A new argument against logicism: there are open problems in computability theory that cannot be formally stated

Apoloniusz Tyszka

Abstract

Let $\beta=(((24!)!)!)!$, and let $\mathcal{P}_{n^{2}+1}$ denote the set of all primes of the form $n^{2}+1$. Let \mathcal{M} denote the set of all positive multiples of elements of the $\operatorname{set} \mathcal{P}_{n^{2}+1} \cap(\beta, \infty)$. The set $\mathcal{X}=\{0, \ldots, \beta\} \cup \mathcal{M}$ satisfies the following conditions: (1) $\operatorname{card}(\mathcal{X})$ is greater than a huge positive integer and it is conjectured that \mathcal{X} is infinite, (2) we do not know any algorithm deciding the finiteness of \mathcal{X}, (3) a known and short algorithm for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{X}$, (4) a known and short algorithm returns an integer n such that \mathcal{X} is infinite if and only if \mathcal{X} contains an element greater than n. The following problem is open: simply define a set $\mathcal{X} \subseteq \mathbb{N}$ such that \mathcal{X} satisfies conditions (1)-(4) and we do not know any representation of \mathcal{X} as a finite union of sets whose definitions are simpler than the definition of \mathcal{X} (5). The problem cannot be formally stated as it refers to current knowledge about \mathcal{X}. The problem remains open, if condition (5) states that \mathcal{X} is widely known in Number Theory. We prove that the set \mathcal{X} of all non-negative integers k whose number of digits belongs to $\mathcal{P}_{n^{2}+1}$ satisfies conditions (1)-(3) and (5). We prove that some hypothetical statement implies that \mathcal{X} satisfies condition (4). It seems that $\mathcal{X}=\mathcal{P}_{n^{2}+1}$ will solve the problem for both formulations of condition (5).

Key words and phrases: Alexander Zenkin's super-induction method, arithmetical operations on huge integers cannot be practically performed, computable set $\mathcal{X} \subseteq \mathbb{N}$ whose finiteness remains conjectured, computable set $\mathcal{X} \subseteq \mathbb{N}$ whose infiniteness remains conjectured, logicism.

1 Introduction, basic definitions and lemmas

Logicism is a programme in the philosophy of mathematics. It is mainly characterized by the contention that mathematics can be reduced to logic, provided that the latter includes set theory, see [4] p. 199]. In this article, we present an argument against logicism: there are open problems that concern computable sets $\mathcal{X} \subseteq \mathbb{N}$ and cannot be formally stated as they refer to current knowledge about \mathcal{X} and an intuitive concept of simplicity.

Definition 1. Let $\beta=(((24!)!)!)$!.
Lemma 1. $\beta \approx 10^{10^{10}}{ }^{10^{25.16114896940657}}$.
Proof. We ask Wolfram Alpha at http://wolframalpha.com
Lemma 2. $((7!)!)!\approx 10^{10^{16477.87280582041}}$.
Proof. We ask Wolfram Alpha about $0.0+((7!)!)!$.
Definition 2. We say that an integer $m \geqslant-1$ is a threshold number of a set $\mathcal{X} \subseteq \mathbb{N}$, if \mathcal{X} is infinite if and only if \mathcal{X} contains an element greater than $m, c f .[11]$ and [12].

If a set $X \subseteq \mathbb{N}$ is empty or infinite, then any integer $m \geqslant-1$ is a threshold number of \mathcal{X}. If a set $X \subseteq \mathbb{N}$ is non-empty and finite, then the all threshold numbers of \mathcal{X} form the set $\{\max (\mathcal{X}), \max (\mathcal{X})+1, \max (\mathcal{X})+2, \ldots\}$.

Definition 3. We say that a non-negative integer m is a weak threshold number of a set $\mathcal{X} \subseteq \mathbb{N}$, if \mathcal{X} is infinite if and only if $\operatorname{card}(\mathcal{X})>m$.

Theorem 1. For every $\mathcal{X} \subseteq \mathbb{N}$, if an integer $m \geqslant-1$ is a threshold number of \mathcal{X}, then $m+1$ is a weak threshold number of \mathcal{X}.

Proof. For every $\mathcal{X} \subseteq \mathbb{N}$, if $m \in[-1, \infty) \cap \mathbb{Z}$ and $\operatorname{card}(\mathcal{X})>m+1$, then $\mathcal{X} \cap[m+1, \infty) \neq \emptyset$.
We do not know any weak threshold number of the set of all primes of the form $n^{2}+1$. The same is true for the sets

$$
\left\{n \in \mathbb{N}: 2^{2^{n}}+1 \text { is composite }\right\}
$$

and

$$
\{n \in \mathbb{N}: n!+1 \text { is a square }\}
$$

Lemma 3. For every positive integers x and $y, x!\cdot y=y!$ if and only if

$$
(x+1=y) \vee(x=y=1)
$$

Lemma 4. (Wilson's theorem, [1] p.89]). For every integer $x \geqslant 2, x$ is prime if and only if x divides $(x-1)!+1$.

2 Open Problems $1-3$

The following three open problems cannot be formally stated as they refer to the current mathematical knowledge and an intuitive concept of simplicity.

Open Problem 1. Simply define a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies the following conditions:
(1) $\operatorname{card}(\mathcal{X})$ is greater than a huge positive integer and it is conjectured that \mathcal{X} is infinite,
(2) we do not know any algorithm deciding the finiteness of \mathcal{X},
(3) a known and short algorithm for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{X}$,
(4•) a known and short algorithm returns an integer n such that \mathcal{X} is infinite if and only if $\operatorname{card}(\mathcal{X})>n$,
(5) we do not know any representation of X as a finite union of sets whose definitions are simpler than the definition of \mathcal{X}.

Open Problem 2. Simply define a set $X \subseteq \mathbb{N}$ such that X satisfies conditions (1)-(3), (5), and a known and short algorithm returns an integer n such that \mathcal{X} is infinite if and only if \mathcal{X} contains an element greater than n (4).

Open Problem 3. Simply define a set $\mathcal{X} \subseteq \mathbb{N}$ which is widely known in Number Theory and satisfies conditions (1)-(4).

Theorem 2. Open Problem 2 claims more than Open Problem 1
Proof. By Theorem 1, condition (4) implies condition (4•).

3 Two partial solutions to Open Problem 2

Edmund Landau's conjecture states that the set $\mathcal{P}_{n^{2}+1}$ of all primes of the form $n^{2}+1$ is infinite, see [5] pp. 37-38] and [8]. Let \mathcal{M} denote the set of all positive multiples of elements of the $\operatorname{set} \mathcal{P}_{n^{2}+1} \cap(\beta, \infty)$.

Theorem 3. The set $\mathcal{X}=\{0, \ldots, \beta\} \cup \mathcal{M}$ satisfies conditions (1)-(4).
Proof. Condition (1) holds as $\operatorname{card}(\mathcal{X})>\beta$ and the set $\mathcal{P}_{n^{2}+1}$ is conjecturally infinite. By Lemma 1 , due to known physics we are not able to confirm by a direct computation that some element of $\mathcal{P}_{n^{2}+1}$ is greater than β. Thus condition (2) holds. Condition (3) holds trivially. Since the set \mathcal{M} is empty or infinite, the integer β is a threshold number of \mathcal{X}. Thus condition (4) holds.

Let [•] denote the integer part function.
Lemma 5. For every non-negative integer $n,\left[\frac{3 n-3 \beta+3}{3 n-3 \beta+2}\right]$ equals 0 or 1 . The first case holds when $n \leqslant \beta-1$. The second case holds when $n \geqslant \beta$.

Lemma 6. The function

$$
\mathbb{N} \cap[\beta, \infty) \ni n \xrightarrow{\theta} \beta+n-[\sqrt{n}]^{2} \in \mathbb{N} \cap[\beta, \infty)
$$

takes every integer value $k \geqslant \beta$ infinitely many times.
Proof. Let $t=k-\beta$. The equality $\theta(n)=k$ holds for every

$$
\left.n \in\left\{(t+0)^{2}+t,(t+1)^{2}+t,(t+2)^{2}+t, \ldots\right)\right\} \cap[\beta, \infty)
$$

Theorem 4. The set

$$
\mathcal{X}=\left\{n \in \mathbb{N}: 2+\left[\frac{3 n-3 \beta+3}{3 n-3 \beta+2}\right] \cdot\left(\left(\beta+n-[\sqrt{n}]^{2}\right)^{2}-1\right) \text { is prime }\right\}
$$

satisfies conditions (1)-(4).
Proof. Condition (3) holds trivially. By Lemma $5, \mathcal{X}=\{0, \ldots, \beta-1\} \cup \mathcal{H}$, where

$$
\mathcal{H}=\left\{n \in \mathbb{N} \cap[\beta, \infty):\left(\beta+n-[\sqrt{n}]^{2}\right)^{2}+1 \text { is prime }\right\}
$$

By Lemma 6 , the set \mathcal{H} is empty or infinite. The second case holds when

$$
\begin{equation*}
\exists k \in \mathbb{N} \cap[\beta, \infty) k^{2}+1 \text { is prime } \tag{G}
\end{equation*}
$$

The equality $\mathcal{X}=\{0, \ldots, \beta-1\} \cup \mathcal{H}$ and the last two sentences imply that $\beta-1$ is a threshold number of \mathcal{X} and conditions (1) and (4) hold. Condition (2) holds as due to known physics we are not able to confirm the statement (G) by a direct computation.

