbb{Q}} \rho(q) \ln(q) + \alpha \left(1 - \sum_{q \in \mathbb{Q}} \rho(q) \right) + \tau \left(\operatorname{tr} \begin{bmatrix} 0 & -\overline{b} \\ \overline{b} & 0 \end{bmatrix} - \sum_{q \in \mathbb{Q}} \rho(q) \operatorname{tr} \begin{bmatrix} 0 & -b(q) \\ b(q) & 0 \end{bmatrix} \right)$$
(33)

Maximizing this equation for ρ by posing $\frac{\partial \mathcal{L}}{\partial \rho(q)} = 0$, we obtain:

$$\frac{\partial \mathcal{L}}{\partial \rho(q)} = -\ln \rho(q) - 1 - \alpha - \tau \operatorname{tr} \begin{bmatrix} 0 & -b(q) \\ b(q) & 0 \end{bmatrix}$$
(34)

$$0 = \ln \rho(q) + 1 + \alpha + \tau \operatorname{tr} \begin{bmatrix} 0 & -b(q) \\ b(q) & 0 \end{bmatrix}$$
(35)

$$\implies \ln \rho(q) = -1 - \alpha - \tau \operatorname{tr} \begin{bmatrix} 0 & -b(q) \\ b(q) & 0 \end{bmatrix}$$
(36)

$$\implies \rho(q) = \exp(-1 - \alpha) \exp\left(-\tau \operatorname{tr} \begin{bmatrix} 0 & -b(q) \\ b(q) & 0 \end{bmatrix}\right)$$
(37)

$$= \frac{1}{Z(\tau)} \det \exp\left(-\tau \begin{bmatrix} 0 & -b(q) \\ b(q) & 0 \end{bmatrix}\right)$$
(38)

where $Z(\tau)$ is obtained as follows:

$$1 = \sum_{q \in \mathbb{Q}} \exp(-1 - \alpha) \exp\left(-\tau \operatorname{tr} \begin{bmatrix} 0 & -b(q) \\ b(q) & 0 \end{bmatrix}\right) \quad (39)$$

$$\implies (\exp(-1-\alpha))^{-1} = \sum_{q \in \mathbb{Q}} \exp\left(-\tau \operatorname{tr} \begin{bmatrix} 0 & -b(q) \\ b(q) & 0 \end{bmatrix}\right)$$
(40)

$$Z(\tau) \coloneqq \sum_{q \in \mathbb{Q}} \det \exp\left(-\tau \begin{bmatrix} 0 & -b(q) \\ b(q) & 0 \end{bmatrix}\right)$$
(41)

We note that the trace in the exponential drops down to a determinant, via the relation det $\exp A \equiv \exp \operatorname{tr} A$.

Finally, we obtain:

$$\rho(\tau, q) = \frac{1}{Z(\tau)} \det \exp\left(-\tau \begin{bmatrix} 0 & -b(q) \\ b(q) & 0 \end{bmatrix}\right)$$
(42)

$$\cong |\exp -i\tau b(q)|^2 \qquad \qquad \text{Born rule} \qquad (43)$$

Renaming $\tau \to t/\hbar$ and $b(q) \to H(q)$ recovers the familiar form:

$$\rho(q) = \frac{1}{Z} \left| \exp(-itH(q)/\hbar) \right|^2 \tag{44}$$

or in even more familiar form:

$$\rho(q) = \frac{1}{Z} \left| \psi(q) \right|^2, \text{ where } \psi(q) = \exp(-itH(q)/\hbar)$$
(45)

We can show from this that all three Dirac Von-Neumann axioms are satisfied, along with the Born rule; thus providing an origin story for quantum mechanics linked to entropy and geometry.

Indeed, from (45) we can identify the wave-function as the vector of some orthogonal space (of course this is a complex Hilbert space) and the partition function as its inner product:

$$Z = \langle \psi | \psi \rangle \tag{46}$$

Normalized, the physical states are its unit vectors. The probability of any particular state is:

$$\rho(q) = \frac{1}{\langle \psi | \psi \rangle} (\psi(q))^{\dagger} \psi(q) \tag{47}$$

Finally, any self-adjoint matrix, defined as $\langle \mathbf{O}\psi|\psi\rangle = \langle\psi|\mathbf{O}\psi\rangle$ will correspond to a real-valued statistical mechanics observable iff measured in its eigenbasis.

The equivalence is complete.

3.2Quantum Theory of Gravity

We will now investigate the arbitrary geometric constraint:

$$\operatorname{tr} \overline{\mathbf{M}} = \sum_{q \in \mathbb{Q}} \rho(q) \operatorname{tr} \mathbf{M}(q) \tag{48}$$

where **M** is an arbitrary $n \times n$ matrix.

The Lagrange equation used to maximize the entropy subject to this constraint is:

$$\mathcal{L} = -\sum_{q \in \mathbb{Q}} \rho(q) \ln(q) + \alpha \left(1 - \sum_{q \in \mathbb{Q}} \rho(q) \right) + \tau \left(\operatorname{tr} \overline{\mathbf{M}} - \sum_{q \in \mathbb{Q}} \rho(q) \operatorname{tr} \mathbf{M}(q) \right)$$
(49)

where α and τ are the Lagrange multipliers. Maximizing this equation for ρ by posing $\frac{\partial \mathcal{L}}{\partial \rho(q)} = 0$, we obtain:

$$\frac{\partial \mathcal{L}}{\partial \rho(q)} = -\ln \rho(q) - 1 - \alpha - \tau \operatorname{tr} \mathbf{M}(q)$$
(50)

$$0 = \ln \rho(q) + 1 + \alpha + \tau \operatorname{tr} \mathbf{M}(q)$$
(51)

$$\implies \ln \rho(q) = -1 - \alpha - \tau \operatorname{tr} \mathbf{M}(q) \tag{52}$$

$$\implies \rho(q) = \exp(-1 - \alpha) \exp(-\tau \operatorname{tr} \mathbf{M}(q)) \tag{53}$$

$$= \frac{1}{Z(\tau)} \det \exp(-\tau \mathbf{M}(q))$$
(54)

where $Z(\tau)$ is obtained as follows:

$$1 = \sum_{q \in \mathbb{Q}} \exp(-1 - \alpha) \exp(-\tau \operatorname{tr} \mathbf{M}(q))$$
 (55)

$$\implies (\exp(-1-\alpha))^{-1} = \sum_{q \in \mathbb{Q}} \exp(-\tau \operatorname{tr} \mathbf{M}(q))$$
(56)

$$Z(\tau) \coloneqq \sum_{q \in \mathbb{Q}} \det \exp(-\tau \mathbf{M}(q))$$
(57)

We note that the trace in the exponential drops down to a determinant, via the relation det exp $A \equiv \exp \operatorname{tr} A$.

The resulting probability measure is:

$$\rho(q,\tau) = \frac{1}{Z(\tau)} \det \exp(-\tau \mathbf{M}(q))$$
(58)

where

$$Z(\tau) = \sum_{q \in \mathbb{Q}} \det \exp(-\tau \mathbf{M}(q))$$
(59)

Posing $\psi(q, \tau) = \exp(-\tau \mathbf{M}(q))$, we can write $\rho(q, \tau) = \det \psi(q, \tau)$, where the determinant acts as a "generalized Born rule", connecting in this case a general linear amplitude to a real number representing a probability.

It is the sophistication afforded by the general linear amplitude along with the determinant as the "generalized Born rule" that allows for this solution to be a quantum theory of gravity.

Let us derive this theory as a general linear gauge theory.

3.2.1 General Linear Gauge

The fundamental invariance group of the general linear wave-function is the orientation-preserving general linear group $\operatorname{GL}^+(n,\mathbb{R})$. Like quantum electrodynamics (via the U(1) gauge) is the archetypal example of QFT, here quantum gravity (via the $\operatorname{GL}^+(n,\mathbb{R})$ gauge) will be the archetypal example of our system.

