A common approach to the problem of the infinitude of twin primes, primes of the form \(n! + 1 \), and primes of the form \(n! - 1 \)

Apoloniusz Tyszka

Abstract

For a positive integer \(x \), let \(\Gamma(x) \) denote \((x-1)!\). Let \(\text{fact}^{-1} : \{1, 2, 6, 24, \ldots \} \to \mathbb{N} \setminus \{0\} \) denote the inverse function to the factorial function. For positive integers \(x \) and \(y \), let \(\text{rem}(x, y) \) denote the remainder from dividing \(x \) by \(y \). For a positive integer \(n \), by a computation of length \(n \) we understand any sequence of terms \(x_1, \ldots, x_n \) such that \(x_1 \) is identical to the variable \(x \) and for every integer \(i \in \{2, \ldots, n\} \) there exist integers \(j, k \in \{1, \ldots, i-1\} \) such that \(x_i \) is identical to \(\text{rem}(x_j, x_k) \), or \(\Gamma(x_j) \), or \(\text{fact}^{-1}(x_j) \).

Let \(f(4) = 3 \), and let \(f(n + 1) = f(n)! \) for every integer \(n \geq 4 \). For an integer \(n \geq 4 \), let \(\Psi_n \) denote the following statement: if a computation of length \(n \) returns positive integers \(x_1, \ldots, x_n \) for at most finitely many positive integers \(x \), then every such \(x \) does not exceed \(f(n) \). We prove: (1) the statement \(\Psi_4 \) implies that there are infinitely many primes of the form \(n! + 1 \); (2) the statement \(\Psi_6 \) implies that for infinitely many primes \(p \) the number \(p! + 1 \) is prime; (3) the statement \(\Psi_6 \) implies that there are infinitely many primes of the form \(n! - 1 \); (4) the statement \(\Psi_7 \) implies that there are infinitely many twin primes.

2010 Mathematics Subject Classification: 11A41, 68Q05.

Key words and phrases: computation of length \(n \), primes of the form \(n! + 1 \), primes of the form \(n! - 1 \), primes \(p \) such that \(p! + 1 \) is prime, twin primes.

For a positive integer \(x \), let \(\Gamma(x) \) denote \((x-1)!\). Let \(\text{fact}^{-1} : \{1, 2, 6, 24, \ldots \} \to \mathbb{N} \setminus \{0\} \) denote the inverse function to the factorial function. For positive integers \(x \) and \(y \), let \(\text{rem}(x, y) \) denote the remainder from dividing \(x \) by \(y \).

Definition. For a positive integer \(n \), by a computation of length \(n \) we understand any sequence of terms \(x_1, \ldots, x_n \) such that \(x_1 \) is identical to the variable \(x \) and for every integer \(i \in \{2, \ldots, n\} \) there exist integers \(j, k \in \{1, \ldots, i-1\} \) such that \(x_i \) is identical to \(\text{rem}(x_j, x_k) \), or \(\Gamma(x_j) \), or \(\text{fact}^{-1}(x_j) \).

Let \(f(4) = 3 \), and let \(f(n + 1) = f(n)! \) for every integer \(n \geq 4 \). For an integer \(n \geq 4 \), let \(\Psi_n \) denote the following statement: if a computation of length \(n \) returns positive integers \(x_1, \ldots, x_n \) for at most finitely many positive integers \(x \), then every such \(x \) does not exceed \(f(n) \).

Lemma 1. For every positive integer \(n \), there are only finitely many computations of length \(n \).

Theorem 1. For every integer \(n \geq 4 \), the statement \(\Psi_n \) is true with an unknown integer bound that depends on \(n \).

Proof. It follows from Lemma 1.
Theorem 2. For every integer $n \geq 4$ and for every positive integer x, the following computation
\[
\begin{align*}
x_1 & := x \\
\forall i \in \{2, \ldots, n-3\} \quad x_i & := \text{fact}^{-1}(x_{i-1}) \\
x_{n-2} & := \Gamma(x_{n-3}) \\
x_{n-1} & := \Gamma(x_{n-2}) \\
x_n & := \text{rem}(x_{n-1}, x_{n-2})
\end{align*}
\]
returns positive integers x_1, \ldots, x_n if and only if $x \in \{2, f(n)\}$.

Proof. We make three observations.

