Does a sufficiently large twin prime prove that the set of
twin primes is infinite?
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Abstract
Let f(3) =4, and let f(n+ 1) = f(n)! for every integer n > 3. For an integer n > 3, let
®, denote the following statement: if a system S C {xl =xp: (Lke{l,....n) AN # k)}
{x,- xj=xcc L kel .., n}} has at most finitely many solutions in integers xi, . . ., X, greater
than 1, then each such solution (x1, ..., x,) satisfies xy,...,x, < f(n). We conjecture that the
statements @3, ..., D¢ are true. We prove: (1) the statement ®g proves the implication if there

exists an integer x > 24 such that x! + 1 is a perfect square, then the equation x! + 1 = y? has in-
finitely many solutions in integers greater than 1; (2) if the equation x! + 1 = y? has only finitely
many solutions in positive integers, then the statement ®¢ implies that each such solution (x, y)
belongs to the set {(4,5),(5,11),(7,71)}; (3) the statement ®g proves the implication: if there
exists an integer x such that x> + 1 is prime and x> + 1 > f(7), then there are infinitely many
primes of the form n? + 1; (4) the statement ®¢ proves the implication: if there exists a twin
prime greater than f(14), then there are infinitely many twin primes.

Key words and phrases: Brocard’s problem, Brocard-Ramanujan Diophantine equation, equation
x! +1 =y, equation x(x + 1) = y!, prime numbers of the form n? + 1, single query to an oracle for
the halting problem, twin prime conjecture.
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1. Introduction and basic lemmas

In this article, we propose a conjecture which provides a common approach to Brocard’s prob-
lem, the problem of solving the equation x(x + 1) = y!, the problem of the infinitude of primes of
the form n? + 1, and the twin prime problem. Let f(3) = 4, and let f(n + 1) = f(n)! for every inte-
ger n > 3. For an integer n > 3, let U, denote the following system of equations:

Vie{l,...,n=1}\ {2} x;! = x4
XX = X3
X2+ Xy = X3

The diagram in Figure 1 illustrates the construction of the system U,,.
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Fig. 1 Construction of the system U,



Lemma 1. For every integer n > 3, the system U, has exactly one solution in integers greater than 1,

namely (2, 2, f(3),... ,f(n)).
Let

B,={x!=x: Gke{l,...n)AG#RJU{xi-x;=x: ijke(l,. .. n}

For an integer n > 3, let @, denote the following statement: if a system S C B, has at most finitely
many solutions in integers xi, ..., x, greater than 1, then each such solution (xi,...,x,) satisfies
X1,..., X%, < f(n). We conjecture that the statements ®@s, ..., D¢ are true. For every integer n > 3,
the system B, has a finite number of subsystems. Therefore, every statement @, is true with an
integer bound that depends on n.

Lemma 2. For every statement ®,, the bound f(n) cannot be decreased.

Proof. Tt follows from Lemma[I|because U, C B,,. O
Lemma 3. For every integers x and y greater than 1, x! -y =yl ifand only if x + 1 = y.

Lemma 4. If x > 4, then % > 1.

Lemma 5. (Wilson’s theorem, [3| p. 89]) For every integer x > 2, x is prime if and only if x divides
x-D!'+1.

2. Brocard’s problem and Erdos’ problem

Let A denote the following system of equations:

X! = x
X! = x3
X5 ! = X6
X4 X4 = X5
X3+X5 = Xg

Lemma [3|and the diagram in Figure 2 explain the construction of the system A.

! X +1 X5 squaring
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Fig. 2 Construction of the system A

Lemma 6. For every integers x; and x, greater than 1, the system A is solvable in integers

X2, X3, X5, X¢ greater than 1 if and only if x;!+1 = xi. In this case, the integers x;, X3, X5, X¢ are

uniquely determined by the following equalities:

X2 = xp!

x3 = (qH!

xs = x!+1
X6 = (x!+ D!



Proof. It follows from Lemma O

Theorem 1. The statement ®g proves the implication: if there exists an integer x; > 24 such that
x1! + 1 is a perfect square, then the equation x;! + 1 = xﬁ has infinitely many solutions in integers
greater than 1.

