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Abstract 
In this article, I present a formal semantic framework that renders explicit 
how to reconcile the condition that a proposition about a contingent future 
event is true at a moment t0 with the idea that at t0, this proposition is ‘truth-
maker indeterminate’: a state of affairs making it true will obtain later on, 
though no such state of affairs obtains at t0. The semantics I formulate 
employs ‘open temporal models’. They represent the passage of time by a 
specific component termed time-resource, which acts on durations construed 
as model-external inputs. A model does not by itself specify which course of 
events gets actualized in a given duration depending on the latest moment 
that has already got actualized. A time-resource merely represents 
schematically the dependence between a moment t and a course of events that 
gets actualized in a time-span of a given length counted from t; until that 
much time has indeed passed, it is not fixed which course of events actually 
extends t. Further, I introduce evaluations as a fine-grained tool for studying 
truth-conditions of tensed formulas, and I use this tool to define the notion of 
truth-maker. I define what it means that a truth-maker will obtain but does 
not, and what it means for a truth-maker to be determinate. It is proven that 
my semantic analysis retains the desirable link between determinacy and 
historical necessity—namely, a truth-maker of a proposition being 
determinate entails that the proposition is historically necessary. 
 
1. Modeling the passage of time 
This article is a follow-up to the paper ‘The Truth of Future Contingents:    
An Analysis of Truth-Maker Indeterminacy’,1 to which I will refer as        
‘the background paper’. The reader may wish to get acquainted with the 
background paper first, in order to appreciate the motivation for the 

                                                             
1 Published on pp. 53–77 of the present issue of Filosofiska Notiser. 
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framework developed here. However, the present paper is self-contained 
insofar as the description of the framework and the study of its properties   
are concerned.  

I will operate with two metaphysical background assumptions: 
 

Objective indeterminism: At any given time t0 and for any duration n, 
there are normally several possible future courses of events of length 
at most n (or n-maximal temporal progressions beginning at t0) such 
that none of them is at t0 metaphysically prior to any other.2 
 
Temporal becoming: At the end of any non-empty time span from t0, a 
certain course of events of the corresponding length will have got 
fixed, and as a consequence some of the ‘histories’ (or maximal 
courses of events) that were possible at t0 no longer are so. 
 

It should be noted that the content of the thesis of temporal becoming is not 
merely that a transition from a moment t1 to a possible later moment t2 
normally rules out certain possible histories in the sense that the set H(t2) of 
histories passing through t2 is a proper subset of the set H(t1) of histories 
passing through t1. This much is entailed already by the thesis of objective 
indeterminism combined with the assumption that the relation of temporal 
precedence (the causal ordering) induces a tree-like structure on moments of 
time.3 What temporal becoming in effect means is that among those moments 
t2 that are later than t1 and in particular are endpoints of n-maximal temporal 
progressions beginning at t1, exactly one gets spontaneously selected by the 
passage of time, if only we let n time units pass. The passage of time takes 
care by itself of singling out a certain moment t2 ≻ t1 in such a way that some 
histories h that were possible at t1 no longer are so at t2.4 If, however, we 
consider a moment s2 ≻ t1 on some such counterfactual history h 
(counterfactual, that is, from the viewpoint of t2), we may correctly say that 
had things gone so that s2 had become actual, some possibilities open at t1—

                                                             
2 For the notion of ‘n-maximal temporal progression’, cf. Section 4 of the background paper. If t0 
is a moment in (T, ≺) and ≺ is discrete, a temporal progression beginning at t0 is a set {t0,…,tn} 
such that ti+1 is an immediate ≺-successor of ti for all 0 ≤ i < n. The temporal progression 
{t0,…,tn} is m-maximal, if either n = m, or else n < m and the passage of time ends with tn. 
3 For the notion of causal ordering, cf. Section 1 of the background paper. 
4 Here, ‘≻’ stands for the converse of the relation of temporal precedence (i.e., it stands for the 
later than relation among moments). 
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say, time passing through t2—would no longer be open at s2. What the 
passage of time does, considered from the vantage point of a moment t1 
through which time is passing, is that it picks out, for every duration n, one 
moment among moments whose distance from t1 is (at most) n and that are 
later than t1. More precisely, for every duration n, the passage of time selects 
a moment sn that is the endpoint of an n-maximal temporal progression 
beginning at t1. Furthermore, it does this in a ‘cumulative’ fashion, so that the 
set of moments consisting of the unique past of t1 followed by the moments sn 
with n ∈ ℕ is a history according to the causal ordering of ‘our world’.5 
 
1.1 Temporal frames 
A temporal frame is a pair T = (T, ≺), where T is a non-empty set of moments 
and ≺ is an irreflexive and transitive binary relation on T (referred to as 
causal ordering relation) that satisfies the following further conditions:6 
 
(i) Discreteness: For every t and t' with t ≺ t', we have: (a) there is s with   

t ≺ s ≼ t' such that s is an immediate successor of t (i.e., there is no x 
with t ≺ x ≺ s), and (b) there is r with t ≼ r ≺ t' such that r is an 
immediate predecessor of t' (i.e., there is no x with r ≺ x ≺ t').7 

(ii) Finite composition: For any t and t' with t ≺ t', the set {x : t ≼ x ≼ t'}    
is finite.8 

(iii) Finite branching: For any t ∈ T, the set of immediate successors of t    
is finite. 

(iv) Backwards linearity: For all t ∈ T, all predecessors of t are comparable 
in terms of ≺. That is, if s ≺ t and s' ≺ t, then s = s' or s ≺ s' or s' ≺ s.  

(v) Historical connectedness: For all t, t' ∈ T there is s such that s ≼ t and   
s ≼ t'. More specifically, there is s ∈ T such that s = inf≼{t, t'}).9 

                                                             
5 Note that the set {sn : n ∈ ℕ} is finite if one of the moments si, and therefore every moment sj 
with j ≥ i, is an end of the passage of time. 
6 I use the symbol ‘≼’ to stand for the relation ≺ ∪ {(t, t) : t ∈ T}. 
7 Both conditions are needed. E.g., the ordinal ω + ω has the property that its every element 
having a successor has an immediate successor, but the element ω has predecessors without 
having an immediate predecessor. That is, (a) does not entail (b). 
8 Note that an irreflexive transitive discrete order is not automatically finitely composed. E.g., 
any linear order of order type ω + ω* offers a counterexample (between its minimum and its 
maximum there are infinitely many elements). 
9 If S is a subset of T, the infimum (or greatest lower bound) of S with respect to the order ≼, 
denoted inf≼ S, equals max{x : for all s ∈ S, x ≼ s}. If t and t' are incomparable w.r.t. ≼, then 
inf≼{t, t'} ≺ t and inf≼{t, t'} ≺ t'. Otherwise inf≼{t, t'} = min≼{t, t'}. 
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I require that the causal ordering relation satisfy the conditions (i), (ii),       
and (iii) merely to somewhat simplify the exposition. If these three  
conditions are dropped, my definition of causal ordering coincides with that 
of Belnap and his collaborators.10 Given the above definition, if (T, ≺)          
is a temporal frame, the set T contains at least one element and may            
but need not be finite. There may but need not be a uniform upper bound     
on the number of immediate successors of a moment. The set T may         
have a minimal element, and if it does, the element is uniquely       
determined (and called the root of the frame). The set T may have any     
finite number of maximal elements, and even a countable infinity of them.  
(If there are such elements, they are called the leaves of the frame.)  
However, the set T need not have extrema in either direction. The set T     
may easily be uncountable: even if it has a root and each moment has       
only two immediate successors, it has the cardinality of the continuum     
(i.e., 2𝜅 with 𝜅 = ℵ0). 

To facilitate reasoning about temporal frames, I introduce the notions of 
course of events, history, and partial history—already employed without 
precise definitions above and in the background paper.  

A non-empty subset S of T is a course of events in frame T iff11 (a) any 
distinct moments s and s' in S are comparable in terms of the relation ≺ (that 
is, satisfy either s ≺ s' or s' ≺ s); and (b) S is inward-closed (i.e., if s, s' ∈ S 
and s ≺ s', then for all x with s ≺ x ≺ s', we have x ∈ S). The causal ordering 
of the frame induces a linear order on any course of events. By the 
assumption of backwards-linearity, the set of predecessors of any moment is 
a course of events. Due to branching, the set of successors of a moment, 
again, is normally not a course of events. 

A course of events S is a history in T iff S is maximal: there is no S' with  
S ⊂ S' such that S', too, is a course of events. Every course of events S in a 
temporal frame has at least one maximal extension h in the frame, i.e., a 
history h such that S ⊆ h. If t is moment, I write H(t) for the set of all 
histories h in T that pass through t (i.e., satisfy t ∈ h).12 A course of events S 
is a partial history in T iff there is t ∈ T such that S = {x : x ≼ t}. If g is a 
partial history and its last element is t, I say that g leads to t. I write [t] for the 

                                                             
10 See Belnap & Green (1994), p. 371; Belnap et al. (2001), pp. 178–189. 
11 Here and henceforth, ‘iff’ stands for ‘if and only if’. 
12 Because the causal ordering relation of a temporal frame is discrete, finitely composed, and 
backwards-linear, each history is either finite or has one of the following three order types: ω* 
(end but no beginning), ω (beginning but no end) or ω* + ω (no beginning, no end). 
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unique partial history that leads to t, and Hp(s) for the set of all partial 
histories g passing through s (i.e., satisfying s ∈ g). For every  g ∈ Hp(s), 
there is tg such that g = [tg], whence s ≼ tg. Exactly those courses of events 
are partial histories that have a last element and are downwards-closed 
(contain all moments of T that are earlier than the last element of this partial 
history). And exactly those histories are partial histories that have a last 
element (which in that case is an end of time, i.e., a moment with no 
successor in T). 
 
1.2 Static structures versus open frames 
Temporal frames are supposed to provide a way of modeling objective 
indeterminism. We must still find a way to model temporal becoming 
(passage of time). It has been proposed in the literature that a way of 
accomplishing this might be to associate each moment t with a specific 
history ht, referred to as the thin red line through t.13 This is supposed to be 
the history that actually will unfold, supposing that t has already got 
actualized. As Belnap and his collaborators have argued, it would be 
reasonable to assume that the map t ↦ ht satisfies the following conditions (1) 
and (2):14 
 

(1) For all t ∈ T, we have t ∈ ht. 
(2) For all t, s ∈ T, if t ≺ s and s ∈ ht, then ht = hs. 
 

In this setting, it may or may not happen that the thin red lines ht cover all 
histories of the frame. (It is not excluded that there are histories h such that   
h ≠ ht for all t ∈ T.) 

Now, if a model really provides, for a given time t, a history ht understood 
as representing the passage of time through t, then according to the model it 
is entirely fixed how time will unfold from t—a consequence that makes the 
assumption of objective indeterminism collapse. Such a model depicts things 
from a highly unrealistic God’s-eye viewpoint. If objective indeterminism is 
correct, the information encoded in the model would be available only if not 
merely the actual world history had got realized in its entirety (already an 
utterly illicit idealization), but it would even be settled for all counterfactual 
                                                             
13 See Belnap & Green (1994), Belnap et al. (2001), ch. 6, Øhrstrøm & Hasle (2015). Thin red 
lines are supposed to represent the ‘real’ or ‘true’ future—the history that the actual passage of 
time singles out. 
14 Belnap et al. (2001), p. 165, postulate (14) and p. 166, postulate (17). 
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moments t how the world history would have got realized had time passed 
through t. Now, as long as indeterminism persists and the passage of time 
continues indefinitely in the direction of future, a fully actualized world 
history is merely an ideally existing limit, not completed at any moment. In 
short, adding to a temporal frame a family of histories 〈ht〉t∈T yields far too 
much information, if the goal is to model time under the assumption of 
objective indeterminism and temporal becoming. 

What is needed is that we rethink the notion of model. What I propose is 
that the full machinery of semantic evaluation must resort to information 
external to the model itself. If we try to pack all information about     
temporal becoming in the model itself, we end up misrepresenting             
‘our indeterminist world’, supposing that temporal becoming is taken to be 
one of its features. We cannot represent the passage of time through t by a 
full-fledged history ht—or, what amounts to the same thing, we cannot 
represent the way the future unfolds from t on by a function ft mapping    
non-negative durations to moments, so that ft(n) = the n-th successor of t on 
ht. The point is that for any positive duration n and any moment t, there     
will be a fixed moment ft(n) that will have become actualized when n time 
units counted from t have passed. Crucially, however, it is not determined    
at t which moment the moment ft(n) will be (among the m-th successors of t 
with m ≤ n).15 In fact, at t, the function ft is not defined on any positive 
argument. When n time units have passed after t, the function ft is defined on 
arguments 0,…,n but not on any argument n' > n. It is this phenomenon—the 
domain of the function ft increasing with time, and its corresponding values 
being gradually fixed—that we must get a grip on. Generally, we can just say 
that there is a functional dependence between the length of a time span whose 
origin lies at a given fixed moment t and a later moment that gets actualized 
at the end of that time span. The passage of time from t spontaneously  
creates a correlation between a duration n and a moment later than t. 
Retrospectively, the function ft acquires a value for the argument n. However, 
the function ft simply has no value for the argument n until n time units have 
passed after t. Therefore, it strictly speaking does not even make sense to 
speak of ‘the’ function ft. 

In order to facilitate comprehension, I formulate two ways of attempting 
to model temporal becoming: with thin red lines (the option I reject) and 
                                                             
15 It was noted in Section 4 of the background paper that if we opt to use functional expressions 
such as ‘ft(n)’ here, they should be read schematically, not as literally employing a full-fledged 
function ft defined on all natural numbers n. 
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without thin red lines (the option I adopt). A static temporal structure is a 
triple S = (T, ≺, 〈ht〉t∈T), where (T, ≺) is a temporal frame, and 〈ht〉t∈T is a 
collection of thin red lines subject to the above conditions (1) and (2). An 
open temporal frame is a triple F = (T, ≺, TIME), where (T, ≺) is still a 
temporal frame, but TIME is a resource that acts on external information: if a 
partial history g and a duration n ∈ ℕ are provided as inputs, TIME produces, 
in n time units, a partial history TIME(g, n) that extends the partial history g 
by a course of events consisting of (at most) n moments. I refer to TIME as 
the time-resource of F. The resource TIME is assumed to satisfy the 
conditions (a) and (b): 

 
(a)  For all partial histories g, we have: 
 

(i)  TIME(g, 0) = g 
(ii)  For all n ∈ ℕ, either TIME(g, n + 1) = [s] for some       

immediate successor s of the endpoint of TIME(g, n), or else            
TIME(g, n + m) = TIME(g, n), for all m ≥ 1. 

(b) For all partial histories g and all n, n' ∈ ℕ:  
TIME(TIME(g, n), n') = TIME(g, n + n').  

 
Condition (a) means that in zero duration a partial history is not extended at 
all, and in a finite positive duration n it is extended by at most n moments. If 
it is not extended by exactly n moments, the passage of time has come to an 
end, and no further duration will extend it either. The formulation of 
condition (a.ii) leaves open that the passage of time could end with    
TIME(g, n) not only because the endpoint of TIME(g, n) has no successor in 
the set T, but even when according to the causal ordering the endpoint of 
TIME(g, n) indeed has successors. This allows modeling cases in which the 
passage of time comes to an end but could have gone on. (In a mere tree-
structure, the end of time must be represented by a maximal element. This 
blocks the representational possibility that there still are later moments, albeit 
not ones that get realized by temporal becoming.) Condition (b) is a sort of 
stability condition regarding iterated applications of TIME: consecutive 
applications of TIME to shorter durations amount to the same as a single 
application of TIME to the sum of those durations. 

We may observe that for all partial histories g and all n, n' ∈ ℕ, the 
resource TIME satisfies: 
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(1) TIME(g, n) ⊆ TIME(g, n + n') 
(2) g ⊆ TIME(g, n) 
(3) If g' = TIME(g, n), then TIME(g', n') = TIME(g, n + n'). 

 
Feature (1) means that TIME produces cumulative partial histories: when 
extending a given g, the partial history corresponding to a longer duration 
contains all partial histories corresponding to shorter durations as subsets. 
Feature (2) is an analogue of property (1) of thin red lines. In particular, if      
t = max(g) and therefore g = [t], we have t ∈ TIME([t], n). Feature (3) is a 
reformulation of the above condition (b). It is an analogue of property (2) of 
thin red lines: Write g' = TIME(g, n) and suppose n > 0. Let t = max(g) and   
s = max(g'), whence t ≺ s. We may compare partial histories that are 
determined by TIME(g, x) as x grows with those that are determined by 
TIME(g', y) as y grows. Feature (3) guarantees that TIME(g, n + y) = 
TIME(g', y) for all durations y. Thus, it cannot happen that TIME yields from 
g an extended partial history g' in n time units, and from g' it yields an 
extended partial history g'' in n' time units, but still TIME would have yielded 
in n + n' time units from g an extended partial history distinct from g''. 
Generation from the generated yields nothing that could not have been 
directly generated. 

The resource TIME represents both ‘factual’ and ‘counterfactual’ 
temporal becoming. Note that if t ≺ t' and t = max(g), it can well happen that 
there is no duration n such that t' lies on TIME(g, n). The passage of time 
generates one extension of g, but t may have incomparable successors (and 
normally does) . Besides, even if the set of moments later than t was linearly 
ordered, it might happen that the passage of time through t comes to an end 
without actualizing all moments that are later than t according to the causal 
order. Observe, however, that there can be no moment that in an absolute 
sense remains outside the passage of time: if s ∈ T is any moment, TIME is 
defined at least on the partial history [s]. But it can happen that there is no 
moment s' ≺ s such that s is attained from s' along the passage of time 
through s'—i.e., that there is a duration n such that s is the endpoint of 
TIME([s'], n). And it can also happen that the passage of time through s leads 
to no further moment—i.e., that TIME([s], n) = [s] for all durations n. 

Static structures contain much more information than open frames. 
Indeed, a static structure specifies for every moment t an entire history ht, the 
thin red line through t. By contrast, an open frame does not by itself contain 
any more information than the corresponding plain frame (T, ≺). Its extra 
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component TIME is merely a mechanism that alone provides no information 
at all, but in combination with an external input (a duration) n associates a 
partial history g with a possibly longer partial history. In order to get 
anything out of the resource TIME (in order to use it), an internal input (a 
partial history) must be combined with an external input (an elapsed 
duration). The value TIME(g, n) gets determined when n time units have 
passed since the realization of g. The component TIME allows us to speak of 
a functional dependence between the length of a time span originating at g 
and a partial history that gets actualized at the end of that time span—without 
pretending that the value TIME(g, n) is anticipatedly determined.  