Observation 1. If $x_{n-3} = 3$, then $x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\}$ and $x = x_1 = f(n)$.
If $x = f(n)$, then $x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\}$ and $x_{n-3} = 3$.
Hence, $x_{n-2} = \Gamma(x_{n-3}) = 2$ and $x_{n-1} = \Gamma(x_{n-2}) = 1$. Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-3}) = 1$.

Observation 2. If $x_{n-3} = 2$, then $x = x_1 = \ldots = x_{n-3} = 2$.
If $x = 2$, then $x_1 = \ldots = x_{n-3} = 2$.
Hence, $x_{n-2} = \Gamma(x_{n-3}) = 1$ and $x_{n-1} = \Gamma(x_{n-2}) = 1$. Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-3}) = 1$.

Observation 3. If $x_{n-3} = 1$, then $x_{n-2} = \Gamma(x_{n-3}) = 1$. Hence, $x_{n-1} = \Gamma(x_{n-2}) = 1$.
Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-3}) = 0 \not\in \mathbb{N} \setminus \{0\}$.

Observations 1–3 cover the case when $x_{n-3} \in \{1, 2, 3\}$. If $x_{n-3} \geq 4$, then $x_{n-2} = \Gamma(x_{n-3}) > x_{n-3}$. Hence, $x_{n-2} - 1 \geq x_{n-3}$. By this, x_{n-3} divides $(x_{n-2} - 1)! = \Gamma(x_{n-2}) = x_{n-1}$. Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-3}) = 0 \not\in \mathbb{N} \setminus \{0\}$.

Corollary 1. For every integer $n \geq 4$, the bound $f(n)$ in the statement Ψ_n cannot be decreased.

Let \mathcal{P} denote the set of prime numbers.

Lemma 2. ([2] pp. 214–215) . For every positive integer x, $\text{rem}(\Gamma(x), x) \in \mathbb{N} \setminus \{0\}$ if and only if $x \in \{4\} \cup \mathcal{P}$.

Theorem 3. For every integer $n \geq 4$ and for every positive integer x, the following computation
\[
\begin{align*}
x_1 & := x \\
\forall i \in \{2, \ldots, n-3\} \quad x_i & := \text{fact}^{-1}(x_{i-1}) \\
x_{n-2} & := \Gamma(x_{n-3}) \\
x_{n-1} & := \Gamma(x_{n-2}) \\
x_n & := \text{rem}(x_{n-1}, x_{n-2})
\end{align*}
\]
returns positive integers x_1, \ldots, x_n if and only if $x = f(n)$.

Proof. We make three observations.

Observation 4. If $x_{n-3} = 3$, then $x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\}$ and $x = x_1 = f(n)$.
If $x = f(n)$, then $x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\}$ and $x_{n-3} = 3$.
Hence, $x_{n-2} = \Gamma(x_{n-3}) = 2$ and $x_{n-1} = \Gamma(x_{n-2}) = 1$. Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-2}) = 1$.

Observation 5. If $x_{n-3} = 2$, then $x = x_1 = \ldots = x_{n-3} = 2$.
If $x = 2$, then $x_1 = \ldots = x_{n-3} = 2$.
Hence, $x_{n-2} = \Gamma(x_{n-3}) = 1$ and $x_{n-1} = \Gamma(x_{n-2}) = 1$.
Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-2}) = 0 \not\in \mathbb{N} \setminus \{0\}$.

Observation 6. If $x_{n-3} = 1$, then $x_{n-2} = \Gamma(x_{n-3}) = 1$. Hence, $x_{n-1} = \Gamma(x_{n-2}) = 1$.
Therefore, $x_n = \text{rem}(x_{n-1}, x_{n-2}) = 0 \not\in \mathbb{N} \setminus \{0\}$.
Observations\cite{4,5,6} cover the case when \(x_{n-3} \in \{1, 2, 3\}\). If \(x_{n-3} \geq 4\), then \(x_{n-2} = \Gamma(x_{n-3})\) is greater than 4 and composite. By Lemma\cite{2}, \(x_n = \text{rem}(x_{n-1}, x_{n-2}) = \text{rem}(\Gamma(x_{n-2}), x_{n-2}) = 0 \notin \mathbb{N} \setminus \{0\}\). \(\square\)

Lemma 3. (Wilson’s theorem, \cite{2} p. 89). For every positive integer \(x\), \(x\) divides \(\Gamma(x) + 1\) if and only if \(x \in \{1\} \cup \mathcal{P}\).

Corollary 2. If \(x \in \mathcal{P}\), then \(\text{rem}(\Gamma(x), x) = x - 1\).

Lemma 4. For every positive integer \(x\), the following computation \(\mathcal{A}\)

\[
\begin{align*}
x_1 & := x \\
x_2 & := \Gamma(x_1) \\
x_3 & := \text{rem}(x_2, x_1) \\
x_4 & := \text{fact}^{-1}(x_3)
\end{align*}
\]

returns positive integers \(x_1, \ldots, x_4\) if and only if \(x = 4\) or \(x\) is a prime number of the form \(n! + 1\).

Proof. For an integer \(i \in \{1, \ldots, 4\}\), let \(A_i\) denote the set of positive integers \(x\) such that the first \(i\) instructions of the computation \(\mathcal{A}\) returns positive integers \(x_1, \ldots, x_i\). We show that

\[
A_4 = \{4\} \cup \{(n! + 1 : n \in \mathbb{N} \setminus \{0\}) \cap \mathcal{P}\}
\]

(1)

For every positive integer \(x\), the terms \(x_1\) and \(x_2\) belong to \(\mathbb{N} \setminus \{0\}\). By Lemma\cite{2} the term \(x_3\) (which equals \(\text{rem}(\Gamma(x), x)\)) belongs to \(\mathbb{N} \setminus \{0\}\) if and only if \(x \in \{4\} \cup \mathcal{P}\). Hence, \(A_3 = \{4\} \cup \mathcal{P}\).

If \(x = 4\), then \(x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}\). Hence, \(4 \in A_4\). If \(x \in \mathcal{P}\), then Corollary\cite{2} implies that \(x_3 = \text{rem}(\Gamma(x), x) = x - 1 \in \mathbb{N} \setminus \{0\}\). Therefore, for every \(x \in \mathcal{P}\), the term \(x_4 = \text{fact}^{-1}(x_3)\) belongs to \(\mathbb{N} \setminus \{0\}\) if and only if \(x \in \{n! + 1 : n \in \mathbb{N} \setminus \{0\}\}\). This proves equality (1). \(\square\)

It is conjectured that there are infinitely many primes of the form \(n! + 1\), see \cite{1} p. 443 and \cite{5}.

Theorem 4. The statement \(\Psi_4\) implies that the set of primes of the form \(n! + 1\) is infinite.

Proof. By Lemma \cite{4} for \(x = 3! + 1\) the computation \(\mathcal{A}\) returns positive integers \(x_1, \ldots, x_4\). Since \(x = 7 > 3 = f(4)\), the statement \(\Psi_4\) guarantees that the computation \(\mathcal{A}\) returns positive integers \(x_1, \ldots, x_4\) for infinitely many positive integers \(x\). By Lemma \cite{4} there are infinitely many primes of the form \(n! + 1\). \(\square\)

Conjecture. If the set of primes of the form \(n! + 1\) is infinite, then the statement \(\Psi_4\) is true.

For a computation \(\mathcal{W}\) of length \(n\), let \(\text{dom}(\mathcal{W})\) denote the set of positive integers \(x\) such that the computation \(\mathcal{W}\) returns positive integers \(x_1, \ldots, x_n\). Let \(\text{Comp}\) denote the set of all computations \(\mathcal{W}\) of length 4 such that \(\mathcal{W} \neq \mathcal{A}\) and \(\mathcal{W}\) does not contain instructions of the form \(x_i := \text{rem}(x_j, x_j)\). The set \(\text{Comp}\) has

\[
(1 + 1 + (1^2 - 1)) \cdot (2 + 2 + (2^2 - 2)) \cdot (3 + 3 + (3^2 - 2)) - 1 = 143
\]

elements. In order to prove the Conjecture, it suffices to prove the inclusion \(\text{dom}(\mathcal{W}) \subseteq \{1, 2, 3\}\) for every computation \(\mathcal{W} \in \text{Comp}\) such that \(\text{dom}(\mathcal{W})\) is finite.