4 The statements Ψ_{n} which seem to be true for every $n \in\{1, \ldots, 9\}$

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 2$. Let \mathcal{U}_{1} denote the system of equations which consists of the equation $x_{1}!=x_{1}$. For an integer $n \geqslant 2$, let \mathcal{U}_{n} denote the following system of equations:

$$
\left\{\begin{array}{rll}
x_{1}! & = & x_{1} \\
x_{1} \cdot x_{1} & = & x_{2} \\
\forall i \in\{2, \ldots, n-1\} x_{i}! & = & x_{i+1}
\end{array}\right.
$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{U}_{n}.

Fig. 1 Construction of the system \mathcal{U}_{n}

Lemma 7. For every positive integer n, the system \mathcal{U}_{n} has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(f(1), \ldots, f(n))$.

Let

$$
B_{n}=\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

For a positive integer n, let Ψ_{n} denote the following statement: if a system of equations $\mathcal{S} \subseteq B_{n}$ has only finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant f(n)$. The statement Ψ_{n} says that for subsystems of B_{n} with a finite number of solutions, the largest known solution is indeed the largest possible. The author's guess is that the statements $\Psi_{1}, \ldots, \Psi_{9}$ are true.

Theorem 5. Every statement Ψ_{n} is true with an unknown integer bound that depends on n.
Proof. For every positive integer n, the system B_{n} has a finite number of subsystems.
Theorem 6. For every statement Ψ_{n}, the bound $f(n)$ cannot be decreased.
Proof. It follows from Lemma 7 because $\mathcal{U}_{n} \subseteq B_{n}$.

5 The statement Ψ_{9} solves Open Problem 2

Let \mathcal{A} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{1} \cdot x_{1} & =x_{2} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 2 explain the construction of the system \mathcal{A}.

Fig. 2 Construction of the system \mathcal{A}

Lemma 8. For every integer $x_{1} \geqslant 2$, the system \mathcal{A} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}^{2} \\
x_{3} & =\left(x_{1}^{2}\right)! \\
x_{4} & =\left(\left(x_{1}^{2}\right)!\right)! \\
x_{5} & =x_{1}^{2}+1 \\
x_{6} & =\left(x_{1}^{2}+1\right)! \\
x_{7} & =\frac{\left(x_{1}^{2}\right)!+1}{x_{1}^{2}+1} \\
x_{8} & =\left(x_{1}^{2}\right)!+1 \\
x_{9} & =\left(\left(x_{1}^{2}\right)!+1\right)!
\end{aligned}
$$

Proof. By Lemma 3, for every integer $x_{1} \geqslant 2$, the system \mathcal{A} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ divides $\left(x_{1}^{2}\right)!+1$. Hence, the claim of Lemma 8 follows from Lemma 4 ,
Lemma 9. There are only finitely many tuples $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$ which solve the system \mathcal{A} and satisfy $x_{1}=1$.
Proof. If a tuple $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$ solves the system \mathcal{A} and $x_{1}=1$, then $x_{1}, \ldots, x_{9} \leqslant 2$. Indeed, $x_{1}=1$ implies that $x_{2}=x_{1}^{2}=1$. Hence, for example, $x_{3}=x_{2}!=1$. Therefore, $x_{8}=x_{3}+1=2$ or $x_{8}=1$. Consequently, $x_{9}=x_{8}!\leqslant 2$.

Theorem 7. The statement Ψ_{9} proves the following implication: if there exists an integer $x_{1} \geqslant 2$ such that $x_{1}^{2}+1$ is prime and greater than $f(7)$, then the set $\mathcal{P}_{n^{2}+1}$ is infinite.
Proof. Suppose that the antecedent holds. By Lemma 8, there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in$ $(\mathbb{N} \backslash\{0\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{A}. Since $x_{1}^{2}+1>f(7)$, we obtain that $x_{1}^{2} \geqslant f(7)$. Hence, $\left(x_{1}^{2}\right)!\geqslant f(7)!=f(8)$. Consequently,

$$
x_{9}=\left(\left(x_{1}^{2}\right)!+1\right)!\geqslant(f(8)+1)!>f(8)!=f(9)
$$

Since $\mathcal{A} \subseteq B_{9}$, the statement Ψ_{9} and the inequality $x_{9}>f(9)$ imply that the system \mathcal{A} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$. According to Lemmas 8 and 9 the set $\mathcal{P}_{n^{2}+1}$ is infinite.

Let \mathcal{F} denote the set of all non-negative integers k whose number of digits belongs to $\mathcal{P}_{n^{2}+1}$.
Lemma 10. $\operatorname{card}(\mathcal{F}) \geqslant 9 \cdot 10^{9 \cdot 4^{747}} \approx 10^{10^{450.6930560314272}}$.
Proof. The following PARI/GP ([7]) command

```
isprime(1+9*4^747,{flag=2})
```

returns $\% 1=1$. This command performs the APRCL primality test, the best deterministic primality test algorithm ([10, p. 226]). It rigorously shows that the number $\left(3 \cdot 2^{747}\right)^{2}+1$ is prime. Since $9 \cdot 10^{9 \cdot 4^{747}}$ non-negative integers have $1+9 \cdot 4^{747}$ digits, the desired inequality holds. To establish the approximate equality, we ask Wolfram Alpha about $9 *\left(10^{\wedge}\left(9 * 4^{\wedge} 747\right)\right)$.

Theorem 8. The set $\mathcal{X}=\mathcal{F}$ satisfies conditions (1)-(3) and (5). The statement Ψ_{9} implies that $\mathcal{X}=\mathcal{F}$ satisfies condition (4).
Proof. Since the set $\mathcal{P}_{n^{2}+1}$ is conjecturally infinite, Lemma 10 implies condition (1). Conditions (3) and (5) hold trivially. By Lemma 1, due to known physics we are not able to confirm by a direct computation that some element of $\mathcal{P}_{n^{2}+1}$ is greater than $f(7)=(((24!)!!!)!=\beta$. Thus condition (2) holds. Suppose that the statement Ψ_{9} is true. By Theorem $7, \underbrace{9 \ldots 9}_{f(7) \text { digits }}$ is a threshold number of \mathcal{X}. Thus condition (4) holds.

Hypothesis. The set $\mathcal{X}=\mathcal{P}_{n^{2}+1}$ will solve Open Problems $1-3$

6 Open Problems 4 and 5

Definition 4. Let (1॰) denote the following condition: $\operatorname{card}(\mathcal{X})$ is greater than a huge positive integer and it is conjectured that $X=\mathbb{N}$.

Definition 5. Let (2৫) denote the following condition: we do not know any algorithm deciding the equality $X=\mathbb{N}$.

The following two open problems cannot be formally stated as they refer to current knowledge about \mathcal{X} and an intuitive concept of simplicity.

Open Problem 4. Simply define a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions (1॰)-(2॰), (2)-(3), (4•), and (5).

Open Problem 4 claims more than Open Problem 1 as condition (1॰) implies condition (1).
Open Problem 5. Simply define a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions (1»)-(2») and (2)-(5).
Open Problem 5 claims more than Open Problem 2 as condition (1॰) implies condition (1).
Theorem 9. Open Problem 5 claims more than Open Problem 4
Proof. By Theorem 1, condition (4) implies condition (4•).

7 A partial solution to Open Problem 5

Let \mathcal{V} denote the set of all positive multiples of elements of the set

$$
\left\{n \in\{\beta+1, \beta+2, \beta+3, \ldots\}: 2^{2^{n}}+1 \text { is composite }\right\}
$$

Theorem 10. The set $\mathcal{X}=\{0, \ldots, \beta\} \cup \mathcal{V}$ satisfies conditions $(1 \diamond)-(2 \diamond)$ and (2)-(4).
Proof. The inequality $\operatorname{card}(X)>\beta$ holds trivially. Most mathematicians believe that $2^{2^{n}}+1$ is composite for every integer $n \geqslant 5$, see [2] p. 23]. These two facts imply conditions ($1 \diamond$) and (2৫). Condition (3) holds trivially. Since the set \mathcal{V} is empty or infinite, the integer β is a threshold number of \mathcal{X}. Thus condition (4) holds. The question of finiteness of the set $\left\{n \in \mathbb{N}: 2^{2^{n}}+1\right.$ is composite \} remains open, see [3, p. 159]. By this and Lemma 1], the question of emptiness of the set

$$
\left\{n \in\{\beta+1, \beta+2, \beta+3, \ldots\}: 2^{2^{n}}+1 \text { is composite }\right\}
$$

remains open. Therefore, the question of finiteness of the set \mathcal{V} remains open. Consequently, the question of finiteness of the set \mathcal{X} remains open and condition (2) holds.

