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Abstract

We define a function γ : N→ N which eventually dominates every computable function
α : N→ N. We show that there is a simple computer program which for n ∈ N prints the
sequence {γi(n)}∞i=0 of non-negative integers converging to γ(n). We define a function
f : N→ N of unknown computability which eventually dominates every function δ : N→ N
with a single-fold Diophantine representation. We show that there is a simple computer pro-
gram which for n ∈ N prints the sequence {fi(n)}∞i=0 of non-negative integers converging to
f(n). Let Γ denote the following statement: ∃f : N→ N of unknown computability such that
f eventually dominates every function δ : N→ N with a single-fold Diophantine representa-
tion and there is a simple computer program which for n ∈ N prints the sequence {fi(n)}∞i=0

of non-negative integers converging to f(n). The statement Γ has all properties from the
title of the article.

Key words and phrases: eventual domination, finite-fold Diophantine representation,
limit-computable function, predicate K of the current mathematical knowledge, single-fold Dio-
phantine representation, time-dependent truth in mathematics with the predicate K of the cur-
rent mathematical knowledge.

2020 Mathematics Subject Classification: 03D20.

1 Predicate K of the current mathematical knowledge

K denotes both the predicate satisfied by every currently known theorem and the set of all
currently known theorems. Any theorem of any mathematician from past or present belongs
to K. The set K is time-dependent.

Observation 1. K contains all written down theorems and their particular cases. For example,

{0 + 1 = 1, 1 + 1 = 2, 2 + 1 = 3, . . .} ⊆ K

Observation 2. K contains every particular case of any written down schema of theorems. For
example, every axiom of ZFC belongs to K.

Proposition 1. If T denotes the set of twin primes, then the statement

(¬K(card(T ) = ω)) ∧ (¬K(card(T ) < ω))

is true, falsifiable, and expresses what is currently unproved in mathematics.
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Statement 1. There exists a non-zero integer n such that

(¬K(n < 0)) ∧ (¬K(n > 0)) (1)

Proof. It holds for

n =

{
−1, if Continuum Hypothesis holds
1, otherwise

Proposition 2. Statement 1 holds forever.

Proof. Since Continuum Hypothesis is independent from ZFC, conjunction (1) holds forever
for the above n.

Proposition 3. Statement 1 does not express what is currently unproved in mathematics.

2 Limit-computable functions

For n ∈ N, let

En = {1 = xk, xi + xj = xk, xi · xj = xk : i, j, k ∈ {0, . . . , n}}

Theorem 1. ([4, p. 118]). There exists a limit-computable function γ : N→ N which eventually
dominates every computable function α : N→ N.

We present an alternative proof of Theorem 1. For every n ∈ N, we define γ(n) as the
smallest b ∈ N such that if a system of equations S ⊆ En has a solution in Nn+1, then this solu-
tion belongs to {0, . . . , b}n+1. The function γ : N→ N is computable in the limit and eventually
dominates every computable function α : N→ N, see [5]. Flowchart 1 shows a semi-algorithm
which computes γ(n) in the limit, see [5].

Flowchart 1
A semi-algorithm which computes γ(n) in the limit
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Proposition 4. If k ∈ N, then the statement "the function N 3 n→ k + γ(n) ∈ N is uncom-
putable" belongs to K.

Proof. It follows from Observation 1.

Flowchart 2 shows a simpler semi-algorithm which computes γ(n) in the limit.

Flowchart 2
A simpler semi-algorithm which computes γ(n) in the limit

MuPAD is a part of the Symbolic Math Toolbox in MATLAB R2019b. The following program
in MuPAD implements the semi-algorithm shown in Flowchart 2.

input("Input a non-negative integer n",n):

m:=0:

while TRUE do

X:=combinat::cartesianProduct([s $s=0..m] $t=0..n):

Y:=[max(op(X[u])) $u=1..nops(X)]:

for p from 1 to nops(X) do

for q from 1 to nops(X) do

v:=1:

for k from 1 to n+1 do

if 1=X[p][k] and 1<>X[q][k] then v:=0 end_if:

for i from 1 to n+1 do

for j from 1 to n+1 do

if X[p][i]+X[p][j]=X[p][k] and X[q][i]+X[q][j]<>X[q][k] then v:=0 end_if:

if X[p][i]*X[p][j]=X[p][k] and X[q][i]*X[q][j]<>X[q][k] then v:=0 end_if:

end_for:
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end_for:

end_for:

if max(op(X[q]))<max(op(X[p])) and v=1 then Y[p]:=0 end_if:

end_for:

end_for:

print(max(op(Y))):

m:=m+1:

end_while:

Conjecture 1. ([1, pp. 341–342], [2, p. 42], [3, p. 745]). Every listable set X ⊆ Nk (k ∈ N \ {0})
has a single-fold Diophantine representation.

Let Φ denote the following statement: the function N 3 n→ 2n ∈ N eventually dominates
every function δ : N→ N with a single-fold Diophantine representation. For n ∈ N, let

g(n) =

{
2n, if Φ holds
γ(n), otherwise

The function g : N→ N is computable if and only if Φ holds. Currently,

(¬K(Φ)) ∧ (¬K(¬Φ)) ∧ (¬K(g is computable)) ∧ (¬K(g is uncomputable))

Let Ψ denote the following statement: the function N 3 n→ 2n ∈ N eventually dominates
every function δ : N→ N with a finite-fold Diophantine representation. For n ∈ N, let

h(n) =

{
2n, if Ψ holds
γ(n), otherwise

The function h : N→ N is computable if and only if Ψ holds. Currently,

(¬K(Ψ)) ∧ (¬K(¬Ψ)) ∧ (¬K(h is computable)) ∧ (¬K(h is uncomputable))

Lemma 1. The function g is computable in the limit and eventually dominates every function
δ : N→ N with a single-fold Diophantine representation. The function h is computable in the
limit and eventually dominates every function δ : N→ N with a finite-fold Diophantine represen-
tation.

Proof. It follows from Theorem 1.

For every n ∈ N, we define β(n) as the smallest b ∈ N such that if a system of equations
S ⊆ En has a unique solution in Nn+1, then this solution belongs to {0, . . . , b}n+1.

Theorem 2. The function β : N→ N is computable in the limit and eventually dominates every
function δ : N→ N with a single-fold Diophantine representation.

Proof. This is proved in [5]. The term "dominated" in the title of [5] means "eventually domi-
nated". Flowchart 3 shows a semi-algorithm which computes β(n) in the limit, see [5].
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Flowchart 3
A semi-algorithm which computes β(n) in the limit

Flowchart 4 shows a simpler semi-algorithm which computes β(n) in the limit.

Flowchart 4
A simpler semi-algorithm which computes β(n) in the limit
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The following program in MuPAD implements the semi-algorithm shown in Flowchart 4.

input("Input a non-negative integer n",n):

m:=0:

while TRUE do

X:=combinat::cartesianProduct([s $s=0..m] $t=0..n):

Y:=[max(op(X[u])) $u=1..nops(X)]:

for p from 1 to nops(X) do

for q from 1 to nops(X) do

v:=1:

for k from 1 to n+1 do

if 1=X[p][k] and 1<>X[q][k] then v:=0 end_if:

for i from 1 to n+1 do

for j from 1 to n+1 do

if X[p][i]+X[p][j]=X[p][k] and X[q][i]+X[q][j]<>X[q][k] then v:=0 end_if:

if X[p][i]*X[p][j]=X[p][k] and X[q][i]*X[q][j]<>X[q][k] then v:=0 end_if:

end_for:

end_for:

end_for:

if q<>p and v=1 then Y[p]:=0 end_if:

end_for:

end_for:

print(max(op(Y))):

m:=m+1:

end_while:

Statement 2. There exists a limit-computable function f : N→ N of unknown computability
which eventually dominates every function δ : N→ N with a single-fold Diophantine represen-
tation.

Proof. Statement 2 follows constructively from Theorem 2 by taking f = β because the follow-
ing conjunction

(¬K(β is computable)) ∧ (¬K(β is uncomputable))

holds. Statement 2 follows non-constructively from Lemma 1 by taking f = g because the
following conjunction

(¬K(g is computable)) ∧ (¬K(g is uncomputable))

holds.

Since the function γ in Theorem 1 is not computable, Statement 2 does not follow from
Theorem 1.

Proposition 5. Statement 2 strengthens a mathematical theorem. Statement 2 refers to the
current mathematical knowledge and may be false in the future. Statement 2 does not express
what is currently unproved in mathematics.

Proof. Statement 2 strengthens Statement 2 without the epistemic condition. The weakened
Statement 2 is a theorem which follows from Theorem 1. Statement 2 claims that some math-
ematically defined function f : N→ N satisfies

(f is computable in the limit) ∧ (¬K(f is computable)) ∧ (¬K(f is uncomputable)) ∧

(f eventually dominates every function δ : N→ N with a single-fold Diophantine representation)

Conjecture 1 disproves Statement 2.
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Statement 3. In Statement 2, we can require that there exists a computer program which takes
as input a non-negative integer n and prints the sequence {fi(n)}∞i=0 of non-negative integers
converging to f(n).

Proof. Any computer program which implements the semi-algorithm shown in Flowchart 3 or 4
is right.

Statement 4. Statement 2 holds for finite-fold Diophantine representations.

Proof. It follows from Lemma 1 by taking f = h because the following conjunction

(¬K(h is computable)) ∧ (¬K(h is uncomputable))

holds.

Statement 4 strengthens Statement 2. For Statement 4, there is no known computer pro-
gram that computes f in the limit.

3 Predicate K of the written down mathematical knowledge

In this section, K denotes both the predicate satisfied by every written down theorem and
the finite set of all written down theorems. It changes what is taken as known in mathematics.

Proposition 6. Since K is finite, there exists k ∈ N such that the computability of the function

N 3 n→ k + γ(n) ∈ N

is unknown. For this k, Statements 2 and 4 hold when f(n) = k + γ(n).

Proposition 7 is of little use because Proposition 6 contradicts Proposition 4 with the right
definition of K.

Proposition 7. Statements 2 and 4 can be formulated as mathematical statements. This holds
at any time.

Proof. Let K = {T1, . . . , Tn}. For i ∈ {1, . . . , n}, let

Ai =


(f : N→ N) ∧ Ti ∧ (f 6= ui), if Ti states that a function ui : N→ N is computable
(f : N→ N) ∧ Ti ∧ (f 6= vi), if Ti states that a function vi : N→ N is uncomputable

f : N→ N, in other cases

The conjunction A1 ∧ . . . ∧An expresses that

(f : N→ N) ∧ (¬K(f is computable)) ∧ (¬K(f is uncomputable))
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