A falsifiable statement Γ of the form " $\exists f : \mathbb{N} \to \mathbb{N}$ of unknown computability such that . . ." which strengthens a mathematical theorem

Apoloniusz Tyszka

Abstract

We define a function $\gamma : \mathbb{N} \to \mathbb{N}$ which eventually dominates every computable function $\alpha : \mathbb{N} \to \mathbb{N}$. We show that there is a simple computer program which for $n \in \mathbb{N}$ prints the sequence $\{\gamma_i(n)\}_{i=0}^{\infty}$ of non-negative integers converging to $\gamma(n)$. We define a function $f : \mathbb{N} \to \mathbb{N}$ of unknown computability which eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation. We show that there is a simple computer program which for $n \in \mathbb{N}$ prints the sequence $\{f_i(n)\}_{i=0}^{\infty}$ of non-negative integers converging to f(n). Let Γ denote the following statement: $\exists f : \mathbb{N} \to \mathbb{N}$ of unknown computability such that f eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation and there is a simple computer program which for $n \in \mathbb{N}$ prints the sequence $\{f_i(n)\}_{i=0}^{\infty}$ of non-negative integers converging to f(n). The statement Γ has all properties from the title of the article.

Key words and phrases: eventual domination, finite-fold Diophantine representation, limit-computable function, predicate \mathcal{K} of the current mathematical knowledge, single-fold Diophantine representation, time-dependent truth in mathematics with the predicate \mathcal{K} of the current mathematical knowledge.

2020 Mathematics Subject Classification: 03D20.

1 Predicate \mathcal{K} of the current mathematical knowledge

 \mathcal{K} denotes both the predicate satisfied by every currently known theorem and the set of all currently known theorems. Any theorem of any mathematician from past or present belongs to \mathcal{K} . The set \mathcal{K} is time-dependent.

Observation 1. \mathcal{K} contains all written down theorems and their particular cases. For example,

$$\{0+1=1, 1+1=2, 2+1=3, \ldots\} \subseteq \mathcal{K}$$

Observation 2. \mathcal{K} contains every particular case of any written down schema of theorems. For example, every axiom of *ZFC* belongs to \mathcal{K} .

Proposition 1. If T denotes the set of twin primes, then the statement

$$(\neg \mathcal{K}(\operatorname{card}(\mathcal{T}) = \omega)) \land (\neg \mathcal{K}(\operatorname{card}(\mathcal{T}) < \omega))$$

is true, falsifiable, and expresses what is currently unproved in mathematics.

Statement 1. There exists a non-zero integer n such that

$$(\neg \mathcal{K}(n<0)) \land (\neg \mathcal{K}(n>0)) \tag{1}$$

Proof. It holds for

 $n = \begin{cases} -1, & \text{if } Continuum Hypothesis holds} \\ 1, & \text{otherwise} \end{cases}$

Proposition 2. Statement 1 holds forever.

Proof. Since *Continuum Hypothesis* is independent from *ZFC*, conjunction (1) holds forever for the above n.

Proposition 3. Statement 1 does not express what is currently unproved in mathematics.

2 Limit-computable functions

For $n \in \mathbb{N}$, let

$$E_n = \{1 = x_k, \ x_i + x_j = x_k, \ x_i \cdot x_j = x_k : \ i, j, k \in \{0, \dots, n\}\}$$

Theorem 1. ([4, p. 118]). There exists a limit-computable function $\gamma : \mathbb{N} \to \mathbb{N}$ which eventually dominates every computable function $\alpha : \mathbb{N} \to \mathbb{N}$.

We present an alternative proof of Theorem 1. For every $n \in \mathbb{N}$, we define $\gamma(n)$ as the smallest $b \in \mathbb{N}$ such that if a system of equations $S \subseteq E_n$ has a solution in \mathbb{N}^{n+1} , then this solution belongs to $\{0, \ldots, b\}^{n+1}$. The function $\gamma : \mathbb{N} \to \mathbb{N}$ is computable in the limit and eventually dominates every computable function $\alpha : \mathbb{N} \to \mathbb{N}$, see [5]. Flowchart 1 shows a semi-algorithm which computes $\gamma(n)$ in the limit, see [5].

Flowchart 1 A semi-algorithm which computes $\gamma(n)$ in the limit

Proposition 4. If $k \in \mathbb{N}$, then the statement "the function $\mathbb{N} \ni n \to k + \gamma(n) \in \mathbb{N}$ is uncomputable" belongs to \mathcal{K} .

Proof. It follows from Observation 1.

Flowchart 2 shows a simpler semi-algorithm which computes $\gamma(n)$ in the limit.

