A common approach to the problem of the infinitude of twin primes, primes of the form n! + 1, and primes of the form n! - 1

Apoloniusz Tyszka

Abstract

For a positive integer x, let $\Gamma(x)$ denote (x-1)!. Let $\operatorname{fact}^{-1}: \{1, 2, 6, 24, \ldots\} \to \mathbb{N} \setminus \{0\}$ denote the inverse function to the factorial function. For positive integers x and y, let $\operatorname{rem}(x,y)$ denote the remainder from dividing x by y. For a positive integer n, by a computation of length n we understand any sequence of terms x_1, \ldots, x_n such that x_1 is identical to the variable x and for every integer $i \in \{2, \ldots, n\}$ there exist integers $j, k \in \{1, \ldots, i-1\}$ such that x_i is identical to $\operatorname{rem}(x_j, x_k)$, or $\Gamma(x_j)$, or $\operatorname{fact}^{-1}(x_j)$. Let f(4) = 3, and let f(n+1) = f(n)! for every integer $n \ge 4$. For an integer $n \ge 4$, let Ψ_n denote the following statement: if a computation of length n returns positive integers x_1, \ldots, x_n for at most finitely many positive integers x, then every such x does not exceed f(n). We prove: (1) the statement Ψ_4 implies that there are infinitely many primes of the form n! + 1; (2) the statement Ψ_6 implies that there are infinitely many primes of the form n! + 1; (3) the statement Ψ_6 implies that there are infinitely many primes of the form n! - 1; (4) the statement Ψ_7 implies that there are infinitely many twin primes.

2010 Mathematics Subject Classification: 11A41, 68Q05.

Key words and phrases: computation of length n, primes of the form n! + 1, primes of the form n! - 1, primes p such that p! + 1 is prime, twin primes.

For a positive integer x, let $\Gamma(x)$ denote (x-1)!. Let $\operatorname{fact}^{-1}: \{1, 2, 6, 24, \ldots\} \to \mathbb{N} \setminus \{0\}$ denote the inverse function to the factorial function. For positive integers x and y, let $\operatorname{rem}(x, y)$ denote the remainder from dividing x by y.

Definition. For a positive integer n, by a computation of length n we understand any sequence of terms x_1, \ldots, x_n such that x_1 is identical to the variable x and for every integer $i \in \{2, \ldots, n\}$ there exist integers $j, k \in \{1, \ldots, i-1\}$ such that x_i is identical to $\text{rem}(x_j, x_k)$, or $\Gamma(x_j)$, or $\text{fact}^{-1}(x_j)$.

Let f(4) = 3, and let f(n + 1) = f(n)! for every integer $n \ge 4$. For an integer $n \ge 4$, let Ψ_n denote the following statement: if a computation of length n returns positive integers x_1, \ldots, x_n for at most finitely many positive integers x_1, \ldots, x_n for at most finitely many positive integers x_1, \ldots, x_n

Lemma 1. For every positive integer n, there are only finitely many computations of length n.

Theorem 1. For every integer $n \ge 4$, the statement Ψ_n is true with an unknown integer bound that depends on n.

Proof. It follows from Lemma 1.

Theorem 2. For every integer $n \ge 4$ and for every positive integer x, the following computation

$$\begin{cases} x_1 &:= x \\ \forall i \in \{2, \dots, n-3\} \ x_i &:= \text{fact}^{-1}(x_{i-1}) \\ x_{n-2} &:= \Gamma(x_{n-3}) \\ x_{n-1} &:= \Gamma(x_{n-2}) \\ x_n &:= \text{rem}(x_{n-1}, x_{n-3}) \end{cases}$$

returns positive integers x_1, \ldots, x_n if and only if $x \in \{2, f(n)\}$.

Proof. We make three observations.

Observation 1. If $x_{n-3} = 3$, then $x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\}$ and $x = x_1 = f(n)$. If x = f(n), then $x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\}$ and $x_{n-3} = 3$. Hence, $x_{n-2} = \Gamma(x_{n-3}) = 2$ and $x_{n-1} = \Gamma(x_{n-2}) = 1$. Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-3}) = 1$.

Observation 2. If $x_{n-3} = 2$, then $x = x_1 = ... = x_{n-3} = 2$. If x = 2, then $x_1 = ... = x_{n-3} = 2$. Hence, $x_{n-2} = \Gamma(x_{n-3}) = 1$ and $x_{n-1} = \Gamma(x_{n-2}) = 1$. Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-3}) = 1$.