8 Open Problems 6 and 7

Definition 6. Let (1*) denote the following condition: $\operatorname{card}(\mathcal{X})$ is greater than a huge positive integer and it is conjectured that \mathcal{X} is finite.

The following two open problems cannot be formally stated as they refer to current knowledge about \mathcal{X} and an intuitive concept of simplicity.

Open Problem 6. Simply define a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions (1*), (2)-(3), (4•), and (5).
Open Problem 7. Simply define a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions (1*) and (2)-(5).
Theorem 11. Open Problem 7 claims more than Open Problem 6
Proof. By Theorem 1. condition (4) implies condition (4•).

9 A partial solution to Open Problem 7

A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the equation $x!+1=y^{2}$, see [6].

Lemma 11. ($\sqrt{9]}$ p. 297]). It is conjectured that $x!+1$ is a square only for $x \in\{4,5,7\}$.
Let \mathcal{W} denote the set of all integers x greater than β such that $x!+1$ is a square.
Theorem 12. The set

$$
\mathcal{X}=\{0, \ldots, \beta\} \cup\{k \cdot x:(k \in \mathbb{N} \backslash\{0\}) \wedge(x \in \mathcal{W})\}
$$

satisfies conditions (1*) and (2)-(4).
Proof. Condition (1*) holds as $\operatorname{card}(\mathcal{X})>\beta$ and the set \mathcal{W} is conjecturally empty by Lemma 11 . Condition (3) holds trivially. We do not know any algorithm that decides the emptiness of \mathcal{W} and the set

$$
\mathcal{Y}=\{k \cdot x:(k \in \mathbb{N} \backslash\{0\}) \wedge(x \in \mathcal{W})\}
$$

is empty or infinite. Thus condition (2) holds. Since the set \mathcal{Y} is empty or infinite, the integer β is a threshold number of \mathcal{X}. Thus condition (4) holds.

10 The statement Ψ_{6} solves Open Problem 7

Let C denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{5}! & =x_{6} \\
x_{4} \cdot x_{4} & =x_{5} \\
x_{3} \cdot x_{5} & =x_{6}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 3 explain the construction of the system C.

Fig. 3 Construction of the system C
Lemma 12. For every $x_{1}, x_{4} \in \mathbb{N} \backslash\{0,1\}$, the system C is solvable in positive integers $x_{2}, x_{3}, x_{5}, x_{6}$ if and only if $x_{1}!+1=x_{4}^{2}$. In this case, the integers $x_{2}, x_{3}, x_{5}, x_{6}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}! \\
x_{3} & =\left(x_{1}!\right)! \\
x_{5} & =x_{1}!+1 \\
x_{6} & =\left(x_{1}!+1\right)!
\end{aligned}
$$

Proof. It follows from Lemma3,

Theorem 13. If the equation $x_{1}!+1=x_{4}^{2}$ has only finitely many solutions in positive integers, then the statement Ψ_{6} guarantees that each such solution $\left(x_{1}, x_{4}\right)$ satisfies $x_{1}<24$!.

Proof. Suppose that the antecedent holds. Let positive integers x_{1} and x_{4} satisfy $x_{1}!+1=x_{4}^{2}$. Then, $x_{1}, x_{4} \in \mathbb{N} \backslash\{0,1\}$. By Lemma 12, the system C is solvable in positive integers $x_{2}, x_{3}, x_{5}, x_{6}$. Since $C \subseteq B_{6}$, the statement Ψ_{6} implies that $x_{6}=\left(x_{1}!+1\right)!\leqslant f(6)=f(5)!$. Hence, $x_{1}!+1 \leqslant f(5)=f(4)!$. Consequently, $x_{1}<f(4)=24$!.

Theorem 14. Let \mathcal{X} denote the set of all non-negative integers n which have ($(k!)!)$! digits for some $k \in\{m \in \mathbb{N}: m!+1$ is a square $\}$. We claim that \mathcal{X} satisfies conditions (1*), (2)-(3), and (5). The statement Ψ_{6} implies that \mathcal{X} satisfies condition (4).

Proof. Let $d=((7!)!)!$. Since $7!+1=71^{2}$, we obtain that $\{10^{d-1}, \ldots, \underbrace{9 \ldots 9}_{d \text { digits }}\} \subseteq \mathcal{X}$. Hence,
$\operatorname{card}(\mathcal{X}) \geqslant 9 \cdot 10^{d-1}$. By this and Lemmas 2 and 11 , condition ($1 *$) holds. Conditions (2)-(3) and (5) hold trivially. By Theorem 13 , the statement Ψ_{6} implies that $\underbrace{9 \ldots 9}_{\beta \text { digits }}$ is a threshold number of \mathcal{X}. Thus condition (4) holds.

11 Conditions related to condition (5)

Condition (6): we do not know any definition of $\mathbb{N} \backslash \mathcal{X}$ simpler than the definition of \mathcal{X}.
Condition (7): for every set $\widetilde{\mathcal{X}} \subseteq \mathbb{N}$ that satisfies $\operatorname{card}((\mathcal{X} \backslash \widetilde{X}) \cup(\widetilde{\mathcal{X}} \backslash \mathcal{X}))<\omega$, we do not know any definition of $\overline{\mathcal{X}}$ simpler than the definition of \mathcal{X}.

Condition (8): we do not know any representation of \mathcal{X} as a finite intersection of sets whose definitions are simpler than the definition of \mathcal{X}.

Replacing condition (5) with the conjunction of conditions (5)-(8), we obtain new Open Problems 1,2 and 4,7 . There is no reason to believe that these problems are solvable. Theorems 8 and 14 remain true, if condition (5) is replaced by the conjunction of conditions (5)-(7). Open Problems $1+2$ and $4-7$ remain open, if condition (5) states that for every finite set $\mathcal{T} \subseteq \mathbb{N}$, we do not know any definition of $\mathcal{X} \backslash \mathcal{T}$ simpler than the definition of \mathcal{X}.

References

[1] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[2] J.-M. De Koninck and F. Luca, Analytic number theory: Exploring the anatomy of integers, American Mathematical Society, Providence, RI, 2012.
[3] M. Křížek, F. Luca, L. Somer, 17 lectures on Fermat numbers: from number theory to geometry, Springer, New York, 2001.
[4] W. Marciszewski, Logic, modern, history of, in: Dictionary of logic as applied in the study of language (ed. W. Marciszewski), pp. 183-200, Springer, Dordrecht, 1981.
[5] W. Narkiewicz, Rational number theory in the 20th century: From PNT to FLT, Springer, London, 2012.
[6] M. Overholt, The Diophantine equation $n!+1=m^{2}$, Bull. London Math. Soc. 25 (1993), no. 2, p. 104.
[7] PARI/GP online documentation, http://pari.math.u-bordeaux.fr/dochtml/html/ Arithmetic_functions.html.
[8] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002496, Primes of the form $n^{2}+1$, http://oeis.org/A002496.
[9] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chapman \& Hall/CRC, Boca Raton, FL, 2002.
[10] S. Y. Yan, Number theory for computing, 2nd ed., Springer, Berlin, 2002.
[11] A. A. Zenkin, Super-induction method: logical acupuncture of mathematical infinity, Twentieth World Congress of Philosophy, Boston, MA, August 10-15, 1998, http://www.bu.edu/wcp/ Papers/Logi/LogiZenk.htm.
[12] A. A. Zenkin, Superinduction: new logical method for mathematical proofs with a computer, in: J. Cachro and K. Kijania-Placek (eds.), Volume of Abstracts, 11th International Congress of Logic, Methodology and Philosophy of Science, August 20-26, 1999, Cracow, Poland, p. 94, The Faculty of Philosophy, Jagiellonian University, Cracow, 1999.

Apoloniusz Tyszka
Technical Faculty
Hugo Kołłątaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

On $Z F C$-formulae $\varphi(x)$ for which we know a non-negative integer n such that $\{x \in \mathbb{N}: \varphi(x)\} \subseteq\{x \in \mathbb{N}: x \leqslant n-1\}$ if the set $\{x \in \mathbb{N}: \varphi(x)\}$ is finite

Apoloniusz Tyszka

Abstract

Let $\Gamma(k)$ denote $(k-1)$!, and let $\Gamma_{n}(k)$ denote $(k-1)$!, where $n \in\{3, \ldots, 16\}$ and $k \in\{2\} \cup\left[2^{2^{n-3}}+1, \infty\right) \cap \mathbb{N}$. For an integer $n \in\{3, \ldots, 16\}$, let Σ_{n} denote the following statement: if a system of equations $\mathcal{S} \subseteq\left\{\Gamma_{n}\left(x_{i}\right)=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}$ with Γ instead of Γ_{n} has only finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then every tuple $\left(x_{1}, \ldots, x_{n}\right) \in(\mathbb{N} \backslash\{0\})^{n}$ that solves the original system \mathcal{S} satisfies $x_{1}, \ldots, x_{n} \leqslant 2^{2^{n-2}}$. Our hypothesis claims that the statements $\Sigma_{3}, \ldots, \Sigma_{16}$ are true. The statement Σ_{6} proves the following implication: if the equation $x(x+1)=y$! has only finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set $\{(1,2),(2,3)\}$. The statement Σ_{6} proves the following implication: if the equation $x!+1=y^{2}$ has only finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set $\{(4,5),(5,11),(7,71)\}$. The statement Σ_{9} implies the infinitude of primes of the form $n^{2}+1$. The statement Σ_{9} implies that any prime of the form $n!+1$ with $n \geqslant 2^{2^{9-3}}$ proves the infinitude of primes of the form $n!+1$. The statement Σ_{14} implies the infinitude of twin primes. The statement Σ_{16} implies the infinitude of Sophie Germain primes.

