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Abstract

It has been argued that if the rigidity condition is satisfied, a rational agent operating with

uncertain evidence should update her subjective probabilities by Jeffrey conditionalization (JC)

or else a series of bets resulting in a sure loss could be made against her (the Dynamic Dutch Book

Argument). We show, however, that even if the rigidity condition is satisfied, it is not always safe

to update probability distributions by JC because there exist such sequences of non-misleading

uncertain observations where it may be foreseen that an agent who updates her subjective prob-

abilities by JC will end up nearly certain that a false hypothesis is true. We analyze the features

of JC that lead to this problem, specify the conditions in which it arises and respond to potential

objections.
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1 Introduction

How should an agent update her degrees of belief when she is not fully certain of her evidence?

A common prescription in Bayesian epistemology is that she needs to update by Jeffrey Condi-

tionalization (JC), a generalization of standard Bayesian conditionalization for cases like this (see,

Jeffrey, 1983, 164-183, for his explication). But why should an agent update by JC and not by some

other rule? A common response is based on a proof that any agent who does not update by JC is

vulnerable to a so-called dynamic Dutch book. In other words, a bookie who knows just as much

as the agent can offer the agent a series of bets that the agent evaluates as fair but that lead to a

guaranteed loss (Armendt, 1980). The converse was also proven: any agent who updates by JC is

invulnerable to dynamic Dutch books (Skyrms, 1987).

The argument is convincing. A rational agent must avoid sure losses. However, as the problems

described below show, invulnerability to Dutch books does not provide a be-all and end-all justifi-

cation of JC. We will show that there exist many situations where JC gradually prescribes the agent

to assign an arbitrarily high probability to a false hypothesis after observing specific sequences

of uncertain but nonetheless non-misleading evidence.1 Hence, while JC offers a pragmatic ad-

vantage (invulnerability to Dutch books), we believe that this advantage is offset by the epistemic

disadvantage – a rational agent ought, after all, not assign high probability to a false hypothesis

(given that the evidence is not misleading).2 The problem is even more worrying because it is (at

least in some outlined cases) robust with respect to the agent’s prior probabilities. In other words,

even if an agent who updates by JC is initially highly confident of the true hypothesis, there exist

such sequences of non-misleading uncertain observations that she will eventually become highly

confident of a false hypothesis.

2 A problematic scenario

Consider the following scenario for an illustration of how JC prescribes the agent to become highly

confident of a false hypothesis: Freya is a Bayesian microbiologist. She updates her beliefs by

1 When we say that the evidence is non-misleading, we mean that when an agent becomes more certain of some evi-
dence E than its negation ¬E, E is actually the case.

2 Although an agent cannot know whether some evidence is misleading or not in the described sense, a well-performing
update rule should at least not lead to problematic outcomes in the latter cases.
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Bayesian conditionalization or by JC3 if she is not fully certain of her evidence and the rigidity

condition is satisfied.4 She has identified some bacteria in a sample and correctly believes it may

only be of the A or B strain but not both. She knows that both strains have similar biochemical

characteristics, except for characteristic E, which is 75% likely to be present in a given inspected

part of strain A, and is present in all parts of samples containing strain B. It does not matter what

her prior probability distribution is like. However, for the ease of calculations, suppose that her

prior probabilities are 0.5 for both mutually exclusive and jointly exhaustive hypotheses. Further,

suppose that her sample actually contains strain B, so that characteristic E is present in all inspected

parts of the sample5. Finally, suppose Freya inspects various parts of the sample 40 times and is

constantly 70% certain that she observed characteristic E in each inspected part (e.g., because her

instrument only affords her ineffable learning experiences).

It is easy (if a bit lengthy) to verify that after 40 such observations Freya becomes approxi-

mately 0.99 certain that her sample contains strain A (the one where characteristic E is 0.75 likely),

and merely 0.01 certain that it contains strain B which she is actually inspecting. Considering

that Freya’s evidence was always such that she was reasonably certain that E was present in all

inspected parts of her sample (she was constantly 0.7 certain about the presence of E), it is prob-

lematic that she assigned a very high probability to strain A and a very low probability to strain B

hypothesis. What went wrong in this case was that the hypothesis with the (objective) likelihood

of E closest to her (subjective) certainty of observing E was favoured. But this is not what we want

from an updating rule – we are not interested in confirming subjective certainties of evidence (at

least when we are not fully certain). After all, Freya’s observations perfectly fit strain B hypothesis

as she was always more certain that E is present in the sample than that it is not.

3 She is, after all, named after Richard Jeffrey.
4 The rigidity condition is satisfied when Pr∗(H|Ek) = Pr(H|Ek) for all k, where Pr∗(·) represents the posterior and

Pr(·) the prior probability function (Jeffrey, 1983, 174).
5 If Freya would not always inspect different parts of her sample, she would only update her subjective probability

distribution on the first inspection because her subsequent observations would contain no new evidence. I am thankful to
an anonymous referee for raising this point.
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Update n Pr∗n(HA) Pr∗n(HB)
Prior 0.5 0.5

1 0.6 0.4
2 0.67 0.33
3 0.72 0.28
4 0.76 0.24
5 0.80 0.20

10 0.89 0.11
20 0.96 0.04
30 0.98 0.02
40 0.99 0.01

Table 1: Select posterior subjective probabilities of hypotheses HA (false) and HB (true)

3 Why Jeffrey conditionalization sometimes leads astray

To understand what led to Freya’s high probability of the false hypothesis we need to first formalize

her probabilistic belief updating. She operated with 2 mutually exclusive and jointly exhaustive

hypotheses, HA and HB. According to HA, she was inspecting strain A (the presence of E is 0.75

likely in each inspected part), and according to HB strain B (E is always present). The hypotheses

were equiprobable before the first inspection because she thought it was just as likely that the

bacteria would be of strain A or B (i.e., Pr1(Hi) = 0.5 for both i).6 We assume that the presence

of E in some inspected part of her sample is conditionally independent of its presence in the next

(previous) inspected part given each strain. In other words, if Freya were inspecting strain A, then

the conditional probability that E is present in the nth inspected part of her sample, Pr(En|HA),

would be 0.7 for all n.7

So far, so good. But why did Freya end up with a very high subjective probability of the false

hypothesis (HA)? An inspection of how her subjective probabilities evolved throughout the se-

quence of observations (Table 1) reveals a crucial insight: her probability of the false hypothesis

HA (the presence of E is 0.75 likely) constantly increased. Because the two hypotheses are jointly

exhaustive and mutually exclusive, her probability of the true hypothesis HB constantly decreased.

6 Freya’s priors are largely irrelevant for her subsequent high probability of the false HA, as we show below (Theorem 1).
7 This does not mean that the observations are probabilistically independent. Rather, the conditional probability of

En given each hypothesis remains fixed throughout the process. If the reader finds such a conditional independence as-
sumption unrealistic, then it should be noted that the example may be rephrased into one with a series of biased coins or
dice throws instead of microbiological samples of different strains (for similar examples see, e.g., Douven, 2013; Trpin and
Pellert, 2018). This conditional independence is important as Pr(En|Hi) is one of the key parameters in conditionalization.
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Freya updated her beliefs by JC:8,9

Pr∗n(Hi) = Pr∗n(En)
Prn(Hi)Pr(En|Hi)

Prn(En)
+ Pr∗n(¬En)

Prn(Hi)Pr(¬En|Hi)

Prn(¬En)
(JC)

where 0 < Prn(En) < 1. Note that with some algebra we obtain the equivalent form of JC (deriva-

tion omitted):

Pr∗n(Hi) = Prn(Hi)

(
Pr∗n(En)

Pr(En|Hi)− Prn(En)

Prn(En)Prn(¬En)
+

Pr(¬En|Hi)

Prn(¬En)

)
= Prn(Hi)RelFactn,i (JC*)

where RelFactn,i represents a so-called Relative Change Factor which influences whether the pos-

terior probability of some hypothesis increases, decreases or remains unchanged. To see why

Freya’s subjective probabilities of the false HA kept increasing, we therefore need to check when

RelFactn,i > 1. We obtain that RelFactn,i > 1 is equivalent to (derivation in Appendix):

(
Pr∗n(En)− Prn(En)

)(
Pr(En|Hi)− Prn(En)

)
> 0 (1)

In other words, the probability of some hypothesis increases just when the agent’s posterior prob-

ability (i.e., her certainty of E in that part of the sample) and the likelihood of evidence (i.e., that E

is present) according to this hypothesis are both greater than or both less than her prior probability

of evidence. That is, the probability of some hypothesis Hi increases when either of the following

8 Prn(·) represents the prior probability of some proposition before the nth update and Pr∗n(·) the posterior probability
after the nth update. We represent the likelihood of evidence being present in the nth part of the sample given some hy-
pothesis by Pr(En|Hi) for all i, n. Note that, given any hypothesis i, this likelihood is constant for all n because the presence
of E in any part is conditionally independent of its presence in the other parts given the hypothesis under consideration.
Learning about the presence of E in the nth part of the sample does therefore not affect the conditional probability of E be-
ing present in the (n + 1)th part of the sample given any hypothesis. The set {Hi}, where i is either A or B, is a set of 2
mutually exclusive and jointly exhaustive hypotheses corresponding to the two strains. JC is more generally defined as
Pr∗(H) = ∑ Pr(H|Ei)Pr∗(Ei), Ei ∈ E, where E is a partition with non-zero probabilities.

