On true and falsifiable statements Ψ **with the predicate** K **of the current mathematical knowledge, where** Ψ **does not express what is proved or** unproved in mathematics without K

Apoloniusz Tyszka

ABSTRACT. The theorem of Royer and Case states that there exists a limit-computable function $\beta_1 : \mathbb{N} \to \mathbb{N}$ which eventually dominates every computable function $\delta_1 : \mathbb{N} \to \mathbb{N}$. We present an alternative proof of this theorem. K denotes both the knowledge predicate satisfied by every currently known theorem and the finite set of all currently known theorems. The set K is time-dependent and publicly available. Any theorem of any mathematician from past or present forever belongs to K . We prove: (1) there exists a limit-computable function $f : \mathbb{N} \to \mathbb{N}$ of unknown computability which eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation. We present both constructive and non-constructive proof of (1). Statement (1) claims that there exists a function $f : \mathbb{N} \to \mathbb{N}$ such that (f is computable in the limit) $\wedge (\neg \mathcal{K}(f \text{ is com-}$ putable)) \wedge ($\neg K(f$ is uncomputable)) \wedge (f eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation). Since Martin Davis' conjecture on single-fold Diophantine representations disproves Statement (1), Statement (1) justifies the title of the article. Let Λ denote the statement: *there exists a* positive integer b such that it is unknown whether or not the equation $x! + b = y^2$ *has infinitely many solutions in positive integers* x and y. We prove that Λ justifies the title of the article.

Key words and phrases: Diophantine equation $x! + b = y^2$, eventual domination, limit-computable function, predicate K of the current mathematical knowledge, single-fold Diophantine representation, time-dependent truth in mathematics with the predicate K .

2020 Mathematics Subject Classification: 03F65.

 K denotes both the knowledge predicate satisfied by every currently known theorem and the finite set of all currently known theorems. The set K is timedependent and publicly available. Any theorem of any mathematician from past or present forever belongs to K .

1. STATEMENTS WITH THE PREDICATE K WHICH DO NOT JUSTIFY THE TITLE OF THE ARTICLE

Let T denote the set of twin primes.

Proposition 1. *The true statement*

$$
(\neg\mathcal{K}(\mathrm{card}(\mathcal{T})=\omega))\wedge(\neg\mathcal{K}(\mathrm{card}(\mathcal{T})<\omega))
$$

does not justify the title of the article.

Statement 1. *There exists a non-zero integer* n *such that*

$$
(\neg \mathcal{K}(n < 0)) \land (\neg \mathcal{K}(n > 0))
$$

Proof. Let

 $n = \begin{cases} -1, & \text{if Continuum Hypothesis holds} \\ 1, & \text{otherwise} \end{cases}$ 1, otherwise

 \Box

Proposition 2. *Statement [1](#page-1-0) does not justify the title of the article.*

Proof. Since Continuum Hypothesis is independent from ZFC, Statement [1](#page-1-0) holds forever.

2. CLASSICAL COMPUTABILITY THEORY

For $n \in \mathbb{N}$, let

 $E_n = \{1 = x_k, x_i + x_j = x_k, x_i \cdot x_j = x_k : i, j, k \in \{0, ..., n\}\}\$

Theorem 1. ([\[5,](#page-4-0) p. 118]*). There exists a limit-computable function* $\beta_1 : \mathbb{N} \to \mathbb{N}$ *which eventually dominates every computable function* $\delta_1 : \mathbb{N} \to \mathbb{N}$.

We present an alternative proof of Theorem [1.](#page-1-1) For every $n \in \mathbb{N}$, we define $\beta_1(n)$ as the smallest $b \in \mathbb{N}$ such that if a system of equations $S \subseteq E_n$ has a solution in \mathbb{N}^{n+1} , then this solution belongs to $\{0,\ldots,b\}^{n+1}$. The function $\beta_1 : \mathbb{N} \to \mathbb{N}$ is computable in the limit and eventually dominates every computable function $\delta_1 : \mathbb{N} \to \mathbb{N}$, see [\[6\]](#page-4-1). Flowchart 1 describes a semi-algorithm which computes $\beta_1(n)$ in the limit.