The exponential term $\exp(-\tau \mathbf{M}(q))$ maps to a one-parameter subgroup of the orientation preserving general linear group:

$$\exp\colon \mathbf{M}_n(\mathbb{R}) \to \mathrm{GL}^+(n,\mathbb{R}) \tag{60}$$

Gauging the $\operatorname{GL}(n, \mathbb{R})$ group is known to produce the Einstein field equations since the resulting $\operatorname{GL}(n, \mathbb{R})$ -valued field can be viewed as the Christoffel symbols Γ^{μ} , and the commutator of the covariant derivatives as the Riemann tensor. This is not a new result and dates back to 1956 by Utiyama[7], and to 1961 by Kibble[8]. The novelty here is that our wave-function is able to accommodate all transformations required to realize general relativity without violating probability conservation laws.

Due to our usage of the determinant, a general linear transformation:

$$\psi'(x) \to g\psi(x)g^{-1} \tag{61}$$

will leave the probability measure of the wave-function invariant, because

$$\det(g\psi(x)g^{-1}) = \det\psi(x) \tag{62}$$

The gauge-covariant derivative associated with this transformation is:

$$D_{\mu}\psi = \partial_{\mu}\psi - [iqA_{\mu}, \psi] \tag{63}$$

Finally, the field is given as follows:

$$R_{\mu\nu} = [D_{\mu}, D_{\nu}] \tag{64}$$

where $R_{\mu\nu}$ is the Riemann tensor.

The resulting Lagrangian is of course the Einstein-Hilbert action which, up to numerical constant, is:

$$S = \int \epsilon_{abcd} R^{ab} \wedge e^c \wedge e^d = \int d^4 x \sqrt{-g} R \tag{65}$$

Consequently, the equations of motion of our quantum field are the Einstein field equations.

4 Foundation of Physics

We are now ready to begin investigating the main result as a general linear quantum theory, in full rigour. To this end, we will now introduce the *algebra* of geometric observables applicable to the general linear wave-function.

The 2D case constitutes a special case whose tools and concepts maps directly with those of ordinary quantum mechanics. The 4D case is significantly less intuitive, but nonetheless will also be investigated.

4.1 Axiomatic Definition of the Algebra, in 2D

Let \mathbb{V} be an *m*-dimensional vector space over $\mathbb{G}(2,\mathbb{R})$. A subset of vectors in \mathbb{V} forms an algebra of observables $\mathcal{A}(\mathbb{V})$ iff the following holds:

A) $\forall \psi \in \mathcal{A}(\mathbb{V})$, the sesquilinear map:

$$\langle \cdot, \cdot \rangle : \mathbb{V} \times \mathbb{V} \longrightarrow \mathbb{G}(2, \mathbb{R})$$

 $\langle \mathbf{u}, \mathbf{v} \rangle \longmapsto \mathbf{u}^{\ddagger} \mathbf{v}$ (66)

is positive-definite when $\mathbf{u} = \mathbf{v}$; that is $\langle \boldsymbol{\psi}, \boldsymbol{\psi} \rangle > 0$

B) $\forall \psi \in \mathcal{A}(\mathbb{V})$, then for each element $\psi(q) \in \psi$, the function:

$$\rho(\psi(q), \boldsymbol{\psi}) = \frac{1}{\langle \boldsymbol{\psi}, \boldsymbol{\psi} \rangle} \psi(q)^{\dagger} \psi(q)$$
(67)

is positive-definite: $\rho(\psi(q), \pmb{\psi}) > 0$

We note the following comments and definitions:

• From A) and B) it follows that $\forall \psi \in \mathcal{A}(\mathbb{V})$, the probabilities sum to unity:

$$\sum_{\psi(q)\in\psi}\rho(\psi(q),\psi) = 1$$
(68)

- ψ is called a *natural* (or physical) state.
- $\langle \boldsymbol{\psi}, \boldsymbol{\psi} \rangle$ is called the *partition function* of $\boldsymbol{\psi}$.
- If $\langle \boldsymbol{\psi}, \boldsymbol{\psi} \rangle = 1$, then $\boldsymbol{\psi}$ is called a unit vector.
- $\rho(q, \psi)$ is called the *probability measure* (or generalized Born rule) of $\psi(q)$.
- The set of all matrices **T** acting on ψ , as $\mathbf{T}\psi \to \psi'$, which leaves the sum of probabilities normalized (invariant):

$$\sum_{\psi(q)\in\psi}\rho(\psi(q),\mathbf{T}\psi) = \sum_{\psi(q)\in\psi}\rho(\psi(q),\psi) = 1$$
(69)

are the *natural* transformations of ψ .

• A matrix **O** such that $\forall \mathbf{u} \forall \mathbf{v} \in \mathcal{A}(\mathbb{V})$:

$$\langle \mathbf{O}\mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{O}\mathbf{v} \rangle$$
 (70)

is called an observable.

• The expectation value of an observable **O** is:

$$\langle \mathbf{O} \rangle = \frac{1}{\langle \psi, \psi \rangle} \langle \mathbf{O}\psi, \psi \rangle$$
 (71)

4.2 Observable in 2D — Self-Adjoint Operator

Let us now investigate the general case of an observable in 2D. A matrix O is an observable iff it is a self-adjoint operator; defined as:

$$\langle \mathbf{O}\boldsymbol{\phi}, \boldsymbol{\psi} \rangle = \langle \boldsymbol{\phi}, \mathbf{O}\boldsymbol{\psi} \rangle \tag{72}$$

 $\forall \mathbf{u} \forall \mathbf{v} \in \mathbb{V}.$

Setup: Let $\mathbf{O} = \begin{bmatrix} \mathbf{o}_{00} & \mathbf{o}_{01} \\ \mathbf{o}_{10} & \mathbf{o}_{11} \end{bmatrix}$ be an observable. Let $\boldsymbol{\phi}$ and $\boldsymbol{\psi}$ be 2 two-state vectors of multi-vectors $\boldsymbol{\phi} = \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix}$ and $\boldsymbol{\psi} = \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix}$. Here, the components $\boldsymbol{\phi}_1$, $\boldsymbol{\phi}_2$, $\boldsymbol{\psi}_1$, $\boldsymbol{\psi}_2$, \mathbf{o}_{00} , \mathbf{o}_{01} , \mathbf{o}_{10} , \mathbf{o}_{11} are multi-vectors of $\mathbb{G}(2,\mathbb{R})$.

Derivation: 1. Let us now calculate $\langle \mathbf{O}\phi, \psi \rangle$:

$$2\langle \mathbf{O}\phi, \psi \rangle = (\mathbf{o}_{00}\phi_{1} + \mathbf{o}_{01}\phi_{2})^{\dagger}\psi_{1} + \psi_{1}^{\dagger}(\mathbf{o}_{00}\phi_{1} + \mathbf{o}_{01}\phi_{2}) + (\mathbf{o}_{10}\phi_{1} + \mathbf{o}_{11}\phi_{2})^{\dagger}\psi_{2} + \psi_{2}^{\dagger}(\mathbf{o}_{10}\phi_{1} + \mathbf{o}_{11}\phi_{2})$$
(73)
$$= \phi_{1}^{\dagger}\mathbf{o}_{0}^{\dagger}\psi_{1} + \phi_{2}^{\dagger}\mathbf{o}_{0}^{\dagger}\psi_{1} + \psi_{1}^{\dagger}\mathbf{o}_{00}\phi_{1} + \psi_{1}^{\dagger}\mathbf{o}_{10}\phi_{2} + \phi_{1}^{\dagger}\mathbf{o}_{10}^{\dagger}\psi_{2} + \phi_{2}^{\dagger}\mathbf{o}_{11}^{\dagger}\psi_{2} + \psi_{2}^{\dagger}\mathbf{o}_{10}\phi_{1} + \psi_{2}^{\dagger}\mathbf{o}_{11}\phi_{2}$$
(74)