Hypothesis. The statements \(\Psi_4, \ldots, \Psi_7\) are true.
Lemma 5. For every positive integer x, the following computation B

\[
\begin{align*}
 x_1 & := x \\
 x_2 & := \Gamma(x_1) \\
 x_3 & := \text{rem}(x_2, x_1) \\
 x_4 & := \text{fact}^{-1}(x_3) \\
 x_5 & := \Gamma(x_4) \\
 x_6 & := \text{rem}(x_5, x_4)
\end{align*}
\]

returns positive integers x_1, \ldots, x_6 if and only if $x \in \{4\} \cup \{p! + 1 : p \in \mathcal{P}\} \cap \mathbb{N}$

Proof. For an integer $i \in \{1, \ldots, 6\}$, let B_i denote the set of positive integers x such that the first i instructions of the computation B returns positive integers x_1, \ldots, x_i. Since the computations A and B have the same first four instructions, the equality $B_i = A_i$ holds for every $i \in \{1, \ldots, 4\}$. In particular,

\[
B_4 = \{4\} \cup (\{n! + 1 : n \in \mathbb{N} \setminus \{0\}\} \cap \mathcal{P})
\]

We show that

\[
B_6 = \{4\} \cup (\{p! + 1 : p \in \mathcal{P}\} \cap \mathbb{N}) \tag{2}
\]

If $x = 4$, then $x_1, \ldots, x_6 \in \mathbb{N} \setminus \{0\}$. Hence, $4 \in B_6$. Let $x \in \mathcal{P}$, and let $x = n! + 1$, where $n \in \mathbb{N} \setminus \{0\}$. Hence, $n \neq 4$. Corollary \[2\] implies that $x_3 = \text{rem}(\Gamma(x), x) = x - 1 = n!$. Hence, $x_4 = \text{fact}^{-1}(x_3) = n$ and $x_5 = \Gamma(x_4) = \Gamma(n) \in \mathbb{N} \setminus \{0\}$. By Lemma \[2\] the term x_6 (which equals $\text{rem}(\Gamma(n), n))$ belongs to $\mathbb{N} \setminus \{0\}$ if and only if $n \in \{4\} \cup \mathcal{P}$. This proves equality (2) as $n \neq 4$. \qed

Theorem 5. The statement Ψ_6 implies that for infinitely many primes p the number $p! + 1$ is prime.

Proof. The number $11! + 1$ is prime, see [1, p. 441] and [7]. By Lemma 5 for $x = 11! + 1$ the computation B returns positive integers x_1, \ldots, x_6. Since $x = 11! + 1 > 720 = f(6)$, the statement Ψ_6 guarantees that the computation B returns positive integers x_1, \ldots, x_6 for infinitely many positive integers x. By Lemma 5 for infinitely many primes p the number $p! + 1$ is prime. \qed

Lemma 6. If $x \in \mathbb{N} \setminus \{0, 1\}$, then $\text{fact}^{-1}(\Gamma(x)) = x - 1$.

Lemma 7. For every positive integer x, the following computation C

\[
\begin{align*}
 x_1 & := x \\
 x_2 & := \text{fact}^{-1}(x_1) \\
 x_3 & := \Gamma(x_1) \\
 x_4 & := \text{fact}^{-1}(x_3) \\
 x_5 & := \Gamma(x_4) \\
 x_6 & := \text{rem}(x_5, x_4)
\end{align*}
\]

returns positive integers x_1, \ldots, x_6 if and only if $x \in \{n! : (n \in \mathbb{N} \setminus \{0\}) \land (n! - 1 \in \mathcal{P})\}$.

Proof. For an integer $i \in \{1, \ldots, 6\}$, let C_i denote the set of positive integers x such that the first i instructions of the computation C returns positive integers x_1, \ldots, x_i. If $x = 1$, then $x_6 = 0$. Therefore, $C_5 \subseteq \mathbb{N} \setminus \{0, 1\}$. For every positive integer x, the term $\text{fact}^{-1}(x_1)$ belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x \in \{n! : n \in \mathbb{N} \setminus \{0\}\}$. Hence, $C_6 \subseteq C_2 = \{n! : n \in \mathbb{N} \setminus \{0\}\}$. Thus, $C_6 \subseteq \{n! : n \in \mathbb{N} \setminus \{0, 1\}\}$. Let $x = n!$, where $n \in \mathbb{N} \setminus \{0, 1\}$. By Lemma 6 the terms x_3 and x_4 belong to $\mathbb{N} \setminus \{0\}$ and $x_4 = x_1 - 1 = x - 1$. Hence, $x_5 = \Gamma(x_4) = \Gamma(x - 1)$. \qed
Next, $x_6 = \text{rem}(x_5, x_4) = \text{rem}(\Gamma(x - 1), x - 1)$. By Lemma 2 for every integer $x \geq 2$, the term $\text{rem}(\Gamma(x - 1), x - 1)$ belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x \in \{5\} \cup \{p + 1 : p \in \mathcal{P}\}$. Since $5 \notin \{n! : n \in \mathbb{N} \setminus \{0, 1\}\}$, we conclude that

$$C_6 = \{n! : (n \in \mathbb{N} \setminus \{0, 1\}) \land (n! - 1 \in \mathcal{P})\} = \{n! : (n \in \mathbb{N} \setminus \{0\}) \land (n! - 1 \in \mathcal{P})\}$$

□

It is conjectured that there are infinitely many primes of the form $n! - 1$, see [1, p. 443] and [6].

