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Abstract

Let P,2,; denote the set of primes of the form n? + 1. Conditions (1)-(8) below concern sets
X CN. (1) There are a large number of elements of X and it is conjectured that X is infinite.
(2) No known algorithm decides the finiteness of X. (3) A known algorithm for every n € N decides
whether or not n € X. (4) An explicitly known integer n satisfies: card(X) < w = X C (—oo, n].
(5) X is widely known in number theory. (6) We do not know any equality X = X| U X, where X
and X, are defined simpler than X. (7) For every finite set ¥ € N, we do not know any definition
of X\ ¥ simpler than the definition of X. (8) For every set Y C N that satisfies card((X \ V) U
(Y \ X)) < w, we do not know any definition of Y simpler than the definition of X. Theorem. For
every explicitly known positive integer n, some simply defined set X C N includes the set (—co,n] NN
and satisfies conditions (1)-(4). The set X = P2, satisfies conditions (1)-(3) and (5)-(8).

The set X = {k € N : the number of digits of k belongs to P,2,} contains 1010450 consecutive
integers and satisfies conditions (1) -(3) and (6)-(8). Some hypothetical statement implies that
these sets X satisfy condition (4). We do not know any set X C N that satisfies conditions (1)-(4)
and (5). The same is true, if condition (5) is replaced by condition (6) or (7) or (8).

Key words and phrases: arithmetical operations on huge integers cannot be practically performed;
computable set X C N; explicitly known integer n; finiteness (infiniteness) of X remains conjectured;
n bounds X, if X is finite; no known algorithm decides the finiteness of X.
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1 Introduction, basic definitions and lemmas

Logicism is a programme in the philosophy of mathematics. It is mainly characterized by the contention
that mathematics can be reduced to logic, provided that the latter includes set theory, see [4, p. 199]. In
this article, we present an argument against logicism: there are open problems that concern computable
sets X € N and cannot be formally stated as they refer to current knowledge about X and an intuitive
concept of simplicity.

Definition 1. Lezr 8 = (((24HHDH!.

101025.16114896940657
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Lemmal. 8~ 10

Proof. We ask Wolfram Alpha athttp://wolframalpha.com. O

Lemma 2. (7)))! ~ 101016477.87280582041.

Proof. We ask Wolfram Alpha about 0.0 + ((7!)!)!. O

Definition 2. We say that an integer m > —1 is a threshold number of a set X C N, if X is infinite if and
only if X contains an element greater than m, cf. [11] and [12)].


http://wolframalpha.com

If a set XCN is empty or infinite, then any integer m > —1 is a threshold number of X.
If a set XCN is non-empty and finite, then the all threshold numbers of X form the set
{max(X), max(X) + 1, max(X) + 2,...}.

Definition 3. We say that a non-negative integer m is a weak threshold number of a set X C N, if X is
infinite if and only if card(X) > m.

Theorem 1. For every X C N, if an integer m > —1 is a threshold number of X, then m + 1 is a weak
threshold number of X.

Proof. Forevery X C N, ifm e [-1,00) NZ and card(X) > m + 1, then X N [m + 1, 00) # 0. O

Let P2, denote the set of primes of the form n? + 1 We do not know any weak threshold number
of P,2,. The same is true for the sets

on . .
{n eN:2 +1is compos1te}
and
{n e N:n!+1is asquare}

Lemma 3. For every positive integers x and y, x! - y = y! if and only if
(x+l=yVvx=y=1

Lemma 4. (Wilson’s theorem, [1| p. 89]). For every integer x > 2, x is prime if and only if x divides
x-D!'+ 1

Conditions (1)-(8) and (4e) below concern sets X € N.
(1) There are a large number of elements of X and it is conjectured that X is infinite.
(2) No known algorithm decides the finiteness of X.
(3) A known algorithm for every n € N decides whether or not n € X.
(4) An explicitly known integer n satisfies: card(X) < w = X C (—oo,n].
(5) X is widely known in number theory.
(6) We do not know any equality X = X| U X, where X and X are defined simpler than X.
(7) For every finite set ¥ C N, we do not know any definition of X \ # simpler than the definition of X.
(8) For every set Y C N that satisfies card((X \ Y) U (¥ \ X)) < w, we do not know any definition of Y
simpler than the definition of X.
(4#) An explicitly known integer n satisfies: card(X) = w < card(X) > n.