It would be an interpretational mistake to view open frames as static 
structures. Technically, we could transform an open frame into a static 
structure if the following preliminary procedure could be carried out: for each 
moment t, consider successively all positive integers n and apply TIME 
successively to each pair (g, n), where g = [t] (thus, apply it infinitely many 
times) to yield a sequence 〈t1, t2,…〉, where tn equals the endpoint of   
TIME(g, n), for all n > 0. Then define ht = [t] ∪ {t1, t2,…}. The properties   
(a) and (b) of TIME guarantee that the histories ht, thus defined, satisfy the 
conditions (1) and (2) of thin red lines. Needless to say, in any circumstance 
in which we actually can find ourselves wishing to evaluate temporal 
propositions, we cannot carry out such a preliminary task, which would 
consist of going through possibly infinitely many moments, and for each of 
them considering possibly infinitely many durations. Given how the resource 
TIME is to be construed, even for a single moment the requisite part of the 
procedure could take literally an eternity (running through all durations 
corresponding to positive integers). An open structure is, so to say, a static 
structure in a dormant form: it can never by itself produce any       
information about the future, but it allows to represent a potential for 
extending already actualized partial histories by ever longer courses of 
events. A static structure would only result, if all such potentiality could at 
one stroke be actualized—if the time-consuming use of our resource could 
per impossibile be carried out instantaneously. 

  
2. Temporal-modal language L  
Let prop be a set of propositional atoms, denoted p, q, r etc. Positive literals 
are simply propositional atoms. Negative literals are expressions of the form 
¬p, where p ∈ prop. The set lit of literals consists of positive and negative 
literals. I will consider a propositional temporal-modal language, to be called 
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L, built on the set lit and syntactically closed under the binary connectives ∨ 
(disjunction) and ∧ (conjunction), as well as under the unary connectives P (it 
was the case that), H (it has always been the case that), F (it will be the case 
that), G (it will always be the case that), ◇ (it is historically possible that), 
and □ (it is settled that). We may, then, recursively define a function ∼ from 
L to L by the following clauses: ∼(φ ∧ ψ) ≔ (∼φ ∨ ∼ψ), ∼(φ ∨ ψ) ≔           
(∼φ ∧ ∼ψ), ∼(Fφ) ≔ G∼(φ), ∼(Gφ) ≔ F∼(φ), ∼(Pφ) ≔ H∼(φ), ∼(Hφ) ≔ 
P∼(φ),  ∼(□φ) ≔ ◇∼(φ), ∼(◇φ) ≔ □∼(φ), ∼(p) ≔ ¬p, ∼(¬p) ≔ p. Then, 
we may use in a metalanguage the symbol ‘→’ so that ‘(φ → ψ)’ abbreviates 
‘(∼φ ∨ ψ)’. I opt for a syntax in which the negation symbol ¬ appears only in 
front of atomic formulas and in which every generally applicable connective 
has its dual in the syntax; the fact that the syntax is thus formulated will 
facilitate certain metatheoretical considerations. I proceed to formulate a 
semantics for L, the goal being that the semantics is compatible with both 
objective indeterminism and temporal becoming. I provide two alternative 
semantics: one taking inspiration from thin red lines (models based on static 
temporal structures), another in terms of durations construed as model-
external inputs (models based on open temporal frames). I am advocating the 
latter semantics and not the former, but the former being an ‘idealized’ 
version of the latter, it can help appreciate the general semantic ideas 
underlying both formulations. 
 
2.1 Models based on static structures  
Let 𝒮 = (S, V), where S = (T, ≺, 〈ht〉t∈T) is a static temporal structure, and V is 
a valuation function such that V(p) ⊆ T for all p ∈ prop. Relative to such 
static models 𝒮 and pairs (s, ht) of moments s and histories ht with s ∈ ht, we 
may recursively define the semantics of our language:  
 

• 𝒮, s, ht ⊨ p iff: s ∈ V(p).  
• 𝒮, s, ht ⊨ ¬p iff: s ∉ V(p). 
• 𝒮, s, ht ⊨ (φ ∨ ψ) iff: there is χ ∈ {φ, ψ} such that 𝒮, s, ht ⊨ χ. 
• 𝒮, s, ht ⊨ Pφ iff: there is x with x ≺ s (and x ∈ ht) such that 𝒮, x, ht ⊨ φ.  
• 𝒮, s, ht ⊨ Fφ iff: there is x with s ≺ x and x ∈ ht  such that 𝒮, x, ht ⊨ φ.  
• 𝒮, s, ht ⊨ ◇φ iff: there is x with s ≼ x such that 𝒮, s, hx ⊨ φ. 

 
The clauses for the ‘duals’ ∧, H, G, and □ of ∨, P, F, resp. ◇ can be defined 
in an obvious way. We may observe that the clauses respect the requirement 
that the value of the ‘moment parameter’ must be an element of the value of 
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the ‘history parameter’: semantic clauses never lead from a context satisfying 
this condition to one not satisfying it.16 

The histories ht correspond to what are termed thin red lines in the 
literature, but their role for the present semantics is not the same as the role of 
thin red lines is usually taken to be. Thin red lines are usually used for 
eliminating any need for an explicit history parameter. The semantics has 
recourse to a thin red line given by the model whenever needed: a thin red 
line ht is used to evaluate a future-tense operator at t. I do not wish to 
eliminate the history parameter. I do not require that Fφ evaluated at x use hx 
as the history component of evaluation. Indeed, in the above clause for F, it 
can happen that s ≺ t, in which case it is compatible with my assumption 
about thin red lines that hs ≠ ht. In fact, in the above semantics, thin red lines 
are employed to interpret the modal operator ◇ (and its dual □). As a matter 
of fact, the semantic clauses for all connectives except for ◇ and □ are 
exactly like in the Ockhamist semantics.17 In the clause for ◇, I wish to 
avoid explicit existential quantification over histories passing through s. 
Instead, quantification is over all moments x later than or identical to s. Each 
such moment determines a history, the thin red line hx through x. Thus, 
indirectly we end up quantifying over the histories of the family 〈ht〉t∈T.  
Unless this family covers the totality of histories in the frame (T, ≺), this 
results in quantifying over fewer histories than in the Ockhamist      
semantics. Still, among the ht there are ‘arbitrarily good approximations’ of 
all frame histories: for every initial segment of every frame history (no matter 
how long), there is a history belonging to the family 〈ht〉t∈T with that same 
initial segment. 

As an example of semantic evaluation, consider the formula q → PFq 
(that is, the formula ¬q ∨ PFq), refutable according to the usual formulation 
of thin red line semantics that employs moments of evaluation and drops 
histories of evaluation.18 For, suppose there are just three moments t0, t1, t2, 
the causal ordering being ≺ = {(t0, t1), (t0, t2)}. Suppose V(q) = {t2}. Finally, 

                                                             
16 The semantic relation ⊨ is quaternary; if we have 𝒮, s, ht ⊨ φ, I say that the second term s is 
the value of the ‘moment parameter’ and the third term ht the value of the ‘history parameter’. 
Cf. footnote 19. 
17 For the Ockhamist semantics, see, e.g, Øhrstrøm & Hasle (2015), Subsection 5.1. 
18 For the use of thin red lines in semantics, see Øhrstrøm & Hasle (2015), Subsection 5.3. The 
only semantic clauses that in effect make recourse to thin red lines are the clauses for F and G. In 
particular, Fφ is taken to be true at t iff there is t' that lies on the thin red line TLR(t) associated 
with t such that t ≺ t' and φ is true at t'. 
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suppose the thin red line TRL(t0) associated with t0 equals {t0, t1}. Now, 
according to thin red line semantics, the formula PFq is false at t2, since Fq is 
false at t0—false, since there is no time later than t0 belonging to the 
privileged history TRL(t0) at which q would be true. Still q is true at t2, so the 
material implication is false at t2. By contrast, according to my static model 
semantics, the formula q → PFq is true in all static models at all non-minimal 
moments s relative to all histories ht with s ∈ ht. While it is perfectly possible 
that hs ≠ ht, the thin red line hs will not be employed in evaluating the formula 
q → PFq. Generally, the history component can only get changed via the 
evaluation of a modal operator. So, suppose that q is true at s in the history ht 
with s ∈ ht (that is, 𝒮, s, ht ⊨ q). Since s is non-minimal, there is s' ≺ s. Now, 
𝒮, s', ht ⊨ Fq, because indeed there is x with s' ≺ x and x ∈ ht, namely x ≔ s. 
Thus, 𝒮, s, ht ⊨ PFq. It can happen that from the viewpoint of s', both 
moments s and t are counterfactual (in the sense that s ∉ hs' and t ∉ hs'). But 
this fact has no bearing, as long as ht remains the value of the history 
parameter: as long as the evaluation is relative to the history ht. 

Interpretatively, the static-model semantics is highly problematic for my 
purposes. It operates shamelessly with entire histories ht, each of which is 
introduced at the outset as a representation of the ultimate result of temporal 
becoming passing through t, whether t be from our perspective an actual or 
counterfactual moment. I wish to keep the spirit of the semantics, but to 
reformulate it so that it becomes intelligible when evaluation is considered as 
taking place in time, instead of being observed from a viewpoint lying 
outside time—the only type of viewpoint that makes instantaneously 
available all histories of the temporal frame. As a result, we cannot operate 
with entire histories but merely partial histories. Statements about the future 
must rely on durations acting as an external input to the semantic evaluation. 
Statements about modalities at t are in terms of ‘eventualities’—moments s 
with t ≼ s causally possible relative to the time of evaluation t. 
 
2.2 Models based on open frames  
Let ℳ = (T, ≺, V, TIME), where (T, ≺, TIME) is an open temporal frame 
and V(p) ⊆ T for all p ∈ prop. I refer to the structure (T, ≺, V) as an event 
structure, and to ℳ itself as an open temporal model. (Moments—elements 
of T—satisfying specified propositional atoms as indicated by V can be 
referred to as eventualities.) Formulas of L are evaluated on open temporal 
models ℳ relative to pairs (s, g) of moments s and partial histories g with     
s ∈ g. Given a circumstance of evaluation (ℳ, s, g), I say that s is the value 
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of the moment parameter and g the value of the history parameter.19 The idea 
is that the value g of the history parameter keeps track of moments ‘already 
actualized’. It is always of the form g = [max(g)] = [t] = {x : x ≼ t}, where t is 
the moment most recently actualized (either factually or counterfactually). 
Consequently, the value of the history parameter is normally not a fully 
fledged history but merely a partial history. The value s of the moment 
parameter must lie on the partial history g corresponding to the history 
parameter—but may be arbitrarily far away from the endpoint max(g) of that 
partial history. 

If at (s, g) we are to evaluate a construction that regards future, it may but 
need not happen that we must call attention to how the partial history g 
unfolds. It may be enough to consider moments t that already lie on g but are 
later than s, but in general this does not suffice. Due to objective 
indeterminism, the temporal frame itself does not yield a unique continuation 
of any length to the partial history g. Then again, the thesis of temporal 
becoming entails that there is in fact a unique way in which g unfolds in any 
given number of time units—though the way in which it does is merely 
determined ex post facto when a duration of the corresponding length has 
passed. The partial history g itself does not determine its own continuation. 
The best we can say in general terms is that for any duration n > 0 there will 
be a correlation between a certain set of moments {t1,…,tn} and the pair (g, n) 
with the property that g ∪ {t1,…,tn} is the partial history to which g in fact 
will lead in n time units—but the identity of the moments ti is revealed only 
at the end of a time span of length n beginning at max(g). The correlation can 
be established only retroactively, not when merely the moments in g have got 
actualized. In fact, the passage of time does precisely that: establishes 
spontaneously such a correlation for ever longer durations n measured from 
the endpoint of a given partial history g. It is this dynamics—determining 
how the temporal becoming will continue, if it has already reached a given 
moment—that is meant to be modeled by the resource TIME. By my 
modeling-hypothesis, this resource interacts with reality external to the 
model; the resource is used by letting a finite duration determine the 
continuation of a partial history. 

By insisting on the fact that the resource TIME requires external 
information (a duration) as an input, I wish to stress that the right way          
of understanding my semantic model is not to construe TIME as a      
                                                             
19 We say so, even if g is a partial history, not a history. There should be no risk of serious 
misuderstanding. 
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function whose values are determined for all pairs of partial histories         
and durations by the temporal model itself. Doing that would lead us 
immediately to the above static semantics. Instead, the only way I can 
imagine to model the effects of the passage of time in semantics is to accept 
viewing TIME as a resource that can be consulted locally regarding this or 
that particular argument-pair, but not globally, in the sense that one could 
construct entire frame histories by consulting the resource for all 
combinatorially possible relevant argument-pairs before proceeding to 
evaluate anything at all.  

At the level of temporal experience, consulting TIME regarding a pair   
(g, n) corresponds to the case where g consists of all moments already 
actualized, the endpoint of g being the moment we experience as present,  
and we proceed to wait n time units to see how g spontaneously evolves 
during the ensuing period of length n. At the end of a time span of n units,     
a certain longer partial history has got actualized—a partial history that        
in no way was determined already at g but is nevertheless determined at     
the end of the period. Indeed, in a concrete evaluation situation, there is    
only one direct way of consulting TIME: waiting. Actual consultation can   
be replaced by hypothetical consultation whenever we can recognize 
beforehand that the outcome of our evaluation is independent of how          
the history evolves. This is the case of propositions that are not      
historically contingent—i.e., either hold or fail always for logical or  
semantic reasons, or in fact invariably hold or invariably fail in virtue of 
suitable causal laws or perhaps for metaphysical reasons due to the natures  
of things. 

If (T, ≺) is a temporal frame and t ≼ s, I write ∆(t, s) = n iff                       
s ∈ succn(t), and I say that ∆(t, s) is the distance of t from s (in this     
order).20 Relative to open temporal models ℳ, and pairs (s, g) of       
moments s and partial histories g with s ∈ g, the semantics of L is defined    
as follows: 
 

• ℳ, s, g ⊨ p iff: s ∈ V(p).  
• ℳ, s, g ⊨ ¬p iff: s ∉ V(p). 
• ℳ, s, g ⊨ (φ ∨ ψ) iff: there is χ ∈ {φ, ψ} such that ℳ, s, g ⊨ χ. 
• ℳ, s, g ⊨ Pφ iff: there is x with x ≺ s (and x ∈ g) such that ℳ, x, g ⊨ φ. 

                                                             
20 We may stipulate that the map ∆ is defined on all pairs of moments (t, s) lying on one and the 
same partial history—and not merely on those satisfying t ≼ s—by setting ∆(t, s) = –∆(s, t), if    
t ≻ s. Thus, ∆ expresses a ‘directed’ distance, the value ∆(t, s) being negative if t is later than s. 
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• ℳ, s, g ⊨ Fφ iff: there is n > 0 such that ℳ, s', g' ⊨ φ, where s' is the 
unique moment satisfying ∆(s, s') = n and 

—  g' = g, if ∆(s, max(g)) ≥ n; and 
— s' = max(g') and g' = TIME(g, n*)         

 with n = ∆(s, max(g)) + n*, otherwise.  
• ℳ, s, g ⊨ ◇φ iff: there is x with s ≼ x such that ℳ, s, [x] ⊨ φ. 

 
The clauses for the ‘duals’ ∧, H, G, and □ of ∨, P, F, resp. ◇ can, again, be 
defined in an obvious way. If the condition ℳ, s, g ⊨ φ holds, I say that φ is 
‘true at s on g’, otherwise I say that φ is ‘false at s on g’. 

The semantic clause of F covers two cases, depending on whether a 
suitable duration n witnessing the truth of φ can be found among the 
moments already actualized on g (in which case the distance between the 
moment of evaluation s and the endpoint of g is at least n), or whether the 
passage of time must actualize further moments in order for n to be a duration 
witnessing the truth of φ. Note that the requirement ∆(s, s') = n entails that in 
the latter case (i.e., the case in which the distance ∆(s, max(g)) is less than n), 
the passage of time must actually extend g. To be sure, it might happen that 
TIME does not extend g, so that TIME(g, x) = TIME(g, 0) for all positive 
integers x. However, this is not compatible with Fφ being true at s on g 
according to the second alternative. Namely, if the passage of time failed to 
extend g, the partial history g' would equal g, so that we would have s' = 
max(g') = max(g), and consequently n = ∆(s, s') = ∆(s, max(g)) < n, which is 
impossible. Whether or not the evaluation needs to have recourse to TIME 
depends, in particular, on the position of the value of the moment parameter 
in relation to the value of the history parameter. Consider, for example, the 
model described above in connection with the formula q → PFq. Let g = {t0} 
and g' = {t0, t2}, and suppose that TIME(g, 1) = {t0, t1}. Then the formula Fq 
is false relative to (t0, g), since the passage of time extends g to t1 at which q 
is false. Yet Fq is true relative to (t0, g'), since indeed there is a moment later 
than t0 in g' (namely, t2) at which q is true. 

Modal operators shift the value of the history parameter. Relative to a 
moment s, they quantify over ‘eventualities’—moments t satisfying s ≼ t. I 
allow the identity s = t, for otherwise the truth of φ at a moment with no 
successors would not entail ◇φ. When the value of the history parameter is 
changed, eventual tense operators in the scope of the modal operator are 
evaluated relative to this new value. For example, let t0, t, s, s' be four 
pairwise distinct moments, and consider the frame ({t0, t, s, s'}, ≺) with ≺ = 
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{(t0, t), (t0, s), (s, s'), (t0, s')}. Suppose V(q) = {s'}. Finally, suppose 
TIME({t0}, 1)= {t0, t} and TIME({t0, s}, 1) = {t0, s, s'}. Then ¬Fq is true at t0 
relative to the partial history {t0}, because all positive durations n will yield 
the partial history TIME({t0}, n) = TIME({t0}, 1) = {t0, t1}, and q is false at t. 
Yet ◇Fq is true at t0 on {t0}. For example, ◇ is witnessed by s with t0 ≺ s. 
Namely, indeed Fq is true at t0 on the partial history {t0, s}, since there is a 
duration n ≔ 2 such that q is true at the endpoint s' of the partial history {t0, 
s, s'} = TIME({t0, s}, 1), where 1 = 2 – 1 = n − ∆(t0, s). Alternatively, ◇ is 
witnessed directly by s' (which satisfies t0 ≺ s'), since Fq is true at t0 on {t0, s, 
s'}. In this latter evaluation, no (counterfactual) recourse to TIME is needed, 
because q is true at a moment later than t0 (namely s') that lies directly on the 
partial history {t0, s, s'} relative to which the evaluation is being effected. 

