A common approach to the problem of the infinitude of twin primes, primes of the form $n!+1$, and primes of the form $n!-1$

Apoloniusz Tyszka

Abstract

For a positive integer x, let $\Gamma(x)$ denote $(x-1)$!. Let fact ${ }^{-1}:\{1,2,6,24, \ldots\} \rightarrow \mathbb{N} \backslash\{0\}$ denote the inverse function to the factorial function. For positive integers x and y, let $\operatorname{rem}(x, y)$ denote the remainder from dividing x by y. For a positive integer n, by a computation of length n we understand any sequence of terms x_{1}, \ldots, x_{n} such that x_{1} is identical to the variable x and for every integer $i \in\{2, \ldots, n\}$ there exist integers $j, k \in\{1, \ldots, i-1\}$ such that x_{i} is identical to $\operatorname{rem}\left(x_{j}, x_{k}\right)$, or $\Gamma\left(x_{j}\right)$, or fact ${ }^{-1}\left(x_{j}\right)$. Let $f(4)=3$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 4$. For an integer $n \geqslant 4$, let Ψ_{n} denote the following statement: if a computation of length n returns positive integers x_{1}, \ldots, x_{n} for at most finitely many positive integers x, then every such x does not exceed $f(n)$. We prove: (1) the statement Ψ_{4} implies that there are infinitely many primes of the form $n!+1$; (2) the statement Ψ_{6} implies that for infinitely many primes p the number $p!+1$ is prime; (3) the statement Ψ_{6} implies that there are infinitely many primes of the form $n!-1$; (4) the statement Ψ_{7} implies that there are infinitely many twin primes.

2010 Mathematics Subject Classification: 11A41, 68Q05.
Key words and phrases: computation of length n, primes of the form $n!+1$, primes of the form $n!-1$, primes p such that $p!+1$ is prime, twin primes.

For a positive integer x, let $\Gamma(x)$ denote $(x-1)$!. Let fact ${ }^{-1}:\{1,2,6,24, \ldots\} \rightarrow \mathbb{N} \backslash\{0\}$ denote the inverse function to the factorial function. For positive integers x and y, let rem (x, y) denote the remainder from dividing x by y.
Definition. For a positive integer n, by a computation of length n we understand any sequence of terms x_{1}, \ldots, x_{n} such that x_{1} is identical to the variable x and for every integer $i \in\{2, \ldots, n\}$ there exist integers $j, k \in\{1, \ldots, i-1\}$ such that x_{i} is identical to $\operatorname{rem}\left(x_{j}, x_{k}\right)$, or $\Gamma\left(x_{j}\right)$, or fact $^{-1}\left(x_{j}\right)$.

Let $f(4)=3$, and let $f(n+1)=f(n)!$ for every integer $n \geqslant 4$. For an integer $n \geqslant 4$, let Ψ_{n} denote the following statement: if a computation of length n returns positive integers x_{1}, \ldots, x_{n} for at most finitely many positive integers x, then every such x does not exceed $f(n)$.

Lemma 1. For every positive integer n, there are only finitely many computations of length n.
Theorem 1. For every integer $n \geqslant 4$, the statement Ψ_{n} is true with an unknown integer bound that depends on n.

Proof. It follows from Lemma 1 .

Theorem 2. For every integer $n \geqslant 4$ and for every positive integer x, the following computation

$$
\left\{\begin{aligned}
x_{1} & :=x \\
\forall i \in\{2, \ldots, n-3\} x_{i} & :=\operatorname{fact}^{-1}\left(x_{i-1}\right) \\
x_{n-2} & :=\Gamma\left(x_{n-3}\right) \\
x_{n-1} & :=\Gamma\left(x_{n-2}\right) \\
x_{n} & :=\operatorname{rem}\left(x_{n-1}, x_{n-3}\right)
\end{aligned}\right.
$$

returns positive integers x_{1}, \ldots, x_{n} if and only if $x \in\{2, f(n)\}$.
Proof. We make three observations.
Observation 1. If $x_{n-3}=3$, then $x_{1}, \ldots, x_{n-3} \in \mathbb{N} \backslash\{0\}$ and $x=x_{1}=f(n)$.
If $x=f(n)$, then $x_{1}, \ldots, x_{n-3} \in \mathbb{N} \backslash\{0\}$ and $x_{n-3}=3$.
Hence, $x_{n-2}=\Gamma\left(x_{n-3}\right)=2$ and $x_{n-1}=\Gamma\left(x_{n-2}\right)=1$. Therefore, $x_{n}=\operatorname{rem}\left(x_{n-1}, x_{n-3}\right)=1$.
Observation 2. If $x_{n-3}=2$, then $x=x_{1}=\ldots=x_{n-3}=2$. If $x=2$, then $x_{1}=\ldots=x_{n-3}=2$.
Hence, $x_{n-2}=\Gamma\left(x_{n-3}\right)=1$ and $x_{n-1}=\Gamma\left(x_{n-2}\right)=1$. Therefore, $x_{n}=\operatorname{rem}\left(x_{n-1}, x_{n-3}\right)=1$.
Observation 3. If $x_{n-3}=1$, then $x_{n-2}=\Gamma\left(x_{n-3}\right)=1$. Hence, $x_{n-1}=\Gamma\left(x_{n-2}\right)=1$.
Therefore, $x_{n}=\operatorname{rem}\left(x_{n-1}, x_{n-3}\right)=0 \notin \mathbb{N} \backslash\{0\}$.
Observations [1-3 cover the case when $x_{n-3} \in\{1,2,3\}$. If $x_{n-3} \geqslant 4$, then $x_{n-2}=\Gamma\left(x_{n-3}\right)>$ x_{n-3}. Hence, $x_{n-2}-1 \geqslant x_{n-3}$. By this, x_{n-3} divides $\left(x_{n-2}-1\right)!=\Gamma\left(x_{n-2}\right)=x_{n-1}$. Therefore, $x_{n}=\operatorname{rem}\left(x_{n-1}, x_{n-3}\right)=0 \notin \mathbb{N} \backslash\{0\}$.

Corollary 1. For every integer $n \geqslant 4$, the bound $f(n)$ in the statement Ψ_{n} cannot be decreased.
Let \mathcal{P} denote the set of prime numbers.
Lemma 2. ([4] pp.214-215]). For every positive integer $x, \operatorname{rem}(\Gamma(x), x) \in \mathbb{N} \backslash\{0\}$ if and only if $x \in\{4\} \cup \mathcal{P}$.

Theorem 3. For every integer $n \geqslant 4$ and for every positive integer x, the following computation

$$
\left\{\begin{aligned}
x_{1} & :=x \\
\forall i \in\{2, \ldots, n-3\} x_{i} & :=\operatorname{fact}^{-1}\left(x_{i-1}\right) \\
x_{n-2} & :=\Gamma\left(x_{n-3}\right) \\
x_{n-1} & :=\Gamma\left(x_{n-2}\right) \\
x_{n} & :=\operatorname{rem}\left(x_{n-1}, x_{n-2}\right)
\end{aligned}\right.
$$

returns positive integers x_{1}, \ldots, x_{n} if and only if $x=f(n)$.
Proof. We make three observations.
Observation 4. If $x_{n-3}=3$, then $x_{1}, \ldots, x_{n-3} \in \mathbb{N} \backslash\{0\}$ and $x=x_{1}=f(n)$.
If $x=f(n)$, then $x_{1}, \ldots, x_{n-3} \in \mathbb{N} \backslash\{0\}$ and $x_{n-3}=3$.
Hence, $x_{n-2}=\Gamma\left(x_{n-3}\right)=2$ and $x_{n-1}=\Gamma\left(x_{n-2}\right)=1$. Therefore, $x_{n}=\operatorname{rem}\left(x_{n-1}, x_{n-2}\right)=1$.
Observation 5. If $x_{n-3}=2$, then $x=x_{1}=\ldots=x_{n-3}=2$.
If $x=2$, then $x_{1}=\ldots=x_{n-3}=2$. Hence, $x_{n-2}=\Gamma\left(x_{n-3}\right)=1$ and $x_{n-1}=\Gamma\left(x_{n-2}\right)=1$.
Therefore, $x_{n}=\operatorname{rem}\left(x_{n-1}, x_{n-2}\right)=0 \notin \mathbb{N} \backslash\{0\}$.
Observation 6. If $x_{n-3}=1$, then $x_{n-2}=\Gamma\left(x_{n-3}\right)=1$. Hence, $x_{n-1}=\Gamma\left(x_{n-2}\right)=1$.
Therefore, $x_{n}=\operatorname{rem}\left(x_{n-1}, x_{n-2}\right)=0 \notin \mathbb{N} \backslash\{0\}$.

Observations 4-6 cover the case when $x_{n-3} \in\{1,2,3\}$. If $x_{n-3} \geqslant 4$, then $x_{n-2}=\Gamma\left(x_{n-3}\right)$ is greater than 4 and composite. By Lemma $2, x_{n}=\operatorname{rem}\left(x_{n-1}, x_{n-2}\right)=\operatorname{rem}\left(\Gamma\left(x_{n-2}\right), x_{n-2}\right)=0 \notin \mathbb{N} \backslash\{0\}$.

Lemma 3. (Wilson's theorem, [2] p. 89]). For every positive integer x, x divides $\Gamma(x)+1$ if and only if $x \in\{1\} \cup \mathcal{P}$.

Corollary 2. If $x \in \mathcal{P}$, then $\operatorname{rem}(\Gamma(x), x)=x-1$.
Lemma 4. For every positive integer x, the following computation \mathcal{A}

$$
\left\{\begin{array}{l}
x_{1}:=x \\
x_{2}:=\Gamma\left(x_{1}\right) \\
x_{3}:=\operatorname{rem}\left(x_{2}, x_{1}\right) \\
x_{4}:=\operatorname{fact}^{-1}\left(x_{3}\right)
\end{array}\right.
$$

returns positive integers x_{1}, \ldots, x_{4} if and only if $x=4$ or x is a prime number of the form $n!+1$.
Proof. For an integer $i \in\{1, \ldots, 4\}$, let A_{i} denote the set of positive integers x such that the first i instructions of the computation \mathcal{A} returns positive integers x_{1}, \ldots, x_{i}. We show that

$$
\begin{equation*}
A_{4}=\{4\} \cup(\{n!+1: n \in \mathbb{N} \backslash\{0\}\} \cap \mathcal{P}) \tag{1}
\end{equation*}
$$

For every positive integer x, the terms x_{1} and x_{2} belong to $\mathbb{N} \backslash\{0\}$. By Lemma 2 , the term x_{3} (which equals rem $(\Gamma(x), x)$) belongs to $\mathbb{N} \backslash\{0\}$ if and only if $x \in\{4\} \cup \mathcal{P}$. Hence, $A_{3}=\{4\} \cup \mathcal{P}$. If $x=4$, then $x_{1}, \ldots, x_{4} \in \mathbb{N} \backslash\{0\}$. Hence, $4 \in A_{4}$. If $x \in \mathcal{P}$, then Corollary 2 implies that $x_{3}=\operatorname{rem}(\Gamma(x), x)=x-1 \in \mathbb{N} \backslash\{0\}$. Therefore, for every $x \in \mathcal{P}$, the term $x_{4}=$ fact $^{-1}\left(x_{3}\right)$ belongs to $\mathbb{N} \backslash\{0\}$ if and only if $x \in\{n!+1: n \in \mathbb{N} \backslash\{0\}\}$. This proves equality (1).

It is conjectured that there are infinitely many primes of the form $n!+1$, see [1, p. 443] and [5].

Theorem 4. The statement Ψ_{4} implies that the set of primes of the form $n!+1$ is infinite.
Proof. By Lemma 4, for $x=3!+1$ the computation \mathcal{A} returns positive integers x_{1}, \ldots, x_{4}. Since $x=7>3=f(4)$, the statement Ψ_{4} guarantees that the computation \mathcal{A} returns positive integers x_{1}, \ldots, x_{4} for infinitely many positive integers x. By Lemma 4 , there are infinitely many primes of the form $n!+1$.

Conjecture. If the set of primes of the form $n!+1$ is infinite, then the statement Ψ_{4} is true.
For a computation \mathcal{W} of length n, let $\operatorname{dom}(\mathcal{W})$ denote the set of positive integers x such that the computation \mathcal{W} returns positive integers x_{1}, \ldots, x_{n}. Let Comp denote the set of all computations \mathcal{W} of length 4 such that $\mathcal{W} \neq \mathcal{A}$ and \mathcal{W} does not contain instructions of the form $x_{i}:=\operatorname{rem}\left(x_{j}, x_{j}\right)$. The set Comp has

$$
\left(1+1+\left(1^{2}-1\right)\right) \cdot\left(2+2+\left(2^{2}-2\right)\right) \cdot\left(3+3+\left(3^{2}-2\right)\right)-1=143
$$

elements. In order to prove the Conjecture, it suffices to prove the inclusion $\operatorname{dom}(\mathcal{W}) \subseteq\{1,2,3\}$ for every computation $\mathcal{W} \in \operatorname{Comp}$ such that $\operatorname{dom}(\mathcal{W})$ is finite.
Hypothesis. The statements $\Psi_{4}, \ldots, \Psi_{7}$ are true.

Lemma 5. For every positive integer x, the following computation \mathcal{B}

$$
\begin{cases}x_{1} & :=x \\ x_{2} & :=\Gamma\left(x_{1}\right) \\ x_{3} & \left.:=\operatorname{rem}^{x_{2}}, x_{1}\right) \\ x_{4} & :=\operatorname{fact}^{-1}\left(x_{3}\right) \\ x_{5} & :=\Gamma\left(x_{4}\right) \\ x_{6} & :=\operatorname{rem}\left(x_{5}, x_{4}\right)\end{cases}
$$

returns positive integers x_{1}, \ldots, x_{6} if and only if $x \in\{4\} \cup\{p!+1: p \in \mathcal{P}\} \cap \mathcal{P}$
Proof. For an integer $i \in\{1, \ldots, 6\}$, let B_{i} denote the set of positive integers x such that the first i instructions of the computation \mathcal{B} returns positive integers x_{1}, \ldots, x_{i}. Since the computations \mathcal{A} and \mathcal{B} have the same first four instructions, the equality $B_{i}=A_{i}$ holds for every $i \in\{1, \ldots, 4\}$. In particular,

$$
B_{4}=\{4\} \cup(\{n!+1: n \in \mathbb{N} \backslash\{0\}\} \cap \mathcal{P})
$$

We show that

$$
\begin{equation*}
B_{6}=\{4\} \cup(\{p!+1: p \in \mathcal{P}\} \cap \mathcal{P}) \tag{2}
\end{equation*}
$$

If $x=4$, then $x_{1}, \ldots, x_{6} \in \mathbb{N} \backslash\{0\}$. Hence, $4 \in B_{6}$. Let $x \in \mathcal{P}$, and let $x=n!+1$, where $n \in \mathbb{N} \backslash\{0\}$. Hence, $n \neq 4$. Corollary 2 implies that $x_{3}=\operatorname{rem}(\Gamma(x), x)=x-1=n!$. Hence, $x_{4}=$ fact $^{-1}\left(x_{3}\right)=n$ and $x_{5}=\Gamma\left(x_{4}\right)=\Gamma(n) \in \mathbb{N} \backslash\{0\}$. By Lemma 22, the term x_{6} (which equals $\operatorname{rem}(\Gamma(n), n)$) belongs to $\mathbb{N} \backslash\{0\}$ if and only if $n \in\{4\} \cup \mathcal{P}$. This proves equality (2) as $n \neq 4$.

Theorem 5. The statement Ψ_{6} implies that for infinitely many primes p the number $p!+1$ is prime.

Proof. The number 11! +1 is prime, see [1, p. 441] and [7]. By Lemma 5], for $x=11!+1$ the computation \mathcal{B} returns positive integers x_{1}, \ldots, x_{6}. Since $x=11!+1>720=f(6)$, the statement Ψ_{6} guarantees that the computation \mathcal{B} returns positive integers x_{1}, \ldots, x_{6} for infinitely many positive integers x. By Lemma 5 , for infinitely many primes p the number $p!+1$ is prime.
Lemma 6. If $x \in \mathbb{N} \backslash\{0,1\}$, then fact $^{-1}(\Gamma(x))=x-1$.
Lemma 7. For every positive integer x, the following computation \mathcal{C}

$$
\left\{\begin{aligned}
x_{1} & :=x \\
x_{2} & :=\operatorname{fact}^{-1}\left(x_{1}\right) \\
x_{3} & :=\Gamma\left(x_{1}\right) \\
x_{4} & :=\operatorname{fact}^{-1}\left(x_{3}\right) \\
x_{5} & :=\Gamma\left(x_{4}\right) \\
x_{6} & :=\operatorname{rem}\left(x_{5}, x_{4}\right)
\end{aligned}\right.
$$

returns positive integers x_{1}, \ldots, x_{6} if and only if $x \in\{n!:(n \in \mathbb{N} \backslash\{0\}) \wedge(n!-1 \in \mathcal{P})\}$.
Proof. For an integer $i \in\{1, \ldots, 6\}$, let C_{i} denote the set of positive integers x such that the first i instructions of the computation C returns positive integers x_{1}, \ldots, x_{i}. If $x=1$, then $x_{6}=0$. Therefore, $C_{6} \subseteq \mathbb{N} \backslash\{0,1\}$. For every positive integer x, the term fact ${ }^{-1}\left(x_{1}\right)$ belongs to $\mathbb{N} \backslash\{0\}$ if and only if $x \in\{n!: n \in \mathbb{N} \backslash\{0\}\}$. Hence, $C_{6} \subseteq C_{2}=\{n!: n \in \mathbb{N} \backslash\{0\}\}$. Thus, $C_{6} \subseteq\{n!: n \in \mathbb{N} \backslash\{0,1\}\}$. Let $x=n$!, where $n \in \mathbb{N} \backslash\{0,1\}$. By Lemma 6, the terms x_{3} and x_{4} belong to $\mathbb{N} \backslash\{0\}$ and $x_{4}=x_{1}-1=x-1$. Hence, $x_{5}=\Gamma\left(x_{4}\right)=\Gamma(x-1)$.

Next, $x_{6}=\operatorname{rem}\left(x_{5}, x_{4}\right)=\operatorname{rem}(\Gamma(x-1), x-1)$. By Lemma 2, for every integer $x \geqslant 2$, the term $\operatorname{rem}(\Gamma(x-1), x-1)$ belongs to $\mathbb{N} \backslash\{0\}$ if and only if $x \in\{5\} \cup\{p+1: p \in \mathcal{P}\}$. Since $5 \notin\{n!: n \in \mathbb{N} \backslash\{0,1\}\}$, we conclude that

$$
C_{6}=\{n!:(n \in \mathbb{N} \backslash\{0,1\}) \wedge(n!-1 \in \mathcal{P})\}=\{n!:(n \in \mathbb{N} \backslash\{0\}) \wedge(n!-1 \in \mathcal{P})\}
$$

It is conjectured that there are infinitely many primes of the form $n!-1$, see [1, p. 443] and [6].
Theorem 6. The statement Ψ_{6} implies that there are infinitely many primes of the form $n!-1$.
Proof. The number 7! - 1 is prime, see see [1, p. 441] and [6]. By Lemma 7, for $x=7!$ the computation C returns positive integers x_{1}, \ldots, x_{6}. Since $x=7!>720=f(6)$, the statement Ψ_{6} guarantees that the computation C returns positive integers x_{1}, \ldots, x_{6} for infinitely many positive integers x. By Lemma 7 , the set $\{n!:(n \in \mathbb{N} \backslash\{0\}) \wedge(n!-1 \in \mathcal{P})\}$ is infinite.
Lemma 8. For every positive integer x, the following computation \mathcal{D}