Observation 3. If $x_{n-3} = 1$, then $x_{n-2} = \Gamma(x_{n-3}) = 1$. Hence, $x_{n-1} = \Gamma(x_{n-2}) = 1$. Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-3}) = 0 \notin \mathbb{N} \setminus \{0\}$.

Observations 1–3 cover the case when $x_{n-3} \in \{1, 2, 3\}$. If $x_{n-3} \ge 4$, then $x_{n-2} = \Gamma(x_{n-3}) > x_{n-3}$. Hence, $x_{n-2} - 1 \ge x_{n-3}$. By this, x_{n-3} divides $(x_{n-2} - 1)! = \Gamma(x_{n-2}) = x_{n-1}$. Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-3}) = 0 \notin \mathbb{N} \setminus \{0\}$.

Corollary 1. For every integer $n \ge 4$, the bound f(n) in the statement Ψ_n cannot be decreased.

Let \mathcal{P} denote the set of prime numbers.

Lemma 2. ([4, pp. 214–215]) . For every positive integer x, rem($\Gamma(x)$, x) $\in \mathbb{N} \setminus \{0\}$ if and only if $x \in \{4\} \cup \mathcal{P}$.

Theorem 3. For every integer $n \ge 4$ and for every positive integer x, the following computation

$$\begin{cases} x_1 &:= x \\ \forall i \in \{2, \dots, n-3\} \ x_i &:= \text{ fact}^{-1}(x_{i-1}) \\ x_{n-2} &:= \Gamma(x_{n-3}) \\ x_{n-1} &:= \Gamma(x_{n-2}) \\ x_n &:= \text{ rem}(x_{n-1}, x_{n-2}) \end{cases}$$

returns positive integers x_1, \ldots, x_n if and only if x = f(n).

Proof. We make three observations.

Observation 4. If $x_{n-3} = 3$, then $x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\}$ and $x = x_1 = f(n)$. If x = f(n), then $x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\}$ and $x_{n-3} = 3$. Hence, $x_{n-2} = \Gamma(x_{n-3}) = 2$ and $x_{n-1} = \Gamma(x_{n-2}) = 1$. Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-2}) = 1$.

Observation 5. If $x_{n-3} = 2$, then $x = x_1 = \ldots = x_{n-3} = 2$. If x = 2, then $x_1 = \ldots = x_{n-3} = 2$. Hence, $x_{n-2} = \Gamma(x_{n-3}) = 1$ and $x_{n-1} = \Gamma(x_{n-2}) = 1$. Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-2}) = 0 \notin \mathbb{N} \setminus \{0\}$.

Observation 6. If $x_{n-3} = 1$, then $x_{n-2} = \Gamma(x_{n-3}) = 1$. Hence, $x_{n-1} = \Gamma(x_{n-2}) = 1$. Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-2}) = 0 \notin \mathbb{N} \setminus \{0\}$.

Observations 4–6 cover the case when $x_{n-3} \in \{1, 2, 3\}$. If $x_{n-3} \ge 4$, then $x_{n-2} = \Gamma(x_{n-3})$ is greater than 4 and composite. By Lemma 2, $x_n = \text{rem}(x_{n-1}, x_{n-2}) = \text{rem}(\Gamma(x_{n-2}), x_{n-2}) = 0 \notin \mathbb{N} \setminus \{0\}$. \square

Lemma 3. (Wilson's theorem, [2, p. 89]). For every positive integer x, x divides $\Gamma(x) + 1$ if and only if $x \in \{1\} \cup \mathcal{P}$.

Corollary 2. *If* $x \in \mathcal{P}$, *then* rem($\Gamma(x)$, x) = x - 1.

Lemma 4. For every positive integer x, the following computation \mathcal{A}

$$\begin{cases} x_1 & := x \\ x_2 & := \Gamma(x_1) \\ x_3 & := \operatorname{rem}(x_2, x_1) \\ x_4 & := \operatorname{fact}^{-1}(x_3) \end{cases}$$

returns positive integers x_1, \ldots, x_4 if and only if x = 4 or x is a prime number of the form n! + 1.

Proof. For an integer $i \in \{1, ..., 4\}$, let A_i denote the set of positive integers x such that the first i instructions of the computation \mathcal{A} returns positive integers $x_1, ..., x_i$. We show that

$$A_4 = \{4\} \cup (\{n! + 1: n \in \mathbb{N} \setminus \{0\}\} \cap \mathcal{P}) \tag{1}$$

For every positive integer x, the terms x_1 and x_2 belong to $\mathbb{N} \setminus \{0\}$. By Lemma 2, the term x_3 (which equals $\operatorname{rem}(\Gamma(x), x)$) belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x \in \{4\} \cup \mathcal{P}$. Hence, $A_3 = \{4\} \cup \mathcal{P}$. If x = 4, then $x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}$. Hence, $4 \in A_4$. If $x \in \mathcal{P}$, then Corollary 2 implies that $x_3 = \operatorname{rem}(\Gamma(x), x) = x - 1 \in \mathbb{N} \setminus \{0\}$. Therefore, for every $x \in \mathcal{P}$, the term $x_4 = \operatorname{fact}^{-1}(x_3)$ belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x \in \{n! + 1 : n \in \mathbb{N} \setminus \{0\}\}$. This proves equality (1).

It is conjectured that there are infinitely many primes of the form n! + 1, see [1, p. 443] and [5].

Theorem 4. The statement Ψ_4 implies that the set of primes of the form n! + 1 is infinite.

Proof. By Lemma 4, for x = 3! + 1 the computation \mathcal{A} returns positive integers x_1, \ldots, x_4 . Since x = 7 > 3 = f(4), the statement Ψ_4 guarantees that the computation \mathcal{A} returns positive integers x_1, \ldots, x_4 for infinitely many positive integers x. By Lemma 4, there are infinitely many primes of the form n! + 1.

Conjecture. If the set of primes of the form n! + 1 is infinite, then the statement Ψ_4 is true.

For a computation W of length n, let dom(W) denote the set of positive integers x such that the computation W returns positive integers x_1, \ldots, x_n . Let Comp denote the set of all computations W of length 4 such that $W \neq \mathcal{A}$ and W does not contain instructions of the form $x_i := rem(x_j, x_j)$. The set Comp has

$$(1+1+(1^2-1))\cdot(2+2+(2^2-2))\cdot(3+3+(3^2-2))-1=143$$

elements. In order to prove the Conjecture, it suffices to prove the inclusion $dom(W) \subseteq \{1, 2, 3\}$ for every computation $W \in Comp$ such that dom(W) is finite.

Hypothesis. The statements Ψ_4, \dots, Ψ_7 are true.

Lemma 5. For every positive integer x, the following computation \mathcal{B}

$$\begin{cases} x_1 & := x \\ x_2 & := \Gamma(x_1) \\ x_3 & := \operatorname{rem}(x_2, x_1) \\ x_4 & := \operatorname{fact}^{-1}(x_3) \\ x_5 & := \Gamma(x_4) \\ x_6 & := \operatorname{rem}(x_5, x_4) \end{cases}$$

returns positive integers x_1, \ldots, x_6 if and only if $x \in \{4\} \cup \{p! + 1 : p \in \mathcal{P}\} \cap \mathcal{P}$

Proof. For an integer $i \in \{1, ..., 6\}$, let B_i denote the set of positive integers x such that the first i instructions of the computation \mathcal{B} returns positive integers $x_1, ..., x_i$. Since the computations \mathcal{A} and \mathcal{B} have the same first four instructions, the equality $B_i = A_i$ holds for every $i \in \{1, ..., 4\}$. In particular,

$$B_4 = \{4\} \cup (\{n! + 1 : n \in \mathbb{N} \setminus \{0\}\} \cap \mathcal{P})$$

We show that

$$B_6 = \{4\} \cup (\{p! + 1: p \in \mathcal{P}\} \cap \mathcal{P}) \tag{2}$$

If x = 4, then $x_1, \ldots, x_6 \in \mathbb{N} \setminus \{0\}$. Hence, $4 \in B_6$. Let $x \in \mathcal{P}$, and let x = n! + 1, where $n \in \mathbb{N} \setminus \{0\}$. Hence, $n \neq 4$. Corollary 2 implies that $x_3 = \text{rem}(\Gamma(x), x) = x - 1 = n!$. Hence, $x_4 = \text{fact}^{-1}(x_3) = n$ and $x_5 = \Gamma(x_4) = \Gamma(n) \in \mathbb{N} \setminus \{0\}$. By Lemma 2, the term x_6 (which equals $\text{rem}(\Gamma(n), n)$) belongs to $\mathbb{N} \setminus \{0\}$ if and only if $n \in \{4\} \cup \mathcal{P}$. This proves equality (2) as $n \neq 4$. \square

Theorem 5. The statement Ψ_6 implies that for infinitely many primes p the number p! + 1 is prime.

