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ABSTRACT 

We present a minimum message length (MML) framework 

for trajectory partitioning by point selection, and use it to 

automatically select the tolerance parameter ε for Douglas-

Peucker partitioning, adapting to local trajectory 

complexity.  By examining a range of ε for synthetic and 

real trajectories, it is easy to see that the best ε does vary by 

trajectory, and that the MML encoding makes sensible 

choices and is robust against Gaussian noise. We use it to 

explore the identification of micro-activities within a longer 

trajectory. This MML metric is comparable to the TRACLUS 

metric – and shares the constraint of abstracting only by 

omission of points – but is a true lossless encoding. Such 

encoding has several theoretical advantages – particularly 

with very small segments (high frame rates) – but actual 

performance interacts strongly with the search algorithm. 

Both differ from unconstrained piecewise linear 

approximations, including other MML formulations.  

 

Index Terms— Trajectory, Partitioning, Segmentation, 

MML, MDL, TRACLUS 

1. INTRODUCTION 

Line partitioning is important to a variety of applications 

ranging from road extraction in satellite imagery to blood 

vessel extraction in medical imagery [1]. Considering 

trajectory partitioning in particular, we can identify diverse 

approaches like the use of piecewise arc fitting algorithms to 

smooth vehicle trajectories [2], the use of dynamic 

programming for the segmentation of a trajectory into piece-

wise polynomial parts [3], or even the use a velocity and 

orientation extrema to segment sign language hand 

trajectories [4].  

In this paper we present our approach to trajectory 

partitioning through a novel extension of the Douglas-

Peucker algorithm that incorporates an analysis of the local 

complexity of trajectory segments. We use minimum 

message length (MML) metrics [5] to express local 

trajectory complexity and the corresponding goodness of fit 

of its partitioning, and analyze this information in order to 

(i) automate the trajectory partitioning process, allowing it to 

adapt to the complexity of the trajectory itself, bypassing the 

need for a user-provided information, and (ii) identify highly 

localized micro-activities within a longer trajectory.  For the 

scope of this paper we consider ‘activities’ to be equivalent 

to trajectory patterns. 

Regarding micro-activities in particular, the basic 

premise is that individual trajectories comprise a low 

frequency activity (e.g. moving from one side of the field of 

view to the other at a relatively steady pace) and micro-

activities superimposed on them (e.g. deviating momentarily 

from this path because in order to contact another person or 

object). The approach we present in this paper allows us to 

detect such micro-activities by analyzing trajectory data.  

The above-mentioned extensions make our approach 

suitable for video-based surveillance applications, an 

application we intend to pursue in future work, along with 

direct empirical comparisons to previous metrics. 

This paper is organized in the following manner. In 

Section 2 we develop our approach, and in Section 3 we 

describe our data and results, followed by concluding 

remarks in Section 4. 

2. TRAJECTORY PARTITIONING USING MML 

For a trajectory P defined as a sequence of points 

, its partitioning is defined as an 

approximation of  by a subset of its own points. 

Accordingly, the partition of  is a sequence of points 

 such that  and each  corresponds 

to some .   For discussion purposes, let “segment” 

refer to adjacent points in , and let “component” refer to 

adjacent points in .  The distinction is artificial. 

The line partitioning technique that is of interest for this 

paper is the Douglas-Peucker (DP) algorithm. Since its 

introduction [6] the DP algorithm has become a classic 

reference approach for line partitioning, and still remains the 

subject of various extensions and improvements [7], [8]. The 

DP algorithm approximates a trajectory  by 

recursively splitting the component  at the point  

farthest from that line, until no interior points are farther 

than a pre-selected tolerance parameter ε (expressed for 

example as a number of pixels).  



This well-known algorithm is fast and useful in practice, 

but has a major shortcoming: the tolerance parameter ε is 

arbitrary, and there is no metric by which to compare 

different choices of ε, other than visual inspection.  

Although we do not treat it here, MML metrics also provide 

a principled way to handle the multidimensional case when 

other dimensions are not spatial.  

2.1. Message length based partitioning  

A key objective of good partitioning is to remove extraneous 

detail while preserving key features of the trajectory, 

balancing parsimony and precision, also known as simplicity 

and goodness of fit. This notion can be formalized using 

data compression: select the model that leads to the best 

overall compression – the shortest message length. A model 

with more parameters can fit better, but those parameters 

must be stated.  At one end is the null model, with a raw 

transmission of the trajectory (e.g. in pixel coordinates).  At 

the other end is a complex model that matches all the points 

precisely, even the noise. The shortest message (best model) 

is usually found in between.   