9 The rigidity condition is also satisfied. Schwan and Stern (2017) provide a convincing Causal Updating Norm (CUN)
according to which rigidity is satisfied when D (a dummy variable representing the ineffable learning experience) and any
arbitrary A are d-separated by an initial partition of propositions B (Schwan and Stern, 2017, 11). The causal network in
Freya’s example can be represented as S → E → D, where S is a variable representing the two strains which causes En, the
presence or absence of characteristic E in the nth part, which in turn, causes D, the learning experience, because it affects
whether Freya observes the characteristic in such a way that she is less than fully certain about it. CUN (and, therefore,
rigidity) is satisfied because S is d-separated from D by E.
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conditions (2 or 3) is satisfied:

Pr∗n(En) > Prn(En) and Pr(En|Hi) > Prn(En) (2)

Pr∗n(En) < Prn(En) and Pr(En|Hi) < Prn(En) (3)

Similarly, the probability of some hypothesis decreases under either of the following conditions

(i.e., RelFactn,i < 1):

Pr∗n(En) > Prn(En) and Pr(En|Hi) < Prn(En) (4)

Pr∗n(En) < Prn(En) and Pr(En|Hi) > Prn(En) (5)

Further, the probability of some hypothesis remains unchanged under either of the following con-

ditions (i.e., RelFactn,i = 1):

Pr∗n(En) = Prn(En) (6)

Pr(En|Hi) = Prn(En) (7)

This suggests that JC is, in a way, all about predictions of the non-inferential evidence (Pr∗n(En))

in relation to its prior probability (Prn(En)). The hypotheses which make predictions in line with

uncertain observations become more probable and those that make wrong predictions become less

probable. The hypotheses which predict no change remain just as probable as they were. If the

observed evidence is as predicted, no updating takes place. Note that JC is not special in this sense

– all of the above mentioned conditions (2–6) also hold for standard Bayesian conditionalization

(BC), except that the conditions (3, 5) cannot be satisfied when an agent is fully certain of her

evidence (because Prn(En) cannot be greater than 1). But this is a crucial distinction: BC leads an

agent towards confirming what an agent is certain of, while JC goes toward confirming a subjective

level of uncertainty, although we are not interested in confirming subjective levels of uncertainty

but rather in confirming what is the case.

We can now show the following theorem (proof in Appendix), which explains why Freya be-

came so highly convinced that the false hypothesis HA was actually true (see Figure 1 for a visual

6



0

Pr(En|H1)

(a): Pr∗n(En)

Pr(En|H2) . . . Pr(En|Hn)

(b): Pr∗n(En) 1

Figure 1: A representation of the situations where JC prescribes (a) an increase in the probability of
H1, or (b) an increase in the probability of Hn (given that no hypothesis is certain)10

0
0.7

Pr(En|HA)

Pr∗n(En)

Pr(En|HB)

0.75 1

Figure 2: A representation of the three parameters that led to Freya’s high confidence in the false
HA

representation of the theorem):

Theorem 1. If the posterior probability of evidence is less (greater) than or equal to the lowest (greatest)

likelihood of evidence according to some hypothesis, then JC prescribes an increase in the probability of the

hypothesis according to which the likelihood of evidence is the lowest (the highest).

Recall that Freya was always 0.7 certain that characteristic E was present in all inspected parts

of her sample. Further, the likelihood of E being present in each inspected part was greater than

0.7 for both hypotheses (it was 0.75 and 1, respectively; see Figure 2). Hence, the probability of

the false HA always increased and the probability of the true HB decreased. After sufficient belief

updates the probabilities of both hypotheses converged toward 1 and 0, respectively.

Theorem 1 also shows that (if any updating would take place) Freya would assign higher prob-

ability to the true hypothesis (HB) if she was fully certain that E was present in all inspected parts

(i.e., when JC would reduce to standard Bayesian conditionalization). Her posterior probability

of evidence, Pr∗(En), would in this case coincide with the likelihood of evidence according to HB,

Pr(En|HB), and the probability of HB, Pr(HB) would increase.11

10 Note that only the cases (a), where the posterior probability of evidence is less than or equal to the lowest likelihood
of evidence, lead to problematic outcomes when the posterior probability of E is greater than that of ¬E. If, for example,
Pr(En|Hi) < 1 and Pr(En|Hi) ≤ Pr∗n(En) for all i, n, then it is reasonable that the probability of the hypothesis with the
largest likelihood (let us call it Hn) converges toward 1 because the hypotheses are jointly exhaustive and Hn provides the
best fit for the observed sequence.

11 JC would also not lead to a problematic outcome if the largest likelihood of evidence was less than 1, given that the
posterior probability of evidence would be equal to it or greater; e.g., if she was inspecting strain B and Pr(En|HA) =
0.7; Pr(En|HB) = 0.8 and Pr∗n(En) = 0.9 for all n. In this case, Prn(HB) would (accurately) converge toward 1 with in-
creasing n. Note that Theorem 1 does not present a problem for standard Bayesian conditionalization because the posterior
probability of evidence (i.e., Pr∗n(En) = 1) is always greater than or equal to the largest likelihood (see also footnote 10).
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What is particularly important about Theorem 1 is that it applies regardless of the priors – the

only parameters that lead to Freya’s problem are the likelihoods and the posterior probability of

evidence given each inspection. Hence, Freya could initially be highly convinced that she will

observe strain B (for example, because it is much more common). However, as she always Jeffrey

conditionalizes, she would nonetheless soon become confident that the strain is the false strain

A. For instance, if her initial subjective probability of strain B is 0.99, it only takes her 2 updates

to assign the probability of 0.47 and 0.53 to HA and HB, respectively. Her subsequent updates

that lead to her high probability of the false hypothesis then proceed similarly as in the original

example.

This is not only worrisome for our Freya in an idealized scenario. The scenario could, after all,

easily be mapped to more realistic cases in which the agent is less or just as certain of her evidence

than the evidence is likely according to all mutually exclusive and jointly exhaustive hypotheses. A

rational agent who is in such a situation (see the case (a) in Figure 1) should, therefore, not update

her subjective probabilities by JC.

4 Variations of the problematic scenario

The question that may naturally be raised is whether an agent may avoid the problems of JC when

her posterior probability of evidence is greater than the likelihood of that evidence according to

some, but less than the likelihood of evidence according to another hypothesis. To illustrate with

Freya’s example: What happens if her posterior probability of E being present in each part of her

sample lies in the interval (0.75, 1)? Will JC still always prescribe her to update in such a way that

she will subsequently become highly confident of a false hypothesis (strain A)?

The answer is negative: JC is not widely acclaimed without a reason. As we will see, however,

Freya will only become more certain of the true hypothesis (strain B) if her certainty about the

presence of E lies in a specific interval.

Let us show why. Suppose that everything remains the same as in the original scenario, except

that Freya’s certainty that E is present in each inspected part is now greater than the likelihood

of En according to HA and less than its likelihood according to HB (i.e., Pr(En|HA) = 0.75 <

Pr∗n(En) < Pr(En|HA) = 1 for all n). As it turns out, we can, again, know exactly how Freya’s
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0

Pr(En|H1) Pr∗n(En) Pr(En|H2)

a b 1

Figure 3: A representation of an instance in which JC prescribes the agent to update Pr∗n(H1) toward
b/(a + b) and Pr∗n(H2) toward a/(a + b) by Theorem 2.

subjective probabilities in both hypotheses will end up after sufficiently many belief updates (given

that Pr∗n(En) is constant for all n). We can show the following theorem (proof in Appendix, see

Figure 3 for a visual representation):

Theorem 2. If the hypothesis space consists of two mutually exclusive and jointly exhaustive hypotheses

and the posterior probability of different pieces of evidence with the same likelihood is constant and greater

than their likelihood according to one hypothesis but less than according to the other hypothesis, then, if

no hypothesis is certain, JC prescribes the agent to update in such a way that the probability of the first

hypothesis converges toward b/(a + b) and the probability of the second toward a/(a + b), where a and

b are the absolute difference between the agent’s posterior probability of the pieces of evidence and their

likelihood according to the first and the second hypothesis, respectively.