Superficially, the clauses for F and P do not resemble each other very 
much. This can actually be seen as being promising, since the corresponding 
truth-conditions indeed are far from being on a par metaphysically: the 
semantics of F makes generally allusion to moments not yet realized (which 
is why in connection with F we quantify over durations and not over 
moments), whereas the semantics of P can profit from the fact that the history 
of the moment of evaluation is uniquely determined by this moment of 
evaluation itself. Then again, nothing of course prevents us from formulating 
the semantics of P, too, in terms of durations: 

 
• ℳ, s, g ⊨ Pφ iff: there is n > 0 such that ℳ, s', g ⊨ φ, with ∆(s', s) = n.  

 
Here, the value g of the history parameter remains unchanged and the  
moment parameter is changed to a moment that is n units in the past of s on 
the very partial history g (i.e., to the n-th predecessor of s on g). Still of 
course the clauses for F and P are not simple mirror images of each         
other (unlike in the standard Ockhamist semantics), because I take  temporal 
becoming more seriously than those propagating the Ockhamist semantics 
do. In order for Fφ to be true at s on g, a recourse to the resource TIME may 
be needed, though in special cases this is avoided. However,                          
if such a fortunate special case does not present itself, the passage of         
time through s either does not render φ true at all, or renders it true at a 
moment that is yet to be actualized. And the evaluation can move beyond the 
endpoint of g only in virtue of TIME. By contrast, the evaluation of Pφ can 
under no circumstances appeal to TIME; it makes use of the partial history 
already realized.  
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The semantic evaluation will inevitably employ partial histories, but if we 
so wish, we can introduce a (seemingly) history-independent truth-relation,  
as follows. 

 
Definition 2.1 (Truth relative to a moment only) If φ is an L-formula, ℳ = 
(T, ≺, V, TIME) is an open temporal model, and t0 ∈ T, then φ is said to be 
true in ℳ at t0 (in symbols ℳ, t0 ⊨ φ) iff ℳ, t0, g0 ⊨ φ, where g0 = [t0]. ∎ 
 
That is, a formula is true simply at t0 iff it is true at t0 relative to the partial 
history whose endpoint is t0. This merely moment-relative notion of truth is 
of some use, because our main interest is usually to evaluate a formula 
relative to a moment construed as being present, and it is only the further 
semantic processing that may lead us to circumstances in which the moment 
component is earlier than the endpoint of the history component. And if t0 is 
construed as present, then the history component, which keeps track of all by-
now actualized moments, will not contain any moments later than t0.  

Having fixed the semantics of our language L, in particular the semantics 
of formulas that utilize future-tense operators, I will move on to explicate 
how this semantics allows us to make precise sense of the idea that the truth-
maker of a proposition about a future event will obtain but does not.  

 
3. Truth analyzed: evaluations  
I wish to explain what it means that a proposition is true while its truth-maker 
merely will obtain but does not yet do so. To accomplish this task, we need to 
have a firm and fine-grained understanding of what it takes for a proposition 
to be true at a time t on a partial history g. To this end, I introduce the notion 
of evaluation. Relative to a fixed open temporal model ℳ, evaluations are 
finite sequences of triples (ψ, s, f), where ψ is a formula of L, s is a moment, 
and f is a partial history passing through s. In terms of such sequences, we 
can articulate in a very precise fashion what the truth of a formula at a 
moment on a partial history amounts to. If σ = 〈π1,…,πn〉 is a sequence whose 
members are the πi with 1 ≤ i ≤ n, and πn+1 is any object, I write σ  ^ πn+1 for 
the sequence 〈π1,…,πn, πn+1〉 that results from extending σ by πn+1. 
 
Definition 3.1 (Evaluation position, evaluation) Let ℳ = (T, ≺, V, TIME)  
be an open temporal model. An evaluation position on ℳ is any triple        
(ψ, s, f), where ψ is a formula, s ∈ T, and f ∈ Hp(s). If t ∈ T and g ∈  Hp(t), an 
evaluation of formula φ on the circumstance of evaluation (ℳ, t, g) is any 
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minimal set ℰ of sequences of triples containing the unit sequence ⟨(φ, t, g)⟩ 
and satisfying the following closure condition that specifies whether and how 
a sequence belonging to ℰ can be extended depending on the last member of 
this sequence. If σ ∈ ℰ and its last member is (ψ, s, f), then:  
 

• If ψ  = (χ1 ∨ χ2), we have σ ^ (χi, s, f) ∈ ℰ for exactly one i ∈ {1, 2}. 
• If ψ = (χ1 ∧ χ2), we have σ ^ (χi, s, f) ∈ ℰ for all i ∈ {1, 2}. 
• If ψ = Pχ and s has predecessors on f, we have σ ^ (χ, u, f) ∈ ℰ for  

exactly one u with u ≺ s (and u ∈ f).  
• If ψ = Hχ, we have σ ^ (χ, u, f) ∈ ℰ for all u such that u ≺ s (and u ∈ f). 
• If ψ = Fχ  and s has successors (not necessarily on f but) in 
∪m>0TIME(f, m), then for exactly one n > 0, we have: 

— if ∆(s, max(f)) ≥ n and u is the n-th successor of s on f, then           
σ ^ (χ, u, h) ∈ ℰ, where h = f; and 

— if ∆(s, max(f)) < n and n = ∆(s, max(f)) + n* and u is the endpoint 
of TIME(f, n*), then σ ^ (χ, u, h) ∈ ℰ, where h = TIME(f, n*). 

• If ψ = Gχ, then for all n > 0, we have: 
— if ∆(s, max(f)) ≥ n and u is the n-th successor of s on f, then           

σ ^ (χ, u, h) ∈ ℰ, where h = f; and 
— if ∆(s, max(f)) < n and n = ∆(s, max(f)) + n* and u is the endpoint 

of TIME(f, n*), then σ ^ (χ, u, h) ∈ ℰ, where h = TIME(f, n*). 
• If ψ = ◇χ, we have σ ^ (χ, s, [u]) ∈ ℰ for exactly one u with s ≼ u.   
• If ψ = □χ, we have σ ^ (χ, s, [u]) ∈ ℰ for all u with s ≼ u. 

 
The triple (φ, t, g) is the initial evaluation position. Maximal sequences 
belonging to an evaluation ℰ are called evaluation sequences. (A sequence    
σ ∈ ℰ is ‘maximal’ if there is no triple π such that σ ^ π ∈ ℰ.) ∎ 
 

The following observations can be made regarding evaluations as just 
defined.21 (1) Elements of evaluations are sequences of evaluation positions, 

                                                             
21 Readers familiar with Hintikka-style game-theoretical semantics will notice that if the above 
semantics employing a time-resource is formulated in terms of semantic games, evaluation 
sequences are plays of the semantic game associated with φ relative to (ℳ, t, g); initial segments 
of evaluation sequences are its partial plays; and evaluation positions are positions in this game. 
An arbitrary element of an evaluation is either a play or a partial play. For every evaluation ℰ, 
there is a strategy of the ‘initial verifier’ such that ℰ is the set of all plays that can result when the 
‘initial verifier’ employs this strategy against some sequence of moves by the ‘initial falsifier’. 
For semantic games, cf., e.g., Väänänen (2007), ch. 5. 
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not just sequences of arbitrary triples of formulas, moments, and partial 
histories. Namely, thanks to the way in which the initial clause and the 
clauses of the closure condition are formulated, in fact any triple (ψ, s, f)  
appearing as a member of an element of an evaluation always satisfies            
f ∈ Hp(s), or in other words, satisfies s ∈ f. (2) All sequences belonging to an 
evaluation are finite sequences of evaluation positions. In fact, if the 
maximum number of nested tokens of connectives in φ equals n (taking into 
account tokens of temporal and modal operators as well as tokens of 
conjunctions and disjunctions), then the maximum number of members of a 
sequence belonging to an evaluation of φ equals n. (3) The cardinality of an 
evaluation (the number of sequences in it) can well be infinite, if the temporal 
frame is infinite and the formula contains tokens of the operators □, H or G. 
In particular, the number of evaluation sequences in an evaluation (i.e., 
maximal sequences belonging to an evaluation) can be infinite. (4) The last 
position of an evaluation sequence has always one of the following forms:  
(q, s, g) or (¬q, s, g) for some q ∈ prop; or (Oχ, s, g) for some O ∈ {P, H} 
and some s that has no predecessor; or (Oχ, s, g) for some O ∈ {F, G} and 
some s to which the time-resource provides no successor. In these cases, a 
sequence already formed cannot be extended, either because the formula 
component of the last position reached is already a literal (which as such does 
not admit of further decomposition); or because the formula component 
begins with a past-tense operator but the moment component is minimal with 
respect to the frame relation ≺; or because the formula component begins 
with a future-tense operator but the moment component s is the endpoint of 
the partial-history component g, and moreover the time-resource does not 
extend the partial-history component any further.22 (5) The last position of a 
maximal sequence cannot be of the form (Oχ, s, g) for some O ∈ {◇, □}, 
for even if s had no successor, the sequence would allow at least an extension 
by the position (χ, s, [s]), given that the moment t chosen to interpret a modal 
operator must only satisfy s ≼ t, not necessarily s ≺ t. (6) In the clauses for 
past-tense operators, the fact that we have s ∈ f and u ≺ s actually entails that 
u ∈ f, because every partial history (thus, f) contains all predecessors of its all 
members. So it is redundant to separately require that u ∈ f. This is why this 
clause was put in parentheses, but still kept visible to facilitate comparison 
with other clauses of the closure condition.  
                                                             
22 This may be because s = max(g) is maximal with respect to the frame relation ≺. However, it 
may also happen that max(g) has successors in T, but nevertheless the time-resource does not 
extend g—i.e., TIME(g, n) = g for all n ∈ ℕ. 
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Definition 3.2 (Truth-evaluation) An evaluation ℰ of φ on (ℳ, t, g) is a 
truth-evaluation, if every evaluation sequence Σ belonging to ℰ satisfies: the 
last position of Σ is either of the form (q, s, g) with s ∈ V(q), or of the form 
(¬q, s, g) with s ∉ V(q), or of the form (Hχ, s, g) with s = min(g), or of the 
form (Gχ, s, g) with s = max(g) and TIME(g, n) = g for all n ∈ ℕ, with TIME 
being the time-resource of ℳ. ∎  
 

It is possible to characterize the property of a formula being true in a 
circumstance of evaluation in terms of truth-evaluations.23  

 
Fact 3.3 Let ℳ be an open temporal model. Let φ be a formula, let t be a 
moment, and let g ∈ Hp(t). Then we have:  
 

ℳ, t, g ⊨ φ iff there is a truth-evaluation of φ on (ℳ, t, g). 
 
Proof. By induction on the complexity of φ. For the direction from left to 
right, the Axiom of Choice is needed, because of the unicity requirement 
inbuilt into the clauses for F, P, and ◇; see Hodges (1983), p. 94; cf.  
Hodges (2013), Section 3. ∎ 
 

Consequently, the property of a formula of being false in a circumstance 
is likewise characterizable by using truth-evaluations: ℳ, t, g ⊭ φ iff there is 
no truth-evaluation of φ on (ℳ, t, g) iff for every evaluation ℰ of φ on       
(ℳ, t, g), there is an evaluation sequence in ℰ such that its last position is 
either of the form (q, s, g) with s ∉ V(q), or of the form (¬q, s, g) with           
s ∈ V(q), or of the form (Pχ, s, g) with s = min(g), or of the form (Fχ, s, g) 
with s = max(g) and TIME(g, n) = g for all n ∈ ℕ. Evaluations allow us to 
discuss the semantics of our temporal-modal language in a much more fine-
grained fashion than would be the case if we simply proceeded from the 
declaration that a formula is true or false in a given circumstance of 
evaluation. The following definition will prove useful.  

 
Definition 3.4 (Moment set of an evaluation) Suppose ℰ is an evaluation 
and the common initial position of all evaluation sequences in ℰ is (φ, t0, g0). 
If Σ is an evaluation sequence in ℰ, then its moment set, denoted by M(Σ), 
consists of all those moments that either belong to the initial partial history g0 
                                                             
23 Evaluations allow us to employ the fine-grained level of analysis familiar from game-
theoretical semantics without getting overtly ludic. Cf. footnote 21.  
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or appear as the second member u of some position (χ, u, h) of Σ. The 
moment set of ℰ, denoted by M(ℰ), is the union of all moment sets M(Σ), 
with Σ being an evaluation sequence in ℰ. ∎  
 

Note that it could happen that the endpoint of the initial partial history g0 
does not appear as the moment component of any position appearing in a 
given evaluation sequence Σ, though automatically the endpoint of any other 
partial history appearing in a position of Σ indeed appears as a moment 
component of some position in Σ. By including g0 in M(Σ), we take care that 
no explicitly introduced moment in any way constitutive of Σ remains above 
all moments in M(Σ). The set M(ℰ)—the union of all sets M(Σ) with Σ ∈ ℰ—
may well be infinite. Already the moment set M(Σ) of a single evaluation 
sequence Σ may be infinite (due to the initial partial history g0 being   
possibly infinite in the direction of the past), but M(Σ) may not contain 
infinitely many moments later than the initial moment of evaluation t0. 
However, jointly all evaluation sequences in ℰ can indeed involve infinitely 
many such moments.  

 
4. States of affairs and truth-makers  
 
4.1 States of affairs 
I take a momentary state of affairs to be a moment exemplifying specified 
features—features that can be described in terms of propositional atoms. 
Generally, I take a state of affairs (SOA) to be a structure of momentary 
SOAs in which these momentary SOAs are arranged by a causal ordering, 
and in connection with which it is possible to speak of the passage of time. 
Open temporal models represent SOAs in this sense. In particular, a 
momentary SOA is represented by an open model ({t}, ∅, Vt, TIMEt), with 
TIMEt({t}, 0) = {t}, and Vt(p) = ∅ or Vt(p) = {t} for all p ∈ prop. ‘Our 
indeterminist world’ is itself one enormous SOA.  

In what follows, I use the standard notion of substructure in connection 
with event structures (T, ≺, V). I refer to such structures as ‘static 
substructures’ in order to stress the fact that they involve no resource 
representing temporal becoming. 

 
Definition 4.1 (Static substructure of an event structure) If 𝔖 = (T, ≺, V) 
is an event structure, and ∅ ≠ T' ⊆ T, then the static substructure of 𝔖 
determined by T' is the structure (T', ≺', V'), where ≺' = ≺ ∩ (T'  × T') and 
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V'(p) = V(p) ∩ T' for all p ∈ prop. I write 𝔖' ⋐ 𝔖 to indicate that 𝔖' is a 
static substructure of 𝔖 (determined by some non-empty subset of the domain 
of 𝔖). If 𝔖' is a static substructure of 𝔖, I say conversely that 𝔖 is a static 
extension of 𝔖'. ∎ 
 
The following auxiliary notion will be useful.  
 
Definition 4.2 (Static substructure generated by a set of moments) Let    
𝔖 = (T, ≺, V) be an event structure. Suppose ∅ ≠ S ⊆ T. Let T' be the 
smallest subset of T that includes S and satisfies the following closure 
conditions: 
 

• Inward closure: For all s, t ∈ S and all x with s ≼ x ≼ t, we have:  x ∈ T'. 
• Closure under formation of minimal paths between incomparables: For  

all s, t ∈ S that are not comparable with respect to the relation ≺, and for 
all x such that inf{s, t} ≼ x ≼ s or inf{s, t} ≼ x ≼ t, we have: x ∈ T'.24 

 
The static substructure of 𝔖 generated by S is the unique substructure 𝔖' of 𝔖 
whose domain is T'. ∎ 
 
Note that in the generated static substructure 𝔖', the interrelations of the 
elements of S are the same as they were in the model 𝔖: if a moment s ∈ S 
was in 𝔖 an n-th successor (or the n-th predecessor) of t0, then s is even in 𝔖' 

an n-th successor (respectively, the n-th predecessor) of t0. And if moments  
s, s' ∈ S were incomparable in 𝔖 and their greatest lower bound was the n-th 
predecessor of s and the m-th predecessor of s', then s and s' are incomparable 
in 𝔖', as well, and in 𝔖', too, their greatest lower bound is the n-th 
predecessor of s and the m-th predecessor of s'. Finally, observe that for each 
partial history g' of 𝔖', there is a unique partial history g in 𝔖 such that g' is a 
‘final segment’ of g: either g' = g or else there is s such that s = min(g') and  
g' ={t : t ∈ g and s ≼ t}. 
 
Definition 4.3 (Dynamic and static substructures of a SOA) Let ℳ1 =  
(𝔖1, TIME1) and ℳ2 = (𝔖2, TIME2) be SOAs, with 𝔖1 = (T1, ≺1, V1) and    
𝔖2 = (T2, ≺2, V2) being event structures. It is said that ℳ1 is a static 
                                                             
24 I formulate the two conditions separately for the sake of clarity. It would be sufficient to      
use the following single more general condition: For all s, t ∈ S and for all x such that                 
inf{s, t} ≼ x ≼ s or inf{s, t} ≼ x ≼ t, we have: x ∈ T'.  
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substructure of ℳ2 (conversely: ℳ2 is a static extension of ℳ1) iff the event 
structure 𝔖1 a static substructure of the event structure 𝔖2. Further, it is said 
that ℳ1 is a dynamic substructure of ℳ2 (conversely: ℳ2 is a dynamic 
extension of ℳ1), in symbols ℳ1 ⊑ ℳ2, iff ℳ1 is a static substructure of 
ℳ2, and for all partial histories g of ℳ1, we have:  
 

∗ TIME1(g, 1) = TIME2(g, 1), if TIME2(g, 1) ⊆ T1; 
∗ TIME1(g, 1) = g, otherwise. 

 
If X ⊆ T2 and 𝔖X is the static substructure of 𝔖2 generated by X, then the 
dynamic substructure of ℳ2 generated by X is the unique dynamic 
substructure (𝔖, TIME) of ℳ2 such that 𝔖 = 𝔖X. ∎  
 

For the above definition, note that if g is a partial history of ℳ1, there are 
two separate reasons why we may have TIME1(g, 1) = g. Either already in 
ℳ2 the history g is not extended by the time-resource of ℳ2, so that 
TIME1(g, 1) = TIME2(g, 1) = TIME2(g, 0) = g. Or else the time-resource ℳ2 
indeed extends g in a duration of length 1 to a partial history of ℳ2, but this 
partial history is not a partial history of ℳ1. In both cases, the time-resource 
of ℳ1 simply does not extend g at all. Further, the former option admits of 
two subcases: even if in ℳ2 the passage of time from g ends with g—with 
TIME2(g, 1) = TIME2(g, 0) = g—still the model ℳ2 may or may not contain 
moments later than the endpoint of g. Now, if indeed there are moments in 
ℳ2 later than max(g), those moments might belong to ℳ1, as well. Note also 
that if g is a partial history of ℳ1 (and therefore of ℳ2), it precisely need not 
happen that TIME2(g, 1), too, is a partial history of ℳ1.  