2. Now, $\langle \boldsymbol{\phi}, \mathbf{O}\boldsymbol{\psi} \rangle$:

$$2\langle \phi, \mathbf{O}\psi \rangle = \phi_{1}^{\dagger}(\mathbf{o}_{00}\psi_{1} + \mathbf{o}_{01}\psi_{2}) + (\mathbf{o}_{00}\psi_{1} + \mathbf{o}_{01}\psi_{2})^{\dagger}\phi_{1} + \phi_{2}^{\dagger}(\mathbf{o}_{10}\psi_{1} + \mathbf{o}_{11}\psi_{2}) + (\mathbf{o}_{10}\psi_{1} + \mathbf{o}_{11}\psi_{2})^{\dagger}\phi_{1}$$
(75)
$$= \phi_{1}^{\dagger}\mathbf{o}_{00}\psi_{1} + \phi_{1}^{\dagger}\mathbf{o}_{01}\psi_{2} + \psi_{1}^{\dagger}\mathbf{o}_{10}^{\dagger}\phi_{1} + \psi_{2}^{\dagger}\mathbf{o}_{10}^{\dagger}\phi_{1}$$

$$+\phi_{2}^{\dagger}\mathbf{o}_{10}\psi_{1}+\phi_{2}^{\dagger}\mathbf{o}_{11}\psi_{2}+\psi_{1}^{\dagger}\mathbf{o}_{10}^{\dagger}\phi_{1}+\psi_{2}^{\dagger}\mathbf{o}_{11}^{\dagger}\phi_{1}$$
(76)

For $\langle \mathbf{O}\phi, \psi \rangle = \langle \phi, \mathbf{O}\psi \rangle$ to be realized, it follows that these relations must hold:

$$\mathbf{o}_{00}^{\ddagger} = \mathbf{o}_{00} \tag{77}$$

$$\mathbf{o}_{01}^{\ddagger} = \mathbf{o}_{10} \tag{78}$$

$$\mathbf{o}_{10}^{\mathtt{I}} = \mathbf{o}_{01} \tag{79}$$

$$\mathbf{o}_{11}^{\ddagger} = \mathbf{o}_{11} \tag{80}$$

Therefore, it follows that it must be the case that O must be equal to its own Clifford transpose. Thus, O is an observable iff:

$$\mathbf{O}^{\ddagger} = \mathbf{O} \tag{81}$$

which is the equivalent of the self-adjoint operator $\mathbf{O}^{\dagger} = \mathbf{O}$ of complex Hilbert spaces.

The extra geometric sophistication of this geometric observable allows the probability measure to retain invariance over a larger class of geometric transformations than what is possible merely with unitary transformation. These transformations are sufficiently flexible to support gravity while retaining valid observable statistics.

4.3 Observable in 2D — Eigenvalues / Spectral Theorem

Let us show how the spectral theorem applies to $\mathbf{O}^{\ddagger} = \mathbf{O}$, such that its eigenvalues are real. Consider:

$$\mathbf{O} = \begin{bmatrix} a_{00} & a - x\mathbf{e}_1 - y\mathbf{e}_2 - b\mathbf{e}_{12} \\ a + x\mathbf{e}_1 + y\mathbf{e}_2 + b\mathbf{e}_{12} & a_{11} \end{bmatrix}$$
(82)

It follows that $\mathbf{O}^{\ddagger} = \mathbf{O}$:

$$\mathbf{O}^{\ddagger} = \begin{bmatrix} a_{00} & a - x\mathbf{e}_1 - y\mathbf{e}_2 - b\mathbf{e}_{12} \\ a + x\mathbf{e}_1 + y\mathbf{e}_2 + b\mathbf{e}_{12} & a_{11} \end{bmatrix}$$
(83)

This example is the most general 2×2 matrix **O** such that $\mathbf{O}^{\ddagger} = \mathbf{O}$. The eigenvalues are obtained as follows:

$$0 = \det(\mathbf{O} - \lambda \mathbf{I}) = \det \begin{bmatrix} a_{00} - \lambda & a - x\mathbf{e}_1 - y\mathbf{e}_2 - b\mathbf{e}_{12} \\ a + x\mathbf{e}_1 + y\mathbf{e}_2 + b\mathbf{e}_{12} & a_{11} - \lambda \end{bmatrix}$$
(84)

implies:

$$0 = (a_{00} - \lambda)(a_{11} - \lambda) - (a - x\mathbf{e}_1 - y\mathbf{e}_2 - b\mathbf{e}_{12})(a + x\mathbf{e}_1 + y\mathbf{e}_2 + b\mathbf{e}_{12} + a_{11})$$
(85)

$$0 = (a_{00} - \lambda)(a_{11} - \lambda) - (a^2 - x^2 - y^2 + b^2)$$
(86)

finally:

$$\lambda = \left\{ \frac{1}{2} \left(a_{00} + a_{11} - \sqrt{(a_{00} - a_{11})^2 + 4(a^2 - x^2 - y^2 + b^2)} \right),$$
(87)

$$\frac{1}{2} \left(a_{00} + a_{11} + \sqrt{(a_{00} - a_{11})^2 + 4(a^2 - x^2 - y^2 + b^2)} \right)$$
(88)

We note that in the case where $a_{00} - a_{11} = 0$, the roots would be complex iff $a^2 - x^2 - y^2 + b^2 < 0$, but we already stated that the determinant of real matrices

must be greater than zero because the exponential maps to the orientationpreserving general linear group— therefore it is the case that $a^2 - x^2 - y^2 + b^2 > 0$, as this expression is the determinant of the multi-vector. Consequently, $\mathbf{O}^{\ddagger} = \mathbf{O}$ — implies, for orientation-preserving transformations, that its roots are realvalued, and thus constitute a 'geometric' observable in the traditional sense of an observable whose eigenvalues are real-valued.

4.4 Left Action, in 2D

A left action on a wave-function : $\mathbf{T} |\psi\rangle$, connects to the bilinear form as follows: $\langle \psi | \mathbf{T}^{\dagger} \mathbf{T} | \psi \rangle$. The invariance requirement on \mathbf{T} is as follows:

$$\langle \psi | \mathbf{T}^{\ddagger} \mathbf{T} | \psi \rangle = \langle \psi | \psi \rangle \tag{89}$$

We are thus interested in the group of matrices such that:

$$\mathbf{T}^{\ddagger}\mathbf{T} = I \tag{90}$$

Let us consider a two-state system. A general transformation is:

$$\mathbf{T} = \begin{bmatrix} u & v \\ w & x \end{bmatrix} \tag{91}$$

where u, v, w, x are multi-vectors of 2 dimensions. The expression $\mathbf{G}^{\dagger}\mathbf{G}$ is:

$$\mathbf{T}^{\ddagger}\mathbf{T} = \begin{bmatrix} v^{\ddagger} & u^{\ddagger} \\ w^{\ddagger} & x^{\ddagger} \end{bmatrix} \begin{bmatrix} v & w \\ u & x \end{bmatrix} = \begin{bmatrix} v^{\ddagger}v + u^{\ddagger}u & v^{\ddagger}w + u^{\ddagger}x \\ w^{\ddagger}v + x^{\ddagger}u & w^{\ddagger}w + x^{\ddagger}x \end{bmatrix}$$
(92)