The model or hypothesis H is the specific set of 

components, and  is the length in bits of the 

description of H; the data D are the actual points, and 

 is the length of the data encoded with the 

hypothesis.  We seek to minimize the total message length 

.  The partitioning scheme in TRACLUS 

[9] is a representative example. 

In TRACLUS, the parsimony term, , is the sum of 

the logs of the Euclidean length of the segments, and the 

precision term  is the sum of the distances between 

each component and the original trajectory segments it 

encloses. Distance is a combination of perpendicular and 

angular distance.  We can improve in a couple of ways.  The 

chosen  is zero for components of length 1, and 

negative for components of length < 1, so trajectories with 

high frame rates would not get simplified. 

Secondly,  encodes only distances, so the 

original data is not recoverable.  It even specifies 

 when the component coincides with an 

original point, which conveys information for free.   In sum, 

the encoding favors extra components, often requiring ad-

hoc adjustments to increase partition length [9]. 

2.2. An MML encoding for DP partitions 

The goal is to represent a given trajectory polyline P by a 

subset Q, where Q simplifies P by omitting points that add 

little information.  For reference, the “raw” encoding 

assumes that the n points in P are distributed uniformly 

within the image  plane , so for a point p it 

takes  bits.  For a 640 by 480 image, 18.23 bits 

per point. As with TRACLUS, the receiver is assumed to 

know the total number of points n.  

However, the message must state m, the number of points 

in Q; the  are stated using a raw encoding, yielding 

message length .  Then the omitted or interior points 

can be encoded more succinctly using their distance parallel 

and perpendicular to the component: .  Each 

component  should lie close to its interior points, so 

we select a coding scheme for  that uses fewer bits for 

points close to the line.  We expect samples to be uniform 

along the component, so  is uniform in Euclidean length 

of the partition.  Both real numbers must use a quantum δ.   

The encoding first states m, the number of components in 

Q, using a uniform prior U (1..n-1), where n-1 is the number 

of segments in P.  Then it is natural to encode each 

component separately.  Let  denote a single 

component of Euclidean length |q|, and let L(p) denote the 

message length for raw encoding of a point p.  The 

expression for  has these parts: 

• State the start and end points: .  

• State the number of interior points as U(1..r), hence 

, where r is the number of remaining interior 

points not accounted for in previous segments. 
1
  

• For each point, state its coordinates as distance parallel 

and perpendicular to the approximating component: 

, and  is described below. 

Subtracting  for shared endpoints, the total 

message length is then .  

It remains to define  and mention special cases. 

Assume that  follows a Gaussian distribution centered 

on the component and of unknown standard deviation .  

The MML encoding of Gaussian distributions is well-

established, and formulas can be found in, e.g., [5].  One 

must state ; then for each point, .  

We used the PyMML software [10], deriving a subclass for 

known (stated) mean.  We adopt a uniform prior on  with 

minimum equal to the quantum, δ = 0.5, and maximum 

. There are two cases where the prior is violated: 1) 

 because all  are the same; in this case  need be 

stated only once; 2) otherwise, forcing a raw encoding.  We 

used a hyperprior of 0.5 (1 bit) for the usual case, and 0.25 

each (2 bits) for the “ =0” and “otherwise” cases.
2
  

In addition, a complex trajectory may have points whose 

projections fall outside q, rendering the chosen  encoding 

invalid.  In this case we use raw encoding, which requires 

that all components state whether they use raw or regular 

encoding.  (If , we can deduce raw encoding.)   

                                                 
1
 Some finesse is possible. If there are t total points 

remaining in the trajectory and s remaining segments 

including this one, then . In the final segment, r 

can be deduced. However, this introduces dependencies. 
2
 These are kept bland enough that progressive searches can 

drop a single point.  We also considered the log* universal 

prior on the Integers (see [11]), but the Gaussian encoding 

was almost always more efficient. 



This encodes both the polygonal approximation, and the 

goodness of fit, where fit is the sum of , the cost of 

stating the residuals given the component and .  Variations 

in fit can be used to identify micro-activities, for example by 

clustering. 

2.3. Relation to previous MML partitioning work 

Oliver, Baxter, and Wallace [12] considered piecewise 

linear regressions of univariate time-series, where the x 

values are regular and known.  Allison, Fitzgibbon & Dowe 

[13] extended and improved this.   The approach we develop 

here is adapted to DP-style partitions where the cut-points 

belong to P, and so is suited for automatic selection of ε in 

the many applications of DP.  In addition, we consider 

identification of micro-activities by examining residuals at 

several scales (values of ε).  Future work could merge 

features of this paper with [13]. 

