Does a sufficiently large twin prime prove that the set of twin primes is infinite?

Apoloniusz Tyszka

Abstract

Let f(3) = 4, and let f(n + 1) = f(n)! for every integer $n \ge 3$. For an integer $n \ge 3$, let Φ_n denote the following statement: if a system $S \subseteq \{x_i! = x_k : (i, k \in \{1, ..., n\}) \land (i \ne k)\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, ..., n\}\}$ has at most finitely many solutions in integers $x_1, ..., x_n$ greater than 1, then each such solution $(x_1, ..., x_n)$ satisfies $x_1, ..., x_n \le f(n)$. We conjecture that the statements $\Phi_3, ..., \Phi_{16}$ are true. We prove: (1) the statement Φ_6 proves the implication: if there exists an integer $x \ge 24$ such that x! + 1 is a perfect square, then the equation $x! + 1 = y^2$ has infinitely many solutions in positive integers, then the statement Φ_6 implies that each such solution (x, y) belongs to the set $\{(4, 5), (5, 11), (7, 71)\}$; (3) the statement Φ_9 proves the implication: if there exists an integer x such that $x^2 + 1$ is prime and $x^2 + 1 > f(7)$, then there are infinitely many primes of the form $n^2 + 1$; (4) the statement Φ_{16} proves the implication: if there exists a twin prime greater than f(14), then there are infinitely many twin primes.

Key words and phrases: Brocard's problem, Brocard-Ramanujan Diophantine equation, equation $x! + 1 = y^2$, equation x(x + 1) = y!, prime numbers of the form $n^2 + 1$, single query to an oracle for the halting problem, twin prime conjecture.

2010 Mathematics Subject Classification: 11A41, 11D85.

1. Introduction and basic lemmas

In this article, we propose a conjecture which provides a common approach to Brocard's problem, the problem of solving the equation x(x + 1) = y!, the problem of the infinitude of primes of the form $n^2 + 1$, and the twin prime problem. Let f(3) = 4, and let f(n + 1) = f(n)! for every integer $n \ge 3$. For an integer $n \ge 3$, let \mathcal{U}_n denote the following system of equations:

$$\begin{cases} \forall i \in \{1, \dots, n-1\} \setminus \{2\} \ x_i! = x_{i+1} \\ x_1 \cdot x_1 = x_3 \\ x_2 \cdot x_2 = x_3 \end{cases}$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{U}_n .

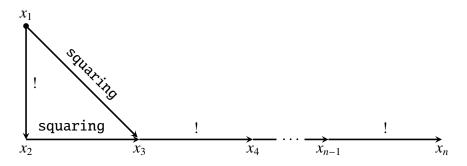


Fig. 1 Construction of the system \mathcal{U}_n

Lemma 1. For every integer $n \ge 3$, the system \mathcal{U}_n has exactly one solution in integers greater than 1, namely $(2, 2, f(3), \ldots, f(n))$.

Let

$$B_n = \left\{ x_i! = x_k : (i, k \in \{1, \dots, n\}) \land (i \neq k) \right\} \cup \left\{ x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\} \right\}$$

For an integer $n \ge 3$, let Φ_n denote the following statement: if a system $S \subseteq B_n$ has at most finitely many solutions in integers x_1, \ldots, x_n greater than 1, then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \le f(n)$. We conjecture that the statements $\Phi_3, \ldots, \Phi_{16}$ are true. For every integer $n \ge 3$, the system B_n has a finite number of subsystems. Therefore, every statement Φ_n is true with an integer bound that depends on n.

Lemma 2. For every statement Φ_n , the bound f(n) cannot be decreased.

Proof. It follows from Lemma 1 because $\mathcal{U}_n \subseteq B_n$.

Lemma 3. For every integers x and y greater than 1, $x! \cdot y = y!$ if and only if x + 1 = y.

Lemma 4. If $x \ge 4$, then $\frac{(x-1)!+1}{x} > 1$.

Lemma 5. (Wilson's theorem, [3, p. 89]) For every integer $x \ge 2$, x is prime if and only if x divides (x - 1)! + 1.

2. Brocard's problem and Erdös' problem

Let \mathcal{A} denote the following system of equations:

$$\begin{cases} x_1! = x_2 \\ x_2! = x_3 \\ x_5! = x_6 \\ x_4 \cdot x_4 = x_5 \\ x_3 \cdot x_5 = x_6 \end{cases}$$

Lemma 3 and the diagram in Figure 2 explain the construction of the system \mathcal{A} .

