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Abstract

Let f (3) = 4, and let f (n + 1) = f (n)! for every integer n > 3. For an integer n > 3, let
Φn denote the following statement: if a system S ⊆

{
xi! = xk : (i, k ∈ {1, . . . , n}) ∧ (i , k)

}
∪{

xi · x j = xk : i, j, k ∈ {1, . . . , n}
}

has at most finitely many solutions in integers x1, . . . , xn greater
than 1, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 f (n). We conjecture that the
statements Φ3, . . . ,Φ16 are true. We prove: (1) the statement Φ6 proves the implication: if there
exists an integer x > 24 such that x! + 1 is a perfect square, then the equation x! + 1 = y2 has in-
finitely many solutions in integers greater than 1; (2) if the equation x! + 1 = y2 has only finitely
many solutions in positive integers, then the statement Φ6 implies that each such solution (x, y)
belongs to the set {(4, 5), (5, 11), (7, 71)}; (3) the statement Φ9 proves the implication: if there
exists an integer x such that x2 + 1 is prime and x2 + 1 > f (7), then there are infinitely many
primes of the form n2 + 1; (4) the statement Φ16 proves the implication: if there exists a twin
prime greater than f (14), then there are infinitely many twin primes.

Key words and phrases: Brocard’s problem, Brocard-Ramanujan Diophantine equation, equation
x! + 1 = y2, equation x(x + 1) = y!, prime numbers of the form n2 + 1, single query to an oracle for
the halting problem, twin prime conjecture.
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1. Introduction and basic lemmas

In this article, we propose a conjecture which provides a common approach to Brocard’s prob-
lem, the problem of solving the equation x(x + 1) = y!, the problem of the infinitude of primes of
the form n2 + 1, and the twin prime problem. Let f (3) = 4, and let f (n + 1) = f (n)! for every inte-
ger n > 3. For an integer n > 3, letUn denote the following system of equations:

∀i ∈ {1, . . . , n − 1} \ {2} xi! = xi+1

x1 · x1 = x3

x2 · x2 = x3

The diagram in Figure 1 illustrates the construction of the systemUn.

x1

!

squaring

x2

squaring

x3

!
x4

. . .
xn−1

!
xn

Fig. 1 Construction of the systemUn
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Lemma 1. For every integer n > 3, the systemUn has exactly one solution in integers greater than 1,
namely

(
2, 2, f (3), . . . , f (n)

)
.

Let

Bn =
{
xi! = xk : (i, k ∈ {1, . . . , n}) ∧ (i , k)

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
For an integer n > 3, let Φn denote the following statement: if a system S ⊆ Bn has at most finitely
many solutions in integers x1, . . . , xn greater than 1, then each such solution (x1, . . . , xn) satisfies
x1, . . . , xn 6 f (n). We conjecture that the statements Φ3, . . . ,Φ16 are true. For every integer n > 3,
the system Bn has a finite number of subsystems. Therefore, every statement Φn is true with an
integer bound that depends on n.

Lemma 2. For every statement Φn, the bound f (n) cannot be decreased.

Proof. It follows from Lemma 1 becauseUn ⊆ Bn. �

Lemma 3. For every integers x and y greater than 1, x! · y = y! if and only if x + 1 = y.

Lemma 4. If x > 4, then (x − 1)! + 1
x > 1.

Lemma 5. (Wilson’s theorem, [3, p. 89]) For every integer x > 2, x is prime if and only if x divides
(x − 1)! + 1.

2. Brocard’s problem and Erdös’ problem

LetA denote the following system of equations:
x1! = x2

x2! = x3

x5! = x6

x4 · x4 = x5

x3 · x5 = x6

Lemma 3 and the diagram in Figure 2 explain the construction of the systemA.

x1
! x2 x4

squaringx5+1

!

x3

!

x6x3 · x5 = x6

Fig. 2 Construction of the systemA

Lemma 6. For every integers x1 and x4 greater than 1, the system A is solvable in integers
x2, x3, x5, x6 greater than 1 if and only if x1! + 1 = x2

4. In this case, the integers x2, x3, x5, x6 are
uniquely determined by the following equalities:

x2 = x1!
x3 = (x1!)!
x5 = x1! + 1
x6 = (x1! + 1)!
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Proof. It follows from Lemma 3. �

Theorem 1. The statement Φ6 proves the implication: if there exists an integer x1 > 24 such that
x1! + 1 is a perfect square, then the equation x1! + 1 = x2

4 has infinitely many solutions in integers
greater than 1.

Proof. Assume that the antecedent holds. Assume that there exists an integer x1 > 24 such that
x1! + 1 equals x2

4 for some non-negative integer x4. Then, x4 > 1. By Lemma 6, there exists
a unique tuple (x2, x3, x5, x6) ∈ (N \ {0, 1})4 such that the tuple (x1, . . . , x6) solves the system A.
Since x1 > 24 = f (4), we obtain that x5 = x1! + 1 > f (4)!. Hence, x6 = x5! > ( f (4)!)! = f (6). Since
A ⊆ B6, the statement Φ6 and the inequality x6 > f (6) imply that the system A has infinitely many
solutions (x1, . . . , x6) ∈ (N \ {0, 1})6. According to Lemma 6, the equation x1! + 1 = x2

4 has infinitely
many solutions in integers greater than 1. �

Corollary 1. Assuming the statement Φ6, a single query to an oracle for the halting problem decides
whether or not the equation x! + 1 = y2 has infinitely many solutions in integers greater than 1.

It is conjectured that x! + 1 is a perfect square only for x ∈ {4, 5, 7}, see [7, p. 297]. A weak form
of Szpiro’s conjecture implies that there are only finitely many solutions to the equation x! + 1 = y2,
see [6].

Theorem 2. If the equation x1! + 1 = x2
4 has only finitely many solutions in positive integers, then

the statement Φ6 implies that each such solution (x1, x4) belongs to the set {(4, 5), (5, 11), (7, 71)}.

Proof. Assume that the antecedent holds. Assume that positive integers x1 and x4 satisfy
x1! + 1 = x2

4. Then, x1, x4 ∈ N \ {0, 1}. By Lemma 6, the systemA is solvable in integers x2, x3, x5, x6

greater than 1. Since A ⊆ B6, the statement Φ6 implies that x6 = (x1! + 1)! 6 f (6) = f (5)!. Hence,
x1! + 1 6 f (5) = f (4)!. Consequently, x1 < f (4) = 24. If x1 ∈ {2, . . . , 23}, then x1! + 1 is a perfect
square only for x1 ∈ {4, 5, 7}. �

Similarly, we prove the following theorem.

Theorem 3. If the equation x(x + 1) = y! has only finitely many solutions in positive integers, then
the statement Φ6 implies that each such solution (x, y) belongs to the set {(1, 2), (2, 3)}.

The question of solving the equation x(x + 1) = y! was posed by P. Erdös, see [1]. F. Luca proved
that the abc conjecture implies that the equation x(x + 1) = y! has only finitely many solutions in
positive integers, see [4].

3. Are there infinitely many prime numbers of the form n2 + 1?

Let B denote the following system of equations:

x2! = x3

x3! = x4

x5! = x6

x8! = x9

x1 · x1 = x2

x3 · x5 = x6

x4 · x8 = x9

x5 · x7 = x8

Lemma 3 and the diagram in Figure 3 explain the construction of the system B.
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x1
squaring x2 +1 x5 ! x6

!

x3

!

x4

+1 x8

!

x9

x5 · x7 = x8

x3 · x5 = x6

x4 · x8 = x9

Fig. 3 Construction of the system B

Lemma 7. For every integer x1 > 2, the system B is solvable in integers x2, . . . , x9 greater than 1
if and only if x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are uniquely determined by the
following equalities:

x2 = x2
1

x3 = (x2
1)!

x4 = ((x2
1)!)!

x5 = x2
1 + 1

x6 = (x2
1 + 1)!

x7 =
(x2

1)! + 1
x2

1 + 1
x8 = (x2

1)! + 1
x9 = ((x2

1)! + 1)!

Proof. By Lemmas 3 and 4, for every integer x1 > 2, the system B is solvable in integers x2, . . . , x9

greater than 1 if and only if x2
1 + 1 divides (x2

1)! + 1. Hence, the claim of Lemma 7 follows from
Lemma 5. �

Landau’s conjecture states that there are infinitely many primes of the form n2 + 1, see
[5, pp. 37–38].

Theorem 4. The statement Φ9 proves the implication: if there exists an integer x1 such that x2
1 + 1

is prime and greater than f (7), then there are infinitely many primes of the form n2 + 1.

Proof. Assume that the antecedent holds. By Lemma 7, there exists a unique tuple
(x2, . . . , x9) ∈ (N \ {0, 1})8 such that the tuple (x1, x2, . . . , x9) solves the system B. Since
x2

1 + 1 > f (7), we obtain that x2
1 > f (7). Hence, (x2

1)! > f (7)! = f (8). Consequently,

x9 = ((x2
1)! + 1)! > ( f (8) + 1)! > f (8)! = f (9)

Since B ⊆ B9, the statement Φ9 and the inequality x9 > f (9) imply that the system B has infinitely
many solutions (x1, . . . , x9) ∈ (N \ {0, 1})9. According to Lemma 7, there are infinitely many primes
of the form n2 + 1. �

Corollary 2. Assuming the statement Φ9, a single query to an oracle for the halting problem decides
Landau’s problem.
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4. The twin prime conjecture

Let C denote the following system of equations:

x1! = x2

x2! = x3

x4! = x5

x6! = x7

x7! = x8

x9! = x10

x12! = x13

x15! = x16

x2 · x4 = x5

x5 · x6 = x7

x7 · x9 = x10

x4 · x11 = x12

x3 · x12 = x13

x9 · x14 = x15

x8 · x15 = x16

Lemma 3 and the diagram in Figure 4 explain the construction of the system C.

!

x5

!

x10

x1
+1 x4 +1 x6 +1 x9

x2
+1 x12

+1 x15

!

x2

!

x3

!

x13

!

x7

!

x8

!

x16

x2 · x4 = x5 x7 · x9 = x10

x5 · x6 = x7

x4 · x11 = x12 x9 · x14 = x15

x3 · x12 = x13 x8 · x15 = x16

Fig. 4 Construction of the system C

Lemma 8. If x4 = 2, then the system C has no solutions in integers x1, . . . , x16 greater than 1.

Proof. The equality x2 · x4 = x5 = x4! and the equality x4 = 2 imply that x2 = 1. �

Lemma 9. If x4 = 3, then the system C has no solutions in integers x1, . . . , x16 greater than 1.

Proof. The equality x4 · x11 = x12 = (x4 − 1)! + 1 and the equality x4 = 3 imply that x11 = 1. �
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Lemma 10. For every x4 ∈ N \ {0, 1, 2, 3} and for every x9 ∈ N \ {0, 1}, the system C is solvable in
integers x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 greater than 1 if and only if x4 and x9 are
prime and x4 + 2 = x9. In this case, the integers x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16

are uniquely determined by the following equalities:

x1 = x4 − 1
x2 = (x4 − 1)!
x3 = ((x4 − 1)!)!
x5 = x4!
x6 = x9 − 1
x7 = (x9 − 1)!
x8 = ((x9 − 1)!)!

x10 = x9!

x11 =
(x4 − 1)! + 1

x4
x12 = (x4 − 1)! + 1
x13 = ((x4 − 1)! + 1)!

x14 =
(x9 − 1)! + 1

x9
x15 = (x9 − 1)! + 1
x16 = ((x9 − 1)! + 1)!

Proof. By Lemmas 3 and 4, for every x4 ∈ N \ {0, 1, 2, 3} and for every x9 ∈ N \ {0, 1}, the system C
is solvable in integers x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 greater than 1 if and only
if (

x4 + 2 = x9

)
∧

(
x4|(x4 − 1)! + 1

)
∧

(
x9|(x9 − 1)! + 1

)
Hence, the claim of Lemma 10 follows from Lemma 5. �

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The
twin prime conjecture states that there are infinitely many twin primes, see [5, p. 39].

Theorem 5. The statement Φ16 proves the implication: if there exists a twin prime greater
than f (14), then there are infinitely many twin primes.

Proof. Assume that the antecedent holds. Then, there exist prime numbers x4 and x9

such that x9 = x4 + 2 > f (14). Hence, x4 ∈ N \ {0, 1, 2, 3}. By Lemma 10, there exists a
unique tuple (x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16) ∈ (N \ {0, 1})14 such that the tuple
(x1, . . . , x16) solves the system C. Since x9 > f (14), we obtain that x9 − 1 > f (14). Therefore,
(x9 − 1)! > f (14)! = f (15). Hence, (x9 − 1)! + 1 > f (15). Consequently,

x16 = ((x9 − 1)! + 1)! > f (15)! = f (16)

Since C ⊆ B16, the statement Φ16 and the inequality x16 > f (16) imply that the system C has infinitely
many solutions in integers x1, . . . , x16 greater than 1. According to Lemmas 8–10, there are infinitely
many twin primes. �

Corollary 3. Assuming the statement Φ16, a single query to an oracle for the halting problem decides
the twin prime problem.

Corollary 3 conditionally solves the problem in [2].
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