Key words and phrases: Brocard's problem, Brocard-Ramanujan equation $x!+1=y^{2}$, composite Fermat numbers, decidability in the limit, Erdös' equation $x(x+1)=y!$, finiteness of a set, infiniteness of a set, prime numbers of the form $n^{2}+1$, prime numbers of the form $n!+1$, single query to an oracle for the halting problem, Sophie Germain primes, twin primes.

2010 Mathematics Subject Classification: 03B30, 11A41.

1 Introduction and basic lemmas

The phrase "we know a non-negative integer n " in the title means that we know an algorithm which returns n. The title of the article cannot be formalised in ZFC because the phrase "we know a non-negative integer n " refers to currently known non-negative integers n with some property. A formally stated title may look like this: On ZFC-formulae $\varphi(x)$ for which there exists a non-negative integer n such that ZFC proves that

$$
\operatorname{card}(\{x \in \mathbb{N}: \varphi(x)\})<\infty \Longrightarrow\{x \in \mathbb{N}: \varphi(x)\} \subseteq\{x \in \mathbb{N}: x \leqslant n-1\}
$$

Unfortunately, this formulation admits formulae $\varphi(x)$ without any known non-negative integer n such that $Z F C$ proves the above implication.

Lemma 1. For every non-negative integer $n, \operatorname{card}(\{x \in \mathbb{N}: x \leqslant n-1\})=n$.
Corollary 1. The title altered to "On $Z F C$-formulae $\varphi(x)$ for which we know a non-negative integer n such that $\operatorname{card}(\{x \in \mathbb{N}: \varphi(x)\}) \leqslant n$ if the set $\{x \in \mathbb{N}: \varphi(x)\}$ is finite" involves a weaker assumption on $\varphi(x)$.

Lemma 2. For every positive integers x and $y, x!\cdot y=y!$ if and only if

$$
(x+1=y) \vee(x=y=1)
$$

Let $\Gamma(k)$ denote $(k-1)$!.
Lemma 3. For every positive integers x and $y, x \cdot \Gamma(x)=\Gamma(y)$ if and only if

$$
(x+1=y) \vee(x=y=1)
$$

Lemma 4. For every non-negative integers b and $c, b+1=c$ if and only if $2^{2^{b}} \cdot 2^{2^{b}}=2^{2^{c}}$.
Lemma 5. (Wilson's theorem, [8] p.89]). For every positive integer x, x divides $(x-1)!+1$ if and only if $x=1$ or x is prime.

2 Subsets of \mathbb{N} and their threshold numbers

We say that a non-negative integer m is a threshold number of a set $X \subseteq \mathbb{N}$, if \mathcal{X} is infinite if and only if \mathcal{X} contains an element greater than m, cf. [24] and [25]. If a set $\mathcal{X} \subseteq \mathbb{N}$ is empty or infinite, then any non-negative integer m is a threshold number of \mathcal{X}. If a set $\mathcal{X} \subseteq \mathbb{N}$ is non-empty and finite, then the all threshold numbers of \mathcal{X} form the set $\{\max (\mathcal{X}), \max (\mathcal{X})+1, \max (\mathcal{X})+2, \ldots\}$.

It is conjectured that the set of prime numbers of the form $n^{2}+1$ is infinite, see [14] pp. 37-38]. It is conjectured that the set of prime numbers of the form $n!+1$ is infinite, see [3, p. 443]. A twin prime is a prime number that differs from another prime number by 2 . The twin prime conjecture states that the set of twin primes is infinite, see [14, p. 39]. It is conjectured that the set of composite numbers of the form $2^{2^{n}}+1$ is infinite, see [10, p. 23] and [11, pp. 158-159]. A prime p is said to be a Sophie Germain prime if both p and $2 p+1$ are prime, see [22]. It is conjectured that the set of Sophie Germain primes is infinite, see [17, p. 330]. For each of these sets, we do not know any threshold number.

The following statement:
for every non-negative integer n there exist

$$
\begin{equation*}
\text { prime numbers } p \text { and } q \text { such that } p+2=q \text { and } p \in\left[10^{n}, 10^{n+1}\right] \tag{1}
\end{equation*}
$$

is a Π_{1} statement which strengthens the twin prime conjecture, see [4, p. 43]. C. H. Bennett claims that most mathematical conjectures can be settled indirectly by proving stronger Π_{1} statements, see [1]. Statement (1) is equivalent to the non-halting of a Turing machine. If a set $\mathcal{X} \subseteq \mathbb{N}$ is computable and we know a threshold number of \mathcal{X}, then the infinity of \mathcal{X} is equivalent to the halting of a Turing machine.

The height of a rational number $\frac{p}{q}$ is denoted by $H\left(\frac{p}{q}\right)$ and equals $\max (|p|,|q|)$ provided $\frac{p}{q}$ is written in lowest terms. The height of a rational tuple $\left(x_{1}, \ldots, x_{n}\right)$ is denoted by $H\left(x_{1}, \ldots, x_{n}\right)$ and equals $\max \left(H\left(x_{1}\right), \ldots, H\left(x_{n}\right)\right)$.

Lemma 6. The equation $x^{5}-x=y^{2}-y$ has only finitely many rational solutions, see [13] p. 212]. The known rational solutions are $(x, y)=(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1),(2,-5),(2,6),(3,-15)$, $(3,16),(30,-4929),(30,4930),\left(\frac{1}{4}, \frac{15}{32}\right),\left(\frac{1}{4}, \frac{17}{32}\right),\left(-\frac{15}{16},-\frac{185}{1024}\right),\left(-\frac{15}{16}, \frac{1209}{1024}\right)$, and the existence of other solutions is an open question, see [18] pp. 223-224].

Corollary 2. The set $\mathcal{T}=\left\{n \in \mathbb{N}\right.$: the equation $x^{5}-x=y^{2}-y$ has a rational solution of height $\left.n\right\}$ is finite. We know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{T}$. We do not know any algorithm which returns a threshold number of \mathcal{T}.

Let \mathcal{L} denote the following system of equations:

$$
\left\{\begin{aligned}
x^{2}+y^{2} & =s^{2} \\
x^{2}+z^{2} & =t^{2} \\
y^{2}+z^{2} & =u^{2} \\
x^{2}+y^{2}+z^{2} & =v^{2}
\end{aligned}\right.
$$

Let

$$
\begin{gathered}
\mathcal{F}=\left\{n \in \mathbb{N} \backslash\{0\}:\left(\text { the system } \mathcal{L} \text { has no solutions in }\{1, \ldots, n\}^{7}\right) \wedge\right. \\
\left.\left(\text { the system } \mathcal{L} \text { has a solution in }\{1, \ldots, n+1\}^{7}\right)\right\}
\end{gathered}
$$

A perfect cuboid is a cuboid having integer side lengths, integer face diagonals, and an integer space diagonal.

Lemma 7. ([21]). No perfect cuboids are known.
Corollary 3. We know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{F}$. ZFC proves that $\operatorname{card}(\mathcal{F}) \in\{0,1\}$. We do not know any algorithm which returns $\operatorname{card}(\mathcal{F})$. We do not know any algorithm which returns a threshold number of \mathcal{F}.

Let

$$
\mathcal{H}=\left\{\begin{array}{l}
\mathbb{N}, \text { if } \sin \left(9^{9^{9^{9}}}\right)<0 \\
\mathbb{N} \cap\left[0, \sin \left(9^{9^{9} 9^{9}}\right) \cdot 9^{9^{9^{9}}}\right) \text { otherwise }
\end{array}\right.
$$

We do not know whether or not the set \mathcal{H} is finite.
Proposition 1. The number $9^{9^{9}}$ 9 is a threshold number of \mathcal{H}. We know an algorithm which decides the equality $\mathcal{H}=\mathbb{N}$. If $\mathcal{H} \neq \mathbb{N}$, then the set \mathcal{H} consists of all integers from 0 to a non-negative integer which can be computed by a known algorithm. We know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{H}$.

Let

$$
\mathcal{K}=\left\{\begin{array}{l}
\{n\}, \text { if }(n \in \mathbb{N}) \wedge\left(2^{\boldsymbol{N}_{0}}=\boldsymbol{\aleph}_{n+1}\right) \\
\{0\}, \text { if } 2^{\boldsymbol{N}_{0}} \geqslant \boldsymbol{N} \omega
\end{array}\right.
$$

Proposition 2. ZFC proves that $\operatorname{card}(\mathcal{K})=1$. If $Z F C$ is consistent, then for every $n \in \mathbb{N}$ the sentences " n is a threshold number of \mathcal{K} " and " n is not a threshold number of \mathcal{K} " are not provable in ZFC.

Proof. It suffices to observe that $2^{\boldsymbol{\aleph}}{ }_{0}$ can attain every value from the set $\left\{\boldsymbol{\aleph}_{1}, \boldsymbol{\aleph}_{2}, \boldsymbol{\aleph}_{3}, \ldots\right\}$, see [7] and [9, p. 232].

3 A Diophantine equation whose non-solvability expresses the consistency of $Z F C$

Gödel's second incompleteness theorem and the Davis-Putnam-Robinson-Matiyasevich theorem imply the following theorem.

Theorem 1. ([5] p. 35]). There exists a polynomial $D\left(x_{1}, \ldots, x_{m}\right)$ with integer coefficients such that if ZFC is arithmetically consistent, then the sentences 'The equation $D\left(x_{1}, \ldots, x_{m}\right)=0$ is solvable in non-negative integers" and "The equation $D\left(x_{1}, \ldots, x_{m}\right)=0$ is not solvable in non-negative integers" are not provable in ZFC.

Let y denote the set of all non-negative integers k such that the equation $D\left(x_{1}, \ldots, x_{m}\right)=0$ has no solutions in $\{0, \ldots, k\}^{m}$. Since the set $\{0, \ldots, k\}^{m}$ is finite, we know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \boldsymbol{y}$. Theorem 1 implies the next theorem.

Theorem 2. For every $n \in \mathbb{N}, Z F C$ proves that $n \in \mathcal{Y}$. If $Z F C$ is arithmetically consistent, then the sentences " y is finite" and " y is infinite" are not provable in $Z F C$. If $Z F C$ is arithmetically consistent, then for every $n \in \mathbb{N}$ the sentences " n is a threshold number of \mathcal{Y} " and " n is not a threshold number of \mathcal{y} " are not provable in ZFC .

Let \mathcal{E} denote the set of all non-negative integers k such that the equation $D\left(x_{1}, \ldots, x_{m}\right)=0$ has a solution in $\{0, \ldots, k\}^{m}$. Since the set $\{0, \ldots, k\}^{m}$ is finite, we know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{E}$. Theorem 1 implies the next theorem.

Theorem 3. The set \mathcal{E} is empty or infinite. In both cases, every non-negative integer n is a threshold number of \mathcal{E}. If ZFC is arithmetically consistent, then the sentences " \mathcal{E} is empty", " \mathcal{E} is not empty", " \mathcal{E} is finite", and " \mathcal{E} is infinite" are not provable in $Z F C$.

Let

$$
\begin{aligned}
& \mathcal{V}=\left\{n \in \mathbb{N}:\left(\text { the polynomial } D\left(x_{1}, \ldots, x_{m}\right) \text { has no solutions in }\{0, \ldots, n\}^{m}\right) \wedge\right. \\
&\left.\left(\text { the polynomial } D\left(x_{1}, \ldots, x_{m}\right) \text { has a solution in }\{0, \ldots, n+1\}^{m}\right)\right\}
\end{aligned}
$$

Since the sets $\{0, \ldots, n\}^{m}$ and $\{0, \ldots, n+1\}^{m}$ are finite, we know an algorithm which for every $n \in \mathbb{N}$ decides whether or not $n \in \mathcal{V}$. Theorem 1 implies the next theorem.

Theorem 4. $Z F C$ proves that $\operatorname{card}(\mathcal{V}) \in\{0,1\}$. For every $n \in \mathbb{N}, Z F C$ proves that $n \notin \mathcal{V}$. ZFC does not prove the emptiness of \mathcal{V}, if $Z F C$ is arithmetically consistent. For every $n \in \mathbb{N}$, the sentence " n is a threshold number of $\mathcal{V}^{\prime \prime}$ is not provable in $Z F C$, if $Z F C$ is arithmetically consistent.

4 Hypothetical statements $\Psi_{3}, \ldots, \Psi_{16}$

For an integer $n \geqslant 3$, let \mathcal{U}_{n} denote the following system of equations:

$$
\left\{\begin{aligned}
\forall i \in\{1, \ldots, n-1\} \backslash\{2\} x_{i}! & =x_{i+1} \\
x_{1} \cdot x_{2} & =x_{3} \\
x_{2} \cdot x_{2} & =x_{3}
\end{aligned}\right.
$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{U}_{n}.

Fig. 1 Construction of the system \mathcal{U}_{n}
Let $g(3)=4$, and let $g(n+1)=g(n)$! for every integer $n \geqslant 3$.
Lemma 8. For every integer $n \geqslant 3$, the system \mathcal{U}_{n} has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(2,2, g(3), \ldots, g(n))$.

Let

$$
B_{n}=\left\{x_{i}!=x_{k}:(i, k \in\{1, \ldots, n\}) \wedge(i \neq k)\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

For an integer $n \geqslant 3$, let Ψ_{n} denote the following statement: if a system of equations $\mathcal{S} \subseteq B_{n}$ has only finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant g(n)$. The statement Ψ_{n} says that for subsystems of B_{n} the largest known solution is indeed the largest possible.

Hypothesis 1. The statements $\Psi_{3}, \ldots, \Psi_{16}$ are true.
Proposition 3. Every statement Ψ_{n} is true with an unknown integer bound that depends on n.
Proof. For every positive integer n, the system B_{n} has a finite number of subsystems.
Proposition 4. For every statement Ψ_{n}, the bound $g(n)$ cannot be decreased.
Proof. It follows from Lemma 8 because $\mathcal{U}_{n} \subseteq B_{n}$.

5 The Brocard-Ramanujan equation $x!+1=y^{2}$

Let \mathcal{A} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{5}! & =x_{6} \\
x_{4} \cdot x_{4} & =x_{5} \\
x_{3} \cdot x_{5} & =x_{6}
\end{aligned}\right.
$$

Lemma 2 and the diagram in Figure 2 explain the construction of the system \mathcal{A}.

Fig. 2 Construction of the system \mathcal{A}
Lemma 9. For every $x_{1}, x_{4} \in \mathbb{N} \backslash\{0,1\}$, the system \mathcal{A} is solvable in positive integers $x_{2}, x_{3}, x_{5}, x_{6}$ if and only if $x_{1}!+1=x_{4}^{2}$. In this case, the integers $x_{2}, x_{3}, x_{5}, x_{6}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}! \\
x_{3} & =\left(x_{1}!\right)! \\
x_{5} & =x_{1}!+1 \\
x_{6} & =\left(x_{1}!+1\right)!
\end{aligned}
$$

Proof. It follows from Lemma2.
It is conjectured that $x!+1$ is a perfect square only for $x \in\{4,5,7\}$, see [20, p. 297]. A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the equation $x!+1=y^{2}$, see [15].

Theorem 5. If the equation $x_{1}!+1=x_{4}^{2}$ has only finitely many solutions in positive integers, then the statement Ψ_{6} guarantees that each such solution $\left(x_{1}, x_{4}\right)$ belongs to the set $\{(4,5),(5,11),(7,71)\}$.

Proof. Suppose that the antecedent holds. Let positive integers x_{1} and x_{4} satisfy $x_{1}!+1=x_{4}^{2}$. Then, $x_{1}, x_{4} \in \mathbb{N} \backslash\{0,1\}$. By Lemma 9 , the system \mathcal{A} is solvable in positive integers $x_{2}, x_{3}, x_{5}, x_{6}$. Since $\mathcal{A} \subseteq B_{6}$, the statement Ψ_{6} implies that $x_{6}=\left(x_{1}!+1\right)!\leqslant g(6)=g(5)$!. Hence, $x_{1}!+1 \leqslant g(5)=g(4)!$. Consequently, $x_{1}<g(4)=24$. If $x_{1} \in\{1, \ldots, 23\}$, then $x_{1}!+1$ is a perfect square only for $x_{1} \in\{4,5,7\}$.

6 Are there infinitely many prime numbers of the form $n^{2}+1$?

Edmund Landau's conjecture states that there are infinitely many primes of the form $n^{2}+1$, see [14, pp. 37-38]. Let \mathcal{B} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{1} \cdot x_{1} & =x_{2} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma2 and the diagram in Figure 3 explain the construction of the system \mathcal{B}.

Fig. 3 Construction of the system \mathcal{B}
Lemma 10. For every integer $x_{1} \geqslant 2$, the system \mathcal{B} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}^{2} \\
x_{3} & =\left(x_{1}^{2}\right)! \\
x_{4} & =\left(\left(x_{1}^{2}\right)!\right)! \\
x_{5} & =x_{1}^{2}+1 \\
x_{6} & =\left(x_{1}^{2}+1\right)! \\
x_{7} & =\frac{\left(x_{1}^{2}\right)!+1}{x_{1}^{2}+1} \\
x_{8} & =\left(x_{1}^{2}\right)!+1 \\
x_{9} & =\left(\left(x_{1}^{2}\right)!+1\right)!
\end{aligned}
$$

Proof. By Lemma 2, for every integer $x_{1} \geqslant 2$, the system \mathcal{B} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ divides $\left(x_{1}^{2}\right)!+1$. Hence, the claim of Lemma 10 follows from Lemma 5 .
Lemma 11. There are only finitely many tuples $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$ which solve the system \mathcal{B} and satisfy $x_{1}=1$.
Proof. If a tuple $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$ solves the system \mathcal{B} and $x_{1}=1$, then $x_{1}, \ldots, x_{9} \leqslant 2$. Indeed, $x_{1}=1$ implies that $x_{2}=x_{1}^{2}=1$. Hence, for example, $x_{3}=x_{2}!=1$. Therefore, $x_{8}=x_{3}+1=2$ or $x_{8}=1$. Consequently, $x_{9}=x_{8}!\leqslant 2$.

Theorem 6. The statement Ψ_{9} proves the following implication: if there exists an integer $x_{1} \geqslant 2$ such that $x_{1}^{2}+1$ is prime and greater than $g(7)$, then there are infinitely many primes of the form $n^{2}+1$.

Proof. Suppose that the antecedent holds. By Lemma 10 , there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in$ $(\mathbb{N} \backslash\{0\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{B}. Since $x_{1}^{2}+1>g(7)$, we obtain that $x_{1}^{2} \geqslant g(7)$. Hence, $\left(x_{1}^{2}\right)!\geqslant g(7)!=g(8)$. Consequently,

$$
x_{9}=\left(\left(x_{1}^{2}\right)!+1\right)!\geqslant(g(8)+1)!>g(8)!=g(9)
$$

Since $\mathcal{B} \subseteq B_{9}$, the statement Ψ_{9} and the inequality $x_{9}>g(9)$ imply that the system \mathcal{B} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$. According to Lemmas 10 and 11, there are infinitely many primes of the form $n^{2}+1$.

Corollary 4. Let \mathcal{X}_{9} denote the set of primes of the form $n^{2}+1$. The statement Ψ_{9} implies that we know an algorithm such that it returns a threshold number of \mathcal{X}_{9}, and this number equals $\max \left(\mathcal{X}_{9}\right)$, if X_{9} is finite. Assuming the statement Ψ_{9}, a single query to an oracle for the halting problem decides the infinity of \mathcal{X}_{9}. Assuming the statement Ψ_{9}, the infinity of \mathcal{X}_{9} is decidable in the limit.

Proof. We consider an algorithm which computes $\max \left(X_{9} \cap[1, g(7)]\right)$.

7 Are there infinitely many prime numbers of the form $n!+1$?

It is conjectured that there are infinitely many primes of the form $n!+1$, see [3, p. 443].
Theorem 7. (cf. Theorem 11). The statement Ψ_{9} proves the following implication: if there exists an integer $x_{1} \geqslant g(6)$ such that $x_{1}!+1$ is prime, then there are infinitely many primes of the form $n!+1$.

Proof. We leave the analogous proof to the reader.

8 The twin prime conjecture

A twin prime is a prime number that differs from another prime number by 2 . The twin prime conjecture states that there are infinitely many twin primes, see [14, p. 39]. Let C denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{4}! & =x_{5} \\
x_{6}! & =x_{7} \\
x_{7}! & =x_{8} \\
x_{9}! & =x_{10} \\
x_{12}! & =x_{13} \\
x_{15}! & =x_{16} \\
x_{2} \cdot x_{4} & =x_{5} \\
x_{5} \cdot x_{6} & =x_{7} \\
x_{7} \cdot x_{9} & =x_{10} \\
x_{4} \cdot x_{11} & =x_{12} \\
x_{3} \cdot x_{12} & =x_{13} \\
x_{9} \cdot x_{14} & =x_{15} \\
x_{8} \cdot x_{15} & =x_{16}
\end{aligned}\right.
$$

Lemma 2 and the diagram in Figure 4 explain the construction of the system C.

Fig. 4 Construction of the system C
Lemma 12. For every $x_{4}, x_{9} \in \mathbb{N} \backslash\{0,1,2\}$, the system C is solvable in positive integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ if and only if x_{4} and x_{9} are prime and $x_{4}+2=x_{9}$. In this case, the integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{1} & =x_{4}-1 \\
x_{2} & =\left(x_{4}-1\right)! \\
x_{3} & =\left(\left(x_{4}-1\right)!\right)! \\
x_{5} & =x_{4}! \\
x_{6} & =x_{9}-1 \\
x_{7} & =\left(x_{9}-1\right)! \\
x_{8} & =\left(\left(x_{9}-1\right)!\right)! \\
x_{10} & =x_{9}! \\
x_{11} & =\frac{\left(x_{4}-1\right)!+1}{x_{4}} \\
x_{12} & =\left(x_{4}-1\right)!+1 \\
x_{13} & =\left(\left(x_{4}-1\right)!+1\right)! \\
x_{14} & =\frac{\left(x_{9}-1\right)!+1}{x_{9}} \\
x_{15} & =\left(x_{9}-1\right)!+1 \\
x_{16} & =\left(\left(x_{9}-1\right)!+1\right)!
\end{aligned}
$$

Proof. By Lemma 2 , for every $x_{4}, x_{9} \in \mathbb{N} \backslash\{0,1,2\}$, the system C is solvable in positive integers x_{1}, x_{2}, $x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ if and only if

$$
\left(x_{4}+2=x_{9}\right) \wedge\left(x_{4} \mid\left(x_{4}-1\right)!+1\right) \wedge\left(x_{9} \mid\left(x_{9}-1\right)!+1\right)
$$

Hence, the claim of Lemma 12 follows from Lemma 5 .
Lemma 13. There are only finitely many tuples $\left(x_{1}, \ldots, x_{16}\right) \in(\mathbb{N} \backslash\{0\})^{16}$ which solve the system C and satisfy $\left(x_{4} \in\{1,2\}\right) \vee\left(x_{9} \in\{1,2\}\right)$.

Proof. If a tuple $\left(x_{1}, \ldots, x_{16}\right) \in(\mathbb{N} \backslash\{0\})^{16}$ solves the system C and $\left(x_{4} \in\{1,2\}\right) \vee\left(x_{9} \in\{1,2\}\right)$, then $x_{1}, \ldots, x_{16} \leqslant 7$!. Indeed, for example, if $x_{4}=2$ then $x_{6}=x_{4}+1=3$. Hence, $x_{7}=x_{6}$! $=6$. Therefore, $x_{15}=x_{7}+1=7$. Consequently, $x_{16}=x_{15}!=7!$.

Theorem 8. The statement Ψ_{16} proves the following implication: if there exists a twin prime greater than $g(14)$, then there are infinitely many twin primes.

Proof. Suppose that the antecedent holds. Then, there exist prime numbers x_{4} and x_{9} such that $x_{9}=x_{4}+2>g(14)$. Hence, $x_{4}, x_{9} \in \mathbb{N} \backslash\{0,1,2\}$. By Lemma 12, there exists a unique tuple $\left(x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right) \in(\mathbb{N} \backslash\{0\})^{14}$ such that the tuple $\left(x_{1}, \ldots, x_{16}\right)$ solves the system C. Since $x_{9}>g(14)$, we obtain that $x_{9}-1 \geqslant g(14)$. Therefore, $\left(x_{9}-1\right)!\geqslant g(14)!=g(15)$. Hence, $\left(x_{9}-1\right)!+1>g(15)$. Consequently,

$$
x_{16}=\left(\left(x_{9}-1\right)!+1\right)!>g(15)!=g(16)
$$

Since $C \subseteq B_{16}$, the statement Ψ_{16} and the inequality $x_{16}>g(16)$ imply that the system C has infinitely many solutions in positive integers x_{1}, \ldots, x_{16}. According to Lemmas 12 and 13 , there are infinitely many twin primes.

Corollary 5. (cf. [6]). Let \mathcal{X}_{16} denote the set of twin primes. The statement Ψ_{16} implies that we know an algorithm such that it returns a threshold number of \mathcal{X}_{16}, and this number equals $\max \left(\mathcal{X}_{16}\right)$, if \mathcal{X}_{16} is finite. Assuming the statement Ψ_{16}, a single query to an oracle for the halting problem decides the infinity of \mathcal{X}_{16}. Assuming the statement Ψ_{16}, the infinity of \mathcal{X}_{16} is decidable in the limit.

Proof. We consider an algorithm which computes $\max \left(\mathcal{X}_{16} \cap[1, g(14)]\right)$.

9 Hypothetical statements $\Delta_{5}, \ldots, \Delta_{14}$ and their consequences

Let $\lambda(5)=\Gamma(25)$, and let $\lambda(n+1)=\Gamma(\lambda(n))$ for every integer $n \geqslant 5$. For an integer $n \geqslant 5$, let \mathcal{J}_{n} denote the following system of equations:

$$
\left\{\begin{array}{rll}
\forall i \in\{1, \ldots, n-1\} \backslash\{3\} \Gamma\left(x_{i}\right) & = & x_{i+1} \\
x_{1} \cdot x_{1} & = & x_{4} \\
x_{2} \cdot x_{3} & = & x_{5}
\end{array}\right.
$$

Lemma 3 and the diagram in Figure 5 explain the construction of the system \mathcal{J}_{n}.

Fig. 5 Construction of the system \mathcal{J}_{n}
For every integer $n \geqslant 5$, the system \mathcal{J}_{n} has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $\left(5,24,23!, 25, \lambda(5), \ldots, \lambda(n)\right.$). For an integer $n \geqslant 5$, let Δ_{n} denote the following statement: if a system of equations $\mathcal{S} \subseteq\left\{\Gamma\left(x_{i}\right)=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}$ has only finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant \lambda(n)$.

Hypothesis 2. The statements $\Delta_{5}, \ldots, \Delta_{14}$ are true.
Lemmas 3 and 5 imply that the statements Δ_{n} have similar consequences as the statements Ψ_{n}.
Theorem 9. The statement Δ_{6} implies that any prime number $p \geqslant 25$ proves the infinitude of primes.
Proof. It follows from Lemmas 3 and 5 . We leave the details to the reader.

10 Hypothetical statements $\Sigma_{3}, \ldots, \Sigma_{16}$ and their consequences

Let $\Gamma_{n}(k)$ denote $(k-1)$!, where $n \in\{3, \ldots, 16\}$ and $k \in\{2\} \cup\left[2^{2^{n-3}}+1, \infty\right) \cap \mathbb{N}$. For an integer $n \in\{3, \ldots, 16\}$, let

$$
Q_{n}=\left\{\Gamma_{n}\left(x_{i}\right)=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

For an integer $n \in\{3, \ldots, 16\}$, let P_{n} denote the following system of equations:

$$
\left\{\begin{array}{rll}
x_{1} \cdot x_{1} & = & x_{1} \\
\Gamma_{n}\left(x_{2}\right) & = & x_{1} \\
\forall i \in\{2, \ldots, n-1\} x_{i} \cdot x_{i} & = & x_{i+1}
\end{array}\right.
$$

Lemma 14. For every integer $n \in\{3, \ldots, 16\}, P_{n} \subseteq Q_{n}$ and the system P_{n} with Γ instead of Γ_{n} has exactly one solution in positive integers x_{1}, \ldots, x_{n}, namely $\left(1,2^{2^{0}}, 2^{2^{1}}, 2^{2^{2}}, \ldots, 2^{2^{n-2}}\right)$.

For an integer $n \in\{3, \ldots, 16\}$, let Σ_{n} denote the following statement: if a system of equations $\mathcal{S} \subseteq Q_{n}$ with Γ instead of Γ_{n} has only finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then every tuple $\left(x_{1}, \ldots, x_{n}\right) \in(\mathbb{N} \backslash\{0\})^{n}$ that solves the original system \mathcal{S} satisfies $x_{1}, \ldots, x_{n} \leqslant 2^{2^{n-2}}$.
Hypothesis 3. The statements $\Sigma_{3}, \ldots, \Sigma_{16}$ are true.
Lemma 15. (cf. Lemma 3). For every integer $n \in\{4, \ldots, 16\}$ and for every positive integers x and y, $x \cdot \Gamma_{n}(x)=\Gamma_{n}(y)$ if and only if $(x+1=y) \wedge\left(x \geqslant 2^{2^{n-3}}+1\right)$.

Let $\mathcal{Z}_{9} \subseteq Q_{9}$ be the system of equations in Figure 6 .

Fig. 6 Construction of the system \mathcal{Z}_{9}
Lemma 16. For every positive integer x_{1}, the system \mathcal{Z}_{9} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}>2^{2^{9-4}}$ and $x_{1}^{2}+1$ is prime. In this case, positive integers x_{2}, \ldots, x_{9} are uniquely determined by x_{1}. For every positive integer n, at most finitely many tuples $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$ begin with n and solve the system \mathcal{Z}_{9} with Γ instead of Γ_{9}.

Proof. It follows from Lemmas 3, 5, and 15.
Lemma 17. ([][19]). The number $(13!)^{2}+1=38775788043632640001$ is prime.
Lemma 18. $\left((13!)^{2} \geqslant 2^{2^{9-3}}+1=18446744073709551617\right) \wedge\left(\Gamma_{9}\left((13!)^{2}\right)>2^{2^{9-2}}\right)$.
Theorem 10. The statement Σ_{9} implies the infinitude of primes of the form $n^{2}+1$.
Proof. It follows from Lemmas $16-18$
Theorem 11. (cf. Theorem 7). The statement Σ_{9} implies that any prime of the form $n!+1$ with $n \geqslant 2^{2^{9-3}}$ proves the infinitude of primes of the form $n!+1$.

Proof. We leave the proof to the reader.
Corollary 6. Let \boldsymbol{Y}_{9} denote the set of primes of the form $n!+1$. The statement Σ_{9} implies that we know an algorithm such that it returns a threshold number of \boldsymbol{Y}_{9}, and this number equals max $\left(\boldsymbol{y}_{9}\right)$, if \boldsymbol{y}_{9} is finite. Assuming the statement Σ_{9}, a single query to an oracle for the halting problem decides the infinity of \boldsymbol{Y}_{9}. Assuming the statement Σ_{9}, the infinity of \boldsymbol{Y}_{9} is decidable in the limit.

Proof. We consider an algorithm which computes $\max \left(\boldsymbol{y}_{9} \cap\left[1,\left(2^{2^{9-3}}-1\right)!+1\right]\right)$.

Let $Z_{14} \subseteq Q_{14}$ be the system of equations in Figure 7 .

Fig. 7 Construction of the system \mathcal{Z}_{14}
Lemma 19. For every positive integer x_{1}, the system \mathcal{Z}_{14} is solvable in positive integers x_{2}, \ldots, x_{14} if and only if x_{1} and $x_{1}+2$ are prime and $x_{1} \geqslant 2^{2^{14-3}}+1$. In this case, positive integers x_{2}, \ldots, x_{14} are uniquely determined by x_{1}. For every positive integer n, at most finitely many tuples $\left(x_{1}, \ldots, x_{14}\right) \in(\mathbb{N} \backslash\{0\})^{14}$ begin with n and solve the system \mathcal{Z}_{14} with Γ instead of Γ_{14}.

Proof. It follows from Lemmas 3, 5, and 15.
Lemma 20. ([23] p. 87]). The numbers $459 \cdot 2^{8529}-1$ and $459 \cdot 2^{8529}+1$ are prime (Harvey Dubner).

Lemma 21. $459 \cdot 2^{8529}-1>2^{2^{14-2}}=2^{4096}$.
Theorem 12. The statement Σ_{14} implies the infinitude of twin primes.
Proof. It follows from Lemmas 19,21
A prime p is said to be a Sophie Germain prime if both p and $2 p+1$ are prime, see [22]. It is conjectured that there are infinitely many Sophie Germain primes, see [17, p. 330]. Let $\mathcal{Z}_{16} \subseteq Q_{16}$ be the system of equations in Figure 8.

Fig. 8 Construction of the system \mathcal{Z}_{16}
Lemma 22. For every positive integer x_{1}, the system \mathcal{Z}_{16} is solvable in positive integers x_{2}, \ldots, x_{16} if and only if x_{1} is a Sophie Germain prime and $x_{1} \geqslant 2^{2^{16-3}}+1$. In this case, positive integers x_{2}, \ldots, x_{16} are uniquely determined by x_{1}. For every positive integer n, at most finitely many tuples $\left(x_{1}, \ldots, x_{16}\right) \in(\mathbb{N} \backslash\{0\})^{16}$ begin with n and solve the system \mathcal{Z}_{16} with Γ instead of Γ_{16}.
Proof. It follows from Lemmas 3, 5, and 15.
Lemma 23. ([17] p. 330]). $8069496435 \cdot 10^{5072}-1$ is a Sophie Germain prime (Harvey Dubner).
Lemma 24. $8069496435 \cdot 10^{5072}-1>2^{2^{16-2}}$.
Theorem 13. The statement Σ_{16} implies the infinitude of Sophie Germain primes.
Proof. It follows from Lemmas $22-24$
Theorem 14. The statement Σ_{6} proves the following implication: if the equation $x(x+1)=y$! has only finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set $\{(1,2),(2,3)\}$.
Proof. We leave the proof to the reader.
The question of solving the equation $x(x+1)=y$! was posed by P. Erdös, see [2]. F. Luca proved that the $a b c$ conjecture implies that the equation $x(x+1)=y$! has only finitely many solutions in positive integers, see [12].

Theorem 15. The statement Σ_{6} proves the following implication: if the equation $x!+1=y^{2}$ has only finitely many solutions in positive integers x and y, then each such solution (x, y) belongs to the set $\{(4,5),(5,11),(7,71)\}$.

Proof. We leave the proof to the reader.

11 Hypothetical statements $\Omega_{3}, \ldots, \Omega_{16}$ and their consequences

For an integer $n \in\{3, \ldots, 16\}$, let Ω_{n} denote the following statement: if a system of equations $\mathcal{S} \subseteq$ $\left\{\Gamma\left(x_{i}\right)=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}$ has a solution in integers x_{1}, \ldots, x_{n} greater than $2^{2^{n-2}}$, then \mathcal{S} has infinitely many solutions in positive integers x_{1}, \ldots, x_{n}. For every $n \in\{3, \ldots, 16\}$, the statement Σ_{n} implies the statement Ω_{n}.
Lemma 25. The number $(65!)^{2}+1$ is prime and $65!>2^{2^{9-2}}$.
Proof. The following PARI/GP ([16]) command

(04:04) gp > isprime((65!)^2+1,\{flag=2\}) \%1 = 1

is shown together with its output. This command performs the APRCL primality test, the best deterministic primality test algorithm ([23], p. 226]). It rigorously shows that the number $(65!)^{2}+1$ is prime.
Lemma 26. If positive integers x_{1}, \ldots, x_{9} solve the system \mathcal{Z}_{9} and $x_{1}>2^{2^{9-2}}$, then $x_{1}=\min \left(x_{1}, \ldots, x_{9}\right)$.
Theorem 16. The statement Ω_{9} implies the infinitude of primes of the form $n^{2}+1$.
Proof. It follows from Lemmas 16 and $25-26$.
Lemma 27. If positive integers x_{1}, \ldots, x_{14} solve the system \mathcal{Z}_{14} and $x_{1}>2^{2^{14-2}}$, then $x_{1}=$ $\min \left(x_{1}, \ldots, x_{14}\right)$.

Theorem 17. The statement Ω_{14} implies the infinitude of twin primes.
Proof. It follows from Lemmas $19-21$ and 27.

12 Are there infinitely many composite Fermat numbers?

Integers of the form $2^{2^{n}}+1$ are called Fermat numbers. Primes of the form $2^{2^{n}}+1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^{n}}+1$ is prime, see [11, p. 1]. Fermat correctly remarked that $2^{2^{0}}+1=3,2^{2^{1}}+1=5,2^{2^{2}}+1=17,2^{2^{3}}+1=257$, and $2^{2^{4}}+1=65537$ are all prime, see [11, p. 1].
Open Problem. ([11, p. 159]). Are there infinitely many composite numbers of the form $2^{2^{n}}+1$? Most mathematicians believe that $2^{2^{n}}+1$ is composite for every integer $n \geqslant 5$, see [10, p. 23]. Let

$$
H_{n}=\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\} \cup\left\{2^{2^{x_{i}}}=x_{k}: i, k \in\{1, \ldots, n\}\right\}
$$

Let $h(1)=1$, and let $h(n+1)=2^{2^{h(n)}}$ for every positive integer n.
Lemma 28. The following subsystem of H_{n}

$$
\left\{\begin{array}{rll}
x_{1} \cdot x_{1} & = & x_{1} \\
\forall i \in\{1, \ldots, n-1\} 2^{2^{x_{i}}} & = & x_{i+1}
\end{array}\right.
$$

has exactly one solution $\left(x_{1}, \ldots, x_{n}\right) \in(\mathbb{N} \backslash\{0\})^{n}$, namely $(h(1), \ldots, h(n))$.

For a positive integer n, let ξ_{n} denote the following statement: if a system of equations $S \subseteq H_{n}$ has only finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant h(n)$. The statement ξ_{n} says that for subsystems of H_{n} the largest known solution is indeed the largest possible.

Hypothesis 4. The statements $\xi_{1}, \ldots, \xi_{13}$ are true.
Proposition 5. Every statement ξ_{n} is true with an unknown integer bound that depends on n.
Proof. For every positive integer n, the system H_{n} has a finite number of subsystems.
Theorem 18. The statement ξ_{13} proves the following implication: if $z \in \mathbb{N} \backslash\{0\}$ and $2^{2^{z}}+1$ is composite and greater than $h(12)$, then $2^{2^{z}}+1$ is composite for infinitely many positive integers z.

Proof. Let us consider the equation

$$
\begin{equation*}
(x+1)(y+1)=2^{2^{z}}+1 \tag{2}
\end{equation*}
$$

in positive integers. By Lemma 4 , we can transform equation (2) into an equivalent system of equations \mathcal{G} which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms $\alpha \cdot \beta=\gamma$ and $2^{2^{\alpha}}=\gamma$, see the diagram in Figure 9.

Fig. 9 Construction of the system \mathcal{G}
Since $2^{2^{z}}+1>h(12)$, we obtain that $2^{2^{2^{z}}+1}>h(13)$. By this, the statement ξ_{13} implies that the system \mathcal{G} has infinitely many solutions in positive integers. It means that there are infinitely many composite Fermat numbers.

Corollary 7. Let \mathcal{W}_{13} denote the set of composite Fermat numbers. The statement ξ_{13} implies that we know an algorithm such that it returns a threshold number of \mathcal{W}_{13}, and this number equals max $\left(\mathcal{W}_{13}\right)$, if \mathcal{W}_{13} is finite. Assuming the statement ξ_{13}, a single query to an oracle for the halting problem decides the infinity of \mathcal{W}_{13}. Assuming the statement ξ_{13}, the infinity of \mathcal{W}_{13} is decidable in the limit.

Proof. We consider an algorithm which computes $\max \left(\mathcal{W}_{13} \cap[1, h(12)]\right)$.

References

[1] C. H. Bennett, Chaitin's Omega, in: Fractal music, hypercards, and more ... (M. Gardner, ed.), W. H. Freeman, New York, 1992, 307-319.
[2] D. Berend and J. E. Harmse, On polynomial-factorial Diophantine equations, Trans. Amer. Math. Soc. 358 (2006), no. 4, 1741-1779.
[3] C. K. Caldwell and Y. Gallot, On the primality of $n!\pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, Math. Comp. 71 (2002), no. 237, 441-448, http://doi.org/10.1090/S0025-5718-01-01315-1.
[4] C. S. Calude, H. Jürgensen, S. Legg, Solving problems with finite test sets, in: Finite versus Infinite: Contributions to an Eternal Dilemma (C. Calude and G. Păun, eds.), 39-52, Springer, London, 2000.
[5] N. C. A. da Costa and F. A. Doria, On the foundations of science (LIVRO): essays, first series, E-papers Serviços Editoriais Ltda, Rio de Janeiro, 2013.
[6] F. G. Dorais, Can the twin prime problem be solved with a single use of a halting oracle? July 23, 2011, http://mathoverflow.net/questions/71050.
[7] W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139-178.
[8] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[9] T. Jech, Set theory, Springer, Berlin, 2003.
[10] J.-M. De Koninck and F. Luca, Analytic number theory: Exploring the anatomy of integers, American Mathematical Society, Providence, RI, 2012.
[11] M. Křížek, F. Luca, L. Somer, 17 lectures on Fermat numbers: from number theory to geometry, Springer, New York, 2001.
[12] F. Luca, The Diophantine equation $P(x)=n$! and a result of M. Overholt, Glas. Mat. Ser. III 37 (57) (2002), no. 2, 269-273
[13] M. Mignotte and A. Pethő, On the Diophantine equation $x^{p}-x=y^{q}-y$, Publ. Mat. 43 (1999), no. 1, 207-216.
[14] W. Narkiewicz, Rational number theory in the 20th century: From PNT to FLT, Springer, London, 2012.
[15] M. Overholt, The Diophantine equation $n!+1=m^{2}$, Bull. London Math. Soc. 25 (1993), no. 2, 104.
[16] PARI/GP online documentation, http://pari.math.u-bordeaux.fr/dochtml/html/Arithmetic_functions.html.
[17] P. Ribenboim, The new book of prime number records, Springer, New York, 1996, http://doi.org/10.1007/978-1-4612-0759-7
[18] S. Siksek, Chabauty and the Mordell-Weil Sieve, in: Advances on Superelliptic Curves and Their Applications (eds. L. Beshaj, T. Shaska, E. Zhupa), 194-224, IOS Press, Amsterdam, 2015, http://dx.doi.org/10.3233/978-1-61499-520-3-194.
[19] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Smallest prime factor of A020549 $(n)=(n!)^{2}+1$, http://oeis.org/A282706.
[20] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chapman \& Hall/CRC, Boca Raton, FL, 2002.
[21] Wolfram MathWorld, Perfect Cuboid, http://mathworld.wolfram.com/PerfectCuboid.html.
[22] Wolfram MathWorld, Sophie Germain prime, http://mathworld.wolfram.com/SophieGermainPrime.html.
[23] S. Y. Yan, Number theory for computing, 2nd ed., Springer, Berlin, 2002.
[24] A. A. Zenkin, Super-induction method: logical acupuncture of mathematical infinity, Twentieth World Congress of Philosophy, Boston, MA, August 10-15, 1998, http://www.bu.edu/wcp/Papers/Logi/LogiZenk.htm.
[25] A. A. Zenkin, Superinduction: new logical method for mathematical proofs with a computer, in: J. Cachro and K. Kijania-Placek (eds.), Volume of Abstracts, 11th International Congress of Logic, Methodology and Philosophy of Science, August 20-26, 1999, Cracow, Poland, p. 94, The Faculty of Philosophy, Jagiellonian University, Cracow, 1999.

Apoloniusz Tyszka
University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