For the results to be the identity, it must be the case that:

$$v^{\ddagger}v + u^{\ddagger}u = 1 \tag{93}$$

$$v^{\ddagger}w + u^{\ddagger}x = 0 \tag{94}$$

$$w^{\ddagger}v + x^{\ddagger}u = 0 \tag{95}$$

$$w^{\ddagger}w + x^{\ddagger}x = 1 \tag{96}$$

This is the case if

$$\mathbf{T} = \frac{1}{\sqrt{v^{\ddagger}v + u^{\ddagger}u}} \begin{bmatrix} v & u\\ -e^{\varphi}u^{\ddagger} & e^{\varphi}v^{\ddagger} \end{bmatrix}$$
(97)

where u, v are multi-vectors of 2 dimensions, and where e^{φ} is a unit multi-vector. Comparatively, the unitary case is obtained when the vector part of the multi-vector vanishes $\mathbf{x} \to 0$, and is:

$$\mathbf{U} = \frac{1}{\sqrt{|a|^2 + |b|^2}} \begin{bmatrix} a & b\\ -e^{i\theta}b^{\dagger} & e^{i\theta}a^{\dagger} \end{bmatrix}$$
(98)

We can show that $\mathbf{G}^{\ddagger}\mathbf{G} = I$ as follows:

$$\implies \mathbf{T}^{\dagger}\mathbf{T} = \frac{1}{v^{\dagger}v + u^{\dagger}u} \begin{bmatrix} v^{\dagger} & -e^{-\varphi}u \\ u^{\dagger} & e^{-\varphi}v \end{bmatrix} \begin{bmatrix} v & u \\ -e^{\varphi}u^{\dagger} & e^{\varphi}v^{\dagger} \end{bmatrix}$$
(99)

$$= \frac{1}{v^{\dagger}v + u^{\dagger}u} \begin{bmatrix} v^{\dagger}v + u^{\dagger}u & v^{\dagger}u - v^{\dagger}u \\ u^{\dagger}v - u^{\dagger}v & u^{\dagger}u + v^{\dagger}v \end{bmatrix}$$
(100)

$$=I \tag{101}$$

In the case where **T** and $|\psi\rangle$ are *n*-dimensional, we can find an expression for it starting from a diagonal matrix:

$$\mathbf{D} = \begin{bmatrix} e^{x_1 \hat{\mathbf{x}} + y_1 \hat{\mathbf{y}} + ib_1} & 0\\ 0 & e^{x_2 \hat{\mathbf{x}} + y_2 \hat{\mathbf{y}} + ib_2} \end{bmatrix}$$
(102)

where $\mathbf{T} = P\mathbf{D}P^{-1}$. It follows quite easily that $D^{\ddagger}D = I$, because each diagonal entry produces unity: $e^{-x_1\hat{\mathbf{x}}-y_1\hat{\mathbf{y}}-ib_1}e^{x_1\hat{\mathbf{x}}+y_1\hat{\mathbf{y}}+ib_1} = 1$.

4.5 Adjoint Action, in 2D

The left action case can recover at most the special linear group. For the general linear group itself, we require the adjoint action. Since the elements of $|\psi\rangle$ are matrices, in the general case, the transformation is given by adjoint action:

$$\mathbf{T} \ket{\psi} \mathbf{T}^{-1} \tag{103}$$

The bilinear form is:

$$(\mathbf{T} | \psi \rangle \mathbf{T}^{-1})^{\ddagger} (\mathbf{T} | \psi \rangle \mathbf{T}^{-1}) = (\mathbf{T}^{-1})^{\ddagger} \langle \psi | \mathbf{T}^{\ddagger} \mathbf{T} | \psi \rangle \mathbf{T}^{-1}$$
(104)

and the invariance requirement on ${\bf T}$ is as follows:

$$(\mathbf{T}^{-1})^{\ddagger} \langle \psi | \mathbf{T}^{\ddagger} \mathbf{T} | \psi \rangle \mathbf{T}^{-1} = \langle \psi | \psi \rangle$$
(105)

With a diagonal matrix, this occurs for general linear transformations:

$$\mathbf{D} = \begin{bmatrix} e^{a_1 + x_1 \hat{\mathbf{x}} + y_1 \hat{\mathbf{y}} + ib_1} & 0 & 0\\ 0 & e^{a_2 + x_2 \hat{\mathbf{x}} + y_2 \hat{\mathbf{y}} + ib_2} & 0\\ 0 & 0 & \ddots \end{bmatrix}$$
(106)

where $\mathbf{T} = P\mathbf{D}P^{-1}$.

Taking a single diagonal entry as an example, the reduction is:

$$e^{-a_1+x_1\hat{\mathbf{x}}+y_1\hat{\mathbf{y}}+ib_1}\psi_1^{\ddagger}e^{a_1-x_1\hat{\mathbf{x}}-y_1\hat{\mathbf{y}}-ib_1}e^{a_1+x_1\hat{\mathbf{x}}+y_1\hat{\mathbf{y}}+ib_1}\psi_1e^{-a_1-x_1\hat{\mathbf{x}}-y_1\hat{\mathbf{y}}-ib_1}$$
(107)

$$=e^{-a_1+x_1\hat{\mathbf{x}}+y_1\hat{\mathbf{y}}+ib_1}\psi_1^{\dagger}e^{2a_1}\psi_1e^{-a_1-x_1\hat{\mathbf{x}}-y_1\hat{\mathbf{y}}-ib_1}$$
(108)

We note that $\psi^{\ddagger}\psi$ is a scalar, therefore

$$=\psi_1^{\dagger}\psi_1 e^{2a_1} e^{-a_1+x_1\hat{\mathbf{x}}+y_1\hat{\mathbf{y}}+ib_1} e^{-a_1-x_1\hat{\mathbf{x}}-y_1\hat{\mathbf{y}}-ib_1}$$
(109)

$$=\psi_1^{\dagger}\psi_1 e^{2a_1} e^{-a_1} e^{-a_1} = \psi_1^{\dagger}\psi_1 \tag{110}$$

4.6 Algebra of Geometric Observables, in 4D

We will now consider the general case for a vector space over 4×4 matrices.

In 2D we were able to extend the complex Hilbert space to a "geometric Hilbert space" and we found that the familiar properties of complex Hilbert spaces were translatable to the geometry of the general linear group; essentially it amounted to changing a few symbols and tweaking a few definitions.

In 4D we will not have this benefit.

The main roadblock is that unlike the 2D case whose determinant is given by $\psi^{\dagger}\psi$, and thus can be interpreted as an inner product of two vectors, in 4D we need four multiplicand $[\psi^{\dagger}\psi]_{3,4}\psi^{\dagger}\psi$. As such, we are unable to produce a sesquilinear form of the inner product as we did for the 2D case. Since there is no satisfactory inner product, therefore there is no Hilbert space in the usual sense of a complete inner product space.

Nonetheless, the "features" of quantum mechanics (wave-function measurements, linear transformations, observables as matrix or operators, interference patterns in the probability measure, etc) remain present in the 4D case.

So if not a complete inner product space, what space supports the general linear wave-function in 4D?

We can create a "tensor extension" to the Hilbert space. In this case the role of the inner product is adopted by a rank 4 tensor linking four vectors to an element of $\mathbb{G}(4,\mathbb{R})$. In this environment the typical concepts of quantum mechanics have equivalences, and the sophistication of rank 4 tensor Hilbert space allows the wave-function to accommodate all transformation required by general relativity while retaining consistent probabilities for observables.