Proof. The number 11! + 1 is prime, see [1, p. 441] and [7]. By Lemma 5, for x = 11! + 1 the computation \mathcal{B} returns positive integers x_1, \ldots, x_6 . Since x = 11! + 1 > 720 = f(6), the statement Ψ_6 guarantees that the computation \mathcal{B} returns positive integers x_1, \ldots, x_6 for infinitely many positive integers x. By Lemma 5, for infinitely many primes p the number p! + 1 is prime.

Lemma 6. *If* $x \in \mathbb{N} \setminus \{0, 1\}$, then fact⁻¹ $(\Gamma(x)) = x - 1$.

Lemma 7. For every positive integer x, the following computation C

$$\begin{cases} x_1 & := x \\ x_2 & := fact^{-1}(x_1) \\ x_3 & := \Gamma(x_1) \\ x_4 & := fact^{-1}(x_3) \\ x_5 & := \Gamma(x_4) \\ x_6 & := rem(x_5, x_4) \end{cases}$$

returns positive integers x_1, \ldots, x_6 if and only if $x \in \{n! : (n \in \mathbb{N} \setminus \{0\}) \land (n! - 1 \in \mathcal{P})\}$.

Proof. For an integer $i \in \{1, ..., 6\}$, let C_i denote the set of positive integers x such that the first i instructions of the computation C returns positive integers $x_1, ..., x_i$. If x = 1, then $x_6 = 0$. Therefore, $C_6 \subseteq \mathbb{N} \setminus \{0, 1\}$. For every positive integer x, the term fact⁻¹ (x_1) belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x \in \{n! : n \in \mathbb{N} \setminus \{0\}\}$. Hence, $C_6 \subseteq C_2 = \{n! : n \in \mathbb{N} \setminus \{0\}\}$. Thus, $C_6 \subseteq \{n! : n \in \mathbb{N} \setminus \{0, 1\}\}$. Let x = n!, where $n \in \mathbb{N} \setminus \{0, 1\}$. By Lemma 6, the terms x_3 and x_4 belong to $\mathbb{N} \setminus \{0\}$ and $x_4 = x_1 - 1 = x - 1$. Hence, $x_5 = \Gamma(x_4) = \Gamma(x - 1)$.

Next, $x_6 = \text{rem}(x_5, x_4) = \text{rem}(\Gamma(x-1), x-1)$. By Lemma 2, for every integer $x \ge 2$, the term $\text{rem}(\Gamma(x-1), x-1)$ belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x \in \{5\} \cup \{p+1 : p \in \mathcal{P}\}$. Since $5 \notin \{n! : n \in \mathbb{N} \setminus \{0, 1\}\}$, we conclude that

$$C_6 = \{n! : (n \in \mathbb{N} \setminus \{0, 1\}) \land (n! - 1 \in \mathcal{P})\} = \{n! : (n \in \mathbb{N} \setminus \{0\}) \land (n! - 1 \in \mathcal{P})\}\$$

It is conjectured that there are infinitely many primes of the form n! - 1, see [1, p. 443] and [6].

Theorem 6. The statement Ψ_6 implies that there are infinitely many primes of the form n! - 1.

Proof. The number 7! - 1 is prime, see see [1, p. 441] and [6]. By Lemma 7, for x = 7! the computation C returns positive integers x_1, \ldots, x_6 . Since x = 7! > 720 = f(6), the statement Ψ_6 guarantees that the computation C returns positive integers x_1, \ldots, x_6 for infinitely many positive integers x. By Lemma 7, the set $\{n! : (n \in \mathbb{N} \setminus \{0\}) \land (n! - 1 \in \mathcal{P})\}$ is infinite. \square

Lemma 8. For every positive integer x, the following computation \mathcal{D}

$$\begin{cases} x_1 & := x \\ x_2 & := \Gamma(x_1) \\ x_3 & := \operatorname{rem}(x_2, x_1) \\ x_4 & := \Gamma(x_3) \\ x_5 & := \operatorname{fact}^{-1}(x_4) \\ x_6 & := \Gamma(x_5) \\ x_7 & := \operatorname{rem}(x_6, x_5) \end{cases}$$

returns positive integers x_1, \ldots, x_7 if and only if both x and x-2 are prime.