Proof. Assume that the antecedent holds. Assume that there exists an integer x; > 24 such that
x1!+ 1 equals x3 for some non-negative integer x;. Then, x4 > 1. By Lemma |§|, there exists
a unique tuple (x,, x3, x5, X6) € (N \ {0, 1})* such that the tuple (xi,...,xs) solves the system A.
Since x; > 24 = f(4), we obtain that xs = x;! + 1 > f(4)!. Hence, x¢ = x5! > (f(4)!))! = f(6). Since
A C Bg, the statement @ and the inequality xs > f(6) imply that the system (A has infinitely many
solutions (xi, ..., xs) € (N \ {0, 1})°. According to Lemma@ the equation x;! + 1 = xﬁ has infinitely
many solutions in integers greater than 1. O

Corollary 1. Assuming the statement ©g, a single query to an oracle for the halting problem decides
whether or not the equation x! + 1 = y* has infinitely many solutions in integers greater than 1.

It is conjectured that x! + 1 is a perfect square only for x € {4, 5, 7}, see [7, p. 297]. A weak form
of Szpiro’s conjecture implies that there are only finitely many solutions to the equation x! + 1 = y?,
see [6].

Theorem 2. If the equation x,!+ 1 = xﬁ has only finitely many solutions in positive integers, then
the statement ®g implies that each such solution (xi, x,) belongs to the set {(4,5),(5,11),(7,71)}.

Proof. Assume that the antecedent holds. Assume that positive integers x; and x4 satisfy
x!+1= xﬁ. Then, x;, x4, € N'\ {0, 1}. By Lemma@ the system A is solvable in integers x,, x3, Xs, X¢
greater than 1. Since A C By, the statement @¢ implies that xg = (x;! + 1)! < f(6) = f(5)!. Hence,
x!+ 1< f(5) = f(4)!. Consequently, x; < f(4) =24. If x; € {2,...,23}, then x;! + 1 is a perfect
square only for x; € {4,5,7}. O

Similarly, we prove the following theorem.

Theorem 3. If the equation x(x + 1) = y! has only finitely many solutions in positive integers, then
the statement ®g implies that each such solution (x,y) belongs to the set {(1,2),(2,3)}.

The question of solving the equation x(x + 1) = y! was posed by P. Erdos, see [1]. F. Luca proved
that the abc conjecture implies that the equation x(x + 1) = y! has only finitely many solutions in
positive integers, see [4].

3. Are there infinitely many prime numbers of the form n> + 1?

Let 8 denote the following system of equations:

Xz! = X3
X3! = X4
x5! = xg
Xg! = X9
X1 X1 = X
X3+ X5 = Xg
X4Xg = X9
X5+ X7 = Xg

Lemma [3|and the diagram in Figure 3 explain the construction of the system 5.



squaring x, +1 X5 !
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X3+ X5 = Xg
X5+ X7 = X3
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Fig. 3 Construction of the system B

Lemma 7. For every integer x; > 2, the system B is solvable in integers x,, ..., xy greater than 1
if and only if x% + 1 is prime. In this case, the integers x,,..., X9 are uniquely determined by the
following equalities:

Xy = x%

X3 = (x%)!

xo= (@)

X5 = X% +1

xe = (x1+1)!

o = (D! +1

T x% +1
xg = (D)!I+1
xg = ((xD!+ 1)

Proof. By Lemmas [3|and |4} for every integer x; > 2, the system B is solvable in integers x, ..., X9
greater than 1 if and only if x7 + 1 divides (x})! + 1. Hence, the claim of Lemma (7 follows from
Lemma 3] O

Landau’s conjecture states that there are infinitely many primes of the form n? + 1, see
(S, pp. 37-38].

Theorem 4. The statement @y proves the implication: if there exists an integer x| such that x? +1
is prime and greater than f(7), then there are infinitely many primes of the form n®> + 1.

Proof. Assume that the antecedent holds. @ By Lemma there exists a unique tuple
(X2,...,%0) € N\ {0,1})* such that the tuple (xj,xs,...,X) solves the system B. Since
x2 + 1> f(7), we obtain that x7 > f(7). Hence, (x})! > f(7)! = f(8). Consequently,

X9 = (DI D> (F®) + D! > f(8)! = f(9)

Since B C By, the statement ®g and the inequality x¢ > f(9) imply that the system B has infinitely
many solutions (xi,. .., X9) € N\ {0, 1})°. According to Lemma there are infinitely many primes
of the form n? + 1. O

Corollary 2. Assuming the statement ®y, a single query to an oracle for the halting problem decides
Landau’s problem.



4. The twin prime conjecture

Let C denote the following system of equations:

Xl!
Xz!
)C4!
X6!
X7!
Xg!
x12!
X15!
X2+ X4
X5 * Xg
X7+ X9
X4 X11
X3+ X12
X9 * X14
X8+ X15

= xz
= _x5
= x7
= -XS
= X0
= X3
= X6
X5
X7

X10
X12
X13
X15
X16

Lemma 3] and the diagram in Figure 4 explain the construction of the system C.
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Fig. 4 Construction of the system C

Lemma 8. If x, = 2, then the system C has no solutions in integers x, . .

Xg *+ X15 = Xi6 | ¥ X16

., X16 greater than 1.

Proof. The equality x, - x4 = x5 = x4! and the equality x4 = 2 imply that x, = 1.

Lemma 9. If x4 = 3, then the system C has no solutions in integers xi, ..

., X1 greater than 1.

Proof. The equality x4 - x11 = x12 = (x4 — 1)! + 1 and the equality x, = 3 imply that x;; = 1.



Lemma 10. For every x, € N\ {0, 1, 2,3} and for every xg € N\ {0, 1}, the system C is solvable in
integers Xy, Xp, X3, X5, X6, X7, X8, X10, X11, X12, X13, X14, X15, X16 greater than 1 if and only if x, and xy are
prime and x4 + 2 = x9. In this case, the integers Xy, Xa, X3, X5, X5 X7, X85 X10> X11> X125 X135 X145 X15, X16
are uniquely determined by the following equalities:

X1 = X4 -1

Xy = ()C4 - 1)'

x3 = ((u—-DY!

Xs = X!

X6 = Xo -1

X7 = ()Cg - 1)'

xs = ((xo— D!

X10 = Xg!

o = @Dlxl

X1 = (X4 - 1)' +1

xi3 = (= DI+ D!
o (xo=DI+1

X4 = X0

X5 = (Xg - 1)' +1

X6 = ((Xg—l)'+1)'

Proof. By Lemmas [3|and[4] for every x, € N'\ {0, 1,2, 3} and for every x9 € N \ {0, 1}, the system C
is solvable in integers xi, X», X3, Xs, X6, X7, X3, X10, X11, X12, X13, X14, X15, X1 greater than 1 if and only
if

(x5 +2 = x0) A (3l = D!+ 1) A (0l = D)+ 1)

Hence, the claim of Lemma [I0] follows from Lemma 3] O

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The
twin prime conjecture states that there are infinitely many twin primes, see [3, p. 39].

Theorem S. The statement ®¢ proves the implication: if there exists a twin prime greater
than f(14), then there are infinitely many twin primes.

Proof. Assume that the antecedent holds.  Then, there exist prime numbers x; and xgy
such that x9 = x4 +2 > f(14). Hence, x, € N\{0,1,2,3}. By Lemma there exists a
unique tuple ()C], X2, X3, X5, X6, X7, X8, X105, X115 X125 X135 X145 X15, X16) S (N \ {O, 1})14 such that the tuple
(x1,...,Xx16) solves the system C. Since x9 > f(14), we obtain that xy — 1 > f(14). Therefore,
(xo — D! > f(14)! = f(15). Hence, (xg — 1)! + 1 > f(15). Consequently,

x16 = ((xo — D!+ D> f(A5)! = f(16)

Since C C By, the statement @4 and the inequality x;¢ > f(16) imply that the system C has infinitely
many solutions in integers xj, .. ., xj¢ greater than 1. According to Lemmas[8HI0] there are infinitely
many twin primes. O

Corollary 3. Assuming the statement @4, a single query to an oracle for the halting problem decides
the twin prime problem.

Corollary [3|conditionally solves the problem in [2].
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