In Freya’s situation this means that JC will prescribe her to update in such a way that, regardless

of her priors, the true hypothesis will end up as the most probable if she will always (or at least

sufficiently often) be more than 0.875 certain that E is present.

To illustrate: Suppose that, for all n, the absolute difference between the likelihood of En on

HA and Freya’s certainty that E is present in each of the inspected pieces of her sample is a, and

b the absolute difference for the likelihood of En on HB. The probability of HA will then converge

toward b/(a+ b) and the probability of HB toward a/(a+ b). Because she is always more than 0.875

certain that E is present in each separate piece of her evidence, b must be less than a (see Figure 3

for a similar example). Hence, HB will end up as the most probable hypothesis after sufficiently

many updates.

It is also straight-forward to verify that the smaller b is, the closer to 1 the probability of the true

HB will converge toward. Note, however, that the probability of the true HB will only converge

toward 1 (and not just to some value close to 1) when b is 0, i.e., when the agent’s posterior prob-

ability of all pieces of evidence coincides with their likelihood according to HB, i.e., in a limiting
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case of Theorem 1.

5 The cases with 3 or more hypotheses

A proponent of JC may explain these problems away by objecting that situations where agents

operate with merely two mutually exclusive and jointly exhaustive hypotheses are rare or even

completely unrealistic. We, therefore, also need to inspect whether any general consequences of

updating by JC can be predicted for cases where the agent’s hypothesis space consists of 3 or more

hypotheses, and especially if we can predict any problematic outcomes for these situations. As we

will see, in cases of 3 or more hypotheses (unlike in the cases of only 2 live hypotheses), the priors

also play a role in how subjective probabilities evolve.

Nonetheless, there are special cases where we can already predict that subjective probabilities

obtained by JC will lead to problematic outcomes regardless of the priors or the number of hypothe-

ses the agent operates with. Theorem 1, after all, holds regardless of the number of hypotheses. For

an illustration, suppose that Freya is trying to determine whether the bacteria she is inspecting be-

longs exclusively to strain A, B, C or D, in which the presence of the biochemical characteristic E in

each inspected part is 90%, 95%, 97% and 100% likely, respectively. Assume that for some reason

the strain could only be one of these four. Suppose, further, that she is actually inspecting strain

D and that she is always nearly 90% certain that E is present (i.e., she is highly certain about its

presence). After a number of observations of different pieces of her sample JC will, again, prescribe

her to become nearly certain that she is inspecting strain A, and hence nearly certain that she is not

inspecting the actual one, D.

To further illustrate how concerning this outcome is, suppose that her priors for A, B, C, D

are 〈0.01, 0.01, 0.28, 0.70〉. That is, she initially believes that she is most likely inspecting strain D

(e.g., because it is the most common), although she may also be inspecting strain C, or in some

exceptional cases strains A or B. JC will, nonetheless, instruct her to eventually become nearly

certain that her sample contains the exceptional strain A, although her sequence of observations

perfectly fits what she would expect from the most common strain D — in any case, it does not

seem obvious that her inspections completely disconfirm the true hypothesis.12

12 Particularly, it takes her 20 observations of E with 0.9 certainty to assign the highest probability of all to the exceptional
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0 Pr(En|H1) Pr(En|H2)

Prn(En)

Pr(En|H3) Pr(En|H4) 1

Figure 4: By Theorem 3 we can order the hypotheses according to how much their posterior proba-
bility will change in relation to their prior probability by inspecting the absolute difference between
their likelihoods of evidence and the prior probability of evidence. The increasing order of relative
changes in this representation is H3, H2, H4, H1.

However, not all cases are so clear cut. If the agent’s posterior probability of each piece of

evidence (i.e., her certainty about the evidence) lies in the open interval between the smallest and

the largest likelihood of each piece of evidence and the agent is operating with more than just two

hypotheses, then her prior probabilities affect how JC will prescribe her to update.

Before we can show that such scenarios may still lead to problematic outcomes, we need to first

show the following theorem (proof in Appendix, see Figure 4 for a visual representation):

Theorem 3. JC prescribes that, if any updating takes place, the probability of the hypothesis according to

which the likelihood of evidence is closer to the prior probability of evidence changes less, relative to its prior

probability, than other hypotheses.

This means that, in combination with the general conditions for increased or decreased prob-

ability of a given hypothesis (Conditions 2–7), a hypothesis with a bolder prediction against the

expectation of evidence receives a larger increase in its probability if the prediction is in line with

the observed evidence, and a larger decrease if it is not.

Let us return to the scenario where Freya was trying to determine whether the bacteria in her

sample was of the strain A, B, C or D with the likelihoods of the biochemical characteristic E in

each inspected piece at 0.9, 0.95, 0.97 and 1 given each strain, accordingly. Her prior probabilities

for each strain were 0.01, 0.01, 0.28 and 0.70. Her prior probability for the presence of E in the piece

she first inspected was, hence, 0.9901.13 That is, she was nearly certain that E is present in the piece

she was about to inspect. Theorem 3 then implies that the posterior probability of hypothesis D will

change the least in relation to its prior probability because its prediction (i.e., that E will certainly

be present) is almost in line with the agent’s prior probability (or expectation) of E1.

strain A hypothesis, 27 observations to assign it a probability above 0.5, and 177 observations to assign it a very high
probability (i.e., above 0.9).

13 We calculate the prior probability of evidence by the law of total probability: Prn(En) = ∑m
i=1 Pr(Hi)Pr(En|Hi), where

m is the number of hypotheses.
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We need to also show the following theorem (proof in Appendix):

Theorem 4. JC prescribes such updates that, if any updating takes place, the prior probability of the next

piece of evidence En+1 shifts toward the posterior probability of the previous piece of evidence En.

This, again, seems reasonable. To illustrate how Theorems 3 and 4 work with Freya’s example,

suppose everything remains unchanged, except that she is now constantly 0.98 certain that, given

each En, E is present in her sample. After 150 belief updates, her prior probability for E150 decreases

to Pr150(E150) = 0.9806 from her initial 0.9901 for E1 and almost matches the level of her constant

certainty that E is present in each inspected piece of her sample (0.98). Correspondingly, her prob-

abilities for strains A, B, C, D update to 〈0.07, 0.02, 0.40, 0.51〉. There does not seem to be anything

problematic in this outcome – she was not fully certain that E was present in her sample, so she

updated her beliefs accordingly.

If her priors were, however, different, the outcome of her belief updating would also be dif-

ferent. For instance, suppose Freya’s prior probabilities Pr1〈A, B, C, D〉 are 〈0.01, 0.48, 0.48, 0.01〉.

It takes her 400 updates to reach the prior probability (expectation) of E400 that is very close to

0.98 (particularly, 0.979), when her Pr∗400〈A, B, C, D〉 ≈ 〈4× 10−6, 0.06, 0.59, 0.34〉. This shows that

different priors lead to different outcomes when an agent is operating with 3 or more hypotheses,

but it is not particularly problematic because she was always quite but not fully certain that E was

present in her sample.

6 Shifting posterior probabilities of evidence

The above described specifics of JC for cases where the hypothesis space consists of 3 or more

hypotheses, however, do not mean that priors can always be set in such a way that an agent ends

with reasonable subjective probabilities after a larger number of updates. As we will now show,

there exist specific sequences of shifting posterior probabilities of evidence, which lead a Jeffrey

conditionalizer astray regardless of her priors.

Consider the following modified version of Freya’s example: she needs to detect which bacterial

strain is present in her sample. For some reason, she can again only inspect whether biochemical

characteristic E is present. Suppose she (correctly) knows that her sample may only contain one out
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of five different strains. She also knows that the strains have different tendencies for biochemical

characteristic E to be present in inspected parts. The tendencies for E are as follows: the likelihood

that E is present in a given piece of a sample that contains strain A is 0 (E is never present), 0.25 for

strain B, 0.5 for strain C, 0.75 for strain D and 1 for strain F (E is always present).

Suppose, further, that the strain that is actually in her sample is strain F, so that characteristic

E is always present. For the sake of the toy example, suppose that she believes all strains are

equiprobable before she starts inspecting the sample.14 She inspects pieces of the sample for the

presence of E 250 times and her certainty that E is present in the inspected pieces shifts in such a

way that she is 0.9 certain that E is present on every odd inspected piece (the first, third, fifth piece

etc.) and 0.6 certain on every even inspection.