2 Open Problems [I|and 2]

The following two open problems cannot be formally stated as they refer to current knowledge about X
and an intuitive concept of simplicity.

Open Problem 1. Simply define a set X C N that satisfies conditions (1)-(3), (4e), and (5).

Open Problem 2. Simply define a set X C N that satisfies conditions (1) -(5).

Theorem 2. Open Problem 2] claims more than Open Problem |}

Proof. By Theorem[I] condition (4) implies condition (4e). O

Open Problems[I] and 2] remain open, if condition (5) is replaced by condition (6) or (7) or (8).



3 Partial solutions to Open Problem 2|

Edmund Landau’s conjecture states that the set #, . ; is infinite, see [S, pp. 37-38] and [8]]. Let M denote
the set of all positive multiples of elements of the set £,2,; N (B, 00).

Theorem 3. The set X = {0,...,B8} U M satisfies conditions (1) -(4).

Proof. Condition (1) holds as card(X) > 5 and the set $,2.; is conjecturally infinite. By Lemma

due to known physics we are not able to confirm by a direct computation that some element of P, is

greater than 8. Thus condition (2) holds. Condition (3) holds trivially. Since the set M is empty or

infinite, the integer 8 is a threshold number of X. Thus condition (4) holds. O
Let [-] denote the integer part function.

Lemma 5. For every non-negative integer n, [%] equals O or 1. The first case holds when
n < B — 1. The second case holds when n > (3.

Lemma 6. The function

0 2
NN [ﬂ,oo)3n—>,8+n—[\/ﬁ] e NN [B, )
takes every integer value k > 3 infinitely many times.
Proof. Lett =k — (. The equality 6(n) = k holds for every

nel{a+07+1, (t+ 17 +1, (1+27% +1,..) N [B, )

Theorem 4. The set

3n-36+3

= -2 R —
X {nEN +[3n—3,8+2

2
. ((,3 +n-— [\/71]2) - 1) is prime}
satisfies conditions (1) -(4).

Proof. Condition (3) holds trivially. By Lemmal[5 X = {0,...,8— 1} U H, where
2\2
H = {neNﬁ[ﬁ,oo) : (ﬂ+n—[\/ﬁ] ) +lisprime}
By Lemmal6] the set H is empty or infinite. The second case holds when

JkeNN[B,0) k*+1is prime @

The equality X = {0,...,8— 1} UH and the last two sentences imply that 8 — 1 is a threshold number
of X and conditions (1) and (4) hold. Condition (2) holds as due to known physics we are not able to
confirm the statement[(G)]by a direct computation. o

4 The statements YV, which seem to be true for every n € {1,...,9}
Let f(1) =2, f(2) =4, and let f(n+ 1) = f(n)! for every integer n > 2. Let U, denote the system of

equations which consists of the equation x;! = x;. For an integer n > 2, let U, denote the following
system of equations:

x! = x
X1-X1 = X2
Yie{2,....,.n=1}x;! = xi41

The diagram in Figure 1 illustrates the construction of the system U,.



squaring xp ! X3 Xn—1 ! Xn
X1 > > [ L g

4

Fig. 1 Construction of the system U,

Lemma 7. For every positive integer n, the system U, has exactly two solutions in positive integers,

namely (1,..., 1) and (f(1)..... f(n)).

Let
By={xl=xc:ike{l,...nfUlxi-xj=xc:ijke(l,... n)

For a positive integer n, let ¥, denote the following statement: if a system of equations S C B, has
only finitely many solutions in positive integers xi, ..., X,, then each such solution (xi, ..., x,) satisfies
X1,..., X, < f(n). The statement ¥, says that for subsystems of B,, with a finite number of solutions, the
largest known solution is indeed the largest possible. The author’s guess is that the statements ¥y, ..., V9
are true.

Theorem 5. Every statement P, is true with an unknown integer bound that depends on n.
Proof. For every positive integer n, the system B, has a finite number of subsystems. O
Theorem 6. For every statement ¥, the bound f(n) cannot be decreased.

Proof. 1t follows from Lemmabecause U, C B,. O

5 The statement ¥y solves Open Problem 2|

Let A denote the following system of equations:

X! = x3
x3! = x4
X5! = X6
XS! = X9
X1-X1 = X2
X3:X5 = Xg
X4-Xg = Xo
X5°X7 = X8

Lemma [3|and the diagram in Figure 2 explain the construction of the system A.
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Fig. 2 Construction of the system A
Lemma 8. For every integer x| > 2, the system A is solvable in positive integers X, ..., X9 if and only if
x% + 1 is prime. In this case, the integers x;, ..., X9 are uniquely determined by the following equalities:
Xy = x%
X3 = (x%)!
xo= (@)D
X5 = x% +1
X6 = (xF+1)!
2y
Y = (x12 N+1
xp+1
xg = (D+1
xo = (D! +1)!
Proof. By Lemma[3] for every integer x; > 2, the system A is solvable in positive integers x», ..., xg if
and only if x% + 1 divides (x%)! + 1. Hence, the claim of Lemmafollows from Lemma O

Lemma 9. There are only finitely many tuples (x1,...,x9) € (N '\ {0})° which solve the system A and
satisfy x; = 1.

Proof. 1f a tuple (xq,...,x9) € (N\ {0})° solves the system A and x; = 1, then x1,...,x9 < 2. Indeed,
x1 = 1 implies that x, = x% = 1. Hence, for example, x3 = x! = 1. Therefore, xg3 = x3+ 1 =2orxg = 1.
Consequently, xg = xg! < 2. |

Theorem 7. The statement Yy proves the following implication: if there exists an integer x| > 2 such
that x% + 1 is prime and greater than f(7), then the set P, is infinite.

Proof. Suppose that the antecedent holds. By Lemma [§] there exists a unique tuple (x2,...,x9) €
(N'\ {0})® such that the tuple (x1, x2,...,x9) solves the system A. Since x% + 1 > f(7), we obtain that
x% > f(7). Hence, (x%)! > f(N! = f(8). Consequently,

X9 = (D! + D> (f®) + D> f®)! = £(9)

Since A C By, the statement W9 and the inequality x9 > f(9) imply that the system A has infinitely many
solutions (x1, ..., x9) € (N \ {0})°. According to Lemmas[§land@]the set P,z is infinite. O

Let K = {k € N : the number of digits of k belongs to P,2,}.



10947 10%450.6930560314272
Lemma 10. card(X) >9-10 ~ 10 .

Proof. The following PARI/GP ([7]) command
isprime(1+9%44747,{flag=2})
returns %1 = 1. This command performs the APRCL primality test, the best deterministic primality test

. : ATATVE g e . 109 - 4747
algorithm ([[10, p. 226]). It rigorously shows that the number (3 2 ) + 1 is prime. Since 9 - 10

non-negative integers have 1 + 9 - 4747 digits, the desired inequality holds. To establish the approximate
equality, we ask Wolfram Alpha about 9 = (10°(9 * 47747)). O

Theorem 8. The set X = P, satisfies conditions (1)-(3) and (5)-(8). The set X = K satisfies
conditions (1) -(3) and (6)-(8). The statement Yy implies that these sets X satisfy condition (4).

Proof. Since the set £, is conjecturally infinite, Lemma [10| implies condition (1) for both sets X.
Conditions (3) and (6)-(8) hold trivially for both sets X. By Lemma [I} due to known physics
we are not able to confirm by a direct computation that some element of #,»,; is greater than
F( =(24HHNH! = B. Thus condition (2) holds for both sets X. Suppose that the statement Wy is
true. By Theorem f(7) is a threshold number of X = #,2,;. By Theorem , U is a threshold

f(7) digits
number of X = K. Thus condition (4) holds for both sets X. O

6 Open Problems 3 and (4

Definition 4. Let (1) denote the following condition: there are a large number of elements of X and it
is conjectured that X = N.

Definition 5. Ler (2¢) denote the following condition: no known algorithm decides the equality X = N.

The following two open problems cannot be formally stated as they refer to current knowledge about X
and an intuitive concept of simplicity.

Open Problem 3. Simply define a set X C N that satisfies conditions (10)-(2¢), (2)-(3), (4e),
and (5).

Open Problem [3] claims more than Open Problem [I]as condition (1¢) implies condition (1).

Open Problem 4. Simply define a set X C N that satisfies conditions (1¢)-(2¢) and (2)-(5).

Open Problem [ claims more than Open Problem [2]as condition (1¢) implies condition (1).

Theorem 9. Open Problem M| claims more than Open Problem

Proof. By Theorem condition (4) implies condition (4e). m]

Open Problems [3]and f] remain open, if condition (5) is replaced by condition (6) or (7) or (8).

7 A partial solution to Open Problem 4]
Let V denote the set of all positive multiples of elements of the set
melB+1,8+2 B+3, ...} :2%" +1is composite}

Theorem 10. The set X = {0,...,B8} UV satisfies conditions (1¢)-(2¢) and (2)-(4).



Proof. The inequality card(X) > 8 holds trivially. Most mathematicians believe that 22" 4 1is composite
for every integer n > 5, see [2, p. 23]. These two facts imply conditions (1¢) and (2¢). Condition (3)
holds trivially. Since the set V is empty or infinite, the integer S is a threshold number of X. Thus

condition (4) holds. The question of finiteness of the set {n € N : 22" 4 1is composite} remains open,
see [3, p. 159]. By this and LemmalI] the question of emptiness of the set

fne{B+1,8+2, +3, ...}:22n+1iscomposite}

remains open. Therefore, the question of finiteness of the set V remains open. Consequently, the
question of finiteness of the set X remains open and condition (2) holds. O

8 Open Problems 5 and [6]

Definition 6. Let (1*) denote the following condition: there are a large number of elements of X and it
is conjectured that X is finite.

The following two open problems cannot be formally stated as they refer to current knowledge about X
and an intuitive concept of simplicity.

Open Problem 5. Simply define a set X C N that satisfies conditions (1*), (2)-(3), (4e), and (5).
Open Problem 6. Simply define a set X C N that satisfies conditions (1*) and (2)-(5).

Theorem 11. Open Problem|6| claims more than Open Problem

Proof. By Theorem condition (4) implies condition (4e). m]

Open Problems E] and @remain open, if condition (5) is replaced by condition (6) or (7) or (8).

9 Partial solutions to Open Problem [6|
A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the equation
x!'+1= yz, see [6]].
Lemma 11. (/9 p. 297]). It is conjectured that x! + 1 is a square only for x € {4,5,7}.
Let ‘W denote the set of all integers x greater than S8 such that x! + 1 is a square.

Theorem 12. The set
X={0,....,8 U{k-x: (ke N\ {O) A (x € W)}
satisfies conditions (1%) and (2)-(4).
Proof. Condition (1*) holds as card(X) > 8 and the set W is conjecturally empty by Lemma
Condition (3) holds trivially. We do not know any algorithm that decides the emptiness of ‘W and

the set
Y={k-x: (ke N\{0Dh A (x € W)}

is empty or infinite. Thus condition (2) holds. Since the set Y is empty or infinite, the integer 8 is a
threshold number of X. Thus condition (4) holds. O

Let C denote the following system of equations:

x1! = x
X! = x3
x5! = xg
X4 X4 = X5
X3:X5 = Xe

Lemma [3and the diagram in Figure 3 explain the construction of the system C.



! X3 +1 Xs squaring
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Fig. 3 Construction of the system C

Lemma 12. For every xi,x4 € N\ {0, 1}, the system C is solvable in positive integers x», X3, X5, X¢ if
andonly if x;! +1 = xﬁ. In this case, the integers x;, X3, X5, X are uniquely determined by the following
equalities:

x2 = xp!
x3 = (nh!
x5 = xp!+1
X6 = (x!+1)!
Proof. 1t follows from Lemma 3l O

Theorem 13. If the equation x1! + 1 = xi has only finitely many solutions in positive integers, then the
statement Yg guarantees that each such solution (x, x4) satisfies x; < 24\.

Proof. Suppose that the antecedent holds. Let positive integers x; and x4 satisfy x;!+ 1 = xi. Then,
x1,x4 € N\ {0,1}. By Lemmal[I2] the system C is solvable in positive integers x», x3, X5, Xg. Since
C C Bg, the statement W¢ implies that xg = (x1! + 1)! < f(6) = f(5)!. Hence, x;!+ 1< f(5) = f(4)!.
Consequently, x; < f(4) = 24!. O

Theorem 14. Let X denote the set of all non-negative integers n which have ((k!)!)! digits for some
ke{meN:m!+1isasquare}. We claim that X satisfies conditions (1%), (2)-(3), and (6)-(8).
The statement WY implies that X satisfies condition (4).

Proof. Let d = ((7)!)!. Since 7! + 1 = 712, we obtain that {1091, ... ,9...9} € X. Hence, card(X) >
d digits

9 - 10971, By this and Lemmas [2| and condition (1*) holds. Conditions (2)-(3) and (6)-(8)

hold trivially. By Theorem the statement W implies that U is a threshold number of X. Thus

B digits
condition (4) holds. O
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