Flowchart 2

A simpler semi-algorithm which computes $\gamma(n)$ in the limit

MuPAD is a part of the Symbolic Math Toolbox in MATLAB R2019b. The following program in MuPAD implements the semi-algorithm shown in Flowchart 2.

```
input("Input a non-negative integer n",n):
m:=0:
while TRUE do
X:=combinat::cartesianProduct([s $s=0..m] $t=0..n):
Y:=[max(op(X[u])) $u=1..nops(X)]:
for p from 1 to nops(X) do
for q from 1 to nops(X) do
v:=1:
for k from 1 to n+1 do
if 1=X[p][k] and 1<>X[q][k] then v:=0 end_if:
for i from 1 to n+1 do
for j from 1 to n+1 do
if X[p][i]+X[p][j]=X[p][k] and X[q][i]+X[q][j]<>X[q][k] then v:=0 end_if:
if X[p][i]*X[p][j]=X[p][k] and X[q][i]*X[q][j]<>X[q][k] then v:=0 end_if:
end_for:
```

```
end_for:
end_for:
if max(op(X[q]))<max(op(X[p])) and v=1 then Y[p]:=0 end_if:
end_for:
end_for:
print(max(op(Y))):
m:=m+1:
end_while:
```

Conjecture 1. ([1, pp. 341–342], [2, p. 42], [3, p. 745]). Every listable set $\mathcal{X} \subseteq \mathbb{N}^k$ ($k \in \mathbb{N} \setminus \{0\}$) has a single-fold Diophantine representation.

Let Φ denote the following statement: the function $\mathbb{N} \ni n \to 2^n \in \mathbb{N}$ eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation. For $n \in \mathbb{N}$, let

$$g(n) = \begin{cases} 2^n, & \text{if } \Phi \text{ holds} \\ \gamma(n), & \text{otherwise} \end{cases}$$

The function $g: \mathbb{N} \to \mathbb{N}$ is computable if and only if Φ holds. Currently,

 $(\neg \mathcal{K}(\Phi)) \land (\neg \mathcal{K}(\neg \Phi)) \land (\neg \mathcal{K}(g \ is \ computable)) \land (\neg \mathcal{K}(g \ is \ uncomputable))$

Let Ψ denote the following statement: the function $\mathbb{N} \ni n \to 2^n \in \mathbb{N}$ eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a finite-fold Diophantine representation. For $n \in \mathbb{N}$, let

$$h(n) = \begin{cases} 2^n, & \text{if } \Psi \text{ holds} \\ \gamma(n), & \text{otherwise} \end{cases}$$

The function $h : \mathbb{N} \to \mathbb{N}$ is computable if and only if Ψ holds. Currently,

 $(\neg \mathcal{K}(\Psi)) \land (\neg \mathcal{K}(\neg \Psi)) \land (\neg \mathcal{K}(h \ is \ computable)) \land (\neg \mathcal{K}(h \ is \ uncomputable))$

Lemma 1. The function g is computable in the limit and eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation. The function h is computable in the limit and eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a finite-fold Diophantine representation.

Proof. It follows from Theorem 1.

For every $n \in \mathbb{N}$, we define $\beta(n)$ as the smallest $b \in \mathbb{N}$ such that if a system of equations $S \subseteq E_n$ has a unique solution in \mathbb{N}^{n+1} , then this solution belongs to $\{0, \ldots, b\}^{n+1}$.

Theorem 2. The function $\beta : \mathbb{N} \to \mathbb{N}$ is computable in the limit and eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation.

Proof. This is proved in [5]. The term "dominated" in the title of [5] means "eventually dominated". Flowchart 3 shows a semi-algorithm which computes $\beta(n)$ in the limit, see [5].

Flowchart 3

A semi-algorithm which computes $\beta(n)$ in the limit

Flowchart 4 shows a simpler semi-algorithm which computes $\beta(n)$ in the limit.

Flowchart 4

A simpler semi-algorithm which computes $\beta(n)$ in the limit

The following program in MuPAD implements the semi-algorithm shown in Flowchart 4.

```
input("Input a non-negative integer n",n):
m:=0:
while TRUE do
X:=combinat::cartesianProduct([s $s=0..m] $t=0..n):
Y := [\max(op(X[u])) \ \$u=1..nops(X)]:
for p from 1 to nops(X) do
for q from 1 to nops(X) do
v:=1:
for k from 1 to n+1 do
if 1=X[p][k] and 1 \le X[q][k] then v:=0 end_if:
for i from 1 to n+1 do
for j from 1 to n+1 do
if X[p][i]+X[p][j]=X[p][k] and X[q][i]+X[q][j]<>X[q][k] then v:=0 end_if:
if X[p][i]*X[p][j]=X[p][k] and X[q][i]*X[q][j]<>X[q][k] then v:=0 end_if:
end_for:
end for:
end for:
if q<>p and v=1 then Y[p]:=0 end_if:
end_for:
end_for:
print(max(op(Y))):
m:=m+1:
end_while:
```

Statement 2. There exists a limit-computable function $f : \mathbb{N} \to \mathbb{N}$ of unknown computability which eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation.

Proof. Statement 2 follows constructively from Theorem 2 by taking $f = \beta$ because the following conjunction

```
(\neg \mathcal{K}(\beta \text{ is computable})) \land (\neg \mathcal{K}(\beta \text{ is uncomputable}))
```

holds. Statement 2 follows non-constructively from Lemma 1 by taking f = g because the following conjunction

$$(\neg \mathcal{K}(g \text{ is computable})) \land (\neg \mathcal{K}(g \text{ is uncomputable}))$$

holds.

Since the function γ in Theorem 1 is not computable, Statement 2 does not follow from Theorem 1.

Proposition 5. Statement 2 strengthens a mathematical theorem. Statement 2 refers to the current mathematical knowledge and may be false in the future. Statement 2 does not express what is currently unproved in mathematics.

Proof. Statement 2 strengthens Statement 2 without the epistemic condition. The weakened Statement 2 is a theorem which follows from Theorem 1. Statement 2 claims that some mathematically defined function $f : \mathbb{N} \to \mathbb{N}$ satisfies

(f is computable in the limit) \land ($\neg \mathcal{K}(f \text{ is computable})) \land$ ($\neg \mathcal{K}(f \text{ is uncomputable})) \land$

(*f* eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation) Conjecture 1 disproves Statement 2.

 \square

Statement 3. In Statement 2, we can require that there exists a computer program which takes as input a non-negative integer n and prints the sequence $\{f_i(n)\}_{i=0}^{\infty}$ of non-negative integers converging to f(n).

Proof. Any computer program which implements the semi-algorithm shown in Flowchart 3 or 4 is right. $\hfill \Box$

Statement 4. Statement 2 holds for finite-fold Diophantine representations.

Proof. It follows from Lemma 1 by taking f = h because the following conjunction

$$(\neg \mathcal{K}(h \text{ is computable})) \land (\neg \mathcal{K}(h \text{ is uncomputable}))$$

holds.

Statement 4 strengthens Statement 2. For Statement 4, there is no known computer program that computes f in the limit.

3 Predicate \mathcal{K} of the written down mathematical knowledge

In this section, \mathcal{K} denotes both the predicate satisfied by every written down theorem and the finite set of all written down theorems. It changes what is taken as known in mathematics.

Proposition 6. Since \mathcal{K} is finite, there exists $k \in \mathbb{N}$ such that the computability of the function

$$\mathbb{N} \ni n \to k + \gamma(n) \in \mathbb{N}$$

is unknown. For this k, Statements 2 and 4 hold when $f(n) = k + \gamma(n)$.

Proposition 7 is of little use because Proposition 6 contradicts Proposition 4 with the right definition of \mathcal{K} .

Proposition 7. Statements 2 and 4 can be formulated as mathematical statements. This holds at any time.

Proof. Let $\mathcal{K} = \{T_1, \dots, T_n\}$. For $i \in \{1, \dots, n\}$, let

 $A_i = \begin{cases} (f: \mathbb{N} \to \mathbb{N}) \land T_i \land (f \neq u_i), & \text{if } T_i \text{ states that a function } u_i: \mathbb{N} \to \mathbb{N} \text{ is computable} \\ (f: \mathbb{N} \to \mathbb{N}) \land T_i \land (f \neq v_i), & \text{if } T_i \text{ states that a function } v_i: \mathbb{N} \to \mathbb{N} \text{ is uncomputable} \\ f: \mathbb{N} \to \mathbb{N}, & \text{in other cases} \end{cases}$

The conjunction $A_1 \wedge \ldots \wedge A_n$ expresses that

$$(f: \mathbb{N} \to \mathbb{N}) \land (\neg \mathcal{K}(f \text{ is computable})) \land (\neg \mathcal{K}(f \text{ is uncomputable}))$$

References

M. Davis, Yu. Matiyasevich, J. Robinson, *Hilbert's tenth problem, Diophantine equations: positive aspects of a negative solution;* in: Mathematical developments arising from Hilbert problems (ed. F. E. Browder), Proc. Sympos. Pure Math., vol. 28, Part 2, Amer. Math. Soc., Providence, RI, 1976, 323–378, *http://doi.org/10.1090/pspum/028.2*; reprinted in: The collected works of Julia Robinson (ed. S. Feferman), Amer. Math. Soc., Providence, RI, 1996, 269–324.

- [2] Yu. Matiyasevich, *Hilbert's tenth problem: what was done and what is to be done,* in: Proceedings of the Workshop on Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), Contemp. Math. 270, Amer. Math. Soc., Providence, RI, 2000, 1–47, http://doi.org/10.1090/conm/270.
- [3] Yu. Matiyasevich, Towards finite-fold Diophantine representations, J. Math. Sci. (N. Y.) vol. 171, no. 6, 2010, 745–752, http://doi.org/10.1007%2Fs10958-010-0179-4.
- [4] J. S. Royer and J. Case, *Subrecursive Programming Systems: Complexity and Succinctness,* Birkhäuser, Boston, 1994.
- [5] A. Tyszka, All functions g : N → N which have a single-fold Diophantine representation are dominated by a limit-computable function f : N \ {0} → N which is implemented in MuPAD and whose computability is an open problem, in: Computation, cryptography, and network security (eds. N. J. Daras, M. Th. Rassias), Springer, Cham, 2015, 577–590, http://doi.org/ 10.1007/978-3-319-18275-9_24.

Apoloniusz Tyszka Hugo Kołłątaj University Balicka 116B, 30-149 Kraków, Poland E-mail: *rttyszka@cyf-kr.edu.pl*