Let \mathbb{V} be a *m*-dimensional vector space over the 4×4 real matrices. A subset of vectors in \mathbb{V} forms an algebra of observables $\mathcal{A}(\mathbb{V})$ iff the following holds:

1. $\forall \psi \in \mathcal{A}(\mathbb{V})$, the quadri-sesquilinear form:

$$\langle \cdot, \cdot, \cdot, \cdot \rangle \quad : \qquad \mathbb{V} \times \mathbb{V} \times \mathbb{V} \times \mathbb{V} \longrightarrow \mathbb{G}(4, \mathbb{R}) \langle \mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x} \rangle \longmapsto \sum_{i=1}^{m} \lfloor u_i^{\dagger} v_i \rfloor_{3,4} w_i^{\dagger} x_i$$
(111)

is positive-definite when $\mathbf{u} = \mathbf{v} = \mathbf{w} = \mathbf{x}$; that is $\langle \boldsymbol{\psi}, \boldsymbol{\psi}, \boldsymbol{\psi}, \boldsymbol{\psi} \rangle > 0$

2. $\forall \psi \in \mathcal{A}(\mathbb{V})$, then for each element $\psi(q) \in \psi$, the function:

$$\rho(\psi(q), \psi) = \frac{1}{\langle \psi, \psi, \psi, \psi \rangle} \det \psi(q)$$
(112)

is positive-definite: $\rho(\psi(q), \psi) > 0$

We note the following properties, features and comments:

• From A) and B) it follows that $\forall \psi \in \mathcal{A}(\mathbb{V})$, the probabilities sum to unity:

$$\sum_{\psi(q)\in\psi}\rho(\psi(q),\psi) = 1$$
(113)

- ψ is called a *natural* (or physical) state.
- $\langle \psi, \psi, \psi, \psi \rangle$ is called the *partition function* of ψ .
- If $\langle \psi, \psi, \psi, \psi \rangle = 1$, then ψ is called a unit vector.
- $\rho(\psi(q), \psi)$ is called the *probability measure* (or generalized Born rule) of $\psi(q)$.
- The set of all matrices **T** acting on ψ such as $\mathbf{T}\psi \rightarrow \psi'$ which leaves the sum of probabilities normalized (invariant):

$$\sum_{\psi(q)\in\psi}\rho(\psi(q),\mathbf{T}\psi) = \sum_{\psi(q)\in\psi}\rho(\psi(q),\psi) = 1$$
(114)

are the *natural* transformations of ψ .

• A matrix **O** such that $\forall \mathbf{u} \forall \mathbf{v} \forall \mathbf{w} \forall \mathbf{x} \in \mathbb{V}$:

$$\langle \mathbf{O}\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x} \rangle = \langle \mathbf{u}, \mathbf{O}\mathbf{v}, \mathbf{w}, \mathbf{x} \rangle = \langle \mathbf{u}, \mathbf{v}, \mathbf{O}\mathbf{w}, \mathbf{x} \rangle = \langle \mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{O}\mathbf{x} \rangle$$
 (115)

is called an observable.

• The expectation value of an observable ${\bf O}$ is:

$$\langle \mathbf{O} \rangle = \frac{\langle \mathbf{O} \psi, \psi, \psi, \psi \rangle}{\langle \psi, \psi, \psi, \psi \rangle} \tag{116}$$

Let us now recover quantum field theory and particles physics.

4.6.1 The Observables

In 4D, an observable must satisfy equation 116:

$$\lfloor (\mathbf{O}\psi)^{\dagger}\psi \rfloor_{3,4}\psi^{\dagger}\psi = \lfloor \psi^{\dagger}\mathbf{O}\psi \rfloor_{3,4}\psi^{\dagger}\psi = \lfloor \psi^{\dagger}\psi \rfloor_{3,4}(\mathbf{O}\psi)^{\dagger}\psi = \lfloor \psi^{\dagger}\psi \rfloor_{3,4}\psi^{\dagger}\mathbf{O}\psi$$
(117)

$$\lfloor \psi^{\dagger}\mathbf{O}^{\dagger}\psi \rfloor_{3,4}\psi^{\dagger}\psi = \lfloor \psi^{\dagger}\mathbf{O}\psi \rfloor_{3,4}\psi^{\dagger}\psi = \lfloor \psi^{\dagger}\psi \rfloor_{3,4}\psi^{\dagger}\mathbf{O}^{\dagger}\psi = \lfloor \psi^{\dagger}\psi \rfloor_{3,4}\psi^{\dagger}\mathbf{O}\psi$$
(118)

Since the middle terms cancel $[\psi]_{3,4}\psi^{\ddagger} = 1$, the relations can be simplified to:

$$e^{2a} \lfloor \psi^{\ddagger} \mathbf{O}^{\ddagger} \rfloor_{3,4} \psi = e^{2a} \lfloor \psi^{\ddagger} \mathbf{O} \rfloor_{3,4} \psi = e^{2a} \lfloor \psi^{\ddagger} \rfloor_{3,4} \mathbf{O}^{\ddagger} \psi = e^{2a} \lfloor \psi^{\ddagger} \rfloor_{3,4} \mathbf{O} \psi$$
(119)

It follows that an observable must satisfy:

$$[\mathbf{O}^{\ddagger}]_{3,4} = [\mathbf{O}]_{3,4} = \mathbf{O}^{\ddagger} = \mathbf{O}$$
(120)

This is readily satisfied in two cases: a complex and a bi-vector case.

- 1. In the first case, if $\mathbf{O} \in \mathbb{C}^{n \times n}$ then the relations are satisfied if \mathbf{O} is self adjoint: $\mathbf{O}^{\dagger} = \mathbf{O}$ and the invariance group is unitary $U^{\dagger}U = I$.
- 2. In the second case, if **O** is a bi-vector, it is satisfied if $\mathbf{O}^{\ddagger} = \mathbf{O}$ and the invariance group is $F^{\ddagger}F = I$.

As we will see, the first case corresponds to the $SU(2) \times U(1)$ group and the second part to the SU(3) group.

4.6.2 The SU(2)xU(1) Group

Let $\mathbf{u} = a + \mathbf{x} + \mathbf{f} + \mathbf{v} + \mathbf{b}$ be an arbitrary multi-vector of $\mathbb{G}(4, \mathbb{R})$, let \mathbf{M} be its matrix representation, and let ψ be the general linear wave-function.

We now introduce the following definitions:

$$\phi(q) := \psi(q)^2 \tag{121}$$

$$\tilde{\phi}(q) := (\psi(q)^2)^{\ddagger} \tag{122}$$

In the David Hestenes' notation[9], the quantities ϕ and $\tilde{\phi}$ are intended to represent the wave-function and its reverse. However, here ϕ is allowed to be the exponential of an arbitrary multi-vector **u**; unless restricted, the Dirac current will not be invariant with respect to the set of all possible transformations $\phi \mapsto e^{\mathbf{u}}\phi$, and the definition of the Dirac current $\tilde{\phi}\gamma_0\phi$ will not be realized. We now wish to restrict the set of multi-vectors $e^{\mathbf{u}}$ to those which realizes the David Hestenes' definition of the current and remains invariant upon a transformation.

Let us investigate.

We note that **x** and **v** anti-commute with γ_0 , and therefore must be equal to 0 as they would otherwise not cancel out. We also note that the bi-vectors of **u** have basis $\gamma_0\gamma_1, \gamma_0\gamma_2, \gamma_0\gamma_3, \gamma_1\gamma_2, \gamma_1\gamma_3, \gamma_2\gamma_3$; of those, only $\gamma_1\gamma_2, \gamma_1\gamma_3, \gamma_2\gamma_3$ commute with γ_0 ; the rest must therefore be equal to 0. Finally, the pseudoscalar anti-commutes with γ_0 but this is fine as it must cancel in the Dirac current. The most general multi-vector which realizes the definition is:

$$\mathbf{u} \to a + F_{12}\gamma_1\gamma_2 + F_{13}\gamma_1\gamma_3 + F_{23}\gamma_2\gamma_3 + b\gamma_0\gamma_1\gamma_2\gamma_3 \tag{123}$$

We can better see its physical significance by noting that $\gamma_1 \gamma_2 = I \sigma_3$, $\gamma_1 \gamma_3 = I \sigma_2$ and $\gamma_2 \gamma_3 = I \sigma_1$. The resulting multi-vector is unitary and is equal to:

$$U = e^{\mathbf{u}} = e^{\frac{1}{2}I(F_{23}\sigma_1 + F_{13}\sigma_2 + F_{12}\sigma_3 + b)}$$
(124)

The terms $F_{23}\sigma_1 + F_{13}\sigma_2 + F_{12}\sigma_3$ are responsible for a SU(2) symmetry and b for a U(1) symmetry; and this is simply the electroweak sector[10, 11].

We can now interpret the SU(2) × U(1) to be the product of quantum gravity "casted" into the sub-algebra $\tilde{\phi}$ and ϕ ; the "casting" reduces the set of all multivector transformations $\phi = e^{\mathbf{u}}$ otherwise permissible in quantum gravity to only those which leaves the Dirac current $\tilde{\phi}\gamma_0\phi$ invariant. The resulting multi-vectors form the SU(2) × U(1) group.

4.6.3 The SU(3) Group

Let us now investigate the second case.

Let \mathbf{f} be a bi-vector:

$$\mathbf{f} = F_{01}\gamma_0\gamma_1 + F_{02}\gamma_2\gamma_0 + F_{03}\gamma_0\gamma_3 + F_{23}\gamma_2\gamma_3 + F_{13}\gamma_1\gamma_3 + F_{12}\gamma_1\gamma_2 \tag{125}$$

alternatively, we can write \mathbf{f} as follows:

$$\mathbf{f} = (F_{01} + \mathbf{i}F_{23})\gamma_0\gamma_1 + (F_{02} + \mathbf{i}F_{13})\gamma_2\gamma_0 + (F_{03} + \mathbf{i}F_{12})\gamma_0\gamma_3$$
(126)

where **i** is the $\mathbb{G}(4, \mathbb{R})$ pseudo-scalar. The current $F^{\ddagger}\gamma_0 F$ is:

$$F^{\dagger}\gamma_{0}F = -F\gamma_{0}F = (F_{01}^{2} + F_{02}^{2} + F_{03}^{2} + F_{13}^{2} + F_{23}^{2} + F_{12}^{2})\gamma_{0}$$
(127)

$$+\left(-2F_{02}F_{12}+2F_{03}F_{13}\right)\gamma_1\tag{128}$$

$$+ \left(-2F_{01}F_{12} + 2F_{03}F_{23}\right)\gamma_2 \tag{129}$$

$$+ \left(-2F_{01}F_{13} + 2F_{02}E_{23}\right)\gamma_3 \tag{130}$$

For $F^{\ddagger}\gamma_0 F$ to be the Dirac current $\rho\gamma_0$, the cross-product must vanish leaving only:

$$F^{\dagger}\gamma_0 F = (F_{01}^2 + F_{02}^2 + F_{03}^2 + F_{13}^2 + F_{23}^2 + F_{12}^2)\gamma_0$$
(131)

which is the SU(3) group.

With the previous $SU(2) \times U(1)$ result (case 1), and now with SU(3) (case 2), the geometric observables in 4D thus produces the symmetry group of the standard model of particle physics, while leaving very little wiggle room for anything different.

4.7 A Step Towards Falsifiable Predictions

Let us now list a number falsifiable predictions.

The main idea is that a general linear wave-function would allow a larger class of interference patterns than what is possible merely with complex interference. We note the work of B. I. Lev[12] treating the interference pattern associated with the geometric algebra formulation of the wave-function.

As a secondary idea, it is also plausible that an Aharonov–Bohm effect experiment on gravity[13] could detect a general linear phase.

An interference pattern follows from a linear combination of \mathbf{u} and \mathbf{v} , and the application of the determinant:

$$det(\mathbf{u} + \mathbf{v}) = det \,\mathbf{u} + det \,\mathbf{v} + extra-terms \tag{132}$$

The sum det \mathbf{u} +det \mathbf{v} are a sum of probability and the extra terms represents the interference term.

We use the extra-terms to define a bilinear form using the dot product notation, as follows:

$$\cdot : \qquad \mathbb{G}(2n,\mathbb{R}) \times \mathbb{G}(2n,\mathbb{R}) \longrightarrow \mathbb{R}$$
(133)

$$\mathbf{u} \cdot \mathbf{v} \longmapsto \frac{1}{2} (\det(\mathbf{u} + \mathbf{v}) - \det \mathbf{u} - \det \mathbf{v})$$
 (134)

For example in 2D, we have:

$$\mathbf{u} = a_1 + x_1 \mathbf{e}_1 + y_1 \mathbf{e}_2 + b_1 \mathbf{e}_{12} \tag{135}$$

$$\mathbf{v} = a_2 + x_2 \mathbf{e}_1 + y_2 \mathbf{e}_2 + b_2 \mathbf{e}_{12} \tag{136}$$

$$\implies \mathbf{u} \cdot \mathbf{v} = a_1 a_2 + b_1 b_2 - x_1 x_2 - y_1 y_2 \tag{137}$$

Iff det $\mathbf{u} > 0$ and det $\mathbf{v} > 0$ then $\mathbf{u} \cdot \mathbf{v}$ is always positive, and therefore qualifies as a positive-definite inner product, but no greater than either det \mathbf{u} or det \mathbf{v} , whichever is greater; thus also satisfying the conditions of an interference term.

• In 2D the dot product is equivalent to this form:

$$\frac{1}{2}(\det(\mathbf{u} + \mathbf{v}) - \det \mathbf{u} - \det \mathbf{v}) = \frac{1}{2}\left((\mathbf{u} + \mathbf{v})^{\ddagger}(\mathbf{u} + \mathbf{v}) - \mathbf{u}^{\ddagger}\mathbf{u} - \mathbf{v}^{\ddagger}\mathbf{v}\right)$$
(138)
$$= \mathbf{u}^{\ddagger}\mathbf{u} + \mathbf{u}^{\ddagger}\mathbf{v} + \mathbf{v}^{\ddagger}\mathbf{u} + \mathbf{v}^{\ddagger}\mathbf{v} - \mathbf{u}^{\ddagger}\mathbf{u} - \mathbf{v}^{\ddagger}\mathbf{v}$$
(139)
$$= \mathbf{u}^{\ddagger}\mathbf{v} + \mathbf{v}^{\ddagger}\mathbf{u}$$
(140)

• In 4D it is substantially more verbose:

$$\frac{1}{2}(\det(\mathbf{u} + \mathbf{v}) - \det \mathbf{u} - \det \mathbf{v})$$
(141)

$$= \frac{1}{2} \left(\lfloor (\mathbf{u} + \mathbf{v})^{\ddagger} (\mathbf{u} + \mathbf{v}) \rfloor_{3,4} (\mathbf{u} + \mathbf{v})^{\ddagger} (\mathbf{u} + \mathbf{v}) - \lfloor \mathbf{u}^{\ddagger} \mathbf{u} \rfloor_{3,4} \mathbf{u}^{\ddagger} \mathbf{u} - \lfloor \mathbf{v}^{\ddagger} \mathbf{v} \rfloor_{3,4} \mathbf{v}^{\ddagger} \mathbf{v} \right)$$
(142)
$$= \frac{1}{2} \left(\lfloor \mathbf{u}^{\ddagger} \mathbf{u} + \mathbf{u}^{\ddagger} \mathbf{v} + \mathbf{v}^{\ddagger} \mathbf{u} + \mathbf{v}^{\ddagger} \mathbf{v} \rfloor_{3,4} (\mathbf{u}^{\ddagger} \mathbf{u} + \mathbf{u}^{\ddagger} \mathbf{v} + \mathbf{v}^{\ddagger} \mathbf{u} + \mathbf{v}^{\ddagger} \mathbf{v}) - \dots \right)$$
(143)