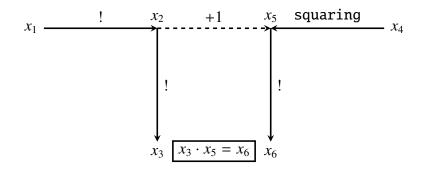


Fig. 2 Construction of the system \mathcal{A}

Lemma 6. For every integers x_1 and x_4 greater than 1, the system \mathcal{A} is solvable in integers x_2, x_3, x_5, x_6 greater than 1 if and only if $x_1! + 1 = x_4^2$. In this case, the integers x_2, x_3, x_5, x_6 are uniquely determined by the following equalities:

$$\begin{array}{rcl} x_2 &=& x_1! \\ x_3 &=& (x_1!)! \\ x_5 &=& x_1! + 1 \\ x_6 &=& (x_1! + 1)! \end{array}$$

Proof. It follows from Lemma 3.

Theorem 1. The statement Φ_6 proves the implication: if there exists an integer $x_1 \ge 24$ such that $x_1! + 1$ is a perfect square, then the equation $x_1! + 1 = x_4^2$ has infinitely many solutions in integers greater than 1.

Proof. Assume that the antecedent holds. Assume that there exists an integer $x_1 \ge 24$ such that $x_1! + 1$ equals x_4^2 for some non-negative integer x_4 . Then, $x_4 > 1$. By Lemma 6, there exists a unique tuple $(x_2, x_3, x_5, x_6) \in (\mathbb{N} \setminus \{0, 1\})^4$ such that the tuple (x_1, \ldots, x_6) solves the system \mathcal{A} . Since $x_1 \ge 24 = f(4)$, we obtain that $x_5 = x_1! + 1 > f(4)!$. Hence, $x_6 = x_5! > (f(4)!)! = f(6)$. Since $\mathcal{A} \subseteq B_6$, the statement Φ_6 and the inequality $x_6 > f(6)$ imply that the system \mathcal{A} has infinitely many solutions $(x_1, \ldots, x_6) \in (\mathbb{N} \setminus \{0, 1\})^6$. According to Lemma 6, the equation $x_1! + 1 = x_4^2$ has infinitely many solutions in integers greater than 1.

Corollary 1. Assuming the statement Φ_6 , a single query to an oracle for the halting problem decides whether or not the equation $x! + 1 = y^2$ has infinitely many solutions in integers greater than 1.

It is conjectured that x! + 1 is a perfect square only for $x \in \{4, 5, 7\}$, see [7, p. 297]. A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the equation $x! + 1 = y^2$, see [6].

Theorem 2. If the equation $x_1! + 1 = x_4^2$ has only finitely many solutions in positive integers, then the statement Φ_6 implies that each such solution (x_1, x_4) belongs to the set {(4, 5), (5, 11), (7, 71)}.

Proof. Assume that the antecedent holds. Assume that positive integers x_1 and x_4 satisfy $x_1! + 1 = x_4^2$. Then, $x_1, x_4 \in \mathbb{N} \setminus \{0, 1\}$. By Lemma 6, the system \mathcal{A} is solvable in integers x_2, x_3, x_5, x_6 greater than 1. Since $\mathcal{A} \subseteq B_6$, the statement Φ_6 implies that $x_6 = (x_1! + 1)! \leq f(6) = f(5)!$. Hence, $x_1! + 1 \leq f(5) = f(4)!$. Consequently, $x_1 < f(4) = 24$. If $x_1 \in \{2, \dots, 23\}$, then $x_1! + 1$ is a perfect square only for $x_1 \in \{4, 5, 7\}$.

Similarly, we prove the following theorem.

Theorem 3. If the equation x(x + 1) = y! has only finitely many solutions in positive integers, then the statement Φ_6 implies that each such solution (x, y) belongs to the set $\{(1, 2), (2, 3)\}$.

The question of solving the equation x(x + 1) = y! was posed by P. Erdös, see [1]. F. Luca proved that the *abc* conjecture implies that the equation x(x + 1) = y! has only finitely many solutions in positive integers, see [4].

3. Are there infinitely many prime numbers of the form $n^2 + 1$?

Let \mathcal{B} denote the following system of equations:

$$\begin{cases} x_2! = x_3 \\ x_3! = x_4 \\ x_5! = x_6 \\ x_8! = x_9 \\ x_1 \cdot x_1 = x_2 \\ x_3 \cdot x_5 = x_6 \\ x_4 \cdot x_8 = x_9 \\ x_5 \cdot x_7 = x_8 \end{cases}$$

Lemma 3 and the diagram in Figure 3 explain the construction of the system \mathcal{B} .

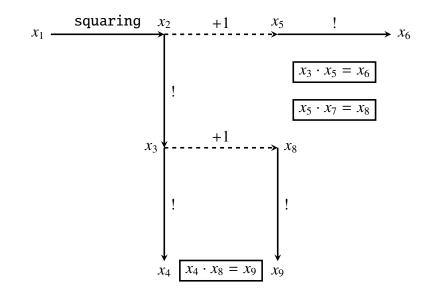


Fig. 3 Construction of the system \mathcal{B}

Lemma 7. For every integer $x_1 \ge 2$, the system \mathcal{B} is solvable in integers x_2, \ldots, x_9 greater than 1 if and only if $x_1^2 + 1$ is prime. In this case, the integers x_2, \ldots, x_9 are uniquely determined by the following equalities:

$$\begin{aligned} x_2 &= x_1^2 \\ x_3 &= (x_1^2)! \\ x_4 &= ((x_1^2)!)! \\ x_5 &= x_1^2 + 1 \\ x_6 &= (x_1^2 + 1)! \\ x_7 &= \frac{(x_1^2)! + 1}{x_1^2 + 1} \\ x_8 &= (x_1^2)! + 1 \\ x_9 &= ((x_1^2)! + 1)! \end{aligned}$$

Proof. By Lemmas 3 and 4, for every integer $x_1 \ge 2$, the system \mathcal{B} is solvable in integers x_2, \ldots, x_9 greater than 1 if and only if $x_1^2 + 1$ divides $(x_1^2)! + 1$. Hence, the claim of Lemma 7 follows from Lemma 5.

Landau's conjecture states that there are infinitely many primes of the form $n^2 + 1$, see [5, pp. 37–38].

Theorem 4. The statement Φ_9 proves the implication: if there exists an integer x_1 such that $x_1^2 + 1$ is prime and greater than f(7), then there are infinitely many primes of the form $n^2 + 1$.

Proof. Assume that the antecedent holds. By Lemma 7, there exists a unique tuple $(x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^8$ such that the tuple (x_1, x_2, \ldots, x_9) solves the system \mathcal{B} . Since $x_1^2 + 1 > f(7)$, we obtain that $x_1^2 \ge f(7)$. Hence, $(x_1^2)! \ge f(7)! = f(8)$. Consequently,

$$x_9 = ((x_1^2)! + 1)! \ge (f(8) + 1)! > f(8)! = f(9)$$

Since $\mathcal{B} \subseteq B_9$, the statement Φ_9 and the inequality $x_9 > f(9)$ imply that the system \mathcal{B} has infinitely many solutions $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^9$. According to Lemma 7, there are infinitely many primes of the form $n^2 + 1$.

Corollary 2. Assuming the statement Φ_9 , a single query to an oracle for the halting problem decides Landau's problem.

4. The twin prime conjecture

Let *C* denote the following system of equations:

$$\begin{cases} x_1! = x_2 \\ x_2! = x_3 \\ x_4! = x_5 \\ x_6! = x_7 \\ x_7! = x_8 \\ x_9! = x_{10} \\ x_{12}! = x_{13} \\ x_{15}! = x_{16} \\ x_2 \cdot x_4 = x_5 \\ x_5 \cdot x_6 = x_7 \\ x_7 \cdot x_9 = x_{10} \\ x_4 \cdot x_{11} = x_{12} \\ x_3 \cdot x_{12} = x_{13} \\ x_9 \cdot x_{14} = x_{15} \\ x_8 \cdot x_{15} = x_{16} \end{cases}$$

Lemma 3 and the diagram in Figure 4 explain the construction of the system C.

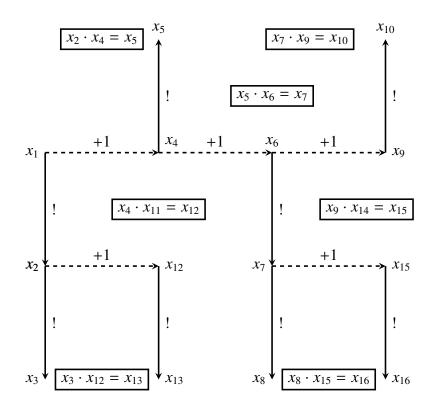


Fig. 4 Construction of the system C

Lemma 8. If $x_4 = 2$, then the system C has no solutions in integers x_1, \ldots, x_{16} greater than 1. *Proof.* The equality $x_2 \cdot x_4 = x_5 = x_4!$ and the equality $x_4 = 2$ imply that $x_2 = 1$. **Lemma 9.** If $x_4 = 3$, then the system C has no solutions in integers x_1, \ldots, x_{16} greater than 1. *Proof.* The equality $x_4 \cdot x_{11} = x_{12} = (x_4 - 1)! + 1$ and the equality $x_4 = 3$ imply that $x_{11} = 1$.

