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Abstract. The theorem of Royer and Case states that there exists a limit-

computable function β1: ℕ → ℕ which eventually dominates every computable 

function δ1: ℕ → ℕ. We present an alternative proof of this theorem. 𝒦 denotes both 

the knowledge predicate satisfied by every currently known theorem and the finite 

set of all currently known theorems. The set 𝒦 is time-dependent and publicly 

available. Any theorem of any mathematician from past or present forever belongs 

to 𝒦. We prove:  (1) there exists a limit-computable function f: ℕ → ℕ of unknown 

computability which eventually dominates every function δ: ℕ → ℕ with a single-

fold Diophantine representation. We present both constructive and non-

constructive proof of  (1). Statement  (1) claims that there exists a function f: ℕ → ℕ 

such that (f is computable in the limit) ∧ (¬𝒦(f is computable)) ∧ (¬𝒦(f is 

uncomputable)) ∧ (f eventually dominates every function δ: ℕ → ℕ with a single-

fold Diophantine representation). Since Martin Davis’ conjecture on single-fold 

Diophantine representations disproves Statement (1), Statement (1) justifies the 

title of the article. 

 

Key words and phrases:  eventual domination, limit-computable function, 

predicate 𝒦 of the current mathematical knowledge, single-fold Diophantine 

representation, time-dependent truth in mathematics with the predicate 𝒦. 
 

2020 Mathematics Subject Classification: 03F65. 
  

  

𝒦 denotes both the knowledge predicate satisfied by every currently known 

theorem and the finite set of all currently known theorems. The set 𝒦 is time-

dependent and publicly available. Any theorem of any mathematician from past or 

present forever belongs to 𝒦. For 𝑛 ∈ ℕ, let 

 
𝐸𝑛 = {1 = 𝑥𝑘, 𝑥𝑖 + 𝑥𝑗 = 𝑥𝑘, 𝑥𝑖 ⋅ 𝑥𝑗 = 𝑥𝑘: 𝑖, 𝑗, 𝑘 ∈ {0, … , 𝑛}} 

 

1. Classical mathematics 

  

Theorem 1. ([4, p. 118]). There exists a limit-computable function 𝛽1: ℕ → ℕ which 

eventually dominates every computable function 𝛿1: ℕ → ℕ.  

  

We present an alternative proof of Theorem 1. For every 𝑛 ∈ ℕ, we define 𝛽1(𝑛) as 

the smallest 𝑏 ∈ ℕ such that if a system of equations 𝑆 ⊆ 𝐸𝑛 has a solution in ℕ𝑛+1, 

then this solution belongs to {0, … , 𝑏}𝑛+1. The function 𝛽1: ℕ → ℕ is computable in 

the limit and eventually dominates every computable function 𝛿1: ℕ → ℕ, see [5]. 
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Flowchart 1 describes a semi-algorithm which computes 𝛽1(𝑛) in the limit. 

 

                 
 

Flowchart 1 

A semi-algorithm which computes 𝛽1(𝑛) in the limit 

 

Conjecture 1. ([1, pp. 341-342], [2, p. 42], [3, p. 745]). Every listable set 𝒳 ⊆ ℕ𝑘 

(𝑘 ∈ ℕ\{0}) has a single-fold Diophantine representation. 

  

Let Φ denote the following statement: the function ℕ ∋ 𝑛 → 2𝑛 ∈ ℕ eventually 

dominates every function 𝛿: ℕ → ℕ with a single-fold Diophantine representation. 

For 𝑛 ∈ ℕ, let  

𝑔(𝑛) = {
2𝑛, 𝑖𝑓 Φ ℎ𝑜𝑙𝑑𝑠
𝛽1(𝑛), o𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The function 𝑔: ℕ → ℕ is computable if and only if Φ holds. Currently, 

 

(¬𝒦(Φ)) ∧ (¬𝒦(¬Φ)) ∧ (¬𝒦(𝑔 𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒))  ∧  (¬𝒦(𝑔 𝑖𝑠 𝑢𝑛𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒))  

 

Lemma 1.  The function 𝑔 is computable in the limit and eventually dominates 

every function 𝛿: ℕ → ℕ with a single-fold Diophantine representation. 

  

Proof. It follows from Theorem 1. □ 

  

For every 𝑛 ∈ ℕ, we define 𝛽(𝑛) as the smallest 𝑏 ∈ ℕ such that if a system of 

equations 𝑆 ⊆ 𝐸𝑛 has a unique solution in ℕ𝑛+1, then this solution belongs to 

{0, … , 𝑏}𝑛+1.  

 

Theorem 2.  The function 𝛽: ℕ → ℕ is computable in the limit and eventually 

dominates every function 𝛿: ℕ → ℕ with a single-fold Diophantine representation.  

  

Proof. This is proved in [5]. The term  "dominated" in the title of [5] means  

"eventually dominated". Flowchart 2 describes a semi-algorithm which computes 

𝛽(𝑛) in the limit. 
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Flowchart 2 

A semi-algorithm which computes 𝛽(𝑛) in the limit □ 

  

2. Mathematics with the predicate 𝓚 of the current mathematical 

knowledge 

 

Let Г denote the following true statement: 𝛽 is computable in the limit, the 

computability of 𝛽 is unknown, and 𝛽 eventually dominates every function 𝛿: ℕ → ℕ 

with a single-fold Diophantine representation. 

 

Proposition 1. The statement Г does not justify the title of the article. 

 

Proof. The statement Г expresses that 

 

 𝒦(β is computable in the limit ) ∧ 
(¬𝒦(𝛽 𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒)) ∧  (¬𝒦(𝛽 𝑖𝑠 𝑢𝑛𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒)) ∧ 

𝒦(𝛽 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑒𝑣𝑒𝑟𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝛿: ℕ → ℕ with a single-fold 

 𝐷𝑖𝑜𝑝ℎ𝑎𝑛𝑡𝑖𝑛𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛) □ 

 

The analogous proposition holds for the function g instead of 𝛽. 

 

Statement 1.  There exists a limit-computable function 𝑓: ℕ → ℕ of unknown 

computability which eventually dominates every function 𝛿: ℕ → ℕ with a single-

fold Diophantine representation. 
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Proof. Statement 1 follows constructively from Theorem 2 by taking 𝑓 = 𝛽 and the 

following conjunction: 

 

(¬𝒦(𝛽 𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒)) ∧ (¬𝒦(𝛽 𝑖𝑠 𝑢𝑛𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒)) 

 

Statement 1 follows non-constructively from Lemma 1 by taking 𝑓 = 𝑔 and the 

following conjunction: 

 

(¬𝒦(𝑔 𝑖𝑠 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒)) ∧ (¬𝒦(𝑔 𝑖𝑠 𝑢𝑛𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑏𝑙𝑒)) □ 

 

Proposition 2. Statement 1 justifies the title of the article. 

 

Proof. Statement 1 claims that there exists a function 𝑓: ℕ → ℕ such that (𝑓 is 

computable in the limit) ∧ (¬𝒦(𝑓 is computable)) ∧ (¬𝒦(𝑓 is uncomputable)) ∧ (𝑓 

eventually dominates every function 𝛿: ℕ → ℕ with a single-fold Diophantine 

representation).  Conjecture 1 disproves Statement 1. □ 
 

Since the function 𝛽1 in Theorem 1 is not computable, Statement 1 does not follow 

from Theorem 1. Ignoring the epistemic condition in Statement 1, Statement 1 

follows from Theorem 1 by taking 𝑓 = 𝛽1. 

 

In [7], the author showed that the predicate 𝒦 non-trivially extends constructive 

mathematics, see also [6], [8], [9]. 
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