Proof. For an integer $i \in \{1, ..., 7\}$, let D_i denote the set of positive integers x such that the first i instructions of the computation \mathcal{D} returns positive integers $x_1, ..., x_i$. If x = 1, then $x_3 = 0$. Hence, $D_7 \subseteq D_3 \subseteq \mathbb{N} \setminus \{0, 1\}$. If $x \in \{2, 3, 4\}$, then $x_7 = 0$. Therefore,

$$D_7 \subseteq (\mathbb{N} \setminus \{0, 1\}) \cap (\mathbb{N} \setminus \{0, 2, 3, 4\}) = \mathbb{N} \setminus \{0, 1, 2, 3, 4\}$$

By Lemma 2, for every integer $x \ge 5$, the term x_3 (which equals $\operatorname{rem}(\Gamma(x), x)$) belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x \in \mathcal{P} \setminus \{2, 3\}$. By Corollary 2, for every $x \in \mathcal{P} \setminus \{2, 3\}$, $x_3 = x - 1 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$. By Lemma 6, for every $x \in \mathcal{P} \setminus \{2, 3\}$, the terms x_4 and x_5 belong to $\mathbb{N} \setminus \{0\}$ and $x_5 = x_3 - 1 = x - 2$. By Lemma 2, for every $x \in \mathcal{P} \setminus \{2, 3\}$, the term x_7 (which equals $\operatorname{rem}(\Gamma(x_5), x_5)$) belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x_5 = x - 2 \in \{4\} \cup \mathcal{P}$. From these facts, we obtain that

$$D_7 = (\mathbb{N} \setminus \{0, 1, 2, 3, 4\}) \cap (\mathcal{P} \setminus \{2, 3\}) \cap (\{6\} \cup \{p + 2 : p \in \mathcal{P}\}) = \{p \in \mathcal{P} : p - 2 \in \mathcal{P}\}$$

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [3, p. 39].

Theorem 7. The statement Ψ_7 implies that there are infinitely many twin primes.

Proof. Harvey Dubner proved that the numbers $459 \cdot 2^{8529} - 1$ and $459 \cdot 2^{8529} + 1$ are prime, see [8, p. 87]. By Lemma 8, for $x = 459 \cdot 2^{8529} + 1$ the computation \mathcal{D} returns positive integers x_1, \ldots, x_7 . Since x > 720! = f(7), the statement Ψ_7 guarantees that the computation \mathcal{D} returns positive integers x_1, \ldots, x_7 for infinitely many positive integers x. By Lemma 8, there are infinitely many twin primes.

References

- [1] C. K. Caldwell and Y. Gallot, On the primality of $n! \pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, Math. Comp. 71 (2002), no. 237, 441–448.
- [2] M. Erickson, A. Vazzana, D. Garth, *Introduction to number theory*, 2nd ed., CRC Press, Boca Raton, FL, 2016.
- [3] W. Narkiewicz, *Rational number theory in the 20th century: From PNT to FLT*, Springer, London, 2012.
- [4] W. Sierpiński, *Elementary theory of numbers*, 2nd ed. (ed. A. Schinzel), PWN Polish Scientific Publishers and North-Holland, Warsaw-Amsterdam, 1987.
- [5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002981, Numbers n such that n! + 1 is prime, http://oeis.org/A002981.
- [6] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002982, Numbers n such that n! 1 is prime, http://oeis.org/A002982.
- [7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A093804, Primes p such that p! + 1 is also prime, http://oeis.org/A093804.
- [8] S. Y. Yan, *Number theory for computing*, 2nd ed., Springer, Berlin, 2002.

Apoloniusz Tyszka Technical Faculty Hugo Kołłątaj University Balicka 116B, 30-149 Kraków, Poland E-mail: rttyszka@cyf-kr.edu.pl