$$
\left\{\begin{array}{l}
x_{1}:=x \\
x_{2}:=\Gamma\left(x_{1}\right) \\
x_{3}:=\operatorname{rem}\left(x_{2}, x_{1}\right) \\
x_{4}:=\Gamma\left(x_{3}\right) \\
x_{5}:=\operatorname{fact}^{-1}\left(x_{4}\right) \\
x_{6}:=\Gamma\left(x_{5}\right) \\
x_{7}:=\operatorname{rem}\left(x_{6}, x_{5}\right)
\end{array}\right.
$$

returns positive integers x_{1}, \ldots, x_{7} if and only if both x and $x-2$ are prime.
Proof. For an integer $i \in\{1, \ldots, 7\}$, let D_{i} denote the set of positive integers x such that the first i instructions of the computation \mathcal{D} returns positive integers x_{1}, \ldots, x_{i}. If $x=1$, then $x_{3}=0$. Hence, $D_{7} \subseteq D_{3} \subseteq \mathbb{N} \backslash\{0,1\}$. If $x \in\{2,3,4\}$, then $x_{7}=0$. Therefore,

$$
D_{7} \subseteq(\mathbb{N} \backslash\{0,1\}) \cap(\mathbb{N} \backslash\{0,2,3,4\})=\mathbb{N} \backslash\{0,1,2,3,4\}
$$

By Lemma2, for every integer $x \geqslant 5$, the term x_{3} (which equals rem $(\Gamma(x), x)$) belongs to $\mathbb{N} \backslash\{0\}$ if and only if $x \in \mathcal{P} \backslash\{2,3\}$. By Corollary 2 , for every $x \in \mathcal{P} \backslash\{2,3\}, x_{3}=x-1 \in \mathbb{N} \backslash\{0,1,2,3\}$. By Lemma 6, for every $x \in \mathcal{P} \backslash\{2,3\}$, the terms x_{4} and x_{5} belong to $\mathbb{N} \backslash\{0\}$ and $x_{5}=x_{3}-1=x-2$. By Lemma 2, for every $x \in \mathcal{P} \backslash\{2,3\}$, the term x_{7} (which equals $\left.\operatorname{rem}\left(\Gamma\left(x_{5}\right), x_{5}\right)\right)$ belongs to $\mathbb{N} \backslash\{0\}$ if and only if $x_{5}=x-2 \in\{4\} \cup \mathcal{P}$. From these facts, we obtain that

$$
D_{7}=(\mathbb{N} \backslash\{0,1,2,3,4\}) \cap(\mathcal{P} \backslash\{2,3\}) \cap(\{6\} \cup\{p+2: p \in \mathcal{P}\})=\{p \in \mathcal{P}: p-2 \in \mathcal{P}\}
$$

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [3, p. 39].

Theorem 7. The statement Ψ_{7} implies that there are infinitely many twin primes.
Proof. Harvey Dubner proved that the numbers $459 \cdot 2^{8529}-1$ and $459 \cdot 2^{8529}+1$ are prime, see [8, p. 87]. By Lemma 8, for $x=459 \cdot 2^{8529}+1$ the computation \mathcal{D} returns positive integers x_{1}, \ldots, x_{7}. Since $x>720!=f(7)$, the statement Ψ_{7} guarantees that the computation \mathcal{D} returns positive integers x_{1}, \ldots, x_{7} for infinitely many positive integers x. By Lemma 8, there are infinitely many twin primes.

References

[1] C. K. Caldwell and Y. Gallot, On the primality of $n!\pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, Math. Comp. 71 (2002), no. 237, 441-448.
[2] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[3] W. Narkiewicz, Rational number theory in the 20th century: From PNT to FLT, Springer, London, 2012.
[4] W. Sierpiński, Elementary theory of numbers, 2nd ed. (ed. A. Schinzel), PWN - Polish Scientific Publishers and North-Holland, Warsaw-Amsterdam, 1987.
[5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002981, Numbers n such that $n!+1$ is prime, http://oeis.org/A002981.
[6] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002982, Numbers n such that n !-1 is prime, http://oeis.org/A002982.
[7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A093804, Primes p such that $p!+1$ is also prime, http://oeis.org/A093804.
[8] S. Y. Yan, Number theory for computing, 2nd ed., Springer, Berlin, 2002.
Apoloniusz Tyszka
Technical Faculty
Hugo Kołła̧taj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

