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an open problem that concerns abstract com-
putable sets X ⊆ N and cannot be formalized
in ZFC as it refers to our current knowledge
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Abstract. Edmund Landau’s conjecture states that the set Pn2+1 of primes of
the form n2 + 1 is infinite. Let β = (((24!)!)!)!, and let Φ denote the impli-
cation: card(Pn2+1) < ω⇒ Pn2+1 ⊆ (−∞, β]. We heuristically justify the state-
ment Φ without invoking Landau’s conjecture. Open problem: Is there a set
X ⊆ N that satisfies conditions (1)�(5)? (1) There are a large number of el-
ements of X and it is conjectured that X is infinite. (2) No known algorithm
decides the finiteness/infiniteness of X. (3) There is a known algorithm that for
every k ∈ N decides whether or not k ∈ X. (4) There is an explicitly known in-
teger n such that card(X) < ω⇒ X ⊆ (−∞, n]. (5) X is simply defined and the
size of a non-negative integer k has no direct effect on the validity of k ∈ X.
(6) We know an algorithm such that for every input k ∈ N it returns the sen-
tence k ∈ X or k < X and every returned sentence is true when k is sufficiently
large. The simplest known such algorithm returns a true sentence for every small
input k ∈ N. The set X = {k ∈ N : (β < k)⇒ (β, k) ∩ Pn2+1 , ∅} satisfies condi-
tions (1)�(4). The set X = Pn2+1 satisfies conditions (1)�(3) and (5)�(6).
The statement Φ implies that the set X = Pn2+1 satisfies condition (4).

Keywords: computable set X ⊆ N, current knowledge on X, explicitly known inte-
ger n, machine computations on large integers, mathematical statement aboutX that
refers to the current knowledge on X, physical limits of computation.

1. Basic definitions and the goal of the article
Logicism is a programme in the philosophy of mathematics. It is mainly character-
ized by the contention that mathematics can be reduced to logic, provided that the
latter includes set theory, see [3, p. 199].
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Definition 1. Conditions (1)�(6) concern sets X ⊆ N.

(1) There are a large number of elements ofX and it is conjectured thatX is infinite.

(2) No known algorithm decides the finiteness/infiniteness of X.

(3) There is a known algorithm that for every k ∈ N decides whether or not k ∈ X.

(4) There is an explicitly known integer n such that card(X) < ω⇒ X ⊆ (−∞, n].

(5) X is simply defined and the size of a non-negative integer k has no direct effect
on the validity of k ∈ X.

(6) We know an algorithm such that for every input k ∈ N it returns the sentence
k ∈ X or k < X and every returned sentence is true when k is sufficiently large. The
simplest known such algorithm returns a true sentence for every small input k ∈ N.

Which sets X ⊆ N satisfy conditions (3) and (5)? It seems that they should
satisfy condition (6).

Definition 2. We say that an integer n is a threshold number of a set X ⊆ N, if
card(X) < ω⇒ X ⊆ (−∞, n], cf. [7] and [8].

If a set X ⊆ N is empty or infinite, then any integer n is a threshold number
of X. If a set X ⊆ N is non-empty and finite, then the all threshold numbers of X
form the set [max(X),∞) ∩ N.

Edmund Landau’s conjecture states that the set Pn2+1 of primes of the form
n2 + 1 is infinite, see [4]–[6].

Definition 3. Let Φ denote the implication:

card(Pn2+1) < ω⇒ Pn2+1 ⊆ (−∞, (((24!)!)!)!]

Landau’s conjecture implies the statement Φ. In Section 4, we heuristically
justify the statement Φ without invoking Landau’s conjecture.

Statement 1. There is no explicitly known threshold number of Pn2+1. It means that
there is no explicitly known integer k such that card(Pn2+1) < ω⇒ Pn2+1 ⊆ (−∞, k].

Proving the statement Φ will falsify Statement 1. Statement 1 cannot be for-
malized in ZFC because it refers to the current mathematical knowledge. The same
is true for Statements 2–3 and Open Problem 1 in the next sections. It argues against
logicism as Open Problem 1 concerns abstract computable sets X ⊆ N.

2. The physical impossibility of machine computations on
sufficiently large integers inspires Open Problem 1

Definition 4. Let β = (((24!)!)!)!.

Lemma 1. β ≈ 1010101025.16114896940657
.

Proof. We ask Wolfram Alpha at http://wolframalpha.com. �

http://wolframalpha.com
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Statement 2. The setX = {k ∈ N : (β < k)⇒ (β, k)∩Pn2+1 , ∅} satisfies conditions
(1)�(4).

Proof. Condition (1) holds as X ⊇ {0, . . . , β} and the set Pn2+1 is conjecturally infi-
nite. By Lemma 1, due to known physics we are not able to confirm by a direct com-
putation that some element of Pn2+1 is greater than β, see [2]. Thus condition (2)
holds. Condition (3) holds trivially. Since the set

{k ∈ N : (β < k) ∧ (β, k) ∩ Pn2+1 , ∅}

is empty or infinite, the integer β is a threshold number of X. Thus condition (4)
holds. �

Open Problem 1. Is there a set X ⊆ N that satisfies conditions (1)�(5)?

Theorem 1. Assume that for every positive integers b and s, at some future day, ma-
chine computations will be possible on every integers from the interval [−b, b] and
this will be possible with the speed of s FLOPS. These assumptions contradict the
current paradigm of physics, although they alone have no consequences in mathe-
matics formalized in ZFC. We claim that our assumptions alone imply that no set
X ⊆ N will satisfy conditions (1)-(4) forever.

Proof. The proof goes by contradiction. Since conditons (2)�(4) will hold forever,
the algorithm in Figure 1 never terminates and sequentially prints the following
sentences:

n + 1 < X, n + 2 < X, n + 3 < X, . . . (T)

Yes

No

Start

k := 1

Is
n+k ∈ X?

Print "n + k < X"

Print "The set X is infinite"

k := k + 1Stop

Fig. 1 An algorithm whose execution never terminates if the set X is finite

The sentences from the sequence (T) and our assumptions alone imply that for
every explicitly given integer m > n, at some future day, a computer will be able to
confirm in 1 second or less that (n,m] ∩ X = ∅. Thus, at some future day, numerical
evidence will support the conjecture that the setX is finite, contrary to the conjecture
in condition (1). �
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3. Number-theoretic statements Ψn

Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2. LetU1 de-
note the system of equations which consists of the equation x1! = x1. For an integer
n > 2, letUn denote the following system of equations:

x1! = x1
x1 · x1 = x2

∀i ∈ {2, . . . , n − 1} xi! = xi+1

The diagram in Figure 2 illustrates the construction of the systemUn.

!
x1

squaring x2 ! x3 . . . xn−1 ! xn

Fig. 2 Construction of the systemUn

Lemma 2. For every positive integer n, the systemUn has exactly two solutions in
positive integers, namely (1, . . . , 1) and

(
f (1), . . . , f (n)

)
.

Let

Bn =
{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
For a positive integer n, let Ψn denote the following statement: if a system of equa-
tions S ⊆ Bn has at most finitely many solutions in positive integers x1, . . . , xn, then
each such solution (x1, . . . , xn) satisfies x1, . . . , xn 6 f (n). The statement Ψn says
that for subsystems of Bn with a finite number of solutions, the largest known solu-
tion is indeed the largest possible. The statements Ψ1 and Ψ2 hold trivially. There is
no reason to assume the validity of the statement Ψ9, cf. Conjecture 1 in Section 4.

Theorem 2. For every statement Ψn, the bound f (n) cannot be decreased.

Proof. It follows from Lemma 2 becauseUn ⊆ Bn. �

Theorem 3. For every integer n > 2, the statement Ψn+1 implies the statement Ψn.

Proof. If a system S ⊆ Bn has at most finitely many solutions in positive integers
x1, . . . , xn, then for every integer i ∈ {1, . . . , n} the system S ∪ {xi! = xn+1} has at
most finitely many solutions in positive integers x1, . . . , xn+1. The statement Ψn+1
implies that xi! = xn+1 6 f (n + 1) = f (n)!. Hence, xi 6 f (n). �

Theorem 4. Every statement Ψn is true with an unknown integer bound that de-
pends on n.

Proof. For every positive integer n, the system Bn has a finite number of subsystems.
�
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4. A conjectural solution to Open Problem 1
Lemma 3. For every positive integers x and y, x! · y = y! if and only if

(x + 1 = y) ∨ (x = y = 1)

Lemma 4. (Wilson’s theorem, [1, p. 89]). For every integer x > 2, x is prime if and
only if x divides (x − 1)! + 1.

LetA denote the following system of equations:

x2! = x3
x3! = x4
x5! = x6
x8! = x9

x1 · x1 = x2
x3 · x5 = x6
x4 · x8 = x9
x5 · x7 = x8

Lemma 3 and the diagram in Figure 3 explain the construction of the systemA.

x1
squaring x2 +1

or x2 = x5 = 1

x5

!

x6
!

x3

!

x4

+1
or x3 = x8 = 1

x8

!

x9

x5 · x7 = x8x3 · x5 = x6

x4 · x8 = x9

Fig. 3 Construction of the systemA
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Lemma 5. For every integer x1 > 2, the system A is solvable in positive integers
x2, . . . , x9 if and only if x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are
uniquely determined by the following equalities:

x2 = x2
1

x3 = (x2
1)!

x4 = ((x2
1)!)!

x5 = x2
1 + 1

x6 = (x2
1 + 1)!

x7 =
(x2

1)! + 1
x2

1 + 1
x8 = (x2

1)! + 1
x9 = ((x2

1)! + 1)!

Proof. By Lemma 3, for every integer x1 > 2, the system A is solvable in posi-
tive integers x2, . . . , x9 if and only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of

Lemma 5 follows from Lemma 4. �

Lemma 6. There are only finitely many tuples (x1, . . . , x9) ∈ (N \ {0})9, which solve
the systemA and satisfy x1 = 1. This is true as every such tuple (x1, . . . , x9) satisfies
x1, . . . , x9 ∈ {1, 2}.

Proof. The equality x1 = 1 implies that x2 = x2
1 = 1. Hence, for example,

x3 = x2! = 1. Therefore, x8 = x3 + 1 = 2 or x8 = 1. Consequently, x9 = x8! 6 2. �

Conjecture 1. The statement Ψ9 is true when is restricted to the systemA.

Theorem 5. Conjecture 1 proves the following implication: if there exists an integer
x1 > 2 such that x2

1 + 1 is prime and greater than f (7), then the set Pn2+1 is infinite.

Proof. Suppose that the antecedent holds. By Lemma 5, there exists a unique tuple
(x2, . . . , x9) ∈ (N\{0})8 such that the tuple (x1, x2, . . . , x9) solves the systemA. Since
x2

1 + 1 > f (7), we obtain that x2
1 > f (7). Hence, (x2

1)! > f (7)! = f (8). Consequently,

x9 = ((x2
1)! + 1)! > ( f (8) + 1)! > f (8)! = f (9)

Conjecture 1 and the inequality x9 > f (9) imply that the system A has infinitely
many solutions (x1, . . . , x9) ∈ (N \ {0})9. According to Lemmas 5 and 6, the set
Pn2+1 is infinite. �

Theorem 6. Conjecture 1 implies the statement Φ.

Proof. It follows from Theorem 5 and the equality f (7) = (((24!)!)!)!. �

Theorem 7. The statement Φ implies Conjecture 1.

Proof. By Lemmas 5 and 6, if positive integers x1, . . . , x9 solve the systemA, then

(x1 > 2) ∧ (x5 = x2
1 + 1) ∧ (x5 is prime)

or x1, . . . , x9 ∈ {1, 2}. In the first case, Lemma 5 and the statement Φ imply
that the inequality x5 6 (((24!)!)!)! = f (7) holds when the system A has at most
finitely many solutions in positive integers x1, . . . , x9. Hence, x2 = x5 − 1 < f (7)
and x3 = x2! < f (7)! = f (8). Continuing this reasoning in the same manner, we can
show that every xi does not exceed f (9). �
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Statement 3. The set X = Pn2+1 satisfies conditions (1)�(3) and (5)�(6). The
statement Φ implies that the set X = