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Abstract

For a positive integer x, let ['(x) denote (x — 1)!. Let fact™!: {1,2,6,24,...} - N\ {0}
denote the inverse function to the factorial function. For positive integers x and y,
let rem(x,y) denote the remainder from dividing x by y. For a positive integer n, by
a computation of length n we understand any sequence of terms xi,...,Xx, such that
x1 is identical to the variable x and for every integer i € {2,...,n} there exist integers
J-kefl,...,i—1} such that x; is identical to rem(x;, xz), or I'(x;), or fact_l(xj). Let
f(4) =3, and let f(n+ 1) = f(n)! for every integer n > 4. For an integer n > 4, let ¥,
denote the following statement: if a computation of length n returns positive integers
X1,...,X%, for at most finitely many positive integers x, then every such x does not
exceed f(n). We prove: (1) the statement ‘P4 implies that there are infinitely many primes
of the form n! + 1; (2) the statement W¢ implies that for infinitely many primes p the
number p! + 1 is prime; (3) the statement W¢ implies that there are infinitely many primes
of the form n! — 1; (4) the statement ¥'; implies that there are infinitely many twin primes.
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For a positive integer x, let I'(x) denote (x — 1)!. Let fact™: {1,2,6,24,...} - N\ {0}
denote the inverse function to the factorial function. For positive integers x and y, let rem(x, y)
denote the remainder from dividing x by y.

Definition. For a positive integer n, by a computation of length n we understand any sequence

of terms xi,...,x, such that x; is identical to the variable x and for every integeri € {2,...,n}
there exist integers j k € {1,...,i— 1} such that x; is identical to rem(x;, x;), or I'(x;), or
fact‘l(xj).

Let f(4) =3, and let f(n + 1) = f(n)! for every integer n > 4. For an integer n > 4, let ¥,
denote the following statement: if a computation of length n returns positive integers xi, . .., X,
for at most finitely many positive integers x, then every such x does not exceed f(n).

Lemma 1. For every positive integer n, there are only finitely many computations of length n.

Theorem 1. For every integer n > 4, the statement \P,, is true with an unknown integer bound
that depends on n.

Proof. Tt follows from Lemmal I} m|



Theorem 2. For every integer n > 4 and for every positive integer x, the following computation

Xy = X
Vief2,...,n=-3}x := fact”(x1)
Xu— = D(x,-3)
Xuo1 = D(xp-2)
Xy = rem(X,_1, X,-3)
returns positive integers xi, . .., x, if and only if x € {2, f(n)}.

Proof. We make three observations.

Observation 1. If x,,_3 = 3, then xy,...,x,.3 € N\ {0} and x = x| = f(n).
If x = f(n), then xy,...,x,_3 € N\ {0} and x,_3 = 3.

Hence, x,., =1'(x,_3) =2 and x,_1 = I'(x,_;) = 1. Therefore, x, = rem(x,_1, X,_3) = 1.
Observation 2. If x, 3 =2, then x=x1=...=x,3=2. If x=2, then x; = ... = X,.3 = 2.
Hence, x, , =T'(x,_3) = 1 and x,_, = I'(x,_,) = 1. Therefore, x, = rem(x,_;, X,_3) = 1.

Observation 3. If x,_3 = 1, then x,_» = I'(x,_3) = 1. Hence, x,_ = I'(x,_5) = 1.
Therefore, x,, = rem(x,_1, X,-3) = 0 ¢ N\ {0}.

Observations [[H3] cover the case when x,_3 € {1,2,3}. If x,_3 > 4, then x,_, = ['(x,_3) >
xn,—3. Hence, x,., — 1 > x,_3. By this, x,_3 divides (x,_, — 1)! = I'(x,—2) = x,_;. Therefore,
X, = rem(x,_1, x,-3) = 0 ¢ N\ {O}. d

Corollary 1. For every integer n > 4, the bound f(n) in the statement ¥, cannot be decreased.
Let # denote the set of prime numbers.

Lemma 2. (/4] pp. 214-215]) . For every positive integer x, rem(I'(x), x) € N \ {0} if and only
ifxe{4UP.

Theorem 3. For every integer n > 4 and for every positive integer x, the following computation

X1 = X
Vie{2,...,n=3}x; = fact™'(x,_))
Xn-2 = r(-xn—?:)
Xn-1 = F(xn—Z)
X, = rem(X, 1, X,-2)
returns positive integers X, . .., x, if and only if x = f(n).

Proof. We make three observations.

Observation 4. If x,,_3 = 3, then x1,...,x,.3 € N\ {0} and x = x; = f(n).
If x = f(n), then xy,...,x,-3 € N\ {0} and x,_3 = 3.

Hence, x,., = 1'(x,_3) = 2 and x,_, = I'(x,_,) = 1. Therefore, x, = rem(x,_1, X,—2) = 1.
Observation 5. If x, 3 =2, thenx =x; = ... = Xx,.3 = 2.
If x =2 then x; = ... = Xx,_3 = 2. Hence, x, ., =1'(x,_3) = 1 and x,,_1 = '(x,;) = 1.

Therefore, x, = rem(x,_1,x,2) =0 ¢ N\ {O}.

Observation 6. If x,_ 3 = 1, then x,_» = I'(x,_3) = 1. Hence, x,_ = I'(x,_5) = 1.
Therefore, x,, = rem(x,_1, X,—2) = 0 ¢ N\ {0}.



Observations dH6] cover the case when x,,_3 € {1,2,3}. If x,,_3 > 4, then x,,_, = I'(x,_3) is greater
than 4 and composite. By Lemmal[2] x, = rem(x,_1, x,—2) = rem(I'(x,_,), X,-2) = 0 ¢ N\{0}. O

Lemma 3. (Wilson’s theorem, [2, p. 89]). For every positive integer x, x divides I'(x) + 1 if and
only if x e {1} U P.

Corollary 2. If x € P, then rem(I'(x), x) = x — 1.

Lemma 4. For every positive integer x, the following computation ‘A

X = X

xy = T(x)

X3 = rem(xz, Xl)

xg = fact™ (x3)
returns positive integers X, . . . , x4 if and only if x = 4 or x is a prime number of the form n! + 1.
Proof. For anintegeri € {1,...,4}, let A; denote the set of positive integers x such that the first i
instructions of the computation A returns positive integers xi, . .., x;. We show that

Ay ={4lu(n!+1: neN\{0}}nP) (1)

For every positive integer x, the terms x; and x, belong to N\ {0}. By Lemma |2} the term x;
(which equals rem(I'(x), x)) belongs to N \ {0} if and only if x € {4} U P. Hence, A3 = {4} U P.
If x=4, then xi,...,x4 € N\ {0}. Hence, 4 € Ay. If xe P, then Corollary 2] implies
that x; = rem(I'(x),x) = x — 1 € N\ {0}. Therefore, for every x € P, the term x4 = fact™(x3)
belongs to N \ {0} if and only if x € {n! + 1 : n € N\ {0}}. This proves equality (I). O

It is conjectured that there are infinitely many primes of the form n! + 1, see [1, p. 443]
and [5].

Theorem 4. The statement Y, implies that the set of primes of the form n! + 1 is infinite.

Proof. By Lemma [] for x = 3!+ 1 the computation A returns positive integers xi, ..., Xs.
Since x =7 > 3 = f(4), the statement ‘¥, guarantees that the computation (A returns positive
integers xi,..., x4 for infinitely many positive integers x. By Lemma {4, there are infinitely
many primes of the form n! + 1. O

Conjecture. If the set of primes of the form n! + 1 is infinite, then the statement ¥, is true.

For a computation ‘W of length n, let dom(“W) denote the set of positive integers x such
that the computation ‘W returns positive integers xi,...,x,. Let Comp denote the set of all
computations ‘W of length 4 such that ‘W # A and ‘W does not contain instructions of the
form x; := rem(x;, x;). The set Comp has

T+1+1%*=1)-C+2+(2*-2)-B+3+3*-2)—-1=143

elements. In order to prove the Conjecture, it suffices to prove the inclusion dom(‘W) C {1, 2, 3}
for every computation ‘W € Comp such that dom(‘W) is finite.

Hypothesis. The statements ¥y, ..., Y7 are true.



Lemma 5. For every positive integer x, the following computation B

X1 = X

xy = I(xp)

X3 = rem(xz, xl)

X4 = fact_l(x3)

xs = T'(x)

Xe = rem(xs,xs)
returns positive integers xi,...,X¢ ifand only if x e 4} U{p!+1: peP}nNP
Proof. For anintegeri € {1,..., 6}, let B; denote the set of positive integers x such that the first i
instructions of the computation 8 returns positive integers xj, . . ., X;. Since the computations A
and B have the same first four instructions, the equality B; = A; holds for every i € {1,...,4}.

In particular,
By={4lu(fn!'+1: ne N\ {0}} nP)

We show that
Be={4lUu(p!+1: pePinP) 2)

If x=4, then x;,...,x € N\ {0}. Hence, 4 € Bs. Let xe€ P, and let x =n! + 1, where
n € N\ {0}. Hence, n# 4. Corollary [2] implies that x3 = rem(I'(x), x) = x — 1 = n!. Hence,
x4 = fact™ (x3) = n and x5 = ['(x;) = [(n) € N\ {0}. By Lemma |2} the term x¢ (which equals
rem(I'(n), n)) belongs to N \ {0} if and only if n € {4} U . This proves equality (2) asn # 4. O

Theorem 5. The statement V¢ implies that for infinitely many primes p the number p! + 1 is
prime.

Proof. The number 11!+ 1 is prime, see [Il p. 441] and [7]. By Lemma [5] for x = 11! + 1
the computation B returns positive integers xi,...,Xs. Since x = 11!+ 1 > 720 = f(6), the
statement W guarantees that the computation B returns positive integers xi, . .., X¢ for infinitely
many positive integers x. By Lemma [5] for infinitely many primes p the number p! + 1 is
prime. O

Lemma 6. If x € N \ {0, 1}, then fact ' (I'(x)) = x — 1.

Lemma 7. For every positive integer x, the following computation C

X1 = X

x, := fact™'(x))

x3 = I'(xp)

X4 = fact_l(x3)

xs = T'(x)

Xe = rem(xs,xs)
returns positive integers xi, ..., X¢ ifand only if x € {n! : (n e N\ {O) A (n! -1 € P)}.
Proof. For an integer i € {1,...,6}, let C; denote the set of positive integers x such that
the first i instructions of the computation C returns positive integers xj,...,x;. If x=1,

then x¢ = 0. Therefore, C¢ C N\ {0, 1}. For every positive integer x, the term fact™'(x)
belongs to N\ {0} if and only if x € {n!: ne N\ {0}}. Hence, Cs C C, ={n!: ne N\ {0}}.
Thus, C¢ C{n!: neN\{0,1}}. Let x=n!, where neN\{0,1}. By Lemma [0 the
terms x3; and x4 belong to N\ {0} and x4, =x; — 1 =x—-1. Hence, x5 =1(xq) =T'(x - 1).
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Next, x¢ = rem(xs,xs) = rem(I'(x — 1),x —1). By Lemma [2] for every integer x > 2, the
term rem(I'(x — 1), x — 1) belongs to N\ {0} if and only if x e {S}U{p+1: peP}. Since
5¢{n!: neN\J{0,1}}, we conclude that

Co={n!: meN\{0, 1D A@! -1€eP)={n!': meN\{0})A @ —-1cP)}
O

It is conjectured that there are infinitely many primes of the form n! — 1, see [} p. 443]
and [6]].

Theorem 6. The statement V¢ implies that there are infinitely many primes of the form n! — 1.

Proof. The number 7! — 1 is prime, see see [1, p. 441] and [6]. By Lemma (/| for x = 7! the

computation C returns positive integers xi, ..., X¢. Since x = 7! > 720 = f(6), the statement ¥
guarantees that the computation C returns positive integers xi, . . . , X¢ for infinitely many positive
integers x. By Lemmal(7] the set {n! : (n € N\ {0}) A (n! — 1 € P)} is infinite. ]
Lemma 8. For every positive integer x, the following computation D

X1 = X

xy = D(xp)

x3 = rem(xy, x;)

xy = T(x3)

xs = fact™ (xq)

xg = I'(xs)

x7 = rem(xg, Xs)
returns positive integers xi, . .., x7 if and only if both x and x — 2 are prime.
Proof. For anintegeri € {1,...,7}, let D; denote the set of positive integers x such that the first i
instructions of the computation D returns positive integers xi,...,x;. If x =1, then x;3 = 0.

Hence, D; € D; C N\ {0, 1}. If x € {2, 3,4}, then x; = 0. Therefore,
D; C (N\ {0, 1) n(N\ {0,2,3,4}) =N\ {0, 1,2, 3,4}

By Lemma 2] for every integer x > 5, the term x3 (which equals rem(I'(x), x)) belongs to N \ {0}
if and only if x € P\ {2, 3}. By Corollary[2] forevery x e P\ {2,3}, x3 =x -1 e N\ {0, 1,2,3}.
By Lemma [0 for every xe®\{2,3}, the terms x; and xs belong to N\ {0} and
xs=x3—1=x-2. By Lemma for every x € P\ {2,3}, the term x; (which equals
rem(I'(xs), x5)) belongs to N\ {0} if and only if xs = x —2 € {4} UP. From these facts, we
obtain that

D; =(N\{0,1,2,3,4h n(P\{2,3hn({6}Uip+2: pePh={peP: p-2cP}
O

A twin prime is a prime number that is either 2 less or 2 more than another prime number.
The twin prime conjecture states that there are infinitely many twin primes, see [3, p. 39].

Theorem 7. The statement Y, implies that there are infinitely many twin primes.

Proof. Harvey Dubner proved that the numbers 459 - 28529 _ 1 and 459 - 28529 1 1 are prime,
see [8, p. 87]. By Lemma for x = 459 - 28529 4 1 the computation D returns positive integers

X1,...,Xx7. Since x > 720! = f(7), the statement ¥; guarantees that the computation D returns
positive integers xi,...,x; for infinitely many positive integers x. By Lemma [§] there are
infinitely many twin primes. O
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