Theorem 6. The statement Ψ_6 implies that there are infinitely many primes of the form $n! - 1$.

Proof. The number $7! - 1$ is prime, see see [1, p. 441] and [6]. By Lemma 7, for $x = 7$! the computation C returns positive integers x_1, \ldots, x_6. Since $x = 7! > 720 = f(6)$, the statement Ψ_6 guarantees that the computation C returns positive integers x_1, \ldots, x_6 for infinitely many positive integers x. By Lemma 7, the set $\{n! : (n \in \mathbb{N} \setminus \{0\}) \land (n! - 1 \in \mathcal{P})\}$ is infinite. □

Lemma 8. For every positive integer x, the following computation D

$$
\begin{align*}
x_1 &:= x \\
x_2 &:= \Gamma(x_1) \\
x_3 &:= \text{rem}(x_2, x_1) \\
x_4 &:= \Gamma(x_3) \\
x_5 &:= \text{fact}^{-1}(x_4) \\
x_6 &:= \Gamma(x_5) \\
x_7 &:= \text{rem}(x_6, x_5)
\end{align*}
$$

returns positive integers x_1, \ldots, x_7 if and only if both x and $x - 2$ are prime.

Proof. For an integer $i \in \{1, \ldots, 7\}$, let D_i denote the set of positive integers x such that the first i instructions of the computation D returns positive integers x_1, \ldots, x_i. If $x = 1$, then $x_3 = 0$. Hence, $D_7 \subseteq D_3 \subseteq \mathbb{N} \setminus \{0, 1\}$. If $x \in (2, 3, 4)$, then $x_7 = 0$. Therefore,

$$D_7 \subseteq (\mathbb{N} \setminus \{0, 1\}) \cap (\mathbb{N} \setminus \{0, 2, 3, 4\}) = \mathbb{N} \setminus \{0, 1, 2, 3, 4\}$$

By Lemma 2 for every integer $x \geq 5$, the term x_3 (which equals $\text{rem}(\Gamma(x), x)$) belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x \in \mathcal{P} \setminus \{2, 3\}$. By Corollary 2 for every $x \in \mathcal{P} \setminus \{2, 3\}$, $x_3 = x - 1 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$. By Lemma 6 for every $x \in \mathcal{P} \setminus \{2, 3\}$, the terms x_4 and x_5 belong to $\mathbb{N} \setminus \{0\}$ and $x_5 = x_3 - 1 = x - 2$. By Lemma 2 for every $x \in \mathcal{P} \setminus \{2, 3\}$, the term x_7 (which equals $\text{rem}(\Gamma(x_5), x_5)$) belongs to $\mathbb{N} \setminus \{0\}$ if and only if $x_5 = x - 2 \in \{4\} \cup \mathcal{P}$. From these facts, we obtain that

$$D_7 = (\mathbb{N} \setminus \{0, 1, 2, 3, 4\}) \cap (\mathcal{P} \setminus \{2, 3\}) \cap (\{6\} \cup \{p + 2 : p \in \mathcal{P}\}) = \{p \in \mathcal{P} : p - 2 \in \mathcal{P}\}$$

□

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [3, p. 39].

Theorem 7. The statement Ψ_7 implies that there are infinitely many twin primes.

Proof. Harvey Dubner proved that the numbers $459 \cdot 2^{8529} - 1$ and $459 \cdot 2^{8529} + 1$ are prime, see [8, p. 87]. By Lemma 8 for $x = 459 \cdot 2^{8529} + 1$ the computation D returns positive integers x_1, \ldots, x_7. Since $x > 720! = f(7)$, the statement Ψ_7 guarantees that the computation D returns positive integers x_1, \ldots, x_7 for infinitely many positive integers x. By Lemma 8 there are infinitely many twin primes. □
References

Apoloniusz Tyszka
Technical Faculty
Hugo Kołłątaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl