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Abstract

Let Pn2+1 denote the set of primes of the form n2 + 1. Conditions (1)-(8) below concern sets
X ⊆ N. (1) There are a large number of elements of X and it is conjectured that X is infinite.
(2) No known algorithm decides the finiteness ofX. (3) A known algorithm for every n ∈ N decides
whether or not n ∈ X. (4) An explicitly known integer n satisfies: card(X) < ω =⇒ X ⊆ (−∞, n].
(5) X is widely known in number theory. (6) We do not know any equality X = X1 ∪ X2, where X1
and X2 are defined simpler than X. (7) For every finite set F ⊆ N, we do not know any definition
of X \ F simpler than the definition of X. (8) For every set Y ⊆ N that satisfies card((X \ Y) ∪
(Y \ X)) < ω, we do not know any definition of Y simpler than the definition of X. Theorem. For
every explicitly known positive integer n, some simply defined set X ⊆ N includes the set (−∞, n] ∩ N
and satisfies conditions (1)-(4). The set X = Pn2+1 satisfies conditions (1)-(3) and (5)-(8).

The set X = {k ∈ N : the number of digits of k belongs to Pn2+1} contains 1010450
consecutive

integers and satisfies conditions (1)-(3) and (6)-(8). Some hypothetical statement implies that
these sets X satisfy condition (4). We do not know any set X ⊆ N that satisfies conditions (1)-(4)
and (5). The same is true, if condition (5) is replaced by condition (6) or (7) or (8).

Key words and phrases: arithmetical operations on huge integers cannot be practically performed;
computable set X ⊆ N; explicitly known integer n; finiteness (infiniteness) of X remains conjectured;
n bounds X, if X is finite; no known algorithm decides the finiteness of X.
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1 Introduction, basic definitions and lemmas

Logicism is a programme in the philosophy of mathematics. It is mainly characterized by the contention
that mathematics can be reduced to logic, provided that the latter includes set theory, see [4, p. 199]. In
this article, we present an argument against logicism: there are open problems that concern computable
sets X ⊆ N and cannot be formally stated as they refer to current knowledge about X and an intuitive
concept of simplicity.

Definition 1. Let β = (((24!)!)!)!.

Lemma 1. β ≈ 1010101025.16114896940657
.

Proof. We ask Wolfram Alpha at http://wolframalpha.com. �

Lemma 2. ((7!)!)! ≈ 101016477.87280582041
.

Proof. We ask Wolfram Alpha about 0.0 + ((7!)!)!. �

Definition 2. We say that an integer m > −1 is a threshold number of a set X ⊆ N, if X is infinite if and
only if X contains an element greater than m, cf. [11] and [12].
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If a set X ⊆ N is empty or infinite, then any integer m > −1 is a threshold number of X.
If a set X ⊆ N is non-empty and finite, then the all threshold numbers of X form the set
{max(X),max(X) + 1,max(X) + 2, . . .}.

Definition 3. We say that a non-negative integer m is a weak threshold number of a set X ⊆ N, if X is
infinite if and only if card(X) > m.

Theorem 1. For every X ⊆ N, if an integer m > −1 is a threshold number of X, then m + 1 is a weak
threshold number of X.

Proof. For every X ⊆ N, if m ∈ [−1,∞) ∩ Z and card(X) > m + 1, then X ∩ [m + 1,∞) , ∅. �

Let Pn2+1 denote the set of primes of the form n2 + 1 We do not know any weak threshold number
of Pn2+1. The same is true for the sets{

n ∈ N : 22n
+ 1 is composite

}
and

{n ∈ N : n! + 1 is a square}

Lemma 3. For every positive integers x and y, x! · y = y! if and only if

(x + 1 = y) ∨ (x = y = 1)

Lemma 4. (Wilson’s theorem, [1, p. 89]). For every integer x > 2, x is prime if and only if x divides
(x − 1)! + 1.