$$= [\mathbf{u}^{\dagger}\mathbf{u}]_{3,4}\mathbf{u}^{\dagger}\mathbf{u} + [\mathbf{u}^{\dagger}\mathbf{u}]_{3,4}\mathbf{u}^{\dagger}\mathbf{v} + [\mathbf{u}^{\dagger}\mathbf{u}]_{3,4}\mathbf{v}^{\dagger}\mathbf{u} + [\mathbf{u}^{\dagger}\mathbf{u}]_{3,4}\mathbf{v}^{\dagger}\mathbf{v} + [\mathbf{u}^{\dagger}\mathbf{v}]_{3,4}\mathbf{u}^{\dagger}\mathbf{u} + [\mathbf{u}^{\dagger}\mathbf{v}]_{3,4}\mathbf{u}^{\dagger}\mathbf{v} + [\mathbf{u}^{\dagger}\mathbf{v}]_{3,4}\mathbf{v}^{\dagger}\mathbf{u} + [\mathbf{u}^{\dagger}\mathbf{v}]_{3,4}\mathbf{v}^{\dagger}\mathbf{v} + [\mathbf{v}^{\dagger}\mathbf{u}]_{3,4}\mathbf{u}^{\dagger}\mathbf{u} + [\mathbf{v}^{\dagger}\mathbf{u}]_{3,4}\mathbf{u}^{\dagger}\mathbf{v} + [\mathbf{v}^{\dagger}\mathbf{u}]_{3,4}\mathbf{v}^{\dagger}\mathbf{u} + [\mathbf{v}^{\dagger}\mathbf{u}]_{3,4}\mathbf{v}^{\dagger}\mathbf{v} + [\mathbf{v}^{\dagger}\mathbf{v}]_{3,4}\mathbf{u}^{\dagger}\mathbf{u} + [\mathbf{v}^{\dagger}\mathbf{v}]_{3,4}\mathbf{u}^{\dagger}\mathbf{v} + [\mathbf{v}^{\dagger}\mathbf{v}]_{3,4}\mathbf{v}^{\dagger}\mathbf{u} + [\mathbf{v}^{\dagger}\mathbf{v}]_{3,4}\mathbf{v}^{\dagger}\mathbf{v} + [\mathbf{v}^{\dagger}\mathbf{v}]_{3,4}\mathbf{u}^{\dagger}\mathbf{u} + [\mathbf{v}^{\dagger}\mathbf{v}]_{3,4}\mathbf{u}^{\dagger}\mathbf{v} + [\mathbf{v}^{\dagger}\mathbf{v}]_{3,4}\mathbf{v}^{\dagger}\mathbf{u} + [\mathbf{v}^{\dagger}\mathbf{v}]_{3,4}\mathbf{v}^{\dagger}\mathbf{v} - \dots$$
(144)

$$= [\mathbf{u}^{\dagger}\mathbf{u}]_{3,4}\mathbf{u}^{\dagger}\mathbf{v} + [\mathbf{u}^{\dagger}\mathbf{u}]_{3,4}\mathbf{v}^{\dagger}\mathbf{u} + [\mathbf{u}^{\dagger}\mathbf{u}]_{3,4}\mathbf{v}^{\dagger}\mathbf{v}$$

$$+ [\mathbf{u}^{\dagger}\mathbf{v}]_{3,4}\mathbf{u}^{\dagger}\mathbf{u} + [\mathbf{u}^{\dagger}\mathbf{v}]_{3,4}\mathbf{u}^{\dagger}\mathbf{v} + [\mathbf{u}^{\dagger}\mathbf{v}]_{3,4}\mathbf{v}^{\dagger}\mathbf{u} + [\mathbf{u}^{\dagger}\mathbf{v}]_{3,4}\mathbf{v}^{\dagger}\mathbf{v}$$

$$+ [\mathbf{v}^{\dagger}\mathbf{u}]_{3,4}\mathbf{u}^{\dagger}\mathbf{u} + [\mathbf{v}^{\dagger}\mathbf{u}]_{3,4}\mathbf{u}^{\dagger}\mathbf{v} + [\mathbf{v}^{\dagger}\mathbf{u}]_{3,4}\mathbf{v}^{\dagger}\mathbf{u} + [\mathbf{v}^{\dagger}\mathbf{u}]_{3,4}\mathbf{v}^{\dagger}\mathbf{v}$$

$$+ [\mathbf{v}^{\dagger}\mathbf{v}]_{3,4}\mathbf{u}^{\dagger}\mathbf{u} + [\mathbf{v}^{\dagger}\mathbf{v}]_{3,4}\mathbf{u}^{\dagger}\mathbf{v} + [\mathbf{v}^{\dagger}\mathbf{v}]_{3,4}\mathbf{v}^{\dagger}\mathbf{u}$$
(145)

Simpler version of this interference pattern are possible when the general linear group is reduced.

Complex interference:

For instance, a reduction to the circle group, likewise reduces the interference pattern to complex interference:

$$|\psi_1 + \psi_2|^2 = |\psi_1|^2 + |\psi_2|^2 + 2|\psi_1||\psi_2|\cos(\phi_1 - \phi_2)$$
(146)

Deep spinor interference:

A reduction to the spinor group, reduces the interference pattern to a "deep spinor rotation".

Consider a two-state wave-function (we note that $[{\bf f}, {\bf b}]=0):$

$$\psi = \psi_1 + \psi_2 = e^{a_1} e^{\mathbf{f}_1} e^{\mathbf{b}_1} + e^{a_2} e^{\mathbf{f}_2} e^{\mathbf{b}_2} \tag{147}$$

The geometric interference pattern for a full general linear transformation in 4D is given by the product:

$$\lfloor \psi^{\ddagger} \psi \rfloor_{3,4} \psi^{\ddagger} \psi \tag{148}$$

Let us start with the sub-product:

$$\psi^{\dagger}\psi = (e^{a_1}e^{-\mathbf{f}_1}e^{\mathbf{b}_1} + e^{a_2}e^{-\mathbf{f}_2}e^{\mathbf{b}_2})(e^{a_1}e^{\mathbf{f}_1}e^{\mathbf{b}_1} + e^{a_2}e^{\mathbf{f}_2}e^{\mathbf{b}_2})$$
(149)
= $e^{a_1}e^{-\mathbf{f}_1}e^{\mathbf{b}_1}e^{a_1}e^{\mathbf{f}_1}e^{\mathbf{b}_1} + e^{a_1}e^{-\mathbf{f}_1}e^{\mathbf{b}_1}e^{a_2}e^{\mathbf{f}_2}e^{\mathbf{b}_2}$

$$+ e^{a_2} e^{-\mathbf{f}_2} e^{\mathbf{b}_2} e^{a_1} e^{\mathbf{f}_1} e^{\mathbf{b}_1} + e^{a_2} e^{-\mathbf{f}_2} e^{\mathbf{b}_2} e^{a_2} e^{\mathbf{f}_2} e^{\mathbf{b}_2}$$
(150)

$$= e^{2a_1}e^{2\mathbf{b}_1} + e^{2a_2}e^{2\mathbf{b}_2} + e^{a_1+a_2}e^{\mathbf{b}_1+\mathbf{b}_2}(e^{-\mathbf{f}_1}e^{\mathbf{f}_2} + e^{-\mathbf{f}_2}e^{\mathbf{f}_1})$$
(151)

The full product is:

Finally, we stress that the general linear interference pattern occurs in context of quantum gravity, as ordinary quantum field theory reduces to typical complex interference.

5 Discussion

In contrast to the multiple interpretations quantum mechanics, the interpretation of statistical mechanics is free of paradoxes, is singular and is generally considered palatable. Here, we have recovered the foundations of quantum mechanics as a solution of statistical mechanics; a paradox-free interpretation will now be inherited from it.

The resulting interpretation of quantum mechanics is minimal, essential, free of all paradoxes, palatable and complete:

Definition 9 (Interpretation). In nature, there exists instruments that record sequences of measurements on systems, those measurements are unique up to a geometric phase, and the wave-function along with the Born rule are the entropy-maximizing measure constrained by those measurements.

Let us discuss the interpretation.