Lemma 10. For every $x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$ and for every $x_9 \in \mathbb{N} \setminus \{0, 1\}$, the system *C* is solvable in integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if x_4 and x_9 are prime and $x_4 + 2 = x_9$. In this case, the integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{15}, x_{16}$ are uniquely determined by the following equalities:

$$x_{1} = x_{4} - 1$$

$$x_{2} = (x_{4} - 1)!$$

$$x_{3} = ((x_{4} - 1)!)!$$

$$x_{5} = x_{4}!$$

$$x_{6} = x_{9} - 1$$

$$x_{7} = (x_{9} - 1)!$$

$$x_{8} = ((x_{9} - 1)!)!$$

$$x_{10} = x_{9}!$$

$$x_{11} = \frac{(x_{4} - 1)! + 1}{x_{4}}$$

$$x_{12} = (x_{4} - 1)! + 1$$

$$x_{13} = ((x_{4} - 1)! + 1)!$$

$$x_{14} = \frac{(x_{9} - 1)! + 1}{x_{9}}$$

$$x_{15} = (x_{9} - 1)! + 1$$

Proof. By Lemmas 3 and 4, for every $x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$ and for every $x_9 \in \mathbb{N} \setminus \{0, 1\}$, the system *C* is solvable in integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if

$$(x_4 + 2 = x_9) \land (x_4 | (x_4 - 1)! + 1) \land (x_9 | (x_9 - 1)! + 1)$$

Hence, the claim of Lemma 10 follows from Lemma 5.

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [5, p. 39].

Theorem 5. The statement Φ_{16} proves the implication: if there exists a twin prime greater than f(14), then there are infinitely many twin primes.

Proof. Assume that the antecedent holds. Then, there exist prime numbers x_4 and x_9 such that $x_9 = x_4 + 2 > f(14)$. Hence, $x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$. By Lemma 10, there exists a unique tuple $(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) \in (\mathbb{N} \setminus \{0, 1\})^{14}$ such that the tuple (x_1, \dots, x_{16}) solves the system *C*. Since $x_9 > f(14)$, we obtain that $x_9 - 1 \ge f(14)$. Therefore, $(x_9 - 1)! \ge f(14)! = f(15)$. Hence, $(x_9 - 1)! + 1 > f(15)$. Consequently,

$$x_{16} = ((x_9 - 1)! + 1)! > f(15)! = f(16)$$

Since $C \subseteq B_{16}$, the statement Φ_{16} and the inequality $x_{16} > f(16)$ imply that the system *C* has infinitely many solutions in integers x_1, \ldots, x_{16} greater than 1. According to Lemmas 8–10, there are infinitely many twin primes.

Corollary 3. Assuming the statement Φ_{16} , a single query to an oracle for the halting problem decides the twin prime problem.

Corollary 3 conditionally solves the problem in [2].

References

- [1] D. Berend and J. E. Harmse, *On polynomial-factorial Diophantine equations*, Trans. Amer. Math. Soc. 358 (2006), no. 4, 1741–1779.
- [2] F. G. Dorais, Can the twin prime problem be solved with a single use of a halting oracle?, July 23, 2011, http://mathoverflow.net/questions/71050.
- [3] M. Erickson, A. Vazzana, D. Garth, *Introduction to number theory*, 2nd ed., CRC Press, Boca Raton, FL, 2016.
- [4] F. Luca, *The Diophantine equation* P(x) = n! and a result of M. Overholt, Glas. Mat. Ser. III 37 (57) (2002), no. 2, 269–273.
- [5] W. Narkiewicz, *Rational number theory in the 20th century: From PNT to FLT*, Springer, London, 2012.
- [6] M. Overholt, *The Diophantine equation* $n! + 1 = m^2$, Bull. London Math. Soc. 25 (1993), no. 2, 104.
- [7] E. W. Weisstein, *CRC Concise Encyclopedia of Mathematics*, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2002.

Apoloniusz Tyszka University of Agriculture Faculty of Production and Power Engineering Balicka 116B, 30-149 Kraków, Poland E-mail: rttyszka@cyf-kr.edu.pl