A falsifiable statement Ψ of the form " $\exists f: \mathbb{N} \to \mathbb{N}$ of unknown computability such that . . ." which significantly strengthens a non-trivial theorem

Apoloniusz Tyszka

Abstract

We present a new constructive proof of the following theorem: there exists a limit-computable function $\beta_1:\mathbb{N}\to\mathbb{N}$ which eventually dominates every computable function $\delta_1:\mathbb{N}\to\mathbb{N}$. We prove: (1) there exists a limit-computable function $f:\mathbb{N}\to\mathbb{N}$ of unknown computability which eventually dominates every function $\delta:\mathbb{N}\to\mathbb{N}$ with a single-fold Diophantine representation, (2) statement (1) significantly strengthens a non-trivial mathematical theorem, (3) Martin Davis' conjecture on single-fold Diophantine representations disproves (1). We present both constructive and non-constructive proof of (1).

Key words and phrases: eventual domination, limit-computable function, predicate \mathcal{K} of the current mathematical knowledge, single-fold Diophantine representation, time-dependent truth in mathematics with the predicate \mathcal{K} of the current mathematical knowledge.

1 The goal of the article

We formulate a falsifiable statement Ψ of the form:

 $\exists f: \mathbb{N} \to \mathbb{N}$ such that f satisfies a mathematical condition \mathcal{C} and

it is unknown whether or not f satisfies a mathematical condition \mathcal{D} .

We prove that Ψ significantly strengthens a non-trivial mathematical theorem. There is no widely known theorem from which we can draw Ψ . Ignoring the epistemic condition in Ψ , Ψ follows from a known theorem.

2 Predicate K of the current mathematical knowledge

 ${\cal K}$ denotes both the predicate satisfied by every currently known theorem and the set of all currently known theorems. Any theorem of any mathematician from past or present belongs to ${\cal K}$. The set ${\cal K}$ is time-dependent. ${\cal K}$ contains all written down theorems and their particular cases. Hence,

$$\{0+1=1, 1+1=2, 2+1=3, \ldots\} \subseteq \mathcal{K}$$

 \mathcal{K} contains every particular case of any written down schema of theorems. Hence, every axiom of ZFC belongs to \mathcal{K} .

Proposition 1. If \mathcal{T} denotes the set of twin primes, then the statement

$$(\neg \mathcal{K}(\operatorname{card}(\mathcal{T}) = \omega)) \wedge (\neg \mathcal{K}(\operatorname{card}(\mathcal{T}) < \omega))$$

is true, falsifiable, and expresses what is currently unproved in mathematics.

Statement 1. There exists a non-zero integer n such that

$$(\neg \mathcal{K}(n<0)) \land (\neg \mathcal{K}(n>0)) \tag{1}$$

Proof. It holds for

$$n = \left\{ \begin{array}{ll} -1, & \text{if } Continuum \; Hypothesis \; holds} \\ 1, & \text{otherwise} \end{array} \right.$$

Proposition 2. Statement 1 holds forever.

Proof. Since $Continuum\ Hypothesis$ is independent from ZFC, conjunction (1) holds forever for the above n.

Proposition 3. Statement 1 does not express what is currently unproved in mathematics.

3 Classical computability theory

For $n \in \mathbb{N}$, let

$$E_n = \{1 = x_k, x_i + x_j = x_k, x_i \cdot x_j = x_k : i, j, k \in \{0, \dots, n\}\}$$

Theorem 1. ([4, p. 118]). There exists a limit-computable function $\beta_1 : \mathbb{N} \to \mathbb{N}$ which eventually dominates every computable function $\delta_1 : \mathbb{N} \to \mathbb{N}$.

We present an alternative proof of Theorem 1. For every $n \in \mathbb{N}$, we define $\beta_1(n)$ as the smallest $b \in \mathbb{N}$ such that if a system of equations $S \subseteq E_n$ has a solution in \mathbb{N}^{n+1} , then this solution belongs to $\{0,\ldots,b\}^{n+1}$. The function $\beta_1:\mathbb{N}\to\mathbb{N}$ is computable in the limit and eventually dominates every computable function $\delta_1:\mathbb{N}\to\mathbb{N}$, see [5]. Flowchart 1 describes a semi-algorithm which computes $\beta_1(n)$ in the limit, see [5].

Flowchart 1

A semi-algorithm which computes $\beta_1(n)$ in the limit

Proposition 4. If $k \in \mathbb{N}$, then the statement "the function $\mathbb{N} \ni n \to k + \beta_1(n) \in \mathbb{N}$ is uncomputable" belongs to K.

Conjecture 1. ([1, pp. 341–342], [2, p. 42], [3, p. 745]). Every listable set $\mathcal{X} \subseteq \mathbb{N}^k$ ($k \in \mathbb{N} \setminus \{0\}$) has a single-fold Diophantine representation.

Let Φ denote the following statement: the function $\mathbb{N}\ni n\to 2^n\in\mathbb{N}$ eventually dominates every function $\delta:\mathbb{N}\to\mathbb{N}$ with a single-fold Diophantine representation. For $n\in\mathbb{N}$, let

$$g(n) = \begin{cases} 2^n, & \text{if } \Phi \text{ holds} \\ \beta_1(n), & \text{otherwise} \end{cases}$$

The function $g: \mathbb{N} \to \mathbb{N}$ is computable if and only if Φ holds. Currently,

$$(\neg \mathcal{K}(\Phi)) \land (\neg \mathcal{K}(\neg \Phi)) \land (\neg \mathcal{K}(g \ is \ computable)) \land (\neg \mathcal{K}(g \ is \ uncomputable))$$

Lemma 1. The function g is computable in the limit and eventually dominates every function $\delta: \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation.

Proof. It follows from Theorem 1.

For every $n \in \mathbb{N}$, we define $\beta(n)$ as the smallest $b \in \mathbb{N}$ such that if a system of equations $S \subseteq E_n$ has a unique solution in \mathbb{N}^{n+1} , then this solution belongs to $\{0, \ldots, b\}^{n+1}$.

Theorem 2. The function $\beta : \mathbb{N} \to \mathbb{N}$ is computable in the limit and eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation.

Proof. This is proved in [5]. The term "dominated" in the title of [5] means "eventually dominated". Flowchart 2 describes a semi-algorithm which computes $\beta(n)$ in the limit, see [5].

A semi-algorithm which computes $\beta(n)$ in the limit

3

4 Main results

Statement 2. There exists a limit-computable function $f: \mathbb{N} \to \mathbb{N}$ of unknown computability which eventually dominates every function $\delta: \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation.

Proof. Statement 2 follows constructively from Theorem 2 by taking $f = \beta$ and the following conjunction:

$$(\neg \mathcal{K}(\beta \text{ is computable})) \land (\neg \mathcal{K}(\beta \text{ is uncomputable}))$$

Statement 2 follows non-constructively from Lemma 1 by taking f=g and the following conjunction:

$$(\neg \mathcal{K}(g \text{ is computable})) \land (\neg \mathcal{K}(g \text{ is uncomputable}))$$

Since the function β_1 in Theorem 1 is not computable, Statement 2 does not follow from Theorem 1.

Proposition 5. Statement 2 significantly strengthens a non-trivial mathematical theorem. Statement 2 refers to the current mathematical knowledge and may be false in the future. Statement 2 does not express what is currently unproved in mathematics.

Proof. Statement 2 strengthens Statement 2 without the epistemic condition. The weakened Statement 2 is a theorem which follows from Theorem 1. Statement 2 claims that there exists a function $f: \mathbb{N} \to \mathbb{N}$ such that

(f is computable in the limit) \land ($\neg \mathcal{K}(f$ is computable)) \land ($\neg \mathcal{K}(f$ is uncomputable)) \land (f eventually dominates every function $\delta: \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation) Conjecture 1 disproves Statement 2.

5 Predicate K of the written down mathematical knowledge

In this section, $\mathcal K$ denotes both the predicate satisfied by every written down theorem and the finite set of all written down theorems. It changes what is taken as known in mathematics.

Proposition 6. Since K is finite, there exists $k \in \mathbb{N}$ such that the computability of the function

$$\mathbb{N} \ni n \to k + \beta_1(n) \in \mathbb{N}$$

is unknown. For this k, Statement 2 holds when $f(n) = k + \beta_1(n)$.

Proposition 7 is of little use because Proposition 6 contradicts Proposition 4 with the right definition of \mathcal{K} .

Proposition 7. ZFC expresses Statement 2 at any time.

Proof. Let
$$\mathcal{K} = \{T_1, \dots, T_n\}$$
. For $i \in \{1, \dots, n\}$, let

$$A_i = \left\{ \begin{array}{ll} (f: \mathbb{N} \to \mathbb{N}) \wedge T_i \wedge (f \neq g_i), & \text{if } T_i \text{ states that a function } g_i: \mathbb{N} \to \mathbb{N} \text{ is computable} \\ (f: \mathbb{N} \to \mathbb{N}) \wedge T_i \wedge (f \neq h_i), & \text{if } T_i \text{ states that a function } h_i: \mathbb{N} \to \mathbb{N} \text{ is uncomputable} \\ f: \mathbb{N} \to \mathbb{N}, & \text{in other cases} \end{array} \right.$$

The conjunction $A_1 \wedge \ldots \wedge A_n$ expresses that

$$(f: \mathbb{N} \to \mathbb{N}) \land (\neg \mathcal{K}(f \text{ is computable})) \land (\neg \mathcal{K}(f \text{ is uncomputable}))$$

References

- [1] M. Davis, Yu. Matiyasevich, J. Robinson, *Hilbert's tenth problem, Diophantine equations: positive aspects of a negative solution;* in: Mathematical developments arising from Hilbert problems (ed. F. E. Browder), Proc. Sympos. Pure Math., vol. 28, Part 2, Amer. Math. Soc., Providence, RI, 1976, 323–378, provides http://doi.org/10.1090/pspum/028.2; reprinted in: The collected works of Julia Robinson (ed. S. Feferman), Amer. Math. Soc., Providence, RI, 1996, 269–324.
- [2] Yu. Matiyasevich, *Hilbert's tenth problem: what was done and what is to be done,* in: Proceedings of the Workshop on Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), Contemp. Math. 270, Amer. Math. Soc., Providence, RI, 2000, 1–47, http://doi.org/10.1090/conm/270.
- [3] Yu. Matiyasevich, *Towards finite-fold Diophantine representations*, J. Math. Sci. (N. Y.) vol. 171, no. 6, 2010, 745–752, http://doi.org/10.1007%2Fs10958-010-0179-4.
- [4] J. S. Royer and J. Case, *Subrecursive Programming Systems: Complexity and Succinct-ness*, Birkhäuser, Boston, 1994.
- [5] A. Tyszka, All functions $g: \mathbb{N} \to \mathbb{N}$ which have a single-fold Diophantine representation are dominated by a limit-computable function $f: \mathbb{N} \setminus \{0\} \to \mathbb{N}$ which is implemented in MuPAD and whose computability is an open problem, in: Computation, cryptography, and network security (eds. N. J. Daras, M. Th. Rassias), Springer, Cham, 2015, 577–590, http://doi.org/10.1007/978-3-319-18275-9_24.

Apoloniusz Tyszka Hugo Kołłątaj University Balicka 116B, 30-149 Kraków, Poland

E-mail: rttyszka@cyf-kr.edu.pl