We can calculate that at the end of her inspections she becomes approximately 0.99 confident

that the strain she is inspecting is strain D (and not strain F that she is actually inspecting; see Ta-

ble 2). This is, again, problematic because she was, after all, always more certain that E was present

than that it was not. In other words, her sequence of observations fits the strain F hypothesis per-

fectly, and yet she became nearly confident that her sample does not contain it. Considering she

was not fully certain about her observations, we would at least not expect her to become nearly

certain of a false hypothesis.

A closer inspection of Conditions 2–7 and Theorems 3 and 4 explains why Freya’s sequence of

uncertain observations led to such a problematic result, and, further that the priors played no role.

Freya’s prior probability that the first inspected piece of her sample will exhibit characteristic E was

0.5 (Pr1(E1) = 0.5). The hypotheses HA and HB predicted that it was less likely for E to be present

in this piece of evidence than what she expected (i.e., Pr(E1|Hi) < 0.5, where i is A or B) and the

hypotheses HD and HF predicted it was more likely that E would be present. HC predicted E was

just as likely to be present as what she expected (i.e., HC predicted no change in her probability of

E1).

Freya then became 0.9 certain that E was actually present in the first inspected piece. Hypothe-

ses HD and HF, therefore, provided the correct predictions and their probability increased (Con-

dition 2). HA and HB, however, incorrectly predicted that it would be less likely that she would

14 As we show below, the results are independent of the priors. That is, if Freya’s prior probabilities for the strains were
different, it would merely take her a different number of updates by JC to assign an arbitrarily high probability to a false
hypothesis.
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Pr∗n(HA) Pr∗n(HB) Pr∗n(HC) Pr∗n(HD) Pr∗n(HF) Prn(En) Pr∗n(En)
Pr(En|Hi) 0 0.25 0.5 0.75 1
Update n

0 0.2 0.2 0.2 0.2 0.2
1 0.04 0.12 0.2 0.28 0.36 0.5 0.9
2 0.053 0.146 0.219 0.273 0.309 0.700 0.6
3 0.016 0.082 0.182 0.300 0.421 0.660 0.9
4 0.026 0.117 0.222 0.302 0.334 0.757 0.6
5 0.009 0.067 0.179 0.316 0.429 0.700 0.9

10 0.006 0.080 0.240 0.360 0.314 0.776 0.6
25 1x10−4 0.018 0.205 0.477 0.299 0.731 0.9
50 6x10−7 0.004 0.207 0.629 0.160 0.757 0.6
75 8x10−10 3x10−4 0.117 0.750 0.133 0.740 0.9

100 5x10−12 5x10−5 0.094 0.835 0.070 0.752 0.6
150 5x10−17 6x10−7 0.037 0.935 0.028 0.751 0.6
200 7x10−22 8x10−9 0.014 0.976 0.010 0.750 0.6
250 9x10−27 1x10−10 0.005 0.991 0.004 0.750 0.6

Table 2: Select posterior probabilities of hypotheses, expectations of En and the certainty of E’s
presence in a given piece of evidence

observe E, so their probability decreased (Condition 4). As a result, Freya’s expectation that E is

present in the next piece increased to Pr2(E2) = 0.7, that is, it shifted from 0.5 for the first piece

toward 0.9 for the second (Theorem 4).

We can now see why Freya eventually became very confident that the strain in her sample

was strain D and not F. Her expectation that the next inspected piece will exhibit characteristic E

quickly stabilized close to 0.75 (because 0.75 is the mean of the two levels of certainty that E was

present in her inspected pieces, 0.6 and 0.9, toward which her expectation shifted), so her subjective

probability of HD only received small relative changes (Theorem 3). Her expectation of E in the

next piece of evidence then shifted slightly over 0.75 after every odd update (because she was 0.9

certain that E is present in the inspected piece; Theorem 4) and below 0.75 after every even update

(because she was only 0.6 certain that E is present). The hypothesis HD thus always provided the

correct prediction: when her expectation of En was slightly above 0.75 (every even round), HD

predicted that En was slightly less likely (exactly 0.75), just like what her subjective certainty of

evidence being present suggested – she was 0.6 certain that En is indeed present. HD, similarly,

provided the correct predictions on every odd inspection. Her subjective probability of HD thus

14



slowly but surely increased (Conditions 2, 3 and Theorem 3) while her subjective probabilities of

other hypotheses kept relatively increasing and decreasing in a bolder fashion (by Theorem 3).

As a matter of fact, she already ascribed the highest probability of all hypotheses to HD after

only 8 rounds and continuously after the 13th round. If her inspections continued and her level of

certainty about E’s presence continued to shift between the same levels (0.6 and 0.9), her probability

of the false HD would continue converging toward 1 by the same principles.

7 Shifting posterior probabilities of evidence: Variations

An objection could be raised that, although possible, it is highly unrealistic that an agent would

undergo a sequence of uncertain observations in such a way that her certainty about the evidence

would continuously shift from exactly 0.6 to 0.9 (or some other two different values). However, it is

not hard to come up with more convincing scenarios of shifting posterior probabilities of evidence,

where the posterior probability always shifts to a different value and yet leads the agent to a prob-

lematic endorsement of a false hypothesis. For instance, suppose that Freya is always reasonably

certain that E is present in the inspected pieces of her sample, but the exact levels of her certainty

constantly shift in the interval of [0.7, 0.8] in a uniformly random fashion. That is, she may be 0.74

certain about E on one observation, 0.73 on the next, then 0.79, 0.77, and so on. We can predict that

her expectation of E in the next inspected piece will, again, stabilize around 0.75 (by Theorem 4)

and Pr(HD) will slowly increase through a number of small increases and decreases.15 We can thus

conclude that the probability of some hypothesis according to which the likelihood of evidence is

k, k ∈ (0, 1),16 converges toward 1 as long as the mean value of the shifting posterior probabilities

of pieces of evidence is also k.

Further, updating by JC could lead to a problematic high probability for a false hypothesis even

if she was inspecting another strain in which E is not always present. Suppose, for example, that

Freya is trying to determine which of 11 (mutually exclusive) possible bacterial strains is present in

15 This is because Freya’s posterior probabilities of E shift in a less ordered fashion, so HD does not always provide the
correct prediction. Pr(HD) thus also decreases but less than other hypotheses (by Theorem 3). Such uniformly random
levels of evidential uncertainty, however, typically require that Freya inspects the sample 7,000 times before her probability
of the false HD reaches a very high level of 0.99. In 1,000 simulations of this scenario, she on average needed to inspect the
sample 6,853 times (σ = 106) before Pr∗(HD) > 0.99.

16 The value of k cannot be 0 or 1 because k is the mean of different (i.e., shifting) values.
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her sample, with each strain exhibiting a different tendency for E in 0.1 increments from 0 to 1, and

that her sample contains the strain, in which E is 0.9 likely. We can predict that JC will eventually

prescribe Freya to become nearly certain that she is inspecting the strain with the 0.7 likelihoods

for E (in each inspected piece of the sample) if her posterior probabilities that E is present in the

sample shift in such a way that she is on average 0.75 certain about the actual presence of E and the

levels of her certainty about E shift often enough.

We are able to predict this because we know that the agent will on average be 75% certain that E

is present in a given inspected piece when E will actually be present (on approx. 90% of inspections)

and 25% certain that E is present on the remaining 10% of inspections. Hence, we can foresee that

after sufficiently many rounds she will on average be 0.7 certain that E is present in the sample

(0.9× 0.75 + 0.1× 0.25 = 0.7) and her expectation of E will therefore converge toward 0.7. The

hypothesis according to which E is 0.7 likely will on average be the closest to the expectation of E

and the agent’s probability of this hypothesis will slowly increase toward 1. Because the strain she

is actually observing is 0.9 (and not 0.7) likely to exhibit E, the Jeffrey conditionalizer, again, ends

up nearly certain that a false hypothesis is true.

More generally, an agent’s subjective probability of some hypothesis will increase toward 1 in

scenarios of shifting posterior probabilities of evidence if the following condition is satisfied:17

Pr(En|Hi) =
∑n

m=1
(
Pr∗m(Em)Pr(Em|Hj) + Pr∗m(¬Em)Pr(¬Em|Hj)

)
n

(8)

where Hi stands for the hypothesis to which the agent ascribes an eventually increasing subjective

probability, Hj for the true hypothesis (in our case, the strain that is under inspection), Pr∗m(Em) for

the agent’s posterior probability of evidence E after the mth update, and n for the number of belief

updates by JC.18

Undergoing a sequence of observations, in which the agent’s posterior probabilities of evidence

shift in such a way that precisely matches the above equation is perhaps not very probable, but it

nonetheless presents a problem for Jeffrey conditionalizers because the possibility of the problem-

17 Proof omitted, although the reasoning is sketched in the previous paragraph. Note that the posterior probability of
evidence needs to shift often enough.