In statistical mechanics, one first assumes that an instrument measures a system. For instance, one can think of an energy-meter or volume-meter producing a sequence of measurements whose average converges towards an expectation value. This expectation value then constitutes a constraint on the entropy.

But nature allows for richer measurements and instrumentations than what is possible to express with simple "scalar" instruments. For instance, the meter, the clock and the protractor also admit numerical measurements, but such contain a geometric phase invariance such as a Lorentz invariance.

In this work, we have interpreted the trace as the expectation value of the eigenvalues of a matrix transformation times the dimension of the vector space. Maximizing the entropy under the constraint of this expectation value introduces various phase-invariances into the resulting probability measure. Specifically, the constraint tr $\begin{bmatrix} 0 & -\overline{b} \\ \overline{b} & 0 \end{bmatrix} = \sum_{q \in \mathbb{Q}} \operatorname{tr} \rho(q) \begin{bmatrix} 0 & -b(q) \\ b(q) & 0 \end{bmatrix}$ induces a complex phase-invariance into the probability measure $\rho(q) = |\exp(-i\tau b(q))|^2$ giving rise to the Born rule and the wave-function, and the constraint tr $\overline{\mathbf{M}} = \sum_{q \in \mathbb{Q}} \operatorname{tr} \rho(q) \mathbf{M}(q)$ induces a general linear phase-invariance in the probability measure $\rho(q) = \det \exp(-\tau \mathbf{M}(q))$ giving rise to a quantum theory of gravity. In each cases, we can interpret the constraint as an instrument acting on the system. In the case of the complex phase we associate the constraint to a incidence counter measuring a particle or a photon, and in the case of the general linear phase of coordinates, and specifically its group reduction to the Lorentz group, we associate the constraint and its phase-invariance to a measurement of a geometric transformation that is Lorentz invariant.

The complete correspondence between an ordinary system of statistical mechanics and ours is as follows:

		1
Concept	Statistical Mechanics	Geometric Constraint (Ours)
Entropy	Boltzmann	Shannon
Measure	Gibbs	Born rule on wave-function
Constraint	Energy meter	Phase-invariant instrument
Micro-state	Energy values	Possible measurements
Macro-state	Equation of state	Evolution of the wave-function
Experience	Ergodic	Message of measurements

Table 1: Correspondence

In the correspondence, the usage of the Shannon entropy instead of the Boltzmann entropy changes the experience from ergodic to a message (in the sense of the theory of communication of Claude Shannon[14]) of measurements. The receipt of such a message is interpreted as the registration of a 'click'[15] on a screen or other detecting instrument. Quantum physics can be interpreted

as the probability measure resulting from maximizing the entropy of a message of geometrically invariant measurements.

The probabilistic interpretation of the wave-function via the Born rule is inherited from statistical mechanics and results from having maximized the entropy under geometric constraints. The wave-function is also entailed, hence it is not taken as axiomatic either. Rather, it is the registration of a measurement by an instrument along with the geometric constraints on the entropy that are axiomatic.

The axiom of quantum mechanics are recoverable as theorems from the solution $\frac{\partial \mathcal{L}}{\partial \rho} = 0$ for ρ , where:

$$\mathcal{L} = -\sum_{q \in \mathbb{Q}} \rho(q) \ln \rho(q) + \lambda \left(1 - \sum_{q \in \mathbb{Q}} \rho(q) \right) + \tau \left(\operatorname{tr} \overline{\mathbf{M}} - \sum_{q \in \mathbb{Q}} \rho(q) \operatorname{tr} \mathbf{M}(q) \right)$$
(160)

The new axioms are now the geometric constraint, the entropy maximization procedure and the typical foundation of statistical mechanics.

What about the wave-function collapse problem?

Specifically, the mathematical foundation of quantum mechanics contains the following axiom: If the measurement of a quantity **O** on ψ gives the result o_n , then the state immediately after measurement is given by the normalized projection of ψ onto the eigensubspace of o_n :

$$\psi \implies \frac{P_n |\psi\rangle}{\sqrt{\langle\psi| P_n |\psi\rangle}} \tag{161}$$

Is this axiom also dissolved? Yes: here, the measurement problem is reversed; since the wave-function is derived from the entropy using already registered measurements, it never needs to updated from an uncollapsed state to a collapsed state. The wave-function is a measure derived consistently with the measurements that have been made by maximizing the entropy. The collapse problem is a symptom of attributing an ontology to the wave-function; but the ontology belongs to the instruments and its measurements.

In our interpretation, and before the wave-function enters the picture, measurements are assumed to have already been registered by an instrument and are associated to a geometric constraint. It is this constraint that is axiomatic. Registering new measurements does not entail that a wave-function has collapsed; only that we need to adjust the constraint and derive a new wave-function consistent with them. Just like throwing a coin and observing it to land on head does not entail that a probability measure has collapsed; rather observing new coin flips (and perhaps noting a bias) may cause us to adjust the measure consistent with the new flips. The measurements are used to derive the probability measure, not the other way around.

Under an arbitrary geometric constraint, the method yields a quantum theory of gravity, a wave-function of the general linear group and a Born rule extended to the determinant. The wave-function, if then parametrized in $\mathbb{R}^{3,1}$, represents an instruction, or superposition thereof, to transform the frame bundle at each event in space-time. Finally, gauging the group of these transformations produces the Einstein field equations as the equations of motion of the quantum field. We also state that casting the general linear wave-function into the definition of the Dirac current, reduces the theory to a quantum field theory of the SU(2) × U(1) group for the first satisfying case of the 4D observable and SU(3) for the second satisfying case, thus recovering the group symmetries associated with the standard model while leaving little wiggle room for anything else.

References

- Ted Jacobson. Thermodynamics of spacetime: the einstein equation of state. *Physical Review Letters*, 75(7):1260, 1995.
- [2] Jacob D Bekenstein. Black-hole thermodynamics. *Physics Today*, 33(1):24– 31, 1980.
- [3] Erik Verlinde. On the origin of gravity and the laws of newton. Journal of High Energy Physics, 2011(4):1–27, 2011.
- [4] Makoto Yamashita (https://mathoverflow.net/users/9942/makoto yamashita). Geometric interpretation of trace. MathOverflow. URL:https://mathoverflow.net/q/46447 (version: 2016-05-17).
- [5] Frederick Reif. Fundamentals of statistical and thermal physics. Waveland Press, 2009.
- [6] Douglas Lundholm and Lars Svensson. Clifford algebra, geometric algebra, and applications. arXiv preprint arXiv:0907.5356, 2009.
- [7] Ryoyu Utiyama. Invariant theoretical interpretation of interaction. *Physical Review*, 101(5):1597, 1956.
- [8] Tom WB Kibble. Lorentz invariance and the gravitational field. Journal of mathematical physics, 2(2):212–221, 1961.
- [9] David Hestenes. Spacetime physics with geometric algebra. American Journal of Physics, 71(7):691-714, 2003.
- [10] David Hestenes. Space-time structure of weak and electromagnetic interactions. Foundations of Physics, 12(2):153–168, 1982.
- [11] Anthony Lasenby. Some recent results for su(3) and octonions within the geometric algebra approach to the fundamental forces of nature. arXiv preprint arXiv:2202.06733, 2022.

- [12] I Bohdan et al. Wave function as geometric entity. *Journal of Modern Physics*, 2012, 2012.
- [13] Chris Overstreet, Peter Asenbaum, Joseph Curti, Minjeong Kim, and Mark A Kasevich. Observation of a gravitational aharonov-bohm effect. *Science*, 375(6577):226–229, 2022.
- [14] Claude Elwood Shannon. A mathematical theory of communication. Bell system technical journal, 27(3):379–423, 1948.
- [15] John A Wheeler. Information, physics, quantum: The search for links. Complexity, entropy, and the physics of information, 8, 1990.