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ABSTRACT. The theorem of Royer and Case states that there exists a
limit-computable function β1 : N→ N which eventually dominates every com-
putable function δ1 : N→ N. We present an alternative proof of this theorem.
K denotes both the knowledge predicate satisfied by every currently known theo-
rem and the finite set of all currently known theorems. The setK is time-dependent
and publicly available. Any theorem of any mathematician from past or present
forever belongs to K. The statement ¬K(P 6= NP ) ∧ ¬K(P = NP ) does not jus-
tify the title of the article. We prove: (1) there exists a limit-computable function
f : N→ N of unknown computability which eventually dominates every function
δ : N→ N with a single-fold Diophantine representation; (2) for every computable
function g : N→ N, there exists a limit-computable function f : N→ N of unknown
computability such that f eventually dominates every function δ : N→ N with a
single-fold Diophantine representation and f(n) > g(n) for every n ∈ N. Both (1)

and (2) justify the title of the article.
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Let

En = {1 = xk, xi + xj = xk, xi · xj = xk : i, j, k ∈ {0, . . . , n}}

1. CLASSICAL COMPUTABILITY THEORY

Theorem 1. ([4, p. 118]). There exists a limit-computable function β1 : N→ N
which eventually dominates every computable function δ1 : N→ N.

We present an alternative proof of Theorem 1. For every n ∈ N, we define
β1(n) as the smallest b ∈ N such that if a system of equations S ⊆ En has a solu-
tion in Nn+1, then this solution belongs to {0, . . . , b}n+1. The function β1 : N→ N
is computable in the limit and eventually dominates every computable function
δ1 : N→ N, see [5]. Flowchart 1 describes a semi-algorithm which computes β1(n)
in the limit.
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Flowchart 1
A semi-algorithm which computes β1(n) in the limit

Conjecture 1. ([1, pp. 341–342], [2, p. 42], [3]). Every listable set X ⊆ Nk

(k ∈ N \ {0}) has a single-fold Diophantine representation.

For every n ∈ N, we define β(n) as the smallest b ∈ N such that if a system
of equations S ⊆ En has a unique solution in Nn+1, then this solution belongs to
{0, . . . , b}n+1.

Theorem 2. The function β : N→ N is computable in the limit and eventually dom-
inates every function δ : N→ N with a single-fold Diophantine representation.

Proof. This is proved in [5]. The term "dominated" in the title of [5] means "even-
tually dominated". Flowchart 2 describes a semi-algorithm which computes β(n)
in the limit.
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Flowchart 2
A semi-algorithm which computes β(n) in the limit

�

2. COMPUTABILITY WITH THE PREDICATE K OF THE CURRENT MATHEMATICAL
KNOWLEDGE

K denotes both the knowledge predicate satisfied by every currently known
theorem and the finite set of all currently known theorems. The set K is time-
dependent and publicly available. Any theorem of any mathematician from past or
present forever belongs to K. The statement

¬K(P 6= NP ) ∧ ¬K(P = NP )

does not justify the title of the article.

Statement 1. There exists a limit-computable function f : N→ N of unknown com-
putability which eventually dominates every function δ : N→ N with a single-fold
Diophantine representation.

Proof. It follows from Theorem 2 by taking f = β and the following conjunction:

((The function β is computable) 6∈ K) ∧ ((The function β is uncomputable) 6∈ K)
�

Statement 2. For every computable function g : N→ N, there exists a
limit-computable function f : N→ N of unknown computability such that f even-
tually dominates every function δ : N→ N with a single-fold Diophantine represen-
tation and f(n) > g(n) for every n ∈ N.
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Proof. It follows from Theorem 2 by taking f = g + 1 + β and the following con-
junction:

((The function β is computable) 6∈ K) ∧ ((The function β is uncomputable) 6∈ K)
�

Both Statement 1 and Statement 2 justify the title of the article. Statements 1
and 2 are non-trivially true, contain the predicate K, and will be false when
someone proves Conjecture 1. Since the function β1 in Theorem 1 is not com-
putable, Statements 1 and 2 do not follow from Theorem 1. Ignoring the epistemic
condition in Statements 1 and 2, they follow from Theorem 1 by taking f = β1 or
f = g + 1 + β1.

In [7], the author showed that the predicate K non-trivially extends constructive
mathematics, see also [6], [8], [9].
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