Some, but not all, ‘fragments’ (dynamic substructures) of a SOA are 
SOAs, too. If (T', ≺', V', TIME') is a SOA and the subset T of T'          
consists for example of only two moments t1 and t2, and these moments      
are incomparable in terms of ≺', then the causal order ≺ of the      
substructure determined by T is empty, whence this substructure is not a 
SOA, as it violates the condition of historical connectedness required of 
temporal frames. However, if ℳ' is a SOA and ℳ is its dynamic 
substructure generated by a set S of moments, then ℳ is itself a SOA.        
All moments of ℳ are indeed arranged in terms of the causal order              
of ℳ' into a single ‘constellation’ upon which the resource TIME'       

induces a notion of passage of time, each moment of ℳ being historically 
connected to each further moment of ℳ in the sense of ‘historical 
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connectedness’ defined in Subsection 1.1. In what follows, I will make use of 
the following notion. 
 
Definition 4.4 (Centered state of affairs) If ℳ is a SOA and t0 belongs to 
the set of moments of ℳ, the pair (ℳ, t0) is a centered state of affairs. ∎ 
 
4.2 What exactly is a truth-maker?  
In Section 3 of the background paper, I adopted a preliminary understanding 
of truth-makers, according to which all truth-makers are circumstances of 
evaluation, and more specifically, a truth-maker of proposition p is a 
circumstance of evaluation in which p is true (i.e., is a ‘realization’ of p). I 
further noted that metaphysicians tend to view truth-makers as minimal in 
some sense. Metaphysicians’ prejudices must certainly not be taken as a 
standard by which to judge semantic notions, but the idea is indeed appealing 
that there might be something superfluous in a circumstance in which a 
proposition is true, in the sense that the proposition would have been true 
even if certain aspects of the circumstance had not been there. Accordingly, I 
agreed to impose a certain ‘minimality condition’ that a realization must meet 
in order to count as a truth-maker. This, of course, does not force us to 
maintain that for any circumstance in which p is true, there is a unique 
‘minimal fragment’ of this circumstance in which it is true. It just means that 
generally, if p is true in k, p would even be true in k' which is in some sense 
‘smaller’ than k. There might, however, be many alternative transitions from 
k to a ‘minimal’ k' that preserve the truth of p. These remarks can be made 
more precise by utilizing the notions of evaluation and state of affairs as 
defined above.  

Recall that circumstances of evaluation are structures (ℳ, t0, g0), while 
centered states of affairs are structures (ℳ, t0). Recall also that in   
Subsection 2.2, I noted that we may consider not explicitly relativizing the 
truth of a proposition to a partial history, provided that by speaking of the 
truth of a proposition at a time, we really mean its truth at a time relative to 
the unique partial history leading to that time (see Definition 2.1). I will 
define truth-makers as centered SOAs (ℳ, t0) that are in a certain sense 
‘minimal’. This is equivalent to defining truth-makers as circumstances of 
evaluation (ℳ, t0, g0) with g0 = [t0] subject to the relevant ‘minimality’ 
condition. The following variant of the notion of evaluation (as introduced in 
Definition 3.1) will be employed. 
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Definition 4.5 (Evaluation on a centered SOA) Let φ be a formula,         
and let (ℳ, t0) be a centered SOA. An evaluation of φ on (ℳ, t0) is by 
stipulation an evaluation of φ on the circumstance of evaluation (ℳ, t0, g0), 
where g0 = [t0]. ∎ 
 

In the following sense, evaluations produce SOAs out of SOAs.  
 
Definition 4.6 (Evaluation-induced SOA) Let φ be a formula and let (ℳ, t0) 
be a centered SOA. Any evaluation ℰ of φ on (ℳ, t0) induces a            
SOA—namely, the dynamic substructure of ℳ generated by the moment set 
M(ℰ). I denote this dynamic substructure by ℳ[t0, ℰ], and say that it is a 
SOA induced by the evaluation ℰ. ∎ 
 

Note that evaluations of several formulas on (ℳ, t0) may induce the same 
SOA; all that counts is that such evaluations have the same moment set. 
Thus, on a given centered SOA (ℳ, t0), for example every evaluation ℰ of 
the formula Fq induces a SOA that is likewise induced by an evaluation ℰ' of 
the formula ◇Fq (though the converse does not hold). Namely, suppose the 
unique evaluation sequence Σ in ℰ is ⟨(Fq, t0, [t0]), (q, s, [s])⟩, with s obtained 
by applying the time-resource of ℳ. Whenever x and y are moments such 
that t0 ≼ x and t0 ≺ y and y can be obtained from x by the time-resource of 
ℳ, it is possible to generate an evaluation of ◇Fq at t0 whose unique 
evaluation sequence is ⟨(◇Fq, t0, [t0]), (Fq, t0, [x]), (q, y, [x])⟩, with x 
corresponding to ◇ and y corresponding to F. In particular, such an 
evaluation sequence is obtained by letting x ≔ t0  and y ≔ s. Now, let ℰ' be 
the evaluation of ◇Fq at t0 whose unique evaluation sequence is ⟨(◇Fq, t0, 
[t0]), (Fq, t0, [t0]), (q, s, [s])⟩. We end up having, then, M(ℰ) = M(ℰ'), even if 
the evaluation sequences Σ and Σ' are differently generated. Observe, further, 
that we can have M(ℰ) = M(ℰ') even when one of the evaluations ℰ and ℰ' 
employs the time-resource but the other does not. Indeed, let ℰ be as above, 
but consider the evaluation of ◇Fq at t0 whose unique evaluation sequence 
Σ' equals ⟨(◇Fq, t0, [t0]), (Fq, s, [s]), (q, s, [s])⟩. Here, s is an ‘eventuality’ at 
t0 (since t0 ≼ s) and therefore it can be used to interpret ◇. Then,                 
the evaluation may be continued by selecting s for F (since t0 ≺ s), and     
here the time-resource is not needed for accessing s from t0, since s is          
directly available on the previously triggered partial history [s]. Even in this 
case, we have M(ℰ) = M(ℰ'). Regarding evaluation-induced SOAs, the      
following holds. 
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Fact 4.7 Suppose ℰ is an evaluation of φ on (ℳ, t0). Then:  
 

(a) ℰ is an evaluation of φ on (ℳ[t0, ℰ], t0). 
(b) (ℳ[t0, ℰ])[t0, ℰ] = ℳ[t0, ℰ]. 

 
Proof. If ℰ is an evaluation of φ on (ℳ, t0) and ℳ = (T, ≺, V, TIME), then 
ℳ[t0, ℰ] is the dynamic substructure of ℳ generated by the moment set 
MT(ℰ) with MT(ℰ) ⊆ T. Thus, letting D be the smallest subset of T that 
includes MT(ℰ) and is subject to the two closure conditions of Definition 4.1, 
by definition ℳ[t0, ℰ] is the unique substructure of ℳ whose domain is D. 
Therefore, to arrive at ℳ[t0, ℰ] from ℳ, nothing has been removed from    
ℳ that could prevent the construction of all evaluation sequences of the 
evaluation ℰ, when the evaluation takes place on (ℳ[t0, ℰ], t0). This is      
why (a) holds.  

As to (b), since the domain of ℳ[t0, ℰ] is D, the structure (ℳ[t0, ℰ])[t0, ℰ] 

is by definition the dynamic substructure of ℳ[t0, ℰ] generated by the 
moment set MD(ℰ) with MD(ℰ) ⊆ D ⊆ T. Letting D' be the smallest subset of 
D that includes MD(ℰ) and is subject to the two closure conditions of 
Definition 4.1, we have that ℳ[t0, ℰ] is the dynamic substructure of ℳ 
determined by D'. Write (D, ≺D) for the frame of ℳ[t0, ℰ]. Now, D' ⊆ D. To 
show that even the converse holds, suppose that x ∈ D, whence there are      
s, t ∈ MT(ℰ) such that s ≼ x ≼ t or inf{s, t} ≼ x ≼ s or inf{s, t} ≼ x ≼ t. Since 
MD(ℰ) = MT(ℰ) ⊆ D and ≺D = ≺ ∩ (D × D), it follows that these moments    
s, t, and x satisfy: s, t ∈ MD(ℰ), and s ≼D x ≼D t or inf{s, t} ≼D x ≼D s or 
inf{s, t} ≼D x ≼D t. Thus, x ∈ D'. We may, then, conclude that D = D'. It 
follows that (ℳ[t0, ℰ])[t0, ℰ] is the dynamic substructure of ℳ[t0, ℰ] 

determined by the set D. However, D is the domain of ℳ[t0, ℰ]. Thus,  
(ℳ[t0, ℰ])[t0, ℰ] is the result of restricting the SOA ℳ[t0, ℰ] by its own 
domain, wherefore (ℳ[t0, ℰ])[t0, ℰ] = ℳ[t0, ℰ]. ∎ 

 
From Fact 4.7(a), it follows:  
 
Fact 4.8 Let ℰ be an evaluation of φ on (ℳ, t0). Then: ℰ is a truth-evaluation 
for φ on (ℳ, t0) iff ℰ is a truth-evaluation for φ on (ℳ[t0, ℰ], t0). 
 
Proof. If ℰ is a truth-evaluation for φ on (ℳ, t0), then by Fact 4.7, ℰ is at least 
an evaluation for φ on (ℳ[t0, ℰ], t0). But whether an evaluation is a truth-
evaluation depends only on the last positions of its evaluation sequences. 
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Thus, ℰ is a truth-evaluation for φ on (ℳ[t0, ℰ], t0). Conversely, if ℰ is both 
an evaluation for φ on (ℳ, t0) and a truth-evaluation for φ on (ℳ[t0, ℰ], t0), 
then by the reason just mentioned ℰ is in fact a truth-evaluation for φ           
on (ℳ, t0). ∎ 
 

The above fact allows us to get a grip on the sense of ‘minimality’ I wish 
to impose on realizations that qualify as truth-makers. In what follows,           
I suppose that ‘our indeterminist world’ is fixed, represented by a certain 
large state of affairs to be denoted by ℳw.  
 
Definition 4.8 (Truth-makers) Let φ be a formula.  
 

(a)  Suppose ℳ and 𝒩 are SOAs and t0 is a moment in ℳ. Now, (ℳ, t0) 
is a truth-maker of φ in 𝒩 iff ℳ ⊑ 𝒩 and there is a truth-evaluation ℰ 
of φ in (𝒩, t0) such that 𝒩[t0, ℰ] = ℳ.   

(b) (ℳ, t0) is a real truth-maker of φ iff (ℳ, t0) is a truth-maker              
of φ in ℳw. 

(c) (ℳ, t0) is an intrinsic truth-maker of φ iff (ℳ, t0) is a truth-maker of φ 
in ℳ itself—that is, iff there is a truth-evaluation ℰ of φ in (ℳ, t0) 
such that ℳ[t0, ℰ] = ℳ. ∎  

 
It can be checked that the above definition respects the basic requirement  
that a truth-maker of a formula be its realization: the formula is true in its 
truth-maker!  
 
Fact 4.10 Let φ be a formula.  
 

(a) If (ℳ, t0) is an intrinsic truth-maker of φ, then ℳ, t0 ⊨ φ. 
(b) If 𝒩 is a SOA such that (ℳ, t0) is a truth-maker of φ in 𝒩, then      

ℳ, t0 ⊨ φ. 
(c) If 𝒩 is a SOA, then every truth-maker of φ in 𝒩 is an intrinsic truth-

maker of φ. 
 
Proof. For (a), note that if (ℳ, t0) is an intrinsic truth-maker of φ, then in 
particular there is a truth-evaluation of φ in (ℳ, t0), whence by Fact 3.3, we 
have ℳ, t0 ⊨ φ. For (b) and (c), suppose that (ℳ, t0) is a truth-maker of φ in 
𝒩. There is, then, a truth-evaluation ℰ of φ in (𝒩, t0) such that 𝒩[t0, ℰ] = ℳ. 
The claim (b) follows, since by Fact 4.8, the evaluation ℰ is a truth-evaluation 
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of φ in (𝒩[t0, ℰ], t0) = (ℳ, t0) and so, by Fact 3.3, we have ℳ, t0 ⊨ φ.         
To prove (c), it remains to show that (𝒩[t0, ℰ], t0) is an intrinsic truth-maker 
of φ. Now, as just noted, ℰ is a truth-evaluation of φ in (𝒩[t0, ℰ], t0). What is 
more, by Fact 4.7(b), we have 𝒩[t0, ℰ] = (𝒩[t0, ℰ])[t0, ℰ]. Thus, (ℳ, t0) = 
(𝒩[t0, ℰ], t0) is an intrinsic truth-maker of φ. ∎ 
 

While a truth-maker of a formula in a SOA is always its intrinsic truth-
maker, an intrinsic truth-maker of a formula need not be a truth-maker of this 
formula in a larger SOA. For example, suppose 𝒩 is a linearly ordered SOA 
in which t0 has infinitely many predecessors, and in which the time-resource 
yields exactly 10 successors to t0, q being true at all predecessors t–1, t–2,… of 
t0, as well as at the first and third successor of t0 (i.e., t1 and t3). Let ℳ be the 
dynamic substructure of 𝒩 whose domain is the set {t0, t–1, t–2}. Then,      
(ℳ, t0) is an intrinsic truth-maker of the formula Hq (since q is true at both 
moments preceding t0 in ℳ), but (ℳ, t0) is not a truth-maker of Hq in 𝒩, 
because the moment set of the one and only evaluation of Hq in                 
(𝒩, t0) comprises all the infinitely many predecessors of t0, and such an 
infinite evaluation cannot induce the finite truth-maker (ℳ, t0). In fact, the 
dynamic substructure of (𝒩, t0) whose domain is the set of all moments         
ti with i ≤ 0 is a truth-maker of Hq in 𝒩, actually its only truth-maker in     
𝒩. On the other hand, if ℳ' is the dynamic substructure of 𝒩 whose   
domain is the set {t0, t1}, then not only is (ℳ', t0) an intrinsic truth-maker of 
the formula Fp, but it is even a truth-maker of Fp in 𝒩. It is possible to 
construct an evaluation for Fp without employing moments other than t0 and 
t1. Incidentally, there is even another truth-maker for Fp in 𝒩, namely the 
centered SOA (ℳ'', t0), where ℳ'' is the dynamic substructure of 𝒩 whose 
domain is the set {t0, t1, t2, t3}. 

Note that if (ℳ, t0) is a truth-maker of φ in 𝒩, there is, by          
definition, a truth-evaluation ℰ that ‘witnesses’ the truth of φ in the     
centered SOA (𝒩, t0). Furthermore, ℳ is ‘minimal’ in the sense that          
the dynamic substructure of 𝒩 containing all and only moments needed     
for constructing the evaluation ℰ is exactly ℳ. Indeed 𝒩[t0, ℰ] = ℳ.   
Insofar as ℰ is concerned, there is nothing superfluous in ℳ.              
Observe, however, that this is not to say that there could not be a ‘smaller’ 
truth-maker ℳ' = 𝒩[t0, ℰ'] for φ, satisfying ℳ' ⋤ ℳ, generated by     
another truth-evaluation ℰ' for φ in 𝒩. Observe also that the feature of           
a centered SOA of being a truth-maker is evidently a relational          
property, indeed a property relative to a formula: the same centered SOA 
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may, of course, be a truth-maker of one formula without being a truth-maker 
of another formula. 

 
Fact 4.11 (For every truth there is a truth-maker) Let φ be a formula and 
let (𝒩, t0) be a centered SOA. We have: If 𝒩, t0 ⊨ φ, then there is ℳ such 
that (ℳ, t0) is a truth-maker of φ in 𝒩.  
 
Proof. Suppose 𝒩, t0, g0 ⊨ φ with g0 = [t0]. By Fact 3.3, there is a truth-
evaluation, ℰ, for φ in (𝒩, t0, g0). Thus, ℰ is a truth-evaluation of φ in (𝒩, t0). 
Now, 𝒩[t0, ℰ] ⊑ 𝒩, so by definition, (𝒩[t0, ℰ], t0) is a truth-maker of φ in 
𝒩. We may, then, let ℳ ≔ 𝒩[t0, ℰ]. ∎ 
 

From the above fact we may, by Fact 4.10(c), infer that every formula φ 
true in a centered SOA (𝒩, t0) has an intrinsic truth-maker (ℳ, t0) in which φ 
is true, as well. Here, ℳ = 𝒩[t0, ℰ] is a dynamic substructure of 𝒩. The 
intrinsic truth-maker (ℳ, t0) is itself a centered SOA, and it is a ‘minimal’ 
realization of φ in the sense that a certain truth-evaluation of φ (namely, ℰ) 
induces ℳ from ℳ itself: ℳ = ℳ[t0, ℰ]. 
 
5. Typology of centered states of affairs  
The remaining task in the semantic analysis of our temporal-modal language 
is to explain what it means for a proposition to be true without having a truth-
maker that obtains. True future contingent sentences are supposed to lead to 
cases of this kind. I begin by clarifying what it means to say that a truth-
maker obtains, or that it will obtain, or that it is a process of coming to 
obtain, or that it is modal. Actually, these are more generally features of a 
centered SOA—a centered SOA has or lacks such a feature independently of 
any specific proposition that might be true in it. I will also formulate an 
analysis of what it means for a truth-maker to be determinate or 
indeterminate, and I will study the conditions under which different types of 
truth-makers may be determinate. Determinacy is not simply a property of a 
centered SOA: the same centered SOA may be a determinate truth-maker for 
one proposition, indeterminate truth-maker for another proposition, and not a 
truth-maker at all for a still third proposition. Determinacy and indeterminacy 
are, then, features relative to a fixed proposition. 

The analyses I will give are not meant as arbitrary nominal definitions of 
expressions such as ‘obtaining truth-maker’ or ‘truth-maker that will obtain’ 
or ‘determinate truth-maker’, but as ways of making explicit what is meant, 
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when in our less-than-fully-articulated philosophical parlance we attempt 
qualifying a truth-maker, say, as determinate, or as obtaining, or as something 
that will obtain. 

Suppose, now, that ℳ is a SOA with ℳ = (T, ≺, V, TIME) and t0 ∈ T. 
Centered SOAs are divided into those that are factual and those that are 
modal. Those that are factual are divided into those that obtain, those that will 
obtain, and those that are processes of coming to obtain; among modal 
centered SOAs, again, I distinguish two types: those that are historically 
modal and those that are presently modal. Note that I consider centered SOAs 
with a designated moment t0—instead of considering mere SOAs. Here, the 
designated moment t0 should be understood as indicating the location of a 
hypothetical now-point. The position of this now-point in the overall 
structure of the SOA, on the one hand, and the passage of time represented by 
the time-resource of the SOA, on the other hand, jointly determine the status 
of the SOA itself as factual or modal. Likewise, they determine its specific 
type of factuality or modality.  
 
(I) ‘Is factual’: A centered SOA (ℳ, t0) is factual iff (a) all moments t ∈ T 
are comparable with t0, and (b) for all t ≻ t0 there is nt > 0 such that t is the 
endpoint of TIME([t0], nt). Regarding this case, note: 
 

1. Clause (a) guarantees that there is no moment earlier than t0 with 
incomparable successors according to the  causal ordering ≺. 

2. Clause (b), again, entails that the set of moments later than t0 is 
linearly ordered by the causal ordering.   

3. The joint effect of (a) and (b) is, then, that the causal ordering ≺ 
imposes a linear order on the set T of moments. 

4. In particular, clause (b) entails that only those moments lie in the 
future of t0 that are actualized by the passage of time in some finite 
duration as counted from t0, the passage of time being represented by 
the resource TIME. 

 
(II) ‘Is modal’: A centered SOA (ℳ, t0) is modal iff (ℳ, t0) is not factual. 
Here, we may observe:  
 

1. Either clause (a) or clause (b) fails to hold: there is a moment t ∈ T 
such that either t is not comparable with t0, or else t ≻ t0 but for all      
n > 0, t  ∉ TIME([t0], n). 
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2. In the former case, T is not linearly ordered by the causal ordering. 
3. In the latter case, in fact there is a moment s and a duration n0 ≥ 0 such 

that t0 ≼ s ≺ t and s is the endpoint of  TIME([t0], n0) and TIME([t0], 
n0 + 1) = TIME([t0], n0). That is, there is at least one moment (t) later 
than t0 not attained by the passage of time. The passage of time ends  
at s, before reaching this causally possible moment. 

 
Let us, then, look at subdivisions of factuality and modality. There are 

three mutually exclusive and jointly exhaustive sources of factuality of a state 
of affairs:  

 
(I.i) ‘Obtains’: There is no t ∈ T such that t0 ≺ t. In this case, (ℳ, t0) is 
said to obtain.  
−   The moment t0 is the maximum of the whole set T with respect to 

the relation ≺, i.e., the unique maximal moment in T. Since T is 
linearly ordered by ≺, it cannot have several maximal elements. 

−   In fact, T = [t0] = {t : t ≼ t0}. 
 
(I.ii) ‘Will obtain’: The set {x : t0 ≺ x} is non-empty and has a maximum. 
 When this condition holds, it is said that (ℳ, t0) will obtain.   
−  The moment t* ≔ max{x : t0 ≺ x} is actually the maximum of the 

whole set T with respect to the causal ordering.   
−   There is n > 0 such that for all t ≻ t0, we have t ∈ TIME([t0], n). In 

fact, the shortest duration satisfying this condition is n ≔ ∆(t0, t*).  
−   Generally, for any moment t in a factual SOA 𝒩, we have: (𝒩, t) 

will obtain iff there is s with t ≺ s such that (𝒩, s) obtains.   
  
(I.iii) ‘Is a process of coming to obtain’: The set {x : t0 ≺ x} is non-
empty and has no maximum. In this case, it is said that (ℳ, t0) is a 
process of coming to obtain.  
−  The set T has neither a maximum nor even a maximal element 

(since here the causal ordering is linear).  
−  If (ℳ, t0) is a process of coming to obtain, there is no t ≻ t0 such 

that (ℳ, t) obtains.  
 
We may note that by the above definitions, indeed the features ‘obtains’, 
‘will obtain’ and ‘is a process of coming to obtain’ are mutually exclusive 
and that every factual centered SOA has one of these features. 



Tero Tulenheimo 

 110 

There are two alternative sources of modality, which are jointly 
exhaustive but not mutually exclusive: 

 
(II.i) ‘Historically’: There are moments s and t such that s, t, and t0 are 
pairwise distinct and s = inf≼{t, t0}, where t and t0 are incomparable in 
terms of the causal ordering ≺. That is, at s, the moment t could have 
become actualized, but did not. When this condition holds, it is said that 
(ℳ, t0) is historically modal.  
 
(II.ii) ‘Presently’: There is at least one moment t with t0 ≺ t such that for 
no n > 0 do we have that t is the endpoint of TIME([t0], n). That is, t is a 
possible moment later than t0 that will never be actualized by the passage 
of time. In this case, (ℳ, t0) is said to be presently modal.  
−   If (ℳ, t0) is historically modal, the set T is not linearly ordered    

by the causal ordering relation: there is a moment incomparable 
with t0, this moment being later than a certain predecessor of t0.   

−   If (ℳ, t0) is presently but not historically modal, the set T may but 
need not be linearly ordered by the causal  ordering. If the order 
happens to be linear, there is a moment t later than t0 such that t is 
not the endpoint of TIME(t0, n) for any n > 0, but the immediate 
predecessor t' of t indeed is the endpoint of TIME(t0, n0) for some 
n0 ≥ 0. (In this case, the set of successors of t0 attainable along the 
passage of time is finite.) It can happen that t' = t0.   

 
We may observe that by the above definitions, indeed one and the same 
centered SOA can be both presently and historically modal.   � 

The features of being factual and being modal are ascribable to centered 
SOAs only from a meta-theoretical perspective. At t0, it is as yet 
undetermined how time will unfold, so from the temporal perspective of the 
moment t0, there is no way of reasoning in terms of the factual/modal 
distinction regarding what happens after t0. This, however, by no means 
prevents us from using these features in our semantic theorizing. We may 
divide arbitrary centered SOAs into those that obtain, those that will obtain, 
those that are processes of coming to obtain, and those that are modal. This 
division is sufficiently fine-grained for my purposes. The qualifiers obtains, 
will obtain, and is a process of coming to obtain apply only to factual 
centered SOAs. I do not say that a modal circumstance of evaluation obtains, 
or that it will obtain, or that it is a process of coming to obtain. As implied 
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above, among modal circumstances we may, however, discern those that are 
presently but not historically modal, those that are historically but not 
presently modal, and those that are both presently and historically modal. 

The above-described characteristics of centered SOAs are directly 
applicable to truth-makers. After all, a truth-maker of a proposition is a 
centered SOA of a special kind—namely, one induced by a truth-evaluation.  
I began the background paper by a discussion of the semantic analysis of 
propositions about future events that Boethius and Abelard seemed to have 
put forward. According to this analysis, proposition Fq is true at a given   
time t0 iff a truth-maker of Fq will obtain, though for the moment             
none does. (Since q is atomic, any truth-maker of Fq is factual.) The 
semantics I have formulated provides a systematic reconstruction of this 
analysis. Whenever a proposition of the form Fq is true in centered SOA, a 
truth-maker of Fq will obtain but does not, according to the senses of ‘will 
obtain’ and ‘obtains’ that were clarified above. That is, the passage of time 
will yield, when a sufficiently long finite duration has passed, a later moment 
at which q is true.  

 
6. Determinate and indeterminate truth-makers 
It was noted at the beginning of the background paper that Boethius and 
Abelard maintained that an eventus rei or a state of affairs is determinate, if it 
obtains or has obtained (in this case determinacy is based on the past or 
current presence of something), or it will obtain out of a certain kind of 
metaphysical necessity (in which case determinacy is based on the natures of 
things). Now, Boethius took Aristotle to hold, on the one hand, that the 
notions of determinacy and necessity (inevitability) are related so that 
determinate truth of a proposition entails its necessity. On the other hand, 
according to Boethius, Aristotle took this link to require argumentation, 
instead of being a direct consequence of a definition. Supposing that □ 
represents necessity in the relevant sense, can we define the notion of 
determinacy of a truth-maker in such a way that the following always holds: 
if there is a determinate truth-maker for φ at t0, then □φ is true at t0? We can, 
and it turns out that under this definition, phrased in terms of the semantic 
framework formulated above, there are indeed two essentially different 
grounds of determinacy, as in Boethius. 

In order to lay bare the conceptual details, some auxiliary notions          
are needed. 
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Definition 6.1 (Historical t-equivalence) Let ℳ1 = (𝔖1, TIME1) and ℳ2 = 
(𝔖2, TIME2) be SOAs, with 𝔖1 = (T1, ≺1, V1) and 𝔖2 = (T2, ≺2, V2) being 
event structures. If t ∈ T1 ∩ T2, then ℳ1 and ℳ2 are historically t-equivalent, 
in symbols ℳ1 ≅[t]hist ℳ2, iff the following three conditions hold: 
 

1. Shared predecessors of t: there is a set Xt such that {x : x ≼1 t} = Xt = 
{x : x ≼2 t}. 

2. Shared order in the past of t: ≺1 ∩ (Xt × Xt) = ≺2 ∩ (Xt × Xt). 
3. Qualitative indistinguishability of the past up to t: x ∈ V1(p) iff           

x ∈ V2(p), for all moments x ∈ Xt and all atoms p. ∎ 
 
Note that whether or not ℳ1 and ℳ2 are historically t-equivalent, this does 
not depend at all on their time-resources TIME1 and TIME2, but depends 
exclusively on the event structures 𝔖1 and 𝔖2 on which they are based. For 
what follows, recall the definition of ‘course of events’ from Subsection 1.1. 
 
Definition 6.2 (t-completeness) If ℳ = (𝔖, TIME) is a SOA with                
𝔖 = (T, ≺, V), and S is a course of events in 𝔖 with t ∈ S, then S is t-complete 
in ℳ iff for every s ∈ S with t ≺ s, there is n such that s is the endpoint of 
TIME([t], n). ∎ 
 
In a t-complete course of events S, all successors of t belonging to S are 
actualized by the passage of time. Note that if S is t-complete and has a 
minimum, it may happen that there is a moment s in S with t ≺ s and a 
corresponding duration ns such that the set [s] = TIME([t], ns) contains 
moments earlier than min(S). The course of events S may have a beginning, 
while in the temporal frame there are moments earlier than min(S). Those 
moments belong to the partial history [s] leading to s, even if they do not 
belong to S. Observe likewise that the t-completeness of S does not entail that 
S is t'-complete for a given moment t' ≺ t (whether or not t' belongs to S). In 
particular, it can happen that there is no n such that t belongs to TIME([t'], n); 
the endpoint of TIME([t'], n) can be a moment incomparable with t. 
Likewise, the t-completeness of S does not entail that S is t'-complete for all 
moments t' with t ≺ t'; it only entails that S is t'-complete for all those 
moments t' with t ≺ t' that moreover satisfy t' ∈ S. Finally, observe that if ℰ is 
an evaluation of a formula φ in a centered SOA (ℳ, t), the SOA ℳ[t, ℰ] 
induced by ℰ is automatically t-complete. Consequently, in particular every 
truth-maker (ℳ, t) of φ is t-complete. 
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A certain event structure 𝔖w represents ‘our indeterminist world’ from a 
static viewpoint, indicating for each partial history the courses of events that 
are its causally possible continuations. A certain state of affairs ℳw based on 
this event structure 𝔖w represents ‘our indeterminist world’ from a dynamic 
viewpoint. For every partial history g of 𝔖w and for every duration n, the 
time-resource of the state of affairs ℳw yields exactly one possible 
continuation of g as the very course of events that indeed gets actualized in 
duration n. This course of events is by definition t-complete for t = max(g). 
However, the correlation between the pair (g, n) and the course of events is 
established only ex post facto—the state of affairs ℳw itself does not contain 
information as to which course of events gets correlated with which partial 
history / duration pair. The fact remains that once n time units have passed 
since g, exactly one out of a multitude of possible continuations of g has got 
singled out; the others could have got actualized but did not. If we wish to 
reason counterfactually about those other possible continuations from the 
dynamic viewpoint—i.e., reason about what would have happened had the 
passage of time actualized one of those courses of events that it did not in fact 
actualize—we must consider, instead of ‘our indeterminist world’ in its 
dynamic aspect, another state of affairs ℳ'w which is based on the same 
event structure 𝔖w as ℳw, but employs a divergent time-resource, one that 
leads from g in n time units to another course of events, a course of events 
that is t-complete in ℳ'w (but not in ℳw). For strictly semantic purposes, we 
never need to consider variants of ℳw that result from modifying its time-
resource. The semantics of modal formulas utilizes simply the state of affairs 
ℳw itself, the effect of a modal operator being that it changes the value of the 
history parameter of evaluation while keeping the time-resource intact. 
Certain meta-theoretic considerations, however, make use of the idea of 
varying the time-resource of ℳw while keeping the event structure 𝔖w intact. 
This is why the following definition proves useful.  

 
Definition 6.3 (Dynamic t-equivalence) Let 𝔖 = (T, ≺, V) be an event 
structure. Let S and S' be courses of events in 𝔖 such that t ∈ S ∩ S'. Let     
𝔖S and 𝔖S' be the static substructures of 𝔖 whose domains are respectively    
S and S'. Finally, let ℳS = (𝔖S, TIMES) and ℳS' = (𝔖S', TIME S') be        
SOAs based respectively on 𝔖S and 𝔖S'. I say that ℳS and ℳS' are 
dynamically t-equivalent, in symbols ℳS ≅[t]dyn ℳS', iff the following two 
conditions hold: 
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1. Shared predecessors of t: there is a set X such that {x ∈ S : x ≼ t} =   
X = {x ∈ S' : x ≼ t}. 

2. The successors of t are actualized by the passage of time in both S and 
S' or in neither: S is t-complete in ℳS iff S' is t-complete in ℳS'. ∎ 

 
Note that if ℳS and ℳS' are t-equivalent dynamically, then directly by 
definition, the causal orderings of ℳS and ℳS' are linear, and by definition 
these SOAs are t-equivalent historically. Indeed, since 𝔖S and 𝔖S' are static 
substructures of the same event structure, the defining condition (1) of 
dynamic t-equivalence entails all the three defining conditions (1), (2),       
and (3) of historical t-equivalence. Actually, condition (1) could be replaced 
by the condition ℳS ≅[t]hist ℳS'. Note also that if there are s ∈ S and s' ∈ S' 
that are incomparable in terms of the causal ordering of 𝔖, and one of the 
courses of events S and S' is t-complete, then both SOAs ℳS and ℳS' cannot 
be dynamic substructures of any one SOA based on the event structure 𝔖.  

I take the notion of determinacy of a truth-maker to be definable in terms 
of the following notions of stability and fact-basedness, applicable to factual 
truth-makers. The definition is not intended as a nominal definition. Recall 
that the causal order of a factual truth-maker is always linear.  

 
Definition 6.4 (Stable and instable truth-makers) Suppose φ is a formula 
and (ℳ, t) is a factual truth-maker of φ in ‘our indeterminist world’ ℳw. Let 
ℰ be an evaluation such that ℳ = ℳw[t, ℰ]. The truth-maker (ℳ, t) of φ is 
stable iff the set of moments of ℳ has a maximum, t*, and for all linear 
SOAs 𝒩, we have: if ℳ ≅[t*]hist 𝒩, then the same evaluation ℰ is a truth-
evaluation of φ even in (𝒩, t). Otherwise (ℳ, t) is instable. ∎ 
 
In the above definition, it is not required that 𝒩 ⊑ ℳw. There may well be in 
𝒩 ‘hypothetical’ moments that are later than t* but not contained in ℳw. 
Stability requires that ℰ’s being a truth-evaluation of φ be totally insensitive 
to the way in which time evolves after t*—the result of replacing the 
successors of t* in ℳ by any linearly ordered succession of objects, even by 
objects from outside ℳw, still leaves ℰ being a truth-evaluation of φ in this 
modified SOA (as long as the obtained SOA 𝒩 itself is linearly ordered). 
Note that the condition ℳ ≅[t*]hist 𝒩 entails that the event structure         
(T𝒩, ≺𝒩, V𝒩) of 𝒩 is the result of taking the ‘ordered sum’ of event 
structures (TX, ≺X, VX) and (TY, ≺Y, VY), where TX contains the moments of s 
of ℳ with s ≼ t* and (TY, ≺Y, VY) is an arbitrary linear event structure whose 
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domain TY is disjoint from TX.25 (By contrast, the time-resources of ℳ and 𝒩 
need not be related in any way.) Some or all of the elements of TY may be 
objects not belonging to ℳw, and even if they indeed belonged all to ℳw 
(without belonging to TX), they might not appear in the same order as they do 
in ℳw, and the propositional atoms true at any one of these elements might 
not be the same as those that are true at that element according to the 
valuation of ℳw. Observe, finally, that for stability it is not enough simply 
that the truth of φ (as witnessed by this or that evaluation) is preserved when 
moving from (ℳ, t) to a centered SOA (𝒩, t) with ℳ ≅[t*]hist 𝒩. Instead, 
the same evaluation that witnesses the truth of φ in (ℳ, t) must witness its 
truth in (𝒩, t). 
 
Definition 6.5 (Fact-based truth-maker) Suppose φ is a formula and (ℳ, t) 
is a factual truth-maker of φ in ℳw = (𝔖w, TIMEw). The truth-maker (ℳ, t) of 
φ is fact-based iff for all SOAs 𝒩 = (𝔖𝒩,TIME𝒩), we have: if 𝒩 is a 
maximal linear SOA such that 𝔖𝒩 ⋐ 𝔖w and ℳ ≅[t]dyn 𝒩, then 𝒩, t ⊨ φ. 
Here it is not required that one and the same evaluation witness the truth of φ 
in both (ℳ, t) and (𝒩, t). ∎ 
 
According to the above definition, in order for (ℳ, t) to be not merely a 
(factual linear) truth-maker of φ, but its fact-based truth-maker, the truth of φ 
must be preserved in the transition from (ℳ, t) to (𝒩, t), where 𝒩 = (𝔖𝒩, 
TIME𝒩) is any linear SOA whose event structure 𝔖𝒩 can be formed as an 
ordered sum of the event structures (TX, ≺X, VX) and (TY, ≺Y, VY) such that TX 
and TY satisfy the following: TX contains the moments s of ℳ with s ≼ t, and 
TY is one of the maximal courses of events in ‘our indeterminist world’ ℳw 
that consists of moments s with t ≺ s (that is, TY is the final segment of a 
history of ℳw consisting of moments strictly later than t), and furthermore, 
TY is t-complete in 𝒩 (whence generally 𝒩 is not a dynamic substructure of 
ℳw). Generally, (𝒩, t) differs from (ℳ, t) in two ways: in 𝒩, the passage of 
time actualizes after t moments that the passage of time does not actualize 
after t in ℳ (unless ℳ happens to be a dynamic substructure of 𝒩), and 𝒩 
continues from t by a maximal causally possible course of events, while ℳ 
may continue by a course of events that could be further extended within 
ℳw. In short, 𝒩 represents in general a counterfactual maximal passage of 
                                                             
25 If 𝔖1 = (T1, ≺1, V1) and 𝔖2 = (T2, ≺2, V2), with T1 and T2 being disjoint, the ordered sum of 𝔖1 
and 𝔖2 (in this order) is the event structure (T, ≺, V), where: T = T1 ∪ T2 and ≺ = (≺1 ∪ ≺2 ∪  
[T1 × T2]) and V(p) = V1(p) ∪ V2(p) for all p ∈ prop. 
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time from t, compatible with the event structure 𝔖w. The restriction to 
maximal counterfactual passages of time is motivated, because my notion of 
fact-basedness is meant to capture the idea of ‘settled truth’ when the past is 
fixed but future can evolve in the sense of temporal becoming in any way 
allowed by the causal ordering. The notion of dynamic t-equivalence was 
defined for SOAs whose domains S and S' are linearly ordered subsets in one 
and the same event structure 𝔖. For the definition of a fact-based truth-
maker, take S to be the domain of ℳ, take S' to be the domain of 𝒩, and take 
𝔖 to be the event structure 𝔖w of ‘our indeterminist world’ ℳw. Writing ℳ = 
(𝔖ℳ, TIMEℳ) and 𝒩 = (𝔖𝒩, TIME𝒩), the event structures 𝔖ℳ and 𝔖𝒩 are 
static substructures of 𝔖w. That 𝔖ℳ is a static substructure of 𝔖w follows 
from the fact that (ℳ, t) is a truth-maker of φ in ℳw.  

Observe that in order for (ℳ, t) to be a stable truth-maker of φ (as 
opposed to its fact-based truth-maker), this formula φ must be true at t in all 
those dynamic linear extensions 𝒩 of ℳ that are not merely historically       
t-equivalent, but even historically t*-equivalent with ℳ, where t* is the 
maximum of the causal ordering of ℳ. Here t* is later than t and (ℳ, t) will 
obtain, unless t itself is the maximum of the causal ordering of ℳ—i.e., 
unless (ℳ, t) obtains. Furthermore, it is not enough that φ is true at t in 𝒩, 
but its truth therein must be witnessed by exactly the same truth-evaluation as 
in (ℳ, t). Indeed, compare the requirement of stability with being fact-based. 
The latter condition concerns only certain courses of events within ‘our 
indeterminist world’ and the preservation of truth (as opposed to the 
preservation of a truth-evaluation) from a truth-maker to its suitable 
extension, whereas the former concerns arbitrary dynamic extensions of ℳ 
that are t*-equivalent with it and the transportability of a truth-evaluation 
from the truth-maker to its relevant dynamic extensions. In order for (ℳ, t) to 
be a fact-based truth-maker of φ, this formula φ must be true at t in all those 
maximal linear SOAs 𝒩 whose event structure is a static substructure of 𝔖w 
and that are not only historically but also dynamically t-equivalent with ℳ.  

Generally, the properties of stability and being fact-based are independent 
of each other. Here are some examples. Suppose that ℳw = (𝔖w, TIMEw) 
consists of five moments, with the causal ordering ≺ satisfying the  
following: t–1 ≺ t0 ≺ t1 ≺ t2 and t0 ≺ t'1. The moment t0 has, then, two 
immediate successors, t1 and t'1. Suppose V(q) = {t–1, t1, t2}. And suppose       
TIMEw([t0], 1) = {t–1, t0, t1} and TIMEw([t0], 2) = {t–1, t0, t1, t2}, with [t0] =   
{t–1, t0}. Thus, the course of events {t–1, t0, t1, t2} is t0-complete, but the 
course of events {t–1, t0, t'1} is not. Note that each of the following four 
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formulas is true in ℳw at t0:  φ1 ≔ Pq, φ2 ≔ Fq, φ3 ≔ GPq, and φ4 ≔ Gq. 
Now, let ℳ1 be the dynamic substructure of ℳw with the domain {t–1, t0}; let 
ℳ2 be the substructure of ℳw whose domain is {t0, t1}; let ℳ3 be the 
substructure of ℳw whose domain is {t–1, t0, t1, t2}; and let ℳ4 be the 
substructure of ℳw with the domain {t0, t1, t2}. Then, evidently (ℳi, t0) is a 
truth-maker of φi in ℳw, for all 1 ≤ i ≤ 4. In each case, let us take up the 
question of whether the truth-maker (ℳi, t0) is stable and/or fact-based. 

First, we may note that (ℳ1, t0) is a stable and fact-based truth-maker of 
φ1. Actually, if 𝒩 is any static extension of ℳ1 (independently of whether 𝒩 
is a dynamic extension of ℳ1 or not), the unique truth-evaluation of φ1 in 
(ℳ1, t0), which consists of selecting t–1 as a witness of P, is itself a truth-
evaluation of φ1 in (𝒩, t0). Thus, 𝒩, t0 ⊨ φ1. It follows that the truth-maker 
(ℳ1, t0) of φ1 is fact-based. Since t0 is the maximum of the causal order        
of ℳ1, we may likewise conclude that (ℳ1, t0) is a stable truth-maker          
(ℳ1, t0) of φ1.  

Second, actually (ℳ2, t0) is a stable truth-maker of φ2, but not fact-based. 
If 𝒩 is any static extension of ℳ2 (whence 𝒩 might not be historically       
t0-equivalent to ℳ2, as 𝒩 might contain moments earlier than t0), the truth-
evaluation of φ2 in (ℳ2, t0)—which consists of selecting t1 as a witness of 
F—is itself a truth-evaluation of φ2 in (𝒩, t0). Therefore, (ℳ2, t0) is a stable 
truth-maker of φ2. However, the centered SOA (ℳ2, t0) is not a fact-based 
truth-maker of φ2. Namely, let 𝒩0 be the static substructure of ℳw whose 
domain consists of the moments t0 and t'1 and whose time-resource maps    
the pair ({t0}, 1) to the partial history {t0, t'1}. Then 𝒩0 is dynamically               
t0-equivalent to ℳ2, but 𝒩0, t0 ⊭ Fq (since q is false at t'1). Thus, (ℳ2, t0) is 
not a fact-based truth-maker of Fq. 

Third, we may check that (ℳ3, t0) is a fact-based truth-maker of φ3, but 
not its stable truth-maker. To see that it is fact-based, note that there are only 
two static substructures of ℳw that are (maximal and) dynamically              
t0-equivalent to ℳ3—namely, ℳ3 itself and the static substructure ℳ'3 of 
ℳw whose domain is {t–1, t0, t'1} and whose time-resource maps the pair 
({t0}, 1) to the partial history {t0, t'1}. Now, since both in ℳ3 and in ℳ'3 the 
formula Pq is true at t0, it follows that even the formula GPq is true in them 
both at t0. We may conclude that (ℳ3, t0) is a fact-based truth-maker of φ3. 
By contrast, let 𝒩* be a dynamic extension of ℳ3 such that first, 𝒩* is 
historically t2-equivalent to ℳ3; second, 𝒩* contains exactly one successor, 
s*, of t2; and third, 𝒩* is t0-complete (whence at t0 the operator G ranges 
over t1, t2, and s*). Although the truth of GPq at t0 is indeed preserved when 
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moving ℳ3 to 𝒩*, still no truth-evaluation of GPq in (ℳ3, t0) is itself a 
truth-evaluation of this same formula in (𝒩*, t0). This is because a truth-
evaluation of φ3 in (𝒩*, t0) contains inevitably an evaluation sequence with 
the position (Pq, s*, [s*])—so that s* appears in the moment set of that truth-
evaluation—whereas no truth-evaluation of φ3 in (ℳ3, t0) may contain an 
evaluation sequence with such a position, s* not being a moment in ℳ3. It 
follows that (ℳ3, t0) is not a stable truth-maker of φ3. 

Fourth, actually the truth-maker (ℳ4, t0) of φ4 is neither fact-based nor 
stable. To see that it is not fact-based, it suffices to consider the SOA 𝒩0 that 
was used to show that (ℳ2, t0) is not a fact-based truth-maker of φ2. Here, 
𝒩0, t0 ⊨ F¬q, whence 𝒩0, t0 ⊭  Gq. Since 𝒩0 is dynamically t0-equivalent to 
ℳ4 and a static substructure of ℳw, it follows that (ℳ4, t0) is not a fact-based 
truth-maker of Gq. (A counterfactual passage of time renders Gq false at t0.) 
Further, (ℳ4, t0) is not even stable: if 𝒩* is the SOA that was employed to 
prove that (ℳ3, t0) is not a stable truth-maker of φ3, we note that 𝒩* is a 
dynamic extension of ℳ4 historically t2-equivalent to ℳ4, but the moment 
set of any evaluation of Gq in (𝒩*, t0) comprises the moment s* that cannot 
appear in the moment set of a truth-evaluation of Gq in (ℳ4, t0). 

 
Definition 6.6 (Determinacy, indeterminacy) Suppose φ is a formula and 
(ℳ, t) is a truth-maker of φ in ℳw. The truth-maker of φ is determinate iff it 
is factual, stable, and fact-based. It is indeterminate iff it is not determinate—
that is, iff it is either modal, or else factual but either not stable or not       
fact-based. ∎ 
 

If φ is a formula containing no occurrences of modal operators or future-
tense operators, then any truth-maker of φ obtains. Moreover, such a truth-
maker is both stable and fact-based, and consequently determinate. If a 
formula such as Fq is true, it has a stable truth-maker that will obtain, but 
generally it fails to have a fact-based truth-maker—the formula might be 
false if the passage of time was different from what it in fact will be. Such a 
truth-maker is indeterminate. Any truth-maker (ℳ, t) of the formula FPq will 
obtain and is stable. Such a truth-maker may but need not be fact-based, as 
well. It is guaranteed to be fact-based and therefore determinate, if for 
example q is true at t, or if ℳ contains at least two successors of t and q is 
true at the immediate successor of t.  

If the passage of time actualizes at least one moment after t0, then the 
formula F(q ∨ ¬q) has a stable and fact-based truth-maker (ℳ, t0) that will 
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obtain. Consequently, the truth-maker is determinate. The formula q ∨ ¬q is 
true at some moment—indeed, all moments—of any causally possible course 
of events following t0, so whichever of these courses of events is by 
hypothesis actualized by the passage of time, the course of events in question 
comprises a moment making this formula true. Similarly, if p is a formula 
that happens to be true in ‘our indeterminist world’ somewhere on every 
causally possible course of events following t0, then the formula Fp has a 
determinate truth-maker (ℳ, t0). The formula Gq has no stable truth-maker, 
and therefore no determinate truth-maker. For, any of its truth-makers is 
either infinite (and so lacks a maximum, whence the truth-maker cannot be 
stable) or else has a maximum s* and admits of a suitable extension in which 
a successor of s* renders q false. Further, even G(q ∨ ¬q) has no stable truth-
maker. Namely, if (ℳ, t0) is its truth-maker that has a maximum, the truth-
evaluation of G(q ∨ ¬q) in (ℳ, t0) is not itself a truth-evaluation of           
G(q ∨ ¬q) in any extension of (ℳ, t0). 
 
7. Analyzing the conditions of determinacy 
Let us study how the logical form of a formula and the status of its truth-
maker with respect to obtaining affect the truth-maker’s being or not being 
determinate. In order to be conveniently in a position to comment more 
systematically on this issue, I propose to analyze the types of conditions that 
can be expressed by a prefix formula of the form O1…On β, where n ≥ 0 and 
Oi ∈ {P, H, F, G} for all 1 ≤ i ≤ n, and β is a Boolean combination of literals 
in terms of conjunction and/or disjunction. (Prefix formulas are by definition 
non-modal.) The generalization of the analysis to arbitrary L-formulas is left 
to another occasion. A prefix formula O1…On β is pure past, if Oi ∈ {P, H} 
for all 1 ≤ i ≤ n with n ≥ 1. It is non-future, if it is either pure past or else 
equals β (the case n ≔ 0).  

All truth-makers of all true (non-modal) non-future formulas trivially 
obtain. However, a prefix formula may have an obtaining truth-maker even if 
its prefix contains an occurrence of F. For example, if t0 has at least two 
predecessors and q is true at the immediate predecessor of t0, then PFq is true 
at t0 and this formula has a truth-maker that obtains. The domain of this truth-
maker consists of t0, its immediate predecessor, and the immediate 
predecessor of this latter moment. Of course not all truth-makers of PFq 
obtain. For instance, consider a SOA consisting of t0, the immediate 
successor of t0, and the immediate predecessor of t0, where q is true at the 
immediate successor of t0. Then centering this SOA on t0 results in a truth-
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maker of PFq that does not obtain but will obtain. Even a formula whose 
prefix contains an occurrence of G may have a truth-maker (ℳ, t0) that 
obtains, but only if the passage of time fails to lead from t0 to a causally 
possible moment later than t0. Some formulas admit of truth-makers that are 
processes of coming to obtain. E.g., a certain truth-maker of the formula HFp 
is a process of coming to obtain, although the formula also has truth-makers 
that will obtain and even ones that obtain. An example of the first kind is a 
truth-maker that consists of a countable infinity of successors of t0 and a 
countable infinity of its predecessors, with p true at all successors of t0, this 
truth-maker being induced by the truth-evaluation that assigns to the n-th 
predecessor of t0 (corresponding to H) the n-th successor of t0 (corresponding 
to F). An example of the second kind, again, is a truth-maker that consists of 
a single successor of t0 and a countable infinity of predecessors of t0, with p 
true at the unique successor of t0, the truth-maker being triggered by the 
truth-evaluation that assigns uniformly to all predecessors of t0 the unique 
successor of t0. Finally, an example of the third kind is a truth-maker in 
which t0 has no successors at all but has a countable infinity of predecessors, 
with p true at t0, the truth-maker being triggered by the truth-evaluation that 
assigns uniformly to all predecessors of t0 the moment of evaluation t0 itself. 
The formula GFp has no truth-maker that will obtain. It has only truth-
makers that are processes of coming to obtain, except if the passage of time 
through the moment of evaluation leads to no further moments, in which case 
this formula has an obtaining truth-maker. Trivially, a truth-maker that is a 
process of coming to obtain cannot be determinate—as it lacks a maximum 
and therefore cannot even be stable.  
 
Fact 7.1 Let φ be a formula. If a factual truth-maker of φ in ℳw is a process 
of coming to obtain, it is not determinate.  
 
Proof. A truth-maker that is a process of coming to obtain is not stable (as it 
has no maximum), and therefore it is a fortiori not determinate. ∎ 
 

The fact that a truth-maker of a non-modal formula φ obtains or will 
obtain does not by itself guarantee that the truth-maker is determinate. 
Whether it is or not, that depends on the form of the formula. Let us, now, 
look more systematically into the form of non-modal prefix formulas and see 
how their form affects their possibility of having determinate truth-makers. 
The considerations are relativized to ‘our indeterminist world’ ℳw. Recall 
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that by definition, a ‘real truth-maker’ of a formula is a truth-maker of this 
formula in the specific state of affairs ℳw (see Definition 4.8). 
 
7.1 Formulas with an occurrence of G 
The presence of G in a prefix formula renders it impossible for the formula to 
have a determinate truth-maker. 
 
Lemma 7.2 Suppose φ ≔ O1…On β is a prefix formula with n ≥ 1 such that 
G occurs at least once in the prefix. Then all truth-makers of φ are instable. 
Consequently, no truth-maker of φ is determinate.  
 
Proof. Let φ be as in the statement of the lemma. Suppose (ℳ, t0) is a truth-
maker of φ in ℳw, with ℳ = ℳw[t0, ℰ]. Since φ contains G, either (1) the 
moment set M(ℰ) has no maximum, or else (2) the passage of time comes to 
an end in a finite duration—i.e., there is a minimal duration, n*, such that 
TIMEw([t0], n*) = TIMEw([t0], n* + 1), whence the passage of time does not 
lead to later moments from the endpoint t* of the partial history    
TIMEw([t0], n*). In case (1), the causal ordering of the truth-maker (ℳ, t0) 
has no maximum, whence (ℳ, t0) is instable. In case (2), the passage of time 
through t0 has a maximum, t*. Let s* be any object from outside the domain 
of ℳw and let 𝒩 be the linear SOA whose domain consists of the domain of 
ℳ together with the object s*; the causal order of 𝒩 is the transitive closure 
of the result of adding the pair (t*, s*) to the causal order of ℳ; the valuation 
of 𝒩 is simply that of ℳ (whence all propositional atoms are false at s* in 
𝒩); and the time-resource TIME𝒩 of 𝒩 is otherwise like the time-resource 
TIMEℳ of ℳ except that TIME𝒩([t*], 1) = [s*], whereas—we note—
TIMEℳ([t*], 1) = TIMEw([t*], 1) = TIMEw([t*], 0) = [t*]. Thus, the maximal 
t0-complete course of events beginning at t0 in 𝒩 is [t*] ∪ {s*}, whereas the 
maximal t0-complete course of events beginning at t0 in ℳ is [t*] ≠ [t*] ∪ 
{s*}. By construction, 𝒩 is a linear SOA historically t*-equivalent to ℳ, 
where t* is the maximum of the causal ordering of ℳ. Now, because the 
prefix of φ contains G, if ℰ' is any evaluation of φ in (𝒩, t0), its moment set 
contains s*. Yet the moment set of ℰ is included in the domain of ℳw 
(indeed, included in the domain of ℳ) and therefore cannot contain s*. It 
follows that ℰ is not even an evaluation in (𝒩, t0) and therefore a fortiori not 
a truth-evaluation. Thus, we may conclude that (ℳ, t0) is instable. We have 
seen, then, that the stability of (ℳ, t0) fails in both cases (1) and (2). It 
follows that (ℳ, t0) is not determinate. ∎ 
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7.2 Generally on G-free formulas 
From now on, I restrict my attention to G-free prefix formulas—i.e., formulas 
of the form O1…On β, where β is a Boolean combination of literals and        
Oi ∈ {F, P, H} for all 1 ≤ i ≤ n. 
 
Lemma 7.3 (Transportability of truth-evaluations) Let φ be a G-free 
prefix formula. Suppose ℰ is a truth-evaluation of φ in (ℳw, t0). Let ℳ = 
ℳw[t0, ℰ]. If the passage of time from t0 has a maximum, t*, and 𝒩 is any 
linear SOA that is historically t*-equivalent to ℳ, then ℰ is a truth-evaluation 
of φ in (𝒩, t0) and ℳ = 𝒩[t0, ℰ].  
 
Proof. Suppose that ℰ is a truth-evaluation of φ in (ℳw, t0) and let ℳ = 
ℳw[t0, ℰ], φ being G-free. Suppose the passage of time from t0 has a 
maximum t* (as the passage of time is determined by the time-resource of 
ℳw), and let 𝒩 be any linear SOA historically t*-equivalent to ℳ. Thus, 𝒩 
contains all the moments of ℳ, but—except in the special case 𝒩 = ℳ—it 
contains even further moments (which need not even be moments of ℳw). 
Any such moments in 𝒩 are later than t* in the causal order of 𝒩. We claim 
that since φ contains no occurrence of G, the set ℰ itself is an evaluation of φ 
in (𝒩, t0), and not merely in (ℳ, t0). If φ is non-future, this is trivial, since in 
that case the moments available for constructing an evaluation in (𝒩, t0) are 
the same in the two cases (namely, the moment t0 and the moments that are 
earlier than t0 according to the causal ordering of ℳ). If, again, φ contains 
occurrences of F, there may be in (𝒩, t0) more moments to be used in an 
evaluation than in (ℳ, t0). (This is so if not only 𝒩 ≠ ℳ, but also at least the 
immediate causally possible successor of t* in 𝒩 is attainable from t* via the 
time-resource of 𝒩.) However, the construction of an evaluation just requires 
choosing for each occurrence of F in every evaluation sequence one witness, 
and the possible availability in 𝒩 of extra moments to be used as witnesses 
of F—namely, moments later than t* and furthermore attained via the time-
resource of 𝒩—still leaves us the possibility of constructing an evaluation by 
effectively using as witnesses only the moments used when evaluating φ in 
(ℳ, t0). We may conclude that whether F occurs in φ or not, ℰ is an 
evaluation of φ in (𝒩, t0). Since ℰ is a truth-evaluation of φ in (ℳ, t0), it is 
likewise a truth-evaluation of φ in (𝒩, t0). Further, the dynamic substructure 
of ℳ generated by the moment set M(ℰ) is the same as the dynamic 
substructure of 𝒩 generated by the very same moment set M(ℰ). That is, 
𝒩[t0, ℰ] = ℳ[t0, ℰ] = ℳ. ∎ 
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We move on to study determinacy in connection with G-free prefix 
formulas, and relate the question of determinacy to the question of whether 
they have a truth-maker that obtains or will obtain. (It was already noted at 
the beginning of the present section that such a formula may have a truth-
maker that is a process of coming to obtain, cf. the case of HFp.) We begin 
by observing that if a truth-maker of a G-free formula obtains, it is 
determinate. By contrast, as I noted above, a formula in which G occurs 
might have an obtaining truth-condition which nevertheless would not be 
determinate. For example, any truth-maker whose evaluation moment has no 
successors would be an obtaining but indeterminate truth-maker of any 
formula of the form Gφ—actually, such a truth-maker would be neither stable 
nor fact-based. 
 
Lemma 7.4 Let φ be a G-free prefix formula.  
 

(a) If φ has a real truth-maker that obtains, the truth-maker is determinate. 
(b) If φ has a real truth-maker that will obtain, the truth-maker is stable.  

 
Proof. Suppose φ has a truth-maker (ℳ, t) in ℳw, with ℰ being an evaluation 
such that ℳ = ℳw[t0, ℰ]. Since φ is non-modal, the truth-maker is 
automatically factual. I show first that whether (ℳ, t) obtains or will obtain, 
in both cases it is stable. So, suppose that (ℳ, t) obtains or will obtain. In any 
event, then, the causal ordering ≺ of ℳ has a maximum, t*, satisfying t ≼ t*. 
Now, by Lemma 7.3, ℰ is a truth-evaluation of φ at t in any linear SOA 
historically t*-equivalent to ℳ. Consequently, (ℳ, t) is stable. This 
constitutes the proof of (b) and half of the proof of (a). For (a), it remains to 
show that if in particular (ℳ, t) obtains, it is fact-based, as well.  

Now, suppose that (ℳ, t) indeed obtains, whence t* = t. Again by  
Lemma 7.3, ℰ is a truth-evaluation of φ at t in absolutely any linear SOA 
historically t-equivalent to ℳ. Consequently, it is a truth-evaluation of φ in 
any such linear SOA 𝒩 that not only is historically t-equivalent to ℳ, but is 
in particular a static substructure of ℳw and dynamically t-equivalent to ℳ. 
It follows that 𝒩, t ⊨ φ. We may conclude that (ℳ, t) is fact-based. Since, 
then, (ℳ, t) is factual, stable, and fact-based, we may conclude that it is 
determinate. This concludes the proof of (a). ∎ 

 
When a truth-maker of a non-modal formula will obtain but fails to be 

determinate, this failure is, then, due to the truth-maker not being fact-based. 
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Indeed, a truth-maker that will obtain need not be fact-based. This is 
precisely the case of truth-conditions of future contingent propositions. Just 
suppose Fp and ◇∼Fp (i.e., ◇G¬p) are both true at t0 in ℳw = (𝔖w, 
TIMEw). Then Fp has a truth-maker (ℳ, t0) with a finite t0-complete domain            
{t0,t1,…,tn} for some n ≥ 1, a linear causal ordering, and a valuation 
according to which p is true at tn. Further, the fact that ◇G¬p is true at t0 
means that there is a finite or infinite course of events S in ℳw such that:     
(i) all moments in S are later than t0, (ii) all moments in S render q false, and 
(iii) [t0] ∪ S is a history of ℳw (not merely a partial history). Now, let 𝔖𝒩 be 
the static substructure of 𝔖w determined by the set [t0] ∪ S, and let TIME𝒩 be 
a (counterfactual) time-resource such that S = ∪n>0 TIME𝒩([t0], n). Setting  
𝒩 ≔ (𝔖𝒩, TIME𝒩), we have that S is t0-complete in 𝒩, and that 𝒩 is a 
maximal linear static substructure of  ℳw. Further, we have 𝒩, t0 ⊭ Fp. Here, 
ℳ and 𝒩 are both static substructures of ℳ, and 𝒩 is dynamically             
t0-equivalent to ℳ. So, if (ℳ, t0) was a fact-based truth-maker of Fp, then Fp 
would be true at t0 in 𝒩. However, this is not the case. It follows that (ℳ, t0) 
is not fact-based. 

 
7.3 G-free formulas and truth-makers that obtain or will obtain 
To complete my study of determinacy in connection with prefix formulas, it 
remains to investigate the conditions under which a G-free formula can have 
a truth-maker that will obtain and is furthermore fact-based. To this end, we 
may begin by studying how the prefix of a G-free formula affects its having a 
truth-condition that will obtain. Thereafter we may pose the further question 
of what more it takes for such a truth-maker to be fact-based. Now, no non-
future formula has a truth-maker that will obtain; so let us turn attention to 
prefixes with at least one occurrence of F. Obviously all truth-makers of non-
modal formulas of the form Fχ will obtain. Some, but not all, truth-makers of 
PFq will obtain, and the same holds true of HHFq. But what can be said 
generally of G-free formulas in which F appears? In order to study this 
question, I will take a look at a specific class of SOAs—namely, the class 𝓚 
of all SOAs whose frame has no minimum, and whose time-resource yields 
from every moment an infinite passage of time forward. In this paper, I 
content myself in this connection with the class 𝓚 and ignore SOAs whose 
frames have a minimum (a root) and SOAs whose frames have a finitely 
terminating passage of time through at least one moment. 

In passing, we note that a pure-past prefix formula is 𝓚-equivalent to a 
formula of the following four forms: Hnβ, Pnβ, PmHnβ, and HmPnβ, where β is 
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a Boolean combination of literals and n, m ≥ 1.26 This ensues from the fact 
that we have the following 𝓚-equivalences: HkPmHnβ ≡𝓚 Pk+mHnβ and 
PkHmPnβ ≡𝓚 H

k+mPnβ.  
I formulate an analysis of truth-conditions of G-free formulas by utilizing 

an augmented language in which an additional tense operator ⊝ is available 
that shifts the value of the moment parameter to the immediate predecessor of 
the moment of evaluation. (Whenever ℳ ∈ 𝓚 and t is a moment of ℳ, a 
unique immediate predecessor of t exists.) That is, ⊝χ is true at t iff χ is true 
at the immediate predecessor of t. Once the analysis is effected, we can return 
to the question of the status of obtaining of truth-conditions of G-free 
formulas (in which, by definition, ⊝ does not occur ).  

It turns out that over 𝓚, any G-free prefix formula O1…On β falls into 
one of the following four categories: either such a formula is non-future, or it 
is of the form Fmχ with χ being non-future, or else it is 𝓚-equivalent to a 
formula of one of the following two forms: (Pχ ∨ χ ∨ Fχ) or ⊝nFmχ, where 
χ is non-future. In order to prove this, I first establish the following lemma. 
 
Lemma 7.5 Consider G-free prefix formulas in which F appears at least once 
preceded either by P or by H, and θ is an arbitrary prefix formula.  
 

(a) Let φ ≔ O1…Or PFmθ, where m ≥ 1 and Oi ∈ {P, H} for all 0 ≤ i ≤ r. 
Then φ is 𝓚-equivalent to (Pθ ∨ θ ∨ Fθ). 

(b) Let φ ≔ HnFmθ, where n, m ≥ 1. Then φ is 𝓚-equivalent to ⊝nFmθ. 
(c) Let φ ≔ O1…Or PHnFmθ, where n, m ≥ 1 and Oi ∈{P, H} for all         

0 ≤ i ≤ r. Then φ is 𝓚-equivalent to (Pθ ∨ θ ∨ Fθ). 
 
Proof. For (a), we note first that 
 

(1) PnFmθ ≡𝓚 (Pθ ∨ θ ∨ Fθ).  
 
Here, (Pθ ∨ θ ∨ Fθ) says that θ was true, is true or will be true. Hence, if 
(Pθ ∨ θ ∨ Fθ) is true at t, the formula (Pθ ∨ θ ∨ Fθ) is likewise true at all 
moments in the past of t and at all moments yielded by the passage of time 
from t. Consequently,  
                                                             
26 Formulas φ and 𝜓 are by definition 𝓚-equivalent (in symbols φ ≡𝓚 𝜓) iff for all ℳ ∈ 𝓚 and 
all t in ℳ, we have: ℳ, t ⊨ φ iff ℳ, t ⊨ 𝜓. If O is an operator and χ is a formula, then Onχ 
stands for a string of n consecutive occurrences of O followed by χ. In the special case n ≔ 0, 
Onχ stands for χ (i.e., On stands for the empty string). 
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(2) HkPnFmθ ≡𝓚 H
k(Pθ ∨ θ ∨ Fθ) ≡𝓚 P

nFmθ ≡𝓚 (Pθ ∨ θ ∨ Fθ).  
 
Together (1) and (2) entail that O1…Or PFmχ ≡𝓚 (Pθ ∨ θ ∨ Fθ) for any string 
O1…Or of occurrences of P and H. This completes the proof of (a). 
Regarding (b), we note that generally, we have:  
 

(3) HnFmθ ≡𝓚 ⊝
nFmθ,  

 
since n occurrences of the universal past-tense operator shift the value of the 
moment parameter to the n-th predecessor of the moment of evaluation—or 
further in the past. If n = m, a 𝓚-equivalent form of HnFmθ can be    
expressed in which H does not appear (if not in θ): θ ∨ Fθ. And if m > n, the 
formula has the 𝓚-equivalent Fm–1θ. However, generally, in order to 
eliminate H in the case that n < m, the operator ⊝ is needed. Hereby the 
proof of (b) is completed.  

It remains to prove (c). We note that by (1) and (3), we have for all k ≥ 1:  
  

(4) PkHnFmθ ≡𝓚 P
k⊝nFmθ ≡𝓚 P

k+nFmθ ≡𝓚 (Pθ ∨ θ ∨ Fθ). 
 
Further, by (4), we have for all x ≥ 1: 
 

(5) HxPkHnFmθ ≡𝓚 Hx(Pθ ∨ θ ∨ Fθ) ≡𝓚 (Pθ ∨ θ ∨ Fθ). 
 
Together (4) and (5) entail that O1…Or PHnFmχ ≡𝓚 (Pθ ∨ θ ∨ Fθ) for        
any string O1…Or of occurrences of P and H. This brings the proof of (c) to 
an end. ∎ 
 
Directly by Lemma 7.5, we have:  
 
Corollary 7.6 Let φ ≔ O1…On Fmχ be a prefix formula, where n, m ≥ 1 and 
Oi ∈ {P, H} for all 1 ≤ i ≤ n, and χ is an arbitrary prefix formula. Then, φ is 
𝓚-equivalent to one of the following two formulas: (Pχ ∨ χ ∨ Fχ)               
or ⊝nFmχ. ∎ 
 
Let us, then, say that a string of operators O1…On Fm is a Past-Future prefix, 
if n, m ≥ 1 and Oi ∈ {P, H} for all 1 ≤ i ≤ n. Note that if a formula has a Past-
Future prefix and is therefore of the form O1…On Fmχ, it may well happen 
that the subformula χ, too, has a Past-Future prefix. Now, if a prefix formula 
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φ has a Past-Future prefix, it has automatically a (proper or improper) 
subformula which consists of a Past-Future prefix applied to a non-future 
formula. Of course, it cannot happen that its all subformulas having a Past-
Future prefix are applied to a formula that itself has a Past-Future prefix, 
already because each formula consists of a finite number of symbols. I move 
on to prove the theorem announced above.  
 
Theorem 7.7 Let φ ≔ O1…ON β be a prefix formula, where N ≥ 0 and         
Oi ∈ {P, H, F} for all 1 ≤ i ≤ N and β is a Boolean combination of literals.  
Then, there is a non-future formula χ such that either φ equals χ, or φ is of the 
form Fmχ for some m ≥ 1, or else φ is 𝓚-equivalent to a formula of the form 
(Pχ ∨ χ ∨ Fχ) or the form ⊝xFyχ, where x, y ≥ 1. More specifically, either χ 
equals β or is of the form Hkβ, Pkβ, PrHkβ, and HrPkβ for some k, r ≥ 1. 
 
Proof. Let φ be an arbitrary formula of the relevant form. If its prefix is 
empty, or contains no occurrence of F, or contains exclusively occurrences of 
F, there is nothing to prove. Similarly, if φ is of the form Fmχ with χ being 
non-future, there is nothing to prove. So suppose φ is of the form  
 

O1.1…O1.k(1) Fm(1) O2.1…O2.k(2) Fm(2) … On.1…On.k(n) Fm(n)
 χ 

 
or of the form  
 

Fm(0) O1.1…O1.k(1) Fm(1) O2.1…O2.k(2) Fm(2) … On.1…On.k(n) Fm(n)
 χ, 

 
where χ is non-future and n ≥ 1 and k(i) ≥ 1 and m(i) ≥ 1 and Oi ∈ {P, H} for 
all 1 ≤ i ≤ n. In the latter case, it is further supposed that m(0) ≥ 1. 

Let us think of the first alternative first. The formula comprises, then, n 
Past-Future prefixes followed by a non-future formula. Let us consider these 
Past-Future prefixes one by one, starting with the outermost and moving 
toward the innermost. We already know by Corollary 7.6 that a formula with 
a Past-Future prefix followed by an arbitrary formula ψ is 𝓚-equivalent to 
one of the two formulas (Pψ ∨ ψ ∨ Fψ) or ⊝xFyψ for some x, y ≥ 1. In order 
to find out whether nested Past-Future prefixes likewise give rise to 𝓚-
equivalents having these forms, we must study what happens when the 
formula ψ in (Pψ ∨ ψ ∨ Fψ) or ⊝xFyψ is itself of one these two forms. So, 
suppose ψ = O2.1…O2.k(2) Fm(2)θ with θ = O3.1…O3.k(3) Fm(3)…On.1…On.k(n) 
Fm(n)χ. Recall that φ = O1.1…O1.k(1) Fm(1)ψ is 𝓚-equivalent to (Pψ ∨ ψ ∨ Fψ) 
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or to ⊝k(1)Fm(1)ψ, and ψ = O2.1…O2.k(2) Fm(2)θ  is 𝓚-equivalent to (Pθ ∨ θ ∨ 
Fθ) or to ⊝k(2)Fm(2)θ. It follows that φ is 𝓚-equivalent to one of the           
four formulas: 

 
1. (P[(Pθ ∨ θ ∨ Fθ)] ∨ [(Pθ ∨ θ ∨ Fθ)] ∨ F[(Pθ ∨ θ ∨ Fθ)]). This 

formula is (logically) equivalent to (PPθ ∨ Pθ ∨ PFθ ∨ Pθ ∨ θ ∨ Fθ ∨ 
FPθ ∨ Fθ ∨ FFθ), which is in fact 𝓚-equivalent to (Pθ ∨ θ ∨ Fθ). 

2. (P[⊝k(2)Fm(2)θ] ∨ [⊝k(2)Fm(2)θ] ∨ F[⊝k(2)Fm(2)θ]). This formula is 𝓚-
equivalent to (Pk(2)+1Fm(2)θ ∨ ⊝k(2)Fm(2)θ ∨ ⊝k(2)Fm(2)+1θ), which is 𝓚-
equivalent to (Pθ ∨ θ ∨ Fθ ∨ ⊝k(2)Fm(2)θ ∨ ⊝k(2)Fm(2)+1θ) and therefore 
𝓚-equivalent simply to (Pθ ∨ θ ∨ Fθ). 

3. ⊝k(1)Fm(1)(Pθ ∨ θ ∨ Fθ). This formula is (logically) equivalent to 
⊝k(1)(Fm(1)Pθ ∨ Fm(1)θ ∨ Fm(1)Fθ), which is 𝓚-equivalent to     
⊝k(1)(Pθ ∨ θ ∨ Fθ ∨ Fm(1)θ ∨ Fm(1)+1θ), this latter formula being       
𝓚-equivalent to (Pθ ∨ θ ∨ Fθ). 

4. ⊝k(1)Fm(1)[⊝k(2)Fm(2)θ]. Now, this formula is 𝓚-equivalent to               
⊝k(1)+ k(2)Fm(1)+m(2)θ. 

 
All these formulas have one of the two requisite forms. By repeated 
applications of the above 𝓚-equivalences, any formula of the form 
O1.1…O1.k(1) Fm(1) O2.1…O2.k(2) Fm(2) … On.1…On.k(n) Fm(n)

 χ (with χ being non-
future) can be seen to have a 𝓚-equivalent that is of the form (Pχ ∨ χ ∨ Fχ) 
or ⊝xFyχ for some positive integers x, y. 