Conditions (1)-(8) and (4•) below concern sets X ⊆ N.
(1) There are a large number of elements of X and it is conjectured that X is infinite.
(2) No known algorithm decides the finiteness of X.
(3) A known algorithm for every n ∈ N decides whether or not n ∈ X.
(4) An explicitly known integer n satisfies: card(X) < ω =⇒ X ⊆ (−∞, n].
(5) X is widely known in number theory.
(6) We do not know any equality X = X1 ∪ X2, where X1 and X2 are defined simpler than X.
(7) For every finite set F ⊆ N, we do not know any definition of X \ F simpler than the definition of X.
(8) For every set Y ⊆ N that satisfies card((X \Y) ∪ (Y \ X)) < ω, we do not know any definition of Y
simpler than the definition of X.
(4•) An explicitly known integer n satisfies: card(X) = ω⇐⇒ card(X) > n.

2 Open Problems 1 and 2

The following two open problems cannot be formally stated as they refer to current knowledge about X
and an intuitive concept of simplicity.

Open Problem 1. Simply define a set X ⊆ N that satisfies conditions (1)-(3), (4•), and (5).

Open Problem 2. Simply define a set X ⊆ N that satisfies conditions (1)�(5).

Theorem 2. Open Problem 2 claims more than Open Problem 1.

Proof. By Theorem 1, condition (4) implies condition (4•). �

Open Problems 1 and 2 remain open, if condition (5) is replaced by condition (6) or (7) or (8).
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3 Partial solutions to Open Problem 2

Edmund Landau’s conjecture states that the setPn2+1 is infinite, see [5, pp. 37–38] and [8]. LetM denote
the set of all positive multiples of elements of the set Pn2+1 ∩ (β,∞).

Theorem 3. The set X = {0, . . . , β} ∪M satisfies conditions (1)�(4).

Proof. Condition (1) holds as card(X) > β and the set Pn2+1 is conjecturally infinite. By Lemma 1,
due to known physics we are not able to confirm by a direct computation that some element of Pn2+1 is
greater than β. Thus condition (2) holds. Condition (3) holds trivially. Since the set M is empty or
infinite, the integer β is a threshold number of X. Thus condition (4) holds. �

Let [·] denote the integer part function.

Lemma 5. For every non-negative integer n,
[
3n − 3β + 3
3n − 3β + 2

]
equals 0 or 1. The first case holds when

n 6 β − 1. The second case holds when n > β.

Lemma 6. The function

N ∩ [β,∞) 3 n
θ
−→ β + n −

[√
n
]2
∈ N ∩ [β,∞)

takes every integer value k > β infinitely many times.

Proof. Let t = k − β. The equality θ(n) = k holds for every

n ∈
{
(t + 0)2 + t, (t + 1)2 + t, (t + 2)2 + t, . . .)

}
∩ [β,∞)

�

Theorem 4. The set

X =

{
n ∈ N : 2 +

[
3n − 3β + 3
3n − 3β + 2

]
·

((
β + n −

[√
n
]2
)2
− 1

)
is prime

}
satisfies conditions (1)�(4).

Proof. Condition (3) holds trivially. By Lemma 5, X = {0, . . . , β − 1} ∪ H , where

H =

{
n ∈ N ∩ [β,∞) :

(
β + n −

[√
n
]2
)2

+ 1 is prime
}

By Lemma 6, the setH is empty or infinite. The second case holds when

∃ k ∈ N ∩ [β,∞) k2 + 1 is prime (G)

The equality X = {0, . . . , β − 1} ∪ H and the last two sentences imply that β − 1 is a threshold number
of X and conditions (1) and (4) hold. Condition (2) holds as due to known physics we are not able to
confirm the statement (G) by a direct computation. �

4 The statements Ψn, which seem to be true for every n ∈ {1, . . . , 9}

Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2. Let U1 denote the system of
equations which consists of the equation x1! = x1. For an integer n > 2, let Un denote the following
system of equations: 

x1! = x1
x1 · x1 = x2

∀i ∈ {2, . . . , n − 1} xi! = xi+1

The diagram in Figure 1 illustrates the construction of the systemUn.
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!
x1

squaring x2 ! x3 . . . xn−1 ! xn

Fig. 1 Construction of the systemUn

Lemma 7. For every positive integer n, the system Un has exactly two solutions in positive integers,
namely (1, . . . , 1) and

(
f (1), . . . , f (n)

)
.

Let
Bn =

{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
For a positive integer n, let Ψn denote the following statement: if a system of equations S ⊆ Bn has
only finitely many solutions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies
x1, . . . , xn 6 f (n). The statement Ψn says that for subsystems of Bn with a finite number of solutions, the
largest known solution is indeed the largest possible. The author’s guess is that the statements Ψ1, . . . ,Ψ9
are true.

Theorem 5. Every statement Ψn is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system Bn has a finite number of subsystems. �

Theorem 6. For every statement Ψn, the bound f (n) cannot be decreased.

Proof. It follows from Lemma 7 becauseUn ⊆ Bn. �

5 The statement Ψ9 solves Open Problem 2

LetA denote the following system of equations:

x2! = x3
x3! = x4
x5! = x6
x8! = x9

x1 · x1 = x2
x3 · x5 = x6
x4 · x8 = x9
x5 · x7 = x8

Lemma 3 and the diagram in Figure 2 explain the construction of the systemA.
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x1
squaring x2 +1

or x2 = x5 = 1

x5

!

x6
!

x3

!

x4

+1
or x3 = x8 = 1

x8

!

x9

x5 · x7 = x8x3 · x5 = x6

x4 · x8 = x9

Fig. 2 Construction of the systemA

Lemma 8. For every integer x1 > 2, the systemA is solvable in positive integers x2, . . . , x9 if and only if
x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are uniquely determined by the following equalities:

x2 = x2
1

x3 = (x2
1)!

x4 = ((x2
1)!)!

x5 = x2
1 + 1

x6 = (x2
1 + 1)!

x7 =
(x2

1)! + 1
x2

1 + 1
x8 = (x2

1)! + 1
x9 = ((x2

1)! + 1)!

Proof. By Lemma 3, for every integer x1 > 2, the system A is solvable in positive integers x2, . . . , x9 if
and only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of Lemma 8 follows from Lemma 4. �

Lemma 9. There are only finitely many tuples (x1, . . . , x9) ∈ (N \ {0})9 which solve the system A and
satisfy x1 = 1.

Proof. If a tuple (x1, . . . , x9) ∈ (N \ {0})9 solves the system A and x1 = 1, then x1, . . . , x9 6 2. Indeed,
x1 = 1 implies that x2 = x2

1 = 1. Hence, for example, x3 = x2! = 1. Therefore, x8 = x3 + 1 = 2 or x8 = 1.
Consequently, x9 = x8! 6 2. �

Theorem 7. The statement Ψ9 proves the following implication: if there exists an integer x1 > 2 such
that x2

1 + 1 is prime and greater than f (7), then the set Pn2+1 is infinite.

Proof. Suppose that the antecedent holds. By Lemma 8, there exists a unique tuple (x2, . . . , x9) ∈
(N \ {0})8 such that the tuple (x1, x2, . . . , x9) solves the system A. Since x2

1 + 1 > f (7), we obtain that
x2

1 > f (7). Hence, (x2
1)! > f (7)! = f (8). Consequently,

x9 = ((x2
1)! + 1)! > ( f (8) + 1)! > f (8)! = f (9)

SinceA ⊆ B9, the statement Ψ9 and the inequality x9 > f (9) imply that the systemA has infinitely many
solutions (x1, . . . , x9) ∈ (N \ {0})9. According to Lemmas 8 and 9 the set Pn2+1 is infinite. �

Let K = {k ∈ N : the number of digits of k belongs to Pn2+1}.
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Lemma 10. card(K) > 9 · 109 · 4747
≈ 1010450.6930560314272

.

Proof. The following PARI/GP ([7]) command

isprime(1+9*4^747,{flag=2})

returns %1 = 1. This command performs the APRCL primality test, the best deterministic primality test

algorithm ([10, p. 226]). It rigorously shows that the number
(
3 · 2747

)2
+ 1 is prime. Since 9 · 109 · 4747

non-negative integers have 1 + 9 · 4747 digits, the desired inequality holds. To establish the approximate
equality, we ask Wolfram Alpha about 9 ∗ (10ˆ(9 ∗ 4ˆ747)). �

Theorem 8. The set X = Pn2+1 satisfies conditions (1)-(3) and (5)-(8). The set X = K satisfies
conditions (1)-(3) and (6)-(8). The statement Ψ9 implies that these sets X satisfy condition (4).

Proof. Since the set Pn2+1 is conjecturally infinite, Lemma 10 implies condition (1) for both sets X.
Conditions (3) and (6)-(8) hold trivially for both sets X. By Lemma 1, due to known physics
we are not able to confirm by a direct computation that some element of Pn2+1 is greater than
f (7) = (((24!)!)!)! = β. Thus condition (2) holds for both sets X. Suppose that the statement Ψ9 is
true. By Theorem 7, f (7) is a threshold number of X = Pn2+1. By Theorem 7, 9 . . . 9︸︷︷︸

f (7) digits

is a threshold

number of X = K . Thus condition (4) holds for both sets X. �

6 Open Problems 3 and 4

Definition 4. Let (1�) denote the following condition: there are a large number of elements of X and it
is conjectured that X = N.

Definition 5. Let (2�) denote the following condition: no known algorithm decides the equality X = N.

The following two open problems cannot be formally stated as they refer to current knowledge about X
and an intuitive concept of simplicity.

Open Problem 3. Simply define a set X ⊆ N that satisfies conditions (1�)-(2�), (2)�(3), (4•),
and (5).

Open Problem 3 claims more than Open Problem 1 as condition (1�) implies condition (1).

Open Problem 4. Simply define a set X ⊆ N that satisfies conditions (1�)-(2�) and (2)�(5).

Open Problem 4 claims more than Open Problem 2 as condition (1�) implies condition (1).

Theorem 9. Open Problem 4 claims more than Open Problem 3.

Proof. By Theorem 1, condition (4) implies condition (4•). �

Open Problems 3 and 4 remain open, if condition (5) is replaced by condition (6) or (7) or (8).

7 A partial solution to Open Problem 4

LetV denote the set of all positive multiples of elements of the set

{n ∈ {β + 1, β + 2, β + 3, . . .} : 22n
+ 1 is composite}

Theorem 10. The set X = {0, . . . , β} ∪ V satisfies conditions (1�)-(2�) and (2)�(4).
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Proof. The inequality card(X) > β holds trivially. Most mathematicians believe that 22n
+ 1 is composite

for every integer n > 5, see [2, p. 23]. These two facts imply conditions (1�) and (2�). Condition (3)
holds trivially. Since the set V is empty or infinite, the integer β is a threshold number of X. Thus
condition (4) holds. The question of finiteness of the set {n ∈ N : 22n

+ 1 is composite} remains open,
see [3, p. 159]. By this and Lemma 1, the question of emptiness of the set

{n ∈ {β + 1, β + 2, β + 3, . . .} : 22n
+ 1 is composite}

remains open. Therefore, the question of finiteness of the set V remains open. Consequently, the
question of finiteness of the set X remains open and condition (2) holds. �

8 Open Problems 5 and 6

Definition 6. Let (1*) denote the following condition: there are a large number of elements of X and it
is conjectured that X is finite.

The following two open problems cannot be formally stated as they refer to current knowledge about X
and an intuitive concept of simplicity.

Open Problem 5. Simply define a set X ⊆ N that satisfies conditions (1*), (2)�(3), (4•), and (5).

Open Problem 6. Simply define a set X ⊆ N that satisfies conditions (1*) and (2)�(5).

Theorem 11. Open Problem 6 claims more than Open Problem 5.

Proof. By Theorem 1, condition (4) implies condition (4•). �

Open Problems 5 and 6 remain open, if condition (5) is replaced by condition (6) or (7) or (8).

9 Partial solutions to Open Problem 6

A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the equation
x! + 1 = y2, see [6].

Lemma 11. ([9, p. 297]). It is conjectured that x! + 1 is a square only for x ∈ {4, 5, 7}.

LetW denote the set of all integers x greater than β such that x! + 1 is a square.

Theorem 12. The set
X = {0, . . . , β} ∪ {k · x : (k ∈ N \ {0}) ∧ (x ∈ W)}

satisfies conditions (1*) and (2)�(4).

Proof. Condition (1*) holds as card(X) > β and the set W is conjecturally empty by Lemma 11.
Condition (3) holds trivially. We do not know any algorithm that decides the emptiness of W and
the set

Y = {k · x : (k ∈ N \ {0}) ∧ (x ∈ W)}

is empty or infinite. Thus condition (2) holds. Since the set Y is empty or infinite, the integer β is a
threshold number of X. Thus condition (4) holds. �

Let C denote the following system of equations:

x1! = x2
x2! = x3
x5! = x6

x4 · x4 = x5
x3 · x5 = x6

Lemma 3 and the diagram in Figure 3 explain the construction of the system C.
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x1
! x2 x4

squaringx5+1
or x2 = x5 = 1

!

x3

!

x6x3 · x5 = x6

Fig. 3 Construction of the system C

Lemma 12. For every x1, x4 ∈ N \ {0, 1}, the system C is solvable in positive integers x2, x3, x5, x6 if
and only if x1! + 1 = x2

4. In this case, the integers x2, x3, x5, x6 are uniquely determined by the following
equalities:

x2 = x1!
x3 = (x1!)!
x5 = x1! + 1
x6 = (x1! + 1)!

Proof. It follows from Lemma 3. �

Theorem 13. If the equation x1! + 1 = x2
4 has only finitely many solutions in positive integers, then the

statement Ψ6 guarantees that each such solution (x1, x4) satisfies x1 < 24!.

Proof. Suppose that the antecedent holds. Let positive integers x1 and x4 satisfy x1! + 1 = x2
4. Then,

x1, x4 ∈ N \ {0, 1}. By Lemma 12, the system C is solvable in positive integers x2, x3, x5, x6. Since
C ⊆ B6, the statement Ψ6 implies that x6 = (x1! + 1)! 6 f (6) = f (5)!. Hence, x1! + 1 6 f (5) = f (4)!.
Consequently, x1 < f (4) = 24!. �

Theorem 14. Let X denote the set of all non-negative integers n which have ((k!)!)! digits for some
k ∈ {m ∈ N : m! + 1 is a square}. We claim that X satisfies conditions (1*), (2)�(3), and (6)-(8).
The statement Ψ6 implies that X satisfies condition (4).

Proof. Let d = ((7!)!)!. Since 7! + 1 = 712, we obtain that {10d−1, . . . , 9 . . . 9︸︷︷︸
d digits

} ⊆ X. Hence, card(X) >

9 · 10d−1. By this and Lemmas 2 and 11, condition (1*) holds. Conditions (2)�(3) and (6)-(8)
hold trivially. By Theorem 13, the statement Ψ6 implies that 9 . . . 9︸︷︷︸

β digits

is a threshold number of X. Thus

condition (4) holds. �
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article.
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