Conjecture 1. ([\[1,](#page-4-2) pp. 341–342], [\[3,](#page-4-3) p. 42], [\[4,](#page-4-4) p. 745]). Every listable set $X \subseteq \mathbb{N}^k$ (k ∈ N \ {0}) *has a single-fold Diophantine representation.*

Let Φ denote the following statement: *the function* $\mathbb{N} \ni n \to 2^n \in \mathbb{N}$ *eventually dominates every function* δ : N → N *with a single-fold Diophantine representation*. For $n \in \mathbb{N}$, let

$$
g(n) = \begin{cases} 2^n, & \text{if } \Phi \text{ holds} \\ \beta_1(n), & \text{otherwise} \end{cases}
$$

The function $q : \mathbb{N} \to \mathbb{N}$ is computable if and only if Φ holds. Currently,

 $(\neg \mathcal{K}(\Phi)) \wedge (\neg \mathcal{K}(\neg \Phi)) \wedge (\neg \mathcal{K}(g \text{ is computable})) \wedge (\neg \mathcal{K}(g \text{ is uncomputable}))$

Lemma 1. *The function* g *is computable in the limit and eventually dominates every function* δ : N → N *with a single-fold Diophantine representation.*

Proof. It follows from Theorem [1.](#page-1-1)

For every $n \in \mathbb{N}$, we define $\beta(n)$ as the smallest $b \in \mathbb{N}$ such that if a system of equations $S \subseteq E_n$ has a unique solution in \mathbb{N}^{n+1} , then this solution belongs to $\{0,\ldots,b\}^{n+1}.$

Theorem 2. *The function* $\beta : \mathbb{N} \to \mathbb{N}$ *is computable in the limit and eventually dominates every function* δ : N → N *with a single-fold Diophantine representation.*

Proof. This is proved in [\[6\]](#page-4-1). The term *"dominated"* in the title of [\[6\]](#page-4-1) means *"eventually dominated"*. Flowchart 2 describes a semi-algorithm which computes $β(n)$ in the limit.

Flowchart 2 A semi-algorithm which computes $\beta(n)$ in the limit

4 APOLONIUSZ TYSZKA

3. STATEMENTS WITH THE PREDICATE K which justify the title of the **ARTICLE**

Statement 2. *There exists a limit-computable function* $f : \mathbb{N} \to \mathbb{N}$ *of unknown computability which eventually dominates every function* δ : N → N *with a single-fold Diophantine representation.*

Proof. Statement [2](#page-2-0) follows constructively from Theorem 2 by taking $f = \beta$ and the following conjunction:

 $(\neg \mathcal{K}(\beta \text{ is computable})) \wedge (\neg \mathcal{K}(\beta \text{ is uncomputable}))$

Statement [2](#page-3-0) follows non-constructively from Lemma [1](#page-2-1) by taking $f = g$ and the following conjunction:

 $(\neg K(g \text{ is computable})) \land (\neg K(g \text{ is uncomputable}))$

 \Box

Proposition 3. *Statement [2](#page-3-0) justifies the title of the article.*

Proof. Statement [2](#page-3-0) claims that there exists a function $f : \mathbb{N} \to \mathbb{N}$ such that

(f is computable in the limit) \wedge ($\neg K(f$ is computable)) \wedge

 $(\neg K(f \text{ is uncomputable})) \wedge (f \text{ eventually dominates every function } \delta : \mathbb{N} \to \mathbb{N}$

with a single-fold Diophantine representation)

Conjecture [1](#page-1-2) disproves Statement [2.](#page-3-0)

Since the function β_1 in Theorem [1](#page-1-1) is not computable, Statement [2](#page-3-0) does not follow from Theorem [1.](#page-1-1) Ignoring the epistemic condition in Statement [2,](#page-3-0) Statement [2](#page-3-0) follows from Theorem [1](#page-1-1) by taking $f = \beta_1$.

Statement 3. *There exists a positive integer* b *such that it is unknown whether or not the equation* $x! + b = y^2$ *has infinitely many solutions in positive integers* x *and* y*.*

Proof. It holds for $b = 1$, see [\[2\]](#page-4-5).

Proposition 4. *Statement [3](#page-3-1) justifies the title of the article.*

Proof. Statement [3](#page-3-1) claims that there exists a positive integer b such that

 $\neg\mathcal{K}$ (the equation $x! + b = y^2$ has infinitely

many solutions in positive integers x and y) \wedge

 $\neg {\cal K}$ (the equation $x!+b=y^2$ has at most finitely

many solutions in positive integers x and y)

A weak form of Szpiro's conjecture implies that the equation $x! + b = y^2$ has at most finitely many solutions in positive integers x and y when $b \in \mathbb{N} \setminus \{0\}$, see [\[2\]](#page-4-5). \Box

In [\[8\]](#page-4-6), the author showed that the predicate K non-trivially extends constructive mathematics, see also [\[7\]](#page-4-7), [\[9\]](#page-4-8), [\[10\]](#page-4-9).

REFERENCES

- [1] M. Davis, Yu. Matiyasevich, J. Robinson, *Hilbert's tenth problem, Diophantine equations: positive aspects of a negative solution;* in: Mathematical developments arising from Hilbert problems (ed. F. E. Browder), Proc. Sympos. Pure Math., vol. 28, Part 2, Amer. Math. Soc., Providence, RI, 1976, 323–378, *[http:// doi.org/ 10.1090/ pspum/ 028.2](http://doi.org/10.1090/pspum/028.2)*; reprinted in: The collected works of Julia Robinson (ed. S. Feferman), Amer. Math. Soc., Providence, RI, 1996, 269–324.
- [2] A. Dąbrowski, *On the Diophantine equation* $x! + A = y^2$, Nieuw Arch. Wisk. IV. Ser. 14 (1996), no. 3, 321–324.
- [3] Yu. Matiyasevich, *Hilbert's tenth problem: what was done and what is to be done,* in: Proceedings of the Workshop on Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), Contemp. Math. 270, Amer. Math. Soc., Providence, RI, 2000, 1–47, *[http:// doi.](http://doi.org/10.1090/conm/270) [org/ 10.1090/ conm/ 270](http://doi.org/10.1090/conm/270)*.
- [4] Yu. Matiyasevich, *Towards finite-fold Diophantine representations,* J. Math. Sci. (N. Y.) vol. 171, no. 6, 2010, 745–752, *[http:// doi.org/ 10.1007%2Fs10958-010-0179-4](http://doi.org/10.1007%2Fs10958-010-0179-4)*.
- [5] J. S. Royer and J. Case, *Subrecursive Programming Systems: Complexity and Succinctness,* Birkhäuser, Boston, 1994.
- [6] A. Tyszka, All functions $g : \mathbb{N} \to \mathbb{N}$ which have a single-fold Diophantine representation are dom*inated by a limit-computable function* $f : \mathbb{N} \setminus \{0\} \to \mathbb{N}$ which is implemented in MuPAD and *whose computability is an open problem*, in: Computation, cryptography, and network security (eds. N. J. Daras, M. Th. Rassias), Springer, Cham, 2015, 577–590, *[http:// doi.org/ 10.1007/](http://doi.org/10.1007/978-3-319-18275-9_24) [978-3-319-18275-9_24](http://doi.org/10.1007/978-3-319-18275-9_24)*.
- [7] A. Tyszka, *Statements and open problems on decidable sets* X ⊆ N *that refer to the current knowledge on* X , Journal of Applied Computer Science & Mathematics 16 (2022), no. 2, 31–35, *[http:// doi.org/ 10.4316/ JACSM.202202005](http://doi.org/10.4316/JACSM.202202005)*.
- [8] A. Tyszka, *In constructive and informal mathematics, in contradistinction to any empirical science, the predicate of the current knowledge in the subject is necessary,* Asian Research Journal of Mathematics 19 (2023), no. 12, 69–79, *[http:// doi.org/ 10.9734/ arjom/ 2023/ v19i12773](http://doi.org/10.9734/arjom/2023/v19i12773)*.
- [9] A. Tyszka, *Statements and open problems on decidable sets* X ⊆ N*,* Pi Mu Epsilon J. 15 (2023), no. 8, 493–504.
- [10] A. Tyszka, *Statements and open problems on decidable sets* X ⊆ N *that contain informal notions and refer to the current knowledge on* X , Creat. Math. Inform. 32 (2023), no. 2, 247–253, *[http:// semnul.com/ creative-mathematics/ wp-content/ uploads/ 2023/](http://semnul.com/creative-mathematics/wp-content/uploads/2023/07/creative_2023_32_2_247_253.pdf) [07/ creative_2023_32_2_247_253.pdf](http://semnul.com/creative-mathematics/wp-content/uploads/2023/07/creative_2023_32_2_247_253.pdf)*.

Apoloniusz Tyszka Technical Faculty Hugo Kołłątaj University Balicka 116B, 30-149 Kraków, Poland E-mail: *<rttyszka@cyf-kr.edu.pl>*