Coming back to the second alternative discerned above, according to 
which φ is of the form Fm(0) O1.1…O1.k(1) Fm(1) O2.1…O2.k(2) Fm(2) … 
On.1…On.k(n) Fm(n)

 χ, we conclude that by the above observations, this formula 
has either a 𝓚-equivalent of the form Fm(0)(Pχ ∨ χ ∨ Fχ) or a 𝓚-equivalent 
of the form Fm(0)⊝xFyχ. Now, the former formula is 𝓚-equivalent to         
(Pχ ∨ χ ∨ Fχ). And the latter formula is 𝓚-equivalent to ⊝xF m(0)+yχ. So, 
even in this case the formula has a 𝓚-equivalent of one of the two requisite 
forms. The specific forms that the formula χ can take, mentioned in the 
statement of the theorem, follow from the observation made at the beginning 
of the present subsection. ∎  

 
The fact that the above transformations do not remain within L but      

lead to its extension in which the operator ⊝ is available does not matter    
for our purposes. (It would, of course, matter had we wished to formulate a 
normal form for G-free prefix formulas of L.) Namely, we need the above 
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theorem merely in order to be able to reason conveniently about the 
semantics of the relevant prefix formulas, and to this end it does not      
matter how the relevant equivalent forms are expressed, as long as the 
equivalent forms allow us to have a synoptic view on the totality of the prefix 
formulas in question.  

We cannot show that all truth-makers of all G-free prefix formulas obtain 
or will obtain. Certain formulas in whose prefix F occurs admit a truth-maker 
that is a process of coming to obtain. A case in point is HFp, as noted at the 
beginning of the present section. However, we can show that there is no      
G-free prefix formula that is true at a time in a SOA belonging to 𝓚 and    
has exclusively truth-makers that are processes of coming to obtain. Any such 
formula has a truth-maker that obtains or will obtain. That is, a G-free    
prefix formula cannot be true without having a truth-maker that obtains or 
will obtain. 

 
Corollary 7.8 Let φ ≔ O1…ON β be a G-free prefix formula. If ℳ* ∈ 𝓚 and 
ℳ*, t ⊨ φ, then φ has a truth-maker (ℳ, t) in ℳ* such that (ℳ, t) obtains or 
(ℳ, t) will obtain.  
 
Proof. Let ℳ* ∈ 𝓚 be arbitrary. Suppose ℳ*, t ⊨ φ, where φ is as in the 
statement of the corollary. By Theorem 7.7, either φ is non-future or of the 
form Fmχ, where χ is non-future and m ≥ 1, or else there is a non-future 
formula χ and integers n, m ≥ 1 such that φ is 𝓚-equivalent to (Pχ ∨ χ ∨ Fχ) 
or ⊝nFmχ. If φ is non-future, φ has a truth-maker (ℳ, t) that obtains. If φ is 
of the form Fmχ, it has a truth-maker (ℳ, t) that will obtain. If, again, φ is  
𝓚-equivalent to (Pχ ∨ χ ∨ Fχ), it has either a truth-maker (ℳ, t) that obtains 
or a truth-maker (ℳ, t) that will obtain. Suppose, then, that φ is 𝓚-equivalent 
to ⊝nFmχ. If n < m, then φ has a truth-maker (ℳ, t) that will obtain, whereas 
if n ≥ m, then φ has a truth-maker (ℳ, t) that obtains or will obtain. ∎ 
 
7.4 G-free formulas and determinate truth-makers  
Let us now pose the question of determinacy regarding G-free prefix 
formulas, under the hypothesis that ℳw ∈ 𝓚. By Lemma 7.4(a), if a real 
truth-maker of a G-free prefix formula obtains, it is determinate. By 
Corollary 7.8, any remaining G-free prefix formulas that have a real        
truth-maker at all, have a real truth-maker that will obtain. Now, if a truth-
maker of a G-free formula will obtain, under what conditions is the truth-
maker determinate?   
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By Lemma 7.4(b), the information that a factual truth-maker will obtain 
allows indeed us to infer that it is stable, but it does not allow deducing that it 
is fact-based. So, it remains to consider real truth-makers (ℳ, t) of G-free 
prefix formulas φ that will obtain, and ask whether some, though not all, such 
truth-makers are, after all, fact-based and not merely stable. Since the     
truth-maker (ℳ, t) of φ will obtain, in any event φ is not non-future. By 
Theorem 7.7, there is, then, a non-future prefix formula χ such that either φ is 
directly of the form Fmχ, or else φ is 𝓚-equivalent to a formula of the form 
(Pχ ∨ χ ∨ Fχ) or ⊝xFyχ. Now, since (ℳ, t) will obtain, in each of these  
three cases there is a positive integer k such that (ℳ, t) is, in particular, a 
truth-maker of the formula Fkχ, in addition to being a truth-maker of φ. That 
is, in each case, it cannot happen that (ℳ, t) makes φ true without making 
Fkχ true, as well. (In the first case k ≔ m, in the second case k ≔ 1, and in 
the third case k ≔ max{1, y – x}.) Further, in each case, any truth-maker of 
Fkχ makes likewise φ true. Whenever a G-free prefix formula has a truth-
maker that will obtain, this truth-maker is, then, a truth-maker of a formula of 
the form Fkχ with χ being non-future. In our investigation of centered SOAs 
that are truth-makers of G-free prefix formulas and that furthermore will 
obtain, we may, then, without loss of generality concentrate on formulas of 
the form Fkχ. 

Such formulas Fkχ may be merely future-tense reports about what has 
already happened; so is the case with FPq, if its truth at t0 is based on the 
truth of q at t0 or on that of Pq at t0. Or such formulas Fkχ may concern both 
the future and the past. This is what happens with FFHq, whose truth at t0 
entails that q is true at the immediate successor of t0, in addition to being true 
at t0 and always before. Or such formulas Fkχ may concern exclusively the 
future, as is the case with Fp. Another such example is the truth of FPq at t0, 
supposing that q is false at t0 and always earlier. Finally, such formulas Fkχ 
can be true for logical, physical or metaphysical reasons, in which case they 
fail to express any ‘substantial’ condition on their moment of evaluation. 
Cases in point are F(p ∨ ¬p) and FH(p ∨ ¬p), as well as Fq, supposing that q 
happens to occur after the moment of evaluation at some moment of each 
branch of the temporal frame. If Socrates exists at t0, then q might be the 
proposition that Socrates dies. The different grounds for the truth of a 
formula of the form Fkχ motivate a division of fact-based truth-makers into 
strong and weak. The division can be formulated using the following notion 
of factive evaluation.  
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Definition 7.9 (Factive evaluation) Let φ be a formula. Let ℰ be an 
evaluation of φ on (ℳw, t0), with ≺ being the causal ordering of ℳw. The 
evaluation ℰ is factive iff for all evaluation sequences Σ in ℰ, we have that the 
moment component m(Σ) of the last position of Σ satisfies m(Σ) ≼ t0. ∎ 
 

Suppose (ℳ, t0) is a truth-maker of a formula φ in ℳw, and ℰ is an 
evaluation such that ℳ = ℳw[t0, ℰ]. Then, trivially, if (ℳ, t0) obtains, ℰ is 
factive. In this case not only is there no evaluation sequence in ℰ whose last 
position has a moment component later than t0, but no moment of the entire 
moment set of ℰ is later than t0. Now, it can even happen that (ℳ, t0) will 
obtain but still ℰ is factive—this is the case of future-tense reports of present 
or past facts. In such a case the possibility of constructing the evaluation 
requires that the passage of time extend beyond t0, but apart from this 
‘structural’ requirement, no further condition is imposed on the future. The 
substantial requirement about the truth of propositional atoms concerns 
exclusively t0 and/or moments earlier than t0. 

When attention is confined to the class 𝓚 of SOAs, it can be shown that  
if φ has a truth-maker that will obtain, then this truth-maker being induced  
by a factive truth-evaluation is a sufficient condition for the truth-maker to  
be determinate. 

  
Fact 7.11 (Determinacy via factiveness) Let φ be a G-free prefix formula. 
Suppose (ℳ, t0) is a truth-maker of φ in ℳw, with ℰ being a truth-evaluation 
such that ℳ = ℳw[t0, ℰ]. Suppose that (ℳ, t0) will obtain. If ℳw belongs to 
𝓚 and ℰ is factive, then (ℳ, t0) is determinate.  
 
Proof. Let φ, (ℳ, t0), and ℰ be as in the statement of the Fact, with ℳw ∈ 𝓚. 
By Lemma 7.4(b), if a truth-maker of a G-free prefix formula has a truth-
maker that will obtain, this truth-maker is stable. To show that (ℳ, t0) is 
determinate, it remains, therefore, to prove that it is fact-based. To this end, 
let 𝒩 = (𝔖𝒩, TIME𝒩) be a maximal linear SOA satisfying 𝔖𝒩 ⋐ 𝔖w and    
ℳ ≅[t0]dyn 𝒩. I claim that there is a truth-evaluation ℰ' of φ in (𝒩, t0). Note 
that because ℳw ∈ 𝓚, the passage of time from t0 onward in 𝒩 is infinite. 
Consequently, there are in particular enough moments after t0 so that ℰ' can 
be constructed by copying ℰ: whenever in an evaluation sequence of ℰ the   
n-th successor of t0 from ℳ is chosen, choose here the n-th successor of t0 
from 𝒩. Further, whenever t0 or one of its predecessors is chosen in ℳ, 
choose the very same moment in 𝒩. Thus constructed, ℰ' ends up being 
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factive because ℰ is factive. Now, ℰ is a truth-evaluation. Because ℳw ∈ 𝓚, 
no evaluation sequence in ℰ can have a last position of the form (Oχ, s, g) 
where O ∈ {P, H} and s has no predecessor, or of the form (Fχ, s, g) where s 
has no successor attainable via the time-resource. Therefore its all evaluation 
sequences end with a position of the form (θ, s, g), where θ ∈ l it  and θ is 
true at s.27 Since ℰ is factive, in each such case s ≼ t0. Given the way in which 
ℰ' is constructed, there is a one-one correspondence between the last 
positions of its evaluation sequences and the last positions of evaluation 
sequences of ℰ (the corresponding positions differ only in the values of their 
history parameter, sharing their literal and sharing their value of the moment 
parameter). Since ℰ is a truth-evaluation, it follows that so is ℰ'. ∎ 
 

Recall that a truth-maker of a prefix formula obtains or will obtain or is a 
process of coming to obtain. Truth-makers of the first kind are trivially both 
factive and fact-based. Those of the second kind were just shown to be fact-
based if factive. And those of the third kind are never factive. So, whenever a 
truth-maker of a prefix formula is factive, it is thereby fact-based. Now, fact-
based truth-makers can be divided into strong and weak according to whether 
or not they are induced by a factive truth-evaluation. 
 
Definition 7.10 (Strongly vs. weakly fact-based truth-makers) Suppose 
(ℳ, t0) is a truth-maker of a prefix formula φ in ℳw and ℳ = ℳw[t0, ℰ]. The 
truth-maker (ℳ, t0) is strongly fact-based iff the evaluation ℰ is factive (and 
thereby fact-based). It is weakly fact-based iff it is fact-based but not 
factive—i.e., there is in ℰ at least one evaluation sequence whose last 
position contains a moment component later than t0. ∎ 
 

Let us, now, come back to truth-makers of G-free formulas φ that will 
obtain. If (ℳ, t0) is such a truth-maker of φ, it may but need not be fact-
based. By Lemma 7.4(b), it is determinate if it is fact-based, and there are 
two ways in which it can be fact-based. It can be strongly fact-based—in 
which case φ is a report about the present or the past. Or it can be weakly 
fact-based—and in this case φ involves a prediction regarding future 
necessities, whether logical, physical or metaphysical. Indeed, if (ℳ, t0) is 
weakly fact-based, φ ends up expressing a (non-future) condition χ regarding 
a moment later than t0. However, given that (ℳ, t0) is fact-based, this same 
condition χ must be satisfied by some moment later than t0 on every causally 
                                                             
27 Recall the definition of the set lit of literals from the beginning of Section 2. 
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possible course of events proceeding from t0. The truth of χ at some moment 
of every causally possible continuation of t0 is, then, not a contingent matter, 
but at least physically or metaphysically necessary in the sense that ‘our 
indeterminist world’ happens to be such that χ gets realized somewhere on all 
causally possible histories after t0.  

The two variants of fact-based truth-makers—strong and weak—
correspond to the sources of determinacy of states of affairs discerned by 
Boethius and Abelard: determinacy due to the past or current presence of 
something amounts to strongly fact-based truth-makers that obtain (or indeed 
will obtain), while determinacy of states of affairs that will obtain due to the 
natures of things amounts to weakly fact-based truth-makers.  

Finally, those truth-makers (ℳ, t0) that will obtain but are not fact-based 
render true contingent predictions φ. This means two things. First, the truth of 
φ genuinely depends on what happens after t0—the state of affairs ℳ is 
induced by a truth-evaluation that is not factive. Second, φ is contingent in 
the sense that not all counterfactual causally possible maximal courses of 
events extending t0 render true the prediction that φ makes about the future, 
even though the actual maximal course of events extending t0 indeed does. 
By Theorem 7.7, the prediction is actually of the form Fkχ with χ being non-
future. Thus, there is at least one counterfactual causally possible maximal 
course of events that extends t0 and contains no moment at which χ is true. 
Indeed, both Fkχ and ◇∼Fkχ are true at t0. Truth-makers of this latter variety, 
being not fact-based, are by definition indeterminate. They are indeterminate 
truth-makers that will obtain but currently do not obtain.  

In order to complete my discussion of determinacy, it remains to show 
that a prefix formula φ with a determinate real truth-maker (ℳ, t0) behaves in 
the desired way with respect to historical necessity: the truth of such a 
formula is settled—i.e., the formula □φ is true at t0. 

 
Theorem 7.12 (Having a determinate truth-maker entails being settled) 
Let φ be a prefix formula. If ℳ* ∈ 𝓚 and (ℳ, t0) is a determinate truth-
maker of φ in ℳ*, then φ is (G-free and) settled—i.e., satisfies ℳ*, t0 ⊨ □φ. 
 
Proof. Let φ be a prefix formula. Suppose (ℳ, t0) is a determinate truth-
maker of φ with ℳ = ℳ*[t0, ℰ], where ℳ* = (𝔖*, TIME*) ∈ 𝓚.               
By Lemma 7.2, φ is G-free. In order to show that ℳ*, t0 ⊨ □φ, it must be 
established that ℳ*, t0, [x] ⊨ φ, for all t0 ≼ x. So, let s with t0 ≼ s be 
arbitrary. I wish to show that ℳ*, t0, [s] ⊨ φ. Note that [s] is a partial history 
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leading to s. Because ℳ* ∈ 𝓚, the time-resource TIME* yields to [s] an 
infinite future continuation Z such that hs = [s] ∪ Z is a history in ℳ*. 

Since (ℳ, t0) is a determinate truth-maker of φ, it is in particular fact-
based, whence we have 𝒩, t0 ⊨ φ, for all maximal linear SOAs 𝒩 = 
(𝔖𝒩,TIME𝒩) satisfying 𝔖𝒩 ⋐ 𝔖* and ℳ ≅[t0]dyn 𝒩. One such maximal 
linear SOA is the static substructure of 𝔖* determined by the set hs, call it 
𝒩s. Thus, we have 𝒩s, t0 ⊨ φ. It follows from Theorem 7.7 that there is an 
evaluation ℰs and a truth-maker (𝒳s, t0) of φ in 𝒩s such that 𝒳s = 𝒩s[t0, ℰs] 
and (𝒳s, t0) obtains or will obtain. Consequently, the causal ordering of 𝒳s 
has a maximum, r, satisfying t0 ≼ r. The moment r is, then, comparable with 
s, and in particular we have r ∈ hs. Here, [r] is a partial history (not only of 
𝒩s but also) of ℳ*, more specifically [r] is an initial segment of hs. Now, 
either r ≼ s and r ∈ [s]. Or else s ≺ r and so r does not belong to [s], but still 
is attained by TIME* from [s]. Consequently, in both cases, the truth-
evaluation ℰs of φ on (𝒩s, t0, [t0]) induces a truth-evaluation ℰ* of φ on   
(ℳ*, t0, [s]). The positions in ℰ* differ from those in ℰs only in their values 
of the history parameter; in ℰ*, all moments up to s are directly given by the 
initial position (φ, t0, [s]), and only from s onward elements of the moment 
set of ℰ* are generated by the time-resource TIME* (if indeed s ≺ r). It 
follows that ℳ*, t0, [s] ⊨ φ. We may conclude that ℳ*, t0 ⊨ □φ. ∎ 

 
8. Conclusion 
An analysis was found that renders it meaningful to talk of indeterminate 
truth-makers that do not obtain but will. The discussion was based on the 
assumptions of ‘objective indeterminism’ (at any moment, there are normally 
several causally possible future courses of events, none of which has 
metaphysical priority over the others) and ‘temporal becoming’ (over a time 
span of any given duration, exactly one causally possible future course of 
events gets actualized).  

Already in the background paper, I motivated my proposal conceptually, 
and I pointed out that Boethius and Abelard appear to have been early 
proponents of a semantic analysis of future contingent propositions in terms 
of states of affairs that do not obtain but will. In this follow-up paper, I 
wished to strengthen my proposal by presenting a formal semantics that 
utilizes the ideas put forward in the background paper. A precise model-
theoretic definition of the notion of truth-maker was developed based on the 
notion of truth-evaluation, and it was defined what it means that a truth-
maker of a non-modal formula obtains, or will obtain, or is a process of 
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coming to obtain. Likewise, the notions of determinacy and indeterminacy of 
truth-makers of non-modal formulas were defined.  

The determinacy of a truth-maker was taken to require that two conditions 
be fulfilled: fact-basedness and stability. A truth-maker (ℳ, t0) of a non-
modal formula φ is fact-based, if the truth of φ in ℳ at t0 does not depend on 
how the passage of time evolves from t0 on, as long as the passage of time 
conforms to what is causally possible in ‘our indeterminist world’. And a 
truth-maker (ℳ, t0) of φ is stable, if it involves only finitely many moments 
after t0 and if the very same truth-evaluation that witnesses the truth of φ in 
ℳ at t0, would witness its truth in any (linear) extension of ℳ, whether the 
extension employs causally possible or purely hypothetical moments. It was 
proven that a proposition having a determinate truth-maker entails, according 
to the semantics developed, that the truth of the proposition is settled 
(historically necessary, unpreventable). It was indeed an important 
desideratum for the semantic analysis I wished to formulate that this link 
between determinacy and historical necessity would be in force but would not 
be simply definitional. As Neil Lewis notes, also according to Boethius, the 
move from determinacy to necessity was not supposed to be obvious, but 
something calling for an argument.28  

It was seen that true contingent predictions end up having an 
indeterminate truth-maker that will obtain but currently does not. Only one 
semantically relevant sense of ‘true’ was recognized in my analysis. My 
proposal was seen not to compromise the bivalence of future contingent 
propositions. If a proposition of the form Fq is true at t, the passage of time, 
as it in fact turns out to evolve, will actualize a truth-maker of this 
proposition by actualizing a moment later than t at which q is true. If Fq is 
not true at t, then from t on, the passage of time systematically produces 
moments at which q is false, and it continues to do so, unless the passage of 
time terminates. 
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