3. TESTING 

In order to demonstrate the performance of our approach we 

used both synthetic and real trajectory datasets. We 

generated five synthetic trajectories to reflect various classes 

of activities: a periodic one, a periodic corrupted by noise, a 

periodic with a localized linear (spike) section, a trajectory 

that comprises two different patterns, and a random one. 

Trajectory dataset ‘sine’ is a sine wave of amplitude 80 

pixels;  ‘sine_dev’ replaces a middle section with linear 

deviations; ‘sine_circ’ replaces a middle section with loops; 

‘gauss’ is pure Gaussian noise, and ‘sine_gauss’ is a noisy 

sine wave. Using standard DP partitioning, at ε = 115, these 

synthetic datasets are all approximated by a single line. We 

also have a number of trajectories captured with OpenCV 

[14] from a fixed camera observing pedestrians. We discuss 

results for the synthetic trajectories and then for the 

trajectories extracted from video. 

 

Figure 1: Sample pedestrian trajectory. 

3.1. Synthetic Trajectories 

Figure 2 shows message lengths for Douglas-Peucker 

partitions (‘DP’) at various ε.  Both ‘sine’ and ‘sine_dev’ 

reward small epsilon while the others penalize overfitting.  

For ‘gauss’, ε < 6, is worse than raw encoding.  Consider 

‘sine’ versus ‘sine_dev’.  Since ‘sine’ has amplitude 80, 

message length does not change until ε < 80.  By ε = 35, the 

DP approximation is a sawtooth wave 

 and remains stable until ε < 5 

when it starts to fit the curves.  In contrast, the ε = 90 

refinement to ‘sine_dev’ worsens the fit, incurring a large 

cost for sending the 

residuals: .  Subsequently, 

message length decreases until ε < 2.  The local deviations in 

‘dev’ are linear, and so encode quite well. 

In contrast, ‘sine_circ’ reaches a minimum at ε = 20, 

having separated the loops from the sines, but not smoothed 

the loops, . The loops are not 

well-modeled by a Gaussian, and additional refinements lose 

more to model cost than they gain in data cost.   

Both ‘sine_gauss’ and ‘gauss’ are well-modeled, so the 

model resists fitting the noise. ‘Sine_gauss’ reaches a 

minimum at ε = 10, , a slight 

refinement of the sawtooth pattern first found at ε = 50.  

Finally, ‘gauss’ is best modeled by a single component, 

although it has a local minimum at ε = 25.  For ε < 6, it costs 

more than sending the raw data.  

The plateaus in Figure 2 reveal stable features across 

scales: the DP approximation remains unchanged for several 

ε. The original ‘sine’ has a plateau once the sawtooth 

captures the basic oscillation. ‘Sine_circ’ also has a 

sawtooth plateau, near the global minimum, and a second 

when the loops are finally captured. ‘Gauss’ has no strong 

plateaus. These cross-scale plateaus correspond to distinct 

activities (i.e. trajectory patterns). A new plateau at a finer ε 

indicates a micro-activity overlaid on an activity identified at 

a coarser ε. 

The residuals in each segment can be tracked and 

segments clustered by residuals.  One such measure is bits 

per point (bpp).  The following shows the result of running 

k-means clustering on bpp with k = 3, for ‘sine_circ’.  The 

circular micro-activity clusters with relatively high bpp 

compared to most of the sawtooth. 

 

3.2. Video-captured trajectories 

Figure 3 plots message length versus ε for Douglas-Peucker 

for the eight captured trajectories; once again the best value 

for ε varied, showing the value of locally adaptable DP.   

We see trajectories RI01 (red) and RI02 (green) 

here, , with the best DP for 

each.  The other fits are similar.   

 



 

Figure 2: Message lengths for the synthetic trajectories.  

Lower is better. The dashed line is for raw encoding, 

always the same; y scales vary slightly, as shown. 

 

Figure 3: Message lengths for 8 captured trajectories.  

Lower is better.  The dashed line is for raw encoding, 

which varies by trajectory, as do the scales.   

4. CONCLUSION 

We presented a minimum message length (MML) 

framework for trajectory partitioning by point selection, and 

used it to automatically select the ε parameter for Douglas-

Peucker partitioning, offering the potential for adaptation to 

local trajectory complexity. We also demonstrated 

multiscale and clustering analyses to identify micro-

activities within a longer trajectory.  
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