On ZFC-formulae $\varphi(x)$ for which we know a non-negative integer n such that \(\{x \in \mathbb{N} : \varphi(x)\} \subseteq \{x \in \mathbb{N} : x \leq n - 1\} \) if the set \(\{x \in \mathbb{N} : \varphi(x)\} \) is finite

Apoloniusz Tyszka

Technical Faculty
Hugo Kołłątaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

Abstract

Let $\mathcal{P}_{\text{twin}}$ denote the set of twin primes, and let \mathcal{M} denote the set of all positive multiples of twin primes greater than 99999. The set $X = \mathcal{P}_{\text{twin}} \cup \mathcal{M}$ satisfies the following conditions: (1) a known and simple algorithm for every $n \in \mathbb{N}$ decides whether or not $n \in X$. (2) a known and simple algorithm returns an integer n such that X is infinite if and only if X contains an element greater than n. (3) new elements of X are still discovered. (4) it is conjectured that X is infinite although we do not know any algorithm deciding the infiniteness of X. The following problem is open: define a set $X \subseteq \mathbb{N}$ such that X satisfies conditions (1)-(4) and a known and simple formula $\phi(x)$ of Peano arithmetic satisfies \(\{n \in \mathbb{N} : \phi(n)\} = X \) and $\phi(n)$ has the same intuitive meaning for every $n \in \mathbb{N}$ (5). The statements $\phi(n)$ in item (5) have always the same intuitive meaning, if $\phi(x)$ expresses a “natural property”, the term propounded by David Lewis (1941 - 2001). The problem remains open if condition (2) states that a known and simple algorithm returns an integer n such that X is infinite if and only if $\text{card}(X) > n$. Let $g(3) = 4$, and let $g(n + 1) = g(n)!$ for every integer $n \geq 3$. For an integer $n \in \{3, \ldots, 16\}$, let Ψ_n denote the following statement: if a system of equations $S \subseteq \{x_1 = x_2 : (i, k \in \{1, \ldots, n\} \land (i \neq k)) \cup \{x_1 \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\}\}$ has only finitely many solutions in positive integers x_1, \ldots, x_n, then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq g(n)$. For every statement Ψ_n, the bound $g(n)$ cannot be decreased. The author’s guess is that the statements $\Psi_3, \ldots, \Psi_{16}$ are true. The statement Ψ_6 implies that the set of primes of the form $n^2 + 1$ and the set of primes of the form $n! + 1$ satisfy conditions (1)-(5). The statement Ψ_{16} implies that the set of twin primes satisfies conditions (1)-(5).

Key words and phrases: finiteness of a set, incompleteness of ZFC, infiniteness of a set, prime numbers of the form $n^2 + 1$, prime numbers of the form $n! + 1$, twin primes, Zenkin’s super-induction.

2010 Mathematics Subject Classification: 03D20, 11A41.

1 Introduction and basic lemmas

The phrase "we know a non-negative integer $n" in the title means that we know an algorithm which returns n. The title cannot be formalised in ZFC because the phrase "we know a non-negative integer $n" refers to currently known non-negative integers n with some property. A formally stated title may look like this: On ZFC-formulae $\varphi(x)$ for which there exists a non-negative integer n such that ZFC proves that

\[
\text{card}(\{x \in \mathbb{N} : \varphi(x)\}) < \infty \implies \{x \in \mathbb{N} : \varphi(x)\} \subseteq \{x \in \mathbb{N} : x \leq n - 1\}
\]

Unfortunately, this formulation admits formulae $\varphi(x)$ without any known non-negative integer n such that ZFC proves the above implication.
Lemma 1. For every non-negative integer \(n \), \(\text{card}(\{ x \in \mathbb{N} : x \leq n - 1 \}) = n \).

Corollary 1. The title altered to “On ZFC-formulae \(\varphi(x) \) for which we know a non-negative integer \(n \) such that \(\text{card}(\{ x \in \mathbb{N} : \varphi(x) \}) \leq n \) if the set \(\{ x \in \mathbb{N} : \varphi(x) \} \) is finite” involves a weaker assumption on \(\varphi(x) \).

Lemma 2. For every positive integers \(x \) and \(y \), \(x! \cdot y! = y! \) if and only if \((x + 1 = y) \lor (x = y = 1)\)

Lemma 3. For every non-negative integers \(b \) and \(c \), \(b + 1 = c \) if and only if \(2^{2b} \cdot 2^{2b} = 2^{2c} \)

Lemma 4. (Wilson’s theorem, [9 p. 89]). For every positive integer \(x \), \(x \) divides \((x - 1)! + 1 \) if and only if \(x = 1 \) or \(x \) is prime.

2 Subsets of \(\mathbb{N} \) and their threshold numbers

Definition 1. We say that an integer \(m \in [-1, \infty) \) is a threshold number of a set \(X \subseteq \mathbb{N} \), if \(X \) is infinite if and only if \(X \) contains an element greater than \(m \), cf. [23] and [24].

If a set \(X \subseteq \mathbb{N} \) is empty or infinite, then any \(m \in [-1, \infty) \cap \mathbb{Z} \) is a threshold number of \(X \). If a set \(X \subseteq \mathbb{N} \) is non-empty and finite, then the all threshold numbers of \(X \) form the set \(\{ \max(X), \max(X) + 1, \max(X) + 2, \ldots \} \).

Definition 2. We say that a non-negative integer \(m \) is a weak threshold number of a set \(X \subseteq \mathbb{N} \), if \(X \) is infinite if and only if \(\text{card}(X) > m \).

Proposition 1. For every \(X \subseteq \mathbb{N} \), if an integer \(m \in [-1, \infty) \) is a threshold number of \(X \), then \(m + 1 \) is a weak threshold number of \(X \).

Proof. For every \(X \subseteq \mathbb{N} \), if \(m \in [-1, \infty) \cap \mathbb{Z} \) and \(\text{card}(X) > m + 1 \), then \(X \cap [m + 1, \infty) \neq \emptyset \). \(\square \)

It is conjectured that the set of prime numbers of the form \(n^2 + 1 \) is infinite, see [16 pp. 37–38]. It is conjectured that the set of prime numbers of the form \(n! + 1 \) is infinite, see [2] p. 443]. A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture states that the set of twin primes is infinite, see [16] p. 39]. It is conjectured that the set of composite numbers of the form \(2^{2n} + 1 \) is infinite, see [12] p. 23] and [13] pp. 158–159]. A prime \(p \) is said to be a Sophie Germain prime if both \(p \) and \(2p + 1 \) are prime, see [22]. It is conjectured that the set of Sophie Germain primes is infinite, see [18] p. 330]. For each of these sets, we do not know any weak threshold number.

Open Problem 1. Define a set \(X \subseteq \mathbb{N} \) that satisfies the following conditions:

(a1) a known and simple algorithm for every \(n \in \mathbb{N} \) decides whether or not \(n \in X \),
(b1) a known and simple algorithm returns an integer \(n \) such that \(X \) is infinite if and only if \(\text{card}(X) > n \),
(c1) new elements of \(X \) are still discovered,
(d1) it is conjectured that \(X \) is infinite although we do not know any algorithm deciding the infiniteness of \(X \),
(e1) a known and simple formula \(\phi(x) \) of Peano arithmetic satisfies \(\{ n \in \mathbb{N} : \phi(n) \} = X \) and \(\phi(n) \) has the same intuitive meaning for every \(n \in \mathbb{N} \).

The statements \(\phi(n) \) in item (e1) have always the same intuitive meaning, if \(\phi(x) \) expresses a natural property, the term described in [7].

The following statement: for every non-negative integer \(n \) there exist

\[
\text{prime numbers } p \text{ and } q \text{ such that } p + 2 = q \text{ and } p \in \left[10^n, 10^n + 1 \right]
\]

(T)
is a \(\Pi_1 \) statement which strengthens the twin prime conjecture, see [3] p. 43]. C. H. Bennett claims that most mathematical conjectures can be settled indirectly by proving stronger \(\Pi_1 \) statements, see [1]. The statement \((T) \) is equivalent to the non-halting of a Turing machine. If a set \(X \subseteq \mathbb{N} \) is computable and we know a threshold number of \(X \), then the infiniteness of \(X \) is equivalent to the halting of a Turing machine.

The height of a rational number \(\frac{p}{q} \) is denoted by \(H\left(\frac{p}{q}\right) \) and equals \(\max(|p|, |q|) \) provided \(\frac{p}{q} \) is written in lowest terms. The height of a rational tuple \((x_1, \ldots, x_n) \) is denoted by \(H(x_1, \ldots, x_n) \) and equals \(\max(H(x_1), \ldots, H(x_n)) \).

Proposition 2. The equation \(x^5 - x = y^2 - y \) has only finitely many rational solutions, see [15] p. 212. The known rational solutions are \((x, y) = (-1, 0), (-1, 1), (0, 0), (0, 1), (1, 0), (1, 1), (2, -5), (2, 6), (3, -15), (3, 16), (30, -4929), (30, 4930), \left(\frac{15}{32}, \frac{17}{32} \right), \left(-\frac{15}{16}, -\frac{185}{1024} \right), \left(-\frac{15}{16}, \frac{1209}{1024} \right) \), and the existence of other solutions is an open question, see [19] pp. 223–224].

Proposition 3. The set \(T = \{ n \in \mathbb{N} : \text{the equation } x^5 - x = y^2 - y \text{ has a rational solution of height } n \} \) is finite. We know an algorithm which for every \(n \in \mathbb{N} \) decides whether or not \(n \in T \). We do not know any algorithm which returns a threshold number of \(T \).

Open Problem 2. Define a set \(X \subseteq \mathbb{N} \) that satisfies the following conditions:

(a2) a known and simple algorithm for every \(n \in \mathbb{N} \) decides whether or not \(n \in X \),

(b2) a known and simple algorithm returns an integer \(n \) such that \(X \) is infinite if and only if \(X \) contains an element greater than \(n \),

(c2) new elements of \(X \) are still discovered,

(d2) it is conjectured that \(X \) is infinite although we do not know any algorithm deciding the infiniteness of \(X \),

(e2) a known and simple formula \(\phi(x) \) of Peano arithmetic satisfies \(\{ n \in \mathbb{N} : \phi(n) \} = X \) and \(\phi(n) \) has the same intuitive meaning for every \(n \in \mathbb{N} \).

Let \(\mathcal{P}_{\text{twin}} \) denote the set of twin primes, and let \(M \) denote the set of all positive multiples of twin primes greater than 99999.

Proposition 4. The set \(X = \mathcal{P}_{\text{twin}} \cup M \) satisfies conditions (a2) – (d2).

Proof. The largest known twin prime is much smaller than 99999. \(\square \)

Let

\[
\mathcal{H} = \begin{cases}
\mathbb{N}, \text{ if } \sin\left(99999\right) < 0 \\
\mathbb{N} \cap \left[0, \sin\left(99999\right) \cdot 99999\right] \text{ otherwise}
\end{cases}
\]

We do not know whether or not the set \(\mathcal{H} \) is finite.

Proposition 5. The number 99999 is a threshold number of \(\mathcal{H} \). We know an algorithm which decides the equality \(\mathcal{H} = \mathbb{N} \). If \(\mathcal{H} \neq \mathbb{N} \), then the set \(\mathcal{H} \) consists of all integers from 0 to a non-negative integer which can be computed by a known algorithm. We know an algorithm which for every \(n \in \mathbb{N} \) decides whether or not \(n \in \mathcal{H} \).

Let

\[
\mathcal{K} = \begin{cases}
\{ n \}, \text{ if } (n \in \mathbb{N}) \land \left(2^{N_0} = S_{n+1} \right) \\
\{0\}, \text{ if } 2^{N_0} \geq S_\omega
\end{cases}
\]
Theorem 1. ZFC proves that \(\text{card}(\mathcal{K}) = 1\). If ZFC is consistent, then for every \(n \in \mathbb{N}\) the sentences "\(n\) is a threshold number of \(\mathcal{K}\)" and "\(n\) is not a threshold number of \(\mathcal{K}\)" are not provable in ZFC. If ZFC is consistent, then for every \(n \in \mathbb{N}\) the sentences "\(n \in \mathcal{K}\)" and "\(n \notin \mathcal{K}\)" are not provable in ZFC.

Proof. It suffices to observe that \(2^{\mathbb{N}_0}\) can attain every value from the set \(\{\mathbb{N}_1, \mathbb{N}_2, \mathbb{N}_3, \ldots\}\), see [8] and [11] p. 232. □

3 A Diophantine equation whose non-solvability expresses the consistency of ZFC

Gödel’s second incompleteness theorem and the Davis-Putnam-Robinson-Matiyasevich theorem imply the following theorem.

Theorem 2. ([5] p. 35]). There exists a polynomial \(D(x_1, \ldots, x_m)\) with integer coefficients such that if ZFC is arithmetically consistent, then the sentences "The equation \(D(x_1, \ldots, x_m) = 0\) is solvable in non-negative integers" and "The equation \(D(x_1, \ldots, x_m) = 0\) is not solvable in non-negative integers" are not provable in ZFC.

Remark 1. ([6], [7] p. 53]). The polynomial \(D(x_1, \ldots, x_m)\) is very complicated.

Let \(\mathcal{Y}\) denote the set of all non-negative integers \(k\) such that the equation \(D(x_1, \ldots, x_m) = 0\) has no solutions in \([0, \ldots, k]^m\). Since the set \([0, \ldots, k]^m\) is finite, there exists an algorithm which for every \(n \in \mathbb{N}\) decides whether or not \(n \in \mathcal{Y}\). Theorem 2 implies the next theorem.

Theorem 3. For every \(n \in \mathbb{N}\), ZFC proves that \(n \in \mathcal{Y}\). If ZFC is arithmetically consistent, then the sentences "\(\mathcal{Y}\) is finite" and "\(\mathcal{Y}\) is infinite" are not provable in ZFC. If ZFC is arithmetically consistent, then for every \(n \in \mathbb{N}\) the sentences "\(n\) is a threshold number of \(\mathcal{Y}\)" and "\(n\) is not a threshold number of \(\mathcal{Y}\)" are not provable in ZFC.

Let \(\mathcal{E}\) denote the set of all non-negative integers \(k\) such that the equation \(D(x_1, \ldots, x_m) = 0\) has a solution in \([0, \ldots, k]^m\). Since the set \([0, \ldots, k]^m\) is finite, there exists an algorithm which for every \(n \in \mathbb{N}\) decides whether or not \(n \in \mathcal{E}\). Theorem 2 implies the next theorem.

Theorem 4. The set \(\mathcal{E}\) is empty or infinite. In both cases, every non-negative integer \(n\) is a threshold number of \(\mathcal{E}\). If ZFC is arithmetically consistent, then the sentences "\(\mathcal{E}\) is empty", "\(\mathcal{E}\) is not empty", "\(\mathcal{E}\) is finite", and "\(\mathcal{E}\) is infinite" are not provable in ZFC.

Let \(\mathcal{V}\) denote the set

\[
\{k \in \mathbb{N} : \text{the polynomial } D(x_1, \ldots, x_m) \text{ has no solutions in } [0, \ldots, k]^m\} \land \{\text{the polynomial } D(x_1, \ldots, x_m) \text{ has a solution in } [0, \ldots, k+1]^m\}.
\]

Since the sets \([0, \ldots, k]^m\) and \([0, \ldots, k+1]^m\) are finite, there exists an algorithm which for every \(n \in \mathbb{N}\) decides whether or not \(n \notin \mathcal{V}\). According to Remark 1 at present we do not know a simple computer program that realizes such an algorithm. Theorem 2 implies the next theorem.

Theorem 5. (6) ZFC proves that \(\text{card}(\mathcal{V}) \notin \{0, 1\}\). (7) For every \(n \in \mathbb{N}\), ZFC proves that \(n \notin \mathcal{V}\). (8) ZFC does not prove the emptiness of \(\mathcal{V}\). If ZFC is arithmetically consistent. (9) For every \(n \in \mathbb{N}\), the sentence "\(n\) is a threshold number of \(\mathcal{V}\)" is not provable in ZFC, if ZFC is arithmetically consistent. (10) For every \(n \in \mathbb{N}\), the sentence "\(n\) is not a threshold number of \(\mathcal{V}\)" is not provable in ZFC, if ZFC is arithmetically consistent.

Open Problem 3. Define a simple algorithm \(A\) such that \(A\) returns 0 or 1 on every input \(k \in \mathbb{N}\) and the set

\[
\mathcal{V} = \{k \in \mathbb{N} : \text{the program } A \text{ returns 1 on input } k\}
\]

satisfies conditions (6)–(10).
4 Hypothetical statements \(\Psi_3, \ldots, \Psi_{16} \)

For an integer \(n \geq 3 \), let \(\mathcal{U}_n \) denote the following system of equations:

\[
\begin{align*}
\forall i \in \{1, \ldots, n-1\} \setminus \{2\} \quad x_i! &= x_{i+1} \\
x_1 \cdot x_1 &= x_3 \\
x_2 \cdot x_2 &= x_3
\end{align*}
\]

The diagram in Figure 1 illustrates the construction of the system \(\mathcal{U}_n \).

![Diagram](image)

Fig. 1 Construction of the system \(\mathcal{U}_n \)

Let \(g(3) = 4 \), and let \(g(n+1) = g(n)! \) for every integer \(n \geq 3 \).

Lemma 5. For every integer \(n \geq 3 \), the system \(\mathcal{U}_n \) has exactly two solutions in positive integers, namely \((1, \ldots, 1) \) and \((2, 2, g(3), \ldots, g(n)) \).

Let

\[
\mathcal{B}_n = \{x_i! = x_k : (i, k \in \{1, \ldots, n\}) \land (i \neq k)\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\}\}
\]

For an integer \(n \geq 3 \), let \(\Psi_n \) denote the following statement: if a system of equations \(\mathcal{S} \subseteq \mathcal{B}_n \) has only finitely many solutions in positive integers \(x_1, \ldots, x_n \), then each such solution \((x_1, \ldots, x_n) \) satisfies \(x_1, \ldots, x_n \leq g(n) \). The statement \(\Psi_n \) says that for subsystems of \(\mathcal{B}_n \) the largest known solution is indeed the largest possible.

Hypothesis 1. The statements \(\Psi_3, \ldots, \Psi_{16} \) are true.

Lemma 6. Every statement \(\Psi_n \) is true with an unknown integer bound that depends on \(n \).

Proof. For every positive integer \(n \), the system \(\mathcal{B}_n \) has a finite number of subsystems. \(\square \)

Lemma 7. For every statement \(\Psi_n \), the bound \(g(n) \) cannot be decreased.

Proof. It follows from Lemma 5 because \(\mathcal{U}_n \subseteq \mathcal{B}_n \). \(\square \)

Remark 2. By Lemma 2 and algebraic lemmas in [20, p. 110], the statement \(\forall n \in \mathbb{N} \setminus \{0, 1, 2\} \Psi_n \) implies that there is an algorithm which takes as input a factorial Diophantine equation, and returns an integer such that this integer is greater than the solutions in positive integers, if these solutions form a finite set. This conclusion is unbelievable because a computable upper bound on non-negative integer solutions does not exist for exponential Diophantine equations with a finite number of solutions, see [14, p. 300]. Therefore, the statement \(\forall n \in \mathbb{N} \setminus \{0, 1, 2\} \Psi_n \) seems to be false.
5 The Brocard-Ramanujan equation $x! + 1 = y^2$

Let \mathcal{A} denote the following system of equations:

\[
\begin{align*}
 x_1! &= x_2 \\
 x_2! &= x_3 \\
 x_5! &= x_6 \\
 x_4 \cdot x_4 &= x_5 \\
 x_3 \cdot x_5 &= x_6
\end{align*}
\]

Lemma 2 and the diagram in Figure 2 explain the construction of the system \mathcal{A}.

\[\text{Fig. 2} \quad \text{Construction of the system } \mathcal{A}\]

Lemma 8. For every $x_1, x_4 \in \mathbb{N} \setminus \{0, 1\}$, the system \mathcal{A} is solvable in positive integers x_2, x_3, x_5, x_6 if and only if $x_1! + 1 = x_4^2$. In this case, the integers x_2, x_3, x_5, x_6 are uniquely determined by the following equalities:

\[
\begin{align*}
 x_2 &= x_1! \\
 x_3 &= (x_1!)! \\
 x_5 &= x_1! + 1 \\
 x_6 &= (x_1! + 1)!
\end{align*}
\]

Proof. It follows from Lemma 2. □

It is conjectured that $x! + 1$ is a perfect square only for $x \in \{4, 5, 7\}$, see [21, p. 297]. A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the equation $x! + 1 = y^2$, see [17].

Theorem 6. If the equation $x_1! + 1 = x_4^2$ has only finitely many solutions in positive integers, then the statement Ψ_6 guarantees that each such solution (x_1, x_4) belongs to the set \{(4, 5), (5, 11), (7, 71)\}.

Proof. Suppose that the antecedent holds. Let positive integers x_1 and x_4 satisfy $x_1! + 1 = x_4^2$. Then, $x_1, x_4 \in \mathbb{N} \setminus \{0, 1\}$. By Lemma 8 the system \mathcal{A} is solvable in positive integers x_2, x_3, x_5, x_6. Since $\mathcal{A} \subseteq B_6$, the statement Ψ_6 implies that $x_6 = (x_1! + 1) \leq g(6) = g(5)!$. Hence, $x_1! + 1 \leq g(5) = g(4)!$. Consequently, $x_1 < g(4) = 24$. If $x_1 \in \{1, \ldots, 23\}$, then $x_1! + 1$ is a perfect square only for $x_1 \in \{4, 5, 7\}$. □

6 Are there infinitely many prime numbers of the form $n^2 + 1$?

Edmund Landau’s conjecture states that there are infinitely many primes of the form $n^2 + 1$, see [16, pp. 37–38]. Let \mathcal{B} denote the following system of equations:

\[
\begin{align*}
 x_2! &= x_3 \\
 x_3! &= x_4 \\
 x_5! &= x_6 \\
 x_8! &= x_9
\end{align*}
\]

\[
\begin{align*}
 x_1 \cdot x_1 &= x_2 \\
 x_3 \cdot x_5 &= x_6 \\
 x_4 \cdot x_8 &= x_9 \\
 x_5 \cdot x_7 &= x_8
\end{align*}
\]

Lemma 2 and the diagram in Figure 3 explain the construction of the system \mathcal{B}.
Lemma 9. For every integer \(x_1 \geq 2 \), the system \(\mathcal{B} \) is solvable in positive integers \(x_2, \ldots, x_9 \) if and only if \(x_1^2 + 1 \) is prime. In this case, the integers \(x_2, \ldots, x_9 \) are uniquely determined by the following equalities:

\[
\begin{align*}
 x_2 &= x_1^2, \\
 x_3 &= (x_1^2)! \\
 x_4 &= ((x_1^2)!)! \\
 x_5 &= x_1^2 + 1 \\
 x_6 &= (x_1^2 + 1)! \\
 x_7 &= \frac{(x_1^2)! + 1}{x_1^2 + 1} \\
 x_8 &= (x_1^2)! + 1 \\
 x_9 &= ((x_1^2)! + 1)! \\
\end{align*}
\]

Proof. By Lemma 9, for every integer \(x_1 \geq 2 \), the system \(\mathcal{B} \) is solvable in positive integers \(x_2, \ldots, x_9 \) if and only if \(x_1^2 + 1 \) divides \((x_1^2)! + 1 \). Hence, the claim of Lemma 9 follows from Lemma 4.

Lemma 10. There are only finitely many tuples \((x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9 \) which solve the system \(\mathcal{B} \) and satisfy \(x_1 = 1 \).

Proof. If a tuple \((x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9 \) solves the system \(\mathcal{B} \) and \(x_1 = 1 \), then \(x_1, \ldots, x_9 \leq 2 \). Indeed, \(x_1 = 1 \) implies that \(x_2 = x_3 = 1 \). Hence, for example, \(x_3 = x_2! = 1 \). Therefore, \(x_8 = x_3 + 1 = 2 \) or \(x_8 = 1 \). Consequently, \(x_9 = x_8! \leq 2 \).

Theorem 7. The statement \(\Psi_9 \) proves the following implication: if there exists an integer \(x_1 \geq 2 \) such that \(x_1^2 + 1 \) is prime and greater than \(g(7) \), then there are infinitely many primes of the form \(n^2 + 1 \).

Proof. Suppose that the antecedent holds. By Lemma 9, there exists a unique tuple \((x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^8 \) such that the tuple \((x_1, x_2, \ldots, x_9) \) solves the system \(\mathcal{B} \). Since \(x_1^2 + 1 > g(7) \), we obtain that \(x_1^2 > g(7) \). Hence, \((x_1^2)! \geq g(7)! = g(8) \). Consequently,

\[
x_9 = ((x_1^2)! + 1)! \geq (g(8) + 1)! > g(8)! = g(9)
\]

Since \(\mathcal{B} \) and \(B_9 \), the system \(\Psi_9 \) and the inequality \(x_9 \geq g(9) \) imply that the system \(\mathcal{B} \) has infinitely many solutions \((x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9 \). According to Lemmas 9 and 10, there are infinitely many primes of the form \(n^2 + 1 \).

Corollary 2. Let \(X_9 \) denote the set of primes of the form \(n^2 + 1 \). The statement \(\Psi_9 \) implies that we know an algorithm such that it returns a threshold number of \(X_9 \), and this number equals \(\max(X_9) \) if \(X_9 \) is finite. Assuming the statement \(\Psi_9 \), a single query to an oracle for the halting problem decides the infiniteness of \(X_9 \). Assuming the statement \(\Psi_9 \), the infiniteness of \(X_9 \) is decidable in the limit.

Proof. We consider an algorithm which computes \(\max(X_9 \cap [1, g(7)]) \).
7 Are there infinitely many prime numbers of the form \(n! + 1 \)?

It is conjectured that there are infinitely many primes of the form \(n! + 1 \), see [2, p. 443].

Theorem 8. The statement \(\Psi_9\) proves the following implication: if there exists an integer \(x_1 \geq g(6) \) such that \(x_1! + 1 \) is prime, then there are infinitely many primes of the form \(n! + 1 \).

Proof. We leave the analogous proof to the reader. \(\square\)

8 The twin prime conjecture

A twin prime is a prime number that differs from another prime number by 2. The twin prime conjecture states that there are infinitely many twin primes, see [16, p. 39]. Let \(C \) denote the following system of equations:

\[
\begin{align*}
 x_1! & = x_2 \\
 x_2! & = x_3 \\
 x_4! & = x_5 \\
 x_6! & = x_7 \\
 x_7! & = x_8 \\
 x_9! & = x_{10} \\
 x_{12}! & = x_{13} \\
 x_{15}! & = x_{16}
\end{align*}
\]

Lemma 2 and the diagram in Figure 4 explain the construction of the system \(C \).

Lemma 11. For every \(x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\} \), the system \(C \) is solvable in positive integers \(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16} \) if and only if \(x_4 \) and \(x_9 \) are prime and \(x_4 + 2 = x_9 \). In this case, the integers \(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16} \) are uniquely determined by the following equalities:

![Fig. 4 Construction of the system C](image)
Lemma 12. There are only finitely many tuples \((x_1, \ldots, x_{16}) \in (\mathbb{N} \setminus \{0\})^{16}\) which solve the system \(C\) and satisfy \((x_4 \in \{1, 2\}) \lor (x_9 \in \{1, 2\})\).

Proof. If a tuple \((x_1, \ldots, x_{16}) \in (\mathbb{N} \setminus \{0\})^{16}\) solves the system \(C\) and \((x_4 \in \{1, 2\}) \lor (x_9 \in \{1, 2\})\), then \(x_1, \ldots, x_{16} \leq 7!\). Indeed, for example, if \(x_4 = 2\) then \(x_6 = x_4 + 1 = 3\). Hence, \(x_7 = x_6! = 6\). Therefore, \(x_{15} = x_7 + 1 = 7\). Consequently, \(x_{16} = x_{15}! = 7!\).

Theorem 9. The statement \(\Psi_{16}\) proves the following implication: if there exists a twin prime greater than \(g(14)\), then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers \(x_4\) and \(x_9\) such that \(x_9 = x_4 + 2 > g(14)\). Hence, \(x_4, x_9 \in \mathbb{N} \setminus \{0, 1, 2\}\). By Lemma 11 there exists a unique tuple

\[(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) \in (\mathbb{N} \setminus \{0\})^{14}\]

such that the tuple \((x_1, \ldots, x_{16})\) solves the system \(C\). Since \(x_9 > g(14)\), we obtain that \(x_9 - 1 \geq g(14)\). Therefore, \((x_9 - 1)! > g(14)! = g(15)\). Hence, \((x_9 - 1)! + 1 > g(15)\). Consequently,

\[x_{16} = ((x_9 - 1)! + 1) > g(15)! = g(16)\]

Since \(C \subseteq B_{16}\), the statement \(\Psi_{16}\) and the inequality \(x_{16} > g(16)\) imply that the system \(C\) has infinitely many solutions in positive integers \(x_1, \ldots, x_{16}\). According to Lemmas 11 and 12 there are infinitely many twin primes.

Corollary 3. (cf. [12]). Let \(X_{16}\) denote the set of twin primes. The statement \(\Psi_{16}\) implies that we know an algorithm such that it returns a threshold number of \(X_{16}\), and this number equals \(\max(X_{16})\), if \(X_{16}\) is finite. Assuming the statement \(\Psi_{16}\), a single query to an oracle for the halting problem decides the infiniteness of \(X_{16}\). Assuming the statement \(\Psi_{16}\), the infiniteness of \(X_{16}\) is decidable in the limit.

Proof. We consider an algorithm which computes \(\max(X_{16} \cap [1, g(14)])\).

9 Are there infinitely many composite Fermat numbers?

Integers of the form \(2^{2^n} + 1\) are called Fermat numbers. Primes of the form \(2^{2^n} + 1\) are called Fermat primes, as Fermat conjectured that every integer of the form \(2^{2^n} + 1\) is prime, see [13] p. 1. Fermat correctly remarked that \(2^0 + 1 = 3, 2^1 + 1 = 5, 2^2 + 1 = 17, 2^3 + 1 = 257,\) and \(2^4 + 1 = 65537\) are all prime, see [13] p. 1.

Open Problem 4. ([13] p. 159). Are there infinitely many composite numbers of the form \(2^{2^n} + 1\)?
Most mathematicians believe that $2^{2n} + 1$ is composite for every integer $n \geq 5$, see [12, p. 23]. Let

$$H_n = \{x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\}\} \cup \{2^{x_i} = x_k : i, k \in \{1, \ldots, n\}\}$$

Let $h(1) = 1$, and let $h(n + 1) = 2^{h(n)}$ for every positive integer n.

Lemma 13. The following subsystem of H_n

$$\left\{ \begin{array}{l}
 x_1 \cdot x_1 = x_1 \\
 \forall i \in \{1, \ldots, n-1\} \ 2^{x_i} = x_{i+1}
\end{array} \right. $$

has exactly one solution $(x_1, \ldots, x_n) \in (\mathbb{N} \setminus \{0\})^n$, namely $(h(1), \ldots, h(n))$.

For a positive integer n, let ξ_n denote the following statement: if a system of equations $S \subseteq H_n$ has only finitely many solutions in positive integers x_1, \ldots, x_n, then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq h(n)$. The statement ξ_n says that for subsystems of H_n the largest known solution is indeed the largest possible.

Hypothesis 2. The statements ξ_1, \ldots, ξ_{13} are true.

Lemma 14. Every statement ξ_n is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system H_n has a finite number of subsystems. \qed

Theorem 10. The statement ξ_{13} proves the following implication: if $z \in \mathbb{N} \setminus \{0\}$ and $2^{2z} + 1$ is composite and greater than $h(12)$, then $2^{2z} + 1$ is composite for infinitely many positive integers z.

Proof. Let us consider the equation

$$(x + 1)(y + 1) = 2^{2z} + 1$$

in positive integers. By Lemma 3 we can transform the equation (E) into an equivalent system of equations G which has 13 variables $(x, y, z, \text{and 10 other variables})$ and which consists of equations of the forms $\alpha \cdot \beta = \gamma$ and $2^{2\alpha} = \gamma$, see the diagram in Figure 5.
Fig. 5 Construction of the system G

Since $2^{2^z} + 1 > h(12)$, we obtain that $2^{2^{2^z}+1} > h(13)$. By this, the statement ξ_{13} implies that the system G has infinitely many solutions in positive integers. It means that there are infinitely many composite Fermat numbers. □

Corollary 4. Let W_{13} denote the set of composite Fermat numbers. The statement ξ_{13} implies that we know an algorithm such that it returns a threshold number of W_{13}, and this number equals $\max(W_{13})$, if W_{13} is finite. Assuming the statement ξ_{13}, a single query to an oracle for the halting problem decides the infiniteness of W_{13}. Assuming the statement ξ_{13}, the infiniteness of W_{13} is decidable in the limit.

Proof. We consider an algorithm which computes $\max(W_{13} \cap [1, h(12)])$. □

References

