A true and falsifiable statement Ψ with the predicate \mathcal{K} of the current mathematical knowledge, where Ψ strengthens a theorem and does not express what is currently unproved in mathematics

Apoloniusz Tyszka

Abstract

The theorem of Royer and Case states that there exists a limit-computable function $\beta_1 : \mathbb{N} \to \mathbb{N}$ which eventually dominates every computable function $\delta_1 : \mathbb{N} \to \mathbb{N}$. We present an alternative proof of this theorem. \mathcal{K} denotes both the knowledge predicate satisfied by every currently known theorem and the set of all currently known theorems. The set \mathcal{K} is time-dependent and publicly available. Any theorem of any mathematician from past or present forever belongs to \mathcal{K} . We prove: (1) there exists a limit-computable function $f : \mathbb{N} \to \mathbb{N}$ of unknown computability which eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation, (2) statement (1) strengthens a theorem. We present both constructive and non-constructive proof of (1). Statement (1) claims that there exists a function $f : \mathbb{N} \to \mathbb{N}$ such that (f is computable in the limit) \land ($\neg \mathcal{K}(f$ is uncomputable)) \land (f eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation). Since Martin Davis' conjecture on single-fold Diophantine representations disproves statement (1), statement (1) has all properties from the title of the article.

Key words and phrases: eventual domination, limit-computable function, predicate \mathcal{K} of the current mathematical knowledge, single-fold Diophantine representation, time-dependent truth in mathematics with the predicate \mathcal{K} .

1 The goal of the article

 \mathcal{K} denotes both the knowledge predicate satisfied by every currently known theorem and the set of all currently known theorems. The set \mathcal{K} is time-dependent and publicly available. Any theorem of any mathematician from past or present forever belongs to \mathcal{K} . We formulate statements of the form:

there exists a mathematical object \mathcal{X} such that

 ${\mathcal X}$ satisfies a mathematical condition ${\mathcal C}$ and

it is unknown whether or not \mathcal{X} satisfies a mathematical condition \mathcal{D} .

We present a statement Ψ of the above form which has all properties from the title of the article.

2 Statements with the predicate \mathcal{K} which do not have all properties from the title of the article

Let \mathcal{T} denote the set of twin primes.

Proposition 1. The statement

$$(\neg \mathcal{K}(\operatorname{card}(\mathcal{T}) = \omega)) \land (\neg \mathcal{K}(\operatorname{card}(\mathcal{T}) < \omega))$$

is true, falsifiable, and expresses what is currently unproved in mathematics.

Statement 1. There exists a non-zero integer *n* such that

$$(\neg \mathcal{K}(n<0)) \land (\neg \mathcal{K}(n>0)) \tag{1}$$

Proof. It holds for

$$n = \begin{cases} -1, & \text{if } Continuum Hypothesis holds} \\ 1, & \text{otherwise} \end{cases}$$

Proposition 2. Statement 1 holds forever.

Proof. Since *Continuum Hypothesis* is independent from *ZFC*, conjunction (1) holds forever for the above n.

Proposition 3. Statement 1 does not express what is currently unproved in mathematics.

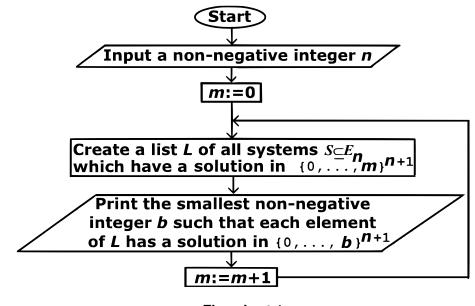
3 Classical computability theory

For $n \in \mathbb{N}$, let

$$E_n = \{1 = x_k, \ x_i + x_j = x_k, \ x_i \cdot x_j = x_k : \ i, j, k \in \{0, \dots, n\}\}$$

Theorem 1. ([4, p. 118]). There exists a limit-computable function $\beta_1 : \mathbb{N} \to \mathbb{N}$ which eventually dominates every computable function $\delta_1 : \mathbb{N} \to \mathbb{N}$.

We present an alternative proof of Theorem 1. For every $n \in \mathbb{N}$, we define $\beta_1(n)$ as the smallest $b \in \mathbb{N}$ such that if a system of equations $S \subseteq E_n$ has a solution in \mathbb{N}^{n+1} , then this solution belongs to $\{0, \ldots, b\}^{n+1}$. The function $\beta_1 : \mathbb{N} \to \mathbb{N}$ is computable in the limit and eventually dominates every computable function $\delta_1 : \mathbb{N} \to \mathbb{N}$, see [5]. Flowchart 1 describes a semi-algorithm which computes $\beta_1(n)$ in the limit.



Flowchart 1 A semi-algorithm which computes $\beta_1(n)$ in the limit

Conjecture 1. ([1, pp. 341–342], [2, p. 42], [3, p. 745]). Every listable set $\mathcal{X} \subseteq \mathbb{N}^k$ ($k \in \mathbb{N} \setminus \{0\}$) has a single-fold Diophantine representation.

Let Φ denote the following statement: the function $\mathbb{N} \ni n \to 2^n \in \mathbb{N}$ eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation. For $n \in \mathbb{N}$, let

$$g(n) = \begin{cases} 2^n, & \text{if } \Phi \text{ holds} \\ \beta_1(n), & \text{otherwise} \end{cases}$$

The function $g: \mathbb{N} \to \mathbb{N}$ is computable if and only if Φ holds. Currently,

 $(\neg \mathcal{K}(\Phi)) \land (\neg \mathcal{K}(\neg \Phi)) \land (\neg \mathcal{K}(g \ is \ computable)) \land (\neg \mathcal{K}(g \ is \ uncomputable))$

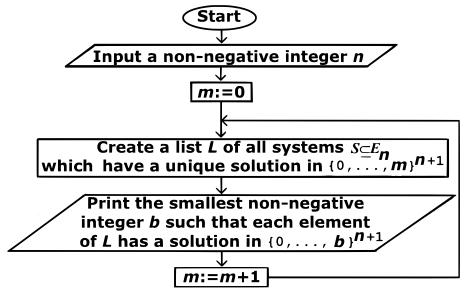
Lemma 1. The function g is computable in the limit and eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation.

Proof. It follows from Theorem 1.

For every $n \in \mathbb{N}$, we define $\beta(n)$ as the smallest $b \in \mathbb{N}$ such that if a system of equations $S \subseteq E_n$ has a unique solution in \mathbb{N}^{n+1} , then this solution belongs to $\{0, \ldots, b\}^{n+1}$.

Theorem 2. The function $\beta : \mathbb{N} \to \mathbb{N}$ is computable in the limit and eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation.

Proof. This is proved in [5]. The term "dominated" in the title of [5] means "eventually dominated". Flowchart 2 describes a semi-algorithm which computes $\beta(n)$ in the limit.



Flowchart 2

A semi-algorithm which computes $\beta(n)$ in the limit

4 A statement described by the title of the article

Statement 2. There exists a limit-computable function $f : \mathbb{N} \to \mathbb{N}$ of unknown computability which eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation.

Proof. Statement 2 follows constructively from Theorem 2 by taking $f = \beta$ and the following conjunction:

$$(\neg \mathcal{K}(\beta \text{ is computable})) \land (\neg \mathcal{K}(\beta \text{ is uncomputable}))$$

Statement 2 follows non-constructively from Lemma 1 by taking f = g and the following conjunction:

 $(\neg \mathcal{K}(g \text{ is computable})) \land (\neg \mathcal{K}(g \text{ is uncomputable}))$

Proposition 4. Statement 2 has all properties from the title of the article.

Proof. Statement 2 claims that there exists a function $f : \mathbb{N} \to \mathbb{N}$ such that

(f is computable in the limit) \land ($\neg \mathcal{K}(f \text{ is computable})) \land$ ($\neg \mathcal{K}(f \text{ is uncomputable})) \land$

(*f* eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation)

Conjecture 1 disproves Statement 2. Statement 2 without the epistemic condition is a theorem. $\hfill\square$

Since the function β_1 in Theorem 1 is not computable, Statement 2 does not follow from Theorem 1. Ignoring the epistemic condition in Statement 2, Statement 2 follows from Theorem 1 by taking $f = \beta_1$.

References

- M. Davis, Yu. Matiyasevich, J. Robinson, *Hilbert's tenth problem, Diophantine equations: positive aspects of a negative solution;* in: Mathematical developments arising from Hilbert problems (ed. F. E. Browder), Proc. Sympos. Pure Math., vol. 28, Part 2, Amer. Math. Soc., Providence, RI, 1976, 323–378, *http://doi.org/10.1090/pspum/028.2*; reprinted in: The collected works of Julia Robinson (ed. S. Feferman), Amer. Math. Soc., Providence, RI, 1996, 269–324.
- [2] Yu. Matiyasevich, *Hilbert's tenth problem: what was done and what is to be done,* in: Proceedings of the Workshop on Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), Contemp. Math. 270, Amer. Math. Soc., Providence, RI, 2000, 1–47, http://doi.org/10.1090/conm/270.
- [3] Yu. Matiyasevich, *Towards finite-fold Diophantine representations*, J. Math. Sci. (N. Y.) vol. 171, no. 6, 2010, 745–752, http://doi.org/10.1007%2Fs10958-010-0179-4.
- [4] J. S. Royer and J. Case, *Subrecursive Programming Systems: Complexity and Succinctness,* Birkhäuser, Boston, 1994.
- [5] A. Tyszka, All functions g : N → N which have a single-fold Diophantine representation are dominated by a limit-computable function f : N \ {0} → N which is implemented in MuPAD and whose computability is an open problem, in: Computation, cryptography, and network security (eds. N. J. Daras, M. Th. Rassias), Springer, Cham, 2015, 577–590, http://doi.org/ 10.1007/978-3-319-18275-9_24.

Apoloniusz Tyszka Technical Faculty Hugo Kołłątaj University Balicka 116B, 30-149 Kraków, Poland E-mail: *rttyszka@cyf-kr.edu.pl*