18 Equation 8 implies that standard Bayesian conditionalization will never lead an agent astray because it simplifies to
Pr(En|Hi) = Pr(En|Hj) when Pr∗m(En) = 1 for all m and Pr(Em|Hj) is constant for all m. In other words, the hypothesis to
which the agent who conditions on En ascribes a higher probability, Hi , is the true hypothesis Hj.
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atic outcome may be foreseen.

Furthermore, the sequence of observations does not need to precisely match the conditions

outlined in the above equation (8) because an approximate match may also lead the agent astray.

That is, the probability for a false hypothesis will not converge toward 1, but the probability of the

true hypothesis may still converge toward 0. For instance, if everything remains the same as in

the case outlined in section 6 (see also Table 2), except that Freya’s levels of certainty of En shift

between 0.8 and 0.6 (instead of 0.9 and 0.6), then the probability of the true hypothesis HF still

converges toward 0, while the probabilities of HC and HD (both false) converge toward 0.19 and

0.81, respectively.

8 Misleading evidence and theory-laden observations

There are two potential objections that may be raised against the implications of JC as presented in

the previous sections. It may be argued that:

1. The evidence the agent learned in the examples was (contra Fn. 1) either actually misleading,

or else the outcome prescribed by JC was rationally required, and

2. Observations for a Bayesian are (or rationally should be) theory-laden, which would block

problematic belief updating in the described examples.19

Both potential objections are related: the first provides the starting point for a discussion of sub-

jective and objective aspects of evidence, while the second provides one potential resolution of the

diagnosed problems of JC.

8.1 Subjective and objective aspects of evidence

What Freya’s examples demonstrate is that JC adapts a subjective probability distribution in such

a way that it supports the uncertain learning experience and not primarily the evidence itself. In

other words, when Freya’s observations suggest that E is more likely present than what she an-

ticipated, she becomes more confident about the hypotheses on which E is more likely and less

19 Thanks to an anonymous referee for this journal and an anonymous referee for the Formal Epistemology Workshop
2019 for bringing these objections to my attention.
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confident about those on which E is less likely. As we saw, this may lead to situations in which

experience suggests E is more likely than ¬E and yet the agent becomes more confident about the

hypothesis which supports ¬E.

One might argue that this is not really a problem as these learning experiences are actually

misleading and only intuitively seem not to be such. To simplify the discussion, we will rephrase

Freya’s situation into one where an agent needs to determine what die from a collection of dice

with various configurations of red or blue faces is being thrown. That is, instead of referring to

presence of a characteristic E in various pieces of a microbiological sample, we can simply refer to

a game in which an agent needs to identify the correct die.

Suppose your friend has two dice: one with all 6 faces in blue (6B) and another with 2 red and

4 blue faces (2R4B). Unbeknownst to you, your friend selects the die with all faces in blue and

repeatedly rolls it. You observe the outcomes in dim light, so you are not completely sure what

color you see when you check the die, but it seems to you that it is most likely blue, and if it is not

blue, then it can only be red (as you know which two dice your friend selected from).

To make the example more precise: suppose that prior to the roll of the die you assign equal

probability to each die. Hence, your prior probability for the die landing red is (by the law of total

probability) 1
6 ≈ 0.17. Your observations of the die are such that you repeatedly become 0.7 certain

that it landed blue and 0.3 that it may have landed red. This suggests that it is more likely that

the die landed red than you expected prior to the observations (initially, for example, 0.3 vs. 0.17).

Hence, the argument goes, you should increase your confidence that your friend chose the die with

2 red and 4 blue faces (and not the one with 6 blue faces) as this hypothesis supports your learning

experience – it increases your confidence in red. This is also what updating by JC leads to. As you

end up assigning very low probability to the true and very high probability to the false hypothesis

after a number of observations, your evidence has to actually be misleading.

It needs to be stressed that just because your observations suggest that the die may have re-

peatedly also landed red, this on its own does not suffice for ruling out the hypothesis according to

which the die only has blue faces. By Theorems 1 and 2 we know that you will only end up more

than 50% confident in the false hypothesis (2 red, 4 blue faces) if you are often enough more than

1
6 ≈ 0.17 certain that the die landed red. Further, the probability of the true hypothesis (all blue
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faces) will converge toward 0 only if you are often enough more than or exactly 2
6 ≈ 0.33 certain

that the die landed red. In the above example (the die always lands blue and you are 0.7 certain of

blue and 0.3 of red) your probability for the false die with 2 red faces will converge toward 0.9 (by

Theorem 2), and not toward 1 (as in Freya’s examples).

Nevertheless, the argument continues, there is nothing problematic in this outcome, neither is

there anything problematic in analogous Freya’s examples: the experiences raise your credence in

red (and hence lower your credence in blue), so you need to adapt your credences in the rest of the

propositions accordingly. In other words, when experience supports red, you need to become more

confident about hypotheses on which red is more likely. If it turns out that you end up increasingly

more confident about a false hypothesis, it is not the updating rule that is to blame but rather the

evidence that is misleading.

There are at least two responses to this potential objection. First, it highlights the difference

between objective and subjective aspects of evidence under uncertainty. Second, it nicely illustrates

what JC does in practice: it primarily supports subjective aspects of a learning experience and not

of the evidence itself.

We have mentioned (Fn. 1) that evidence of some "binary"20 E is misleading when you become

more than 0.5 confident of E, although E is not the case. According to this view, the evidence is

misleading if a die that may only land blue or red lands blue, but your experience suggests that it

is more likely that it landed red (i.e., if Pr∗(red) > 0.5, Pr∗(blue) < 0.5). In the case with the die,

the evidence is therefore not misleading in this sense: the die is the one with all blue faces and you

are constantly 0.7 certain that it landed blue and 0.3 certain that it landed red. The same can also

be said of all Freya’s examples in the previous sections. The learning experiences suggest that the

true outcome was the most likely and are, in this sense, not misleading.

The definition of misleading evidence according to the potential objection is different: on this

view the evidence is misleading if you end up further from the truth by assigning lower probability

to the true hypothesis (as measured, for instance, by Brier’s rule; Brier, 1950). The evidence is

misleading if your subjective learning experience goes against your prior probability of evidence

and thus points you in the wrong direction. That is, when you assign equal probability to the

20 "Binary" E here represents a simple partition into E and ¬E, the only kind of evidential partitions we deal with in this
paper.
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two hypotheses about the die (all blue, and 4 blue, 2 red faces), your prior probability for blue is

0.83. As the die your friend selected only has blue faces, any experience that lowers your credence

in blue (that is, any learning experience where Pr∗n(blue) < 0.83) represents an experience with

misleading evidence. The examples discussed here are therefore operating with what is in this

sense considered misleading evidence.

This highlights what we identify as the main problematic aspect of JC: it pays too much attention

to subjective aspects of evidence. Clearly, any learning experience that leads an agent further from

the truth (in the sense of becoming less confident about true propositions) is misleading from the

subjective point of view of the agent. But this does not mean that uncertain evidence itself is mis-

leading in a more objective sense. Why should agent’s subjective probabilities determine whether

uncertain evidence is misleading? Furthermore, updating by JC also leads to unsatisfactory out-

comes in certain cases where the evidence is not misleading in this alternative, more subjective

sense.

By way of illustration, let us consider two cases where the die always lands blue and you are 0.7

certain that it landed blue and 0.3 that it landed red. In the first case you initially assign equal (0.5)

probability to both live hypotheses (4 red, 2 blue, and all blue faces). In the second, you start with

0.99 and 0.01 probabilities for the two hypotheses. Updating by JC in the first case will lead you to

slowly decrease the probability of the true hypothesis (all blue) from 0.5 towards 0.1. In the latter

case, however, you will slowly increase the probability of the true hypothesis from 0.01 towards

0.1.

This is because your probability for red and blue will eventually exactly match your observa-

tions in both cases, which can only happen if Pr(2R4B) updates to 0.9 (by Theorem 421). You end

up assigning very low probability to the true hypothesis in both cases. The only difference is that in

the first case you decrease your confidence in the true hypothesis, while in the second case you in-

crease it until your confidence in red and blue matches your learning experiences. As the example

demonstrates, this may still mean that you will end up assigning very low probability to the true

hypothesis (in this case, 0.1 to 6B), even if your observations and updates by JC initially support

increased confidence in the true hypothesis.

The problem does therefore not lie in the fact that the evidence decreases your confidence in

21 Pr(red) = Pr(2R4B)Pr(red|2R4B) + Pr(6B)Pr(red|6B) = 0.9× 1
3 + 0.1× 0 = 0.3 = Pr∗(red)
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what is the case (here, that the die landed blue), but rather that JC prescribes you to update your

credences in such a way that they support your subjective learning experience (here, that you were

0.7 certain that the die landed blue and 0.3 that it landed red).

We believe that this highlights a crucial aspect of JC that may make the rule perfectly applicable

for some cases but not for all (certainly not for those outlined in this paper): it gives too much

weight to subjective aspects of learning experiences – how certain you were about the evidence

– while not paying enough attention to "objective" aspects of the evidence, that is, whether some

evidence E really is the case or not.

This also further demonstrates why standard Bayesian conditionalisation (i.e., updating cre-

dences after learning Pr∗n(E) = 1) does not suffer from the diagnosed problems: the fact that newly

learned evidence is learned with full certainty means that the agent will update her credences in

such a way that they will support what actually is the case.22

One potential solution in cases like this is that instead of updating by JC we update our cre-

dences by following a probabilistic rule that gives additional weight to evidence instead of account-

ing just for the subjective aspects of the learning experience. One such rule that was proposed in

the literature is, for instance, a probabilistic form of inference to the best explanation of uncertain

evidence that may outperform JC in some cases (see, e.g., Trpin and Pellert, 2018). Following such

an alternative rule presents a potential resolution of these problems, but it comes with a price: by

not updating by JC we expose ourselves to potential Dutch books (Skyrms, 1987) and incoherence

(Climenhaga, 2017).

8.2 Should observations be theory-laden?

This discussion of subjective and objective aspects of learning experiences also provides grounds

for another related response. According to this potential objection we can keep using JC in un-

certain evidential situations by restricting its use to situations where, intuitively speaking, agents

consider that their learning experiences contain significant evidence.23 The problems discussed

above would thus be resolved: we would still be able to use JC when it is appropriate to pay atten-

22 We are assuming that agents only become fully certain if something is actually the case. See, however, Rescorla (2019)
for an interesting discussion of non-factive aspects of conditionalisation.

23 The term "significant evidence" here simply means substantial or important evidence. It is in no way related to statis-
tical significance or low p-values.
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tion to subjective aspects of a learning experience. However, we would avoid apparent pitfalls of

JC in cases where it may be foreseen that it may lead an agent astray.

In other words, one may argue that observations for Bayesian agents are (or should be), in

a sense, theory-laden. This means that whether a rational agent ought to update by JC should

not depend only on the rigidity condition (as requested by Jeffrey, 1983, 174), but also on other

theoretical considerations of the situation, e.g., whether evidence is considered significant, which

may depend on agent’s prior probability distribution.

It is best to provide an example to illustrate the suggestion. Suppose that three agents are trying

to determine which die their friend is throwing. For whatever reason, agent A is 0.999 confident

that the die has all faces in red (6R) and if not, then all in blue (6B). Agent B’s credences are just the

opposite: she assigns 0.001 confidence to 6R and 0.999 to 6B. Agent C, on the other hand, assigns

0.999 probability to the hypothesis that the die has 3 red and 3 blue faces (3R3B) and if not, then 6R

and 6B are very unlikely but equiprobable.

Now suppose that the die is thrown and the agents are all uncertain what face it landed on,

for instance because they observe the outcome in dim lightning or perhaps they are only able to

inspect the outcome on a murky photograph of the outcome. Importantly, all agents have phe-

nomenologically the same experience when they observe the outcome: they are all 0.5 certain that

the die landed on a red face and 0.5 that it did not (i.e., that it landed on blue).

Updating by JC would mean that agents A and B end up with the same posterior probabilities

assigned to hypotheses 6B and 6R (i.e., Pr∗(6B) = Pr∗(6R) = 0.5), while agent C’s credences would

remain unchanged (by Condition 6). As we noted earlier, their credences update in such a way that

they support the learning experience (that is, they accommodate Pr∗(R) = 0.5; see also Table 3).

However, it may be argued that such an outcome is unconvincing because we are assuming

that all agents should respond in the same way to a phenomenologically same learning experi-

ence. In assuming so we commit ourselves to what we may call the Independence of Observations

Assumption (IOA):24

24 Thanks to an anonymous referee for this journal for pointing out this assumption.
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Pr(·) 6B 3B3R 6R R Pr∗(·) 6B 3B3R 6R R

A 0.999 0 0.001 0.001 0.5 0 0.5 0.5

B 0.001 0 0.999 0.999
Pr∗(R)=0.5−−−−−−→
Pr∗(B)=0.5

0.5 0 0.5 0.5

C 0.0005 0.999 0.0005 0.5 0.0005 0.999 0.0005 0.5

Table 3: Changes in credences of agents A, B, and C after an update by JC

IOA: When rational Bayesian agents make phenomenologically the same observation of

E/¬E, their subjective probabilities to E/¬E after the observation should be same re-

gardless of their prior probability assignments to E/¬E.

The example with the three agents suggests that IOA does not hold or at least that it should not hold

for rational agents. Considering that the evidence was highly uncertain (it was as likely that the

die landed red as blue) it seems that agents A and B should simply ignore the learning experience

and stick to their guns: they should (just like agent C) not change their credences at all, which

would happen if the observation was interpreted as showing red with 0.001 (for agent A) or 0.999

probability (for agent B). This is a particularly convincing suggestion because agents A and B were

initially highly confident about one of the extreme hypotheses (6B/6R), yet they end up assigning

equal probability to both live hypotheses after a highly uncertain observation. A resolution of the

problem could therefore be to simply reject IOA and omit updating credences in situations like

that.

On the other hand, if rational agents nevertheless update in line with JC (ending up in a state

shown in Table 3), then it could be said that they consider the learning experience to be of high

significance. It may be argued that observations for Bayesians need to be theory-laden in this

sense: they need to consider whether they are willing to allow the uncertain learning experience to

shift their subjective probability distribution. One of the simplest criteria for deciding significance

of evidence could be prior probabilities. If an agent’s prior probability for some hypothesis is,

for instance, above a contextually defined threshold (e.g., 0.99) and uncertain learning experience

would substantially lower it (e.g., from 0.999 to 0.5), then a rational agent needs to consider whether

the learning experience is significant enough for a substantial shift of her credences or not. In other

words, an agent needs to proceed with caution when updating by JC.
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It is hard to disagree with the suggestion that we should give up on IOA and require JC to

not be a mindless belief updating rule that is applied in every uncertain evidential situation where

rigidity condition is satisfied. Even the rigidity condition is, in a sense, mindless (it is required by

probability calculus). Moreover, the suggestion also resolves the problematic outcomes in Freya’s

cases. If Freya’s learning experience suggests E is more likely than ¬E, then she may simply avoid

JC when updating by that rule would reduce her probability for E. She is still allowed to update by

JC, but only if she thinks that her learning experience contains substantial evidence (i.e., substantial

according to her other theoretical considerations). Finally, this suggestion allows us to retain JC as

a rational belief updating rule despite the potentially problematic outcomes. We need a rule that

governs belief updating in uncertain evidential situations as we do not have a fully convincing

alternative.

Before we fully embrace the suggestion that IOA needs to be rejected in favor of JC that is based

on agent’s theory-laden observations, it needs to be pointed out that the suggestion comes with a

couple of downsides. First and foremost, it bolts a philosophical consideration onto JC which is,

in principle, a simple theorem that extends standard Bayesian conditionalisation when the rigidity

condition is satisfied.25 The discussed scenarios, however, suggest that further (philosophically

motivated) restrictions to applications of JC should be made, so perhaps this is not problematic.

It should be noted, though, that in contrast to the rigidity condition rejecting IOA could make the

rule too flexible. We want rational rules of belief updating to be normative and provide guidance

when dealing with (uncertain) evidence. The flexibility of JC that arises after rejecting IOA could

make the rule, in a sense, unfalsifiable: if the outcome of (repeated) updating by JC is as expected,

then it is business as usual. If not, then the agent should either be more cautious and not update by

JC or the outcome was expected if uncertain evidence is taken seriously.

Nevertheless, how to proceed when IOA is rejected and observations are required to be theory-

laden could be spelled out with more precision in future work. It seems, however, that the new

guiding principle which determines whether uncertain evidence is substantial or not should not

rely (just) on the priors. Recall the example where an agent starts with 0.99 probability for the

hypothesis that a die has 4 blue and 2 red faces (4B2R) and 0.01 for 6B, and then observes blue

25 Suppose Pr(H|E) = Pr∗(H|E) and Pr(H|¬E) = Pr∗(H|¬E), i.e. the rigidity condition. It is then trivial to show that
Pr∗(H) = Pr(H|E)Pr∗(E) + Pr(H|¬E)Pr∗(¬E), i.e. the rule of Jeffrey conditionalization for binary E (e.g. Jeffrey, 1983, 169).
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with 0.7 certainty (and red with 0.3). Her belief updating could easily be blocked if the decision

to update by JC or not would depend on the priors. The observations (probability of red is 0.3)

decrease the probability of the strongest hypothesis (Pr(4B2R) = 0.99). This should be good news

as the strongest hypothesis is in fact false. In other words, highly inaccurate prior probabilities may

prevent us from ever improving our epistemic state if IOA is rejected and the decision to update

by JC or not relies on how it would affect strong hypotheses. The probability of the true hypothesis

should ideally converge toward 1 (or at least increase) regardless of the priors.

Rejecting IOA therefore presents one possible resolution of these problems but it needs to be

further analyzed and formulated more precisely before we can fully embrace it. Nevertheless, we

believe that this is a promising idea that is worth exploring in future research. After all, applica-

tions of probability to epistemological cases could benefit from the art of judgement (to paraphrase

Jeffrey, 1992).

9 Conclusion

It is worth noting that the problems reported here typically only appear when a longer sequence

of updates by JC is considered. When we inspect single updates (e.g., the first 5 updates reported

in Table 2), the updating rule does not appear to be problematic at all, especially if there are more

than just 2 or 3 hypotheses in the agent’s hypothesis space.

Further, the cases where the levels of agent’s evidential certainty are shifting throughout a se-

quence of observations are the most similar to real-life situations of those we considered. As we

demonstrated, these cases do not always lead to problematic outcomes. The sheer possibility that

they may, however, suggests that a rational agent should either proceed with caution before up-

dating her beliefs by JC or avoid it completely because JC prescribes belief updates are done in

such a way that the levels of subjective certainty of evidence are confirmed. For instance, if one is

somewhat certain of some evidence E, then the hypothesis according to which E is somewhat likely

will increase in probability.

This is not what a rational agent who is updating her beliefs in uncertain evidential situations

should be interested in. On the contrary, she should be interested in the uncertain evidence itself,

not her subjective levels of certainty (at least not in the confirmatory sense). In Freya’s cases the

25



agent was actually interested in whether the characteristic E was or was not present in the inspected

parts of the sample because this was the key to correct bacterial strain identification. Similarly, in

the cases with two-colored dice, the agents should be interested in which die they are looking at and

not primarily how certain they were about the observations. It therefore remains an open question

for further research how a rational agent needs to update beliefs in uncertain evidential situations:

be it by an adaptation of JC (e.g., by precisely specifying when it should be omitted), an alternative

rule, or a contextually-dependent pluralistic rule that applies JC in some and alternative rules in

the other cases.
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A Appendix: Proofs

A.1 Derivation of Inequality 1

First note that RelFactn,i > 1 is equivalent to:

(
Pr∗n(En)

Pr(En|Hi)− Prn(En)

Prn(En)Prn(¬En)
+

Pr(¬En|Hi)

Prn(¬En)

)
=

Pr∗n(En)Pr(En|Hi)− Pr∗n(En)Prn(En) + Pr(¬En|Hi)Prn(En)

Prn(En)Prn(¬En)
> 1 (9)

where 0 < Prn(En) < 1. Because Prn(En)Prn(¬En) > 0, we derive:

Pr∗n(En)Pr(En|Hi)− Pr∗n(En)Prn(En) + Pr(¬En|Hi)Prn(En) > Prn(En)Prn(¬En) (10)

After substituting Pr(¬En|Hi) with 1− Pr(En|Hi) and Prn(¬En) with 1− Prn(En) and rearranging

the Inequality 10, we obtain:

Pr∗n(En)Prn(En|Hi)− Pr∗n(En)Prn(En)− Prn(En|Hi)Prn(En) +
(
Prn(En)

)2
> 0 (11)

It is trivial to see that Inequality 11 is an expanded form of Inequality 1. This concludes our deriva-

tion.

Note that by following the same procedure, we also derive that RelFactn,i < 1 is equivalent to:

(
Pr∗n(En)− Prn(En)

)(
Pr(En|Hi)− Prn(En)

)
< 0 (12)

Similarly, RelFactn,i = 1 is equivalent to:

(
Pr∗n(En)− Prn(En)

)(
Pr(En|Hi)− Prn(En)

)
= 0 (13)

A.2 Proof of Theorem 1

Theorem 1. If the posterior probability of evidence is less (greater) than or equal to the lowest (greatest)

likelihood of evidence according to some hypothesis, then JC prescribes an increase in the probability of the
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hypothesis according to which the likelihood of evidence is the lowest (the highest).

Proof. Suppose that the likelihood of evidence is the lowest according to hypothesis Hk and the

highest according to Hq. We first observe the following simple consequence of the law of total

probability (assuming no hypothesis is certain):

Pr(En|Hk) < Prn(En) < Pr(En|Hq) (14)

Hence, if the posterior probability of evidence is less than or equal to the lowest likelihood of evi-

dence, then the posterior probability of evidence is also less than the prior probability of evidence:

Pr∗n(En) ≤ Pr(En|Hk) < Prn(En) (15)

Recall that, for any i, the probability of Hi increases if the following condition is satisfied:

Pr∗n(En) < Prn(En) and Pr(En|Hi) < Prn(En) (3)

It then follows from Condition 3 and Inequality 15 that Pr∗n(Hk) > Prn(Hk) when

Pr∗n(En) ≤ Pr(En|Hk).

Similarly, if the posterior probability of evidence is greater than or equal to the highest likeli-

hood of evidence, it is also greater than the prior probability of evidence:

Prn(En) < Pr(En|Hn) ≤ Pr∗n(En) (16)

Recall that, for any i, the probability of Hi increases if the following condition is satisfied:

Pr∗n(En) > Prn(En) and Pr(En|Hi) > Prn(En) (2)

It then follows from Condition 2 and Inequalitiy 16 that Pr∗n(Hq) > Prn(Hq) when Pr∗n(En) ≥

Pr(En|Hq). This concludes our proof of Theorem 1.
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A.3 Proof of Theorem 2

Theorem 2. If the hypothesis space consists of two mutually exclusive and jointly exhaustive hypotheses

and the posterior probability of different pieces of evidence with the same likelihood is constant and greater

than their likelihood according to one hypothesis but less than according to the other hypothesis, then, if

no hypothesis is certain, JC prescribes the agent to update in such a way that the probability of the first

hypothesis converges toward b/(a + b) and the probability of the second toward a/(a + b), where a and

b are the absolute difference between the agent’s posterior probability of the pieces of evidence and their

likelihood according to the first and the second hypothesis, respectively.

Proof. Suppose that the posterior probability of the nth piece of evidence is greater than the likeli-

hood of evidence according to Hk and less than the likelihood of evidence according to Hq:

Pr(En|Hk) < Pr∗n(En) < Pr(En|Hq) (17)

Note that we can represent the likelihood Pr(En|Hk) as Pr∗n(En) − a, a > 0 and the likelihood

Pr(En|Hq) as Pr∗n(En) + b, b > 0. Additionally, note that Prn(Hq) = 1− Prn(Hk). Finally, note that

because Hk and Hq are mutually exclusive and jointly exhaustive, Prn(En) = Pr(En|Hk)Prn(Hk) +

Pr(En|Hq)Prn(Hq).

Suppose Pr∗n(En) < Prn(En). Hence:

Pr∗n(En)− Prn(En) = Pr∗n(En)− Prn(Hk) (Pr∗n(En)− a)− (1− Prn(Hk)) (Pr∗n(En) + b)

= Prn(Hk) (a + b)− b < 0 (18)

Because a + b > 0, it follows that:

Prn(Hk) < b/(a + b) (19)

We have now shown that Pr(En|Hk) < Pr∗n(En) < Prn(En) implies that Prn(Hk) < b/(a + b).

Recall, again, that by Condition 3, Pr(En|Hi) < Prn(En) and Pr∗n(En) < Prn(En) imply Pr∗n(Hi) >

Prn(Hi) for any i. We thus conclude that Pr(En|Hk) < Pr∗n(En) < Prn(En) also implies Pr∗n(Hk) >

Prn(Hk). The probability of Hk, therefore, increases if it is less than b/(a + b).

It is trivial to see that Pr(En|Hk) < Prn(En) < Pr∗n(En), on the other hand, implies Prn(Hk) >
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b/(a + b). Recall that by Condition 4, Pr(En|Hi) < Prn(En) and Pr∗n(En) > Prn(En) imply

Pr∗n(Hi) < Prn(Hi) for any i. We conclude that Pr(En|Hk) < Prn(En) < Pr∗n(En) also implies

Pr∗n(Hk) < Prn(Hk). The probability of Hk, therefore, decreases if it is greater than b/(a + b). Be-

cause we already know that the probability of Hk increases if it is less than b/(a + b), we conclude

that it converges toward b/(a + b).

To finish our proof we need to show that the probability of Hq converges toward a/(a + b).

Because Prn(Hq) = 1−Prn(Hk), it immediately follows that the probability of Hq converges toward

1− (b/(a + b)) = a/(a + b). Because a and b are constant, this concludes our proof of Theorem 2.

A.4 Proof of Theorem 3

Theorem 3. JC prescribes that, if any updating takes place, the probability of the hypothesis according to

which the likelihood of evidence is closer to the prior probability of evidence changes less, relative to its prior

probability, than other hypotheses.

Proof. We need to inspect the absolute difference |RelFactn,i − 1| to see how much Pr∗n(Hi) changes

in relation to its prior probability Prn(Hi) (regardless of direction). We first obtain:

|RelFactn,i − 1| =
∣∣∣∣ (Pr∗n(En)− Prn(En)) (Prn(En|Hi)− Prn(En))

Prn(En)Prn(¬En)

∣∣∣∣ (20)

We can now compare which of the two hypotheses (Hi or Hj) relatively changes more in the

same round. By applying the rules of absolute products and absolute quotients, we obtain that

|RelFactn,i − 1| < |RelFactn,j − 1| is equivalent to:

|Pr(En|Hi)− Prn(En)| < |Pr(En|Hj)− Prn(En)|; i 6= j (21)

This means that the posterior probability of the hypothesis according to which the likelihood of ev-

idence is closer to the prior probability of evidence will change less relative to its prior probability.

This concludes our proof.
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A.5 Proof of Theorem 4

Theorem 4. JC prescribes such updates that, if any updating takes place, the prior probability of the next

piece of evidence En+1 shifts toward the posterior probability of the previous piece of evidence En.

Proof. We know that no updating takes place if Pr∗n(En) = Prn(En) (see Equation 13). Hence, we

need to show that when Pr∗n(En) is greater (less) than Prn(En), Prn+1(En+1) increases (decreases) at

most to the level of Pr∗n(En):

Prn(En) < Pr∗n(En)⇒ Prn(En) < Prn+1(En+1) ≤ Pr∗n(En) (22)

Prn(En) > Pr∗n(En)⇒ Prn(En) > Prn+1(En+1) ≥ Pr∗n(En) (23)

Let us start by proving that (22) holds. Assume Prn(En) < Pr∗n(En). We will first show that it

follows that Prn(En) < Prn+1(En+1).

We know that when the posterior probability of evidence is greater than the prior probability

of evidence (our assumption), the posterior probability of hypotheses according to which the evi-

dence is more likely than its prior probability increases (Inequality 1) and, similarly, the posterior

probability of hypotheses according to which the evidence is less likely than its prior probability

decreases (Inequality 12). Suppose the hypotheses are ordered in accordance to the likelihood of ev-

idence with the hypothesis with the lowest likelihood being H1 and the hypothesis with the highest

likelihood Hm. Further, suppose the likelihood of evidence according to hypotheses H1 to Hn−1 is

less than its prior probability in round n, equal to the prior probability of evidence according to Hn,

and greater than the prior probability of evidence for hypotheses Hn+1 to Hm. Recall also that for

all i, n, Pr(En+1|Hi) = Pr(En|Hi) (the assumption of independence of various pieces of evidence).

Hence, the prior probability of the next piece of evidence (En+1) in round n + 1 updates to:

Prn+1(En+1) =
(
Prn(H1)− a

)
Pr(En|H1) + . . . +

(
Prn(Hn−1)− b

)
Pr(En|Hn−1)

+ Prn(Hn)Pr(En|Hn) +
(
Prn(Hn+1) + c

)
Pr(En|Hn+1) + . . . +

(
Prn(Hm) + d

)
Pr(En|Hm) (24)
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where a, . . . , b, c, . . . , d are all greater than 0. We can simplify (24) to:

Prn+1(En+1) = Prn(En)− aPr(En|H1)− . . .− bPr(En|Hn−1) + cPr(En|Hn+1) + . . . + dPr(En|Hm)

(25)

We can now show that Prn+1(En+1) > Prn(En). Assume the following inequality for reductio ad

absurdum:

Prn+1(En+1) ≤ Prn(En) (RA1)

Hence (from Equation 25 and Inequality RA1 after canceling out Prn(En)):

− aPr(En|H1)− . . .− bPr(En|Hn−1) + cPr(En|Hn+1) + . . . + dPr(En|Hm) ≤ 0 (26)

We know that hypotheses are jointly exhaustive, hence the changes in their probability sum to 0.

That is: −a− . . .− b + c + . . . + d = 0. We then substitute c with a + . . . + b− . . .− d. After some

rearrangements of Inequality 26, we obtain:

a
(
Pr(En|Hn+1)− Pr(En|H1)

)
+ . . . + b

(
Pr(En|Hn+1)− Pr(En|Hn−1)

)
− . . .− d

(
Pr(En|Hn+1)− Pr(En|Hm)

)
≤ 0 (27)

All terms are positive because a, . . . , b, . . . , d are positive and Pr(En|Hn+1) > Pr(En|Hi) for all i, i <

n + 1, and Pr(En|Hn+1) < Pr(En|Hi) for all i, i > n + 1. Inequality 27, and hence our reductio

assumption (RA1), must therefore be false. We conclude our reductio with Prn(En) < Prn+1(En+1).

We have now shown the first part of the Inequality 22.

Note that we can also show the first part of Inequality 23, i.e., Prn(En) > Prn+1(En+1) given

Pr∗n(En) < Prn(En), by following the same method with different assumptions (proof omitted).

To prove that Inequality 22 holds, we need to also show that, given Prn(En) < Pr∗n(En), the

following inequality holds:

Prn+1(En+1) ≤ Pr∗n(En) (28)

To show Inequality 28, first note that because for all i, Prn+1(Hi) = Pr∗n(Hi), Prn+1(En+1) may be
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calculated in the following way by the law of total probability:

Prn+1(En+1) =
m

∑
i=1

Pr∗n(Hi)(Pr(En|Hi) (29)

where m is the number of hypotheses. Recall the Jeffrey conditionalization rule for binary partitions

of evidence. For all i, Pr∗n(Hi) updates to:

Pr∗n(Hi) =
Pr∗n(En)

Prn(En)
Prn(Hi)Pr(En|Hi) +

Pr∗n(¬En)

Prn(¬En)
Prn(Hi)Pr(¬En|Hi) (JC)

Hence:

Prn+1(En+1) =

(
Pr∗n(En)

Prn(En)

m

∑
i=1

Prn(Hi)
(
Pr(En|Hi)

)2
)
+(

Pr∗n(¬En)

Prn(¬En)

m

∑
i=1

Prn(Hi)Pr(¬En|Hi)Pr(En|Hi)

)
(30)

Recall that, for all i, Pr(¬En|Hi) = 1−Pr(En|Hi), and that Prn(En) = ∑m
i=1 Prn(Hi)Pr(En|Hi). After

some algebra we then obtain:

Prn+1(En+1) =

(
Pr∗n(En)

Prn(En)

m

∑
i=1

Prn(Hi)
(
Pr(En|Hi)

)2
)

−
(

Pr∗n(¬En)

Prn(¬En)

m

∑
i=1

Prn(Hi)
(
Pr(En|Hi)

)2
)
+

Pr∗n(¬En)

Prn(¬En)
Prn(En) (31)

Assume the following inequality for reductio ad absurdum:

Prn+1(En+1) > Pr∗n(En) (RA2)

After multiplying both sides of Inequality (RA2) by Prn(En)Prn(¬En), replacing all Pr∗n(¬En) with

1− Pr∗n(En) and Prn(¬En) with 1− Prn(En), and a few lines of algebra, we then obtain:

(
Prn(En)− Pr∗n(En)

)(
Prn(En)−

m

∑
i=1

Prn(Hi)
(
Pr(En|Hi)

)2
)
> 0 (32)

We know that the left term is negative (recall our initial assumption Pr∗n(En) > Prn(En)). We can
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also show that the second term is non-negative:

Prn(En)−
m

∑
i=1

Prn(Hi)
(
Pr(En|Hi)

)2
=

m

∑
i=1

Prn(Hi)Pr(En|Hi)− Prn(Hi)
(
(Pr(En|Hi)

)2
=

m

∑
i=1

Prn(Hi)Pr(En|Hi)Pr(¬En|Hi) ≥ 0 (33)

Hence, Inequality 32 cannot be true. We thus conclude that our reductio assumption (RA2) is false,

so Prn+1(En+1) ≤ Pr∗n(En) is true. Inequality 22, therefore, holds.

Note that we can also prove Prn+1(En+1) > Pr∗n(En) given Prn(En) ≥ Pr∗n(En) by following

the same method (proof omitted). Inequality 23, therefore, also holds. This concludes our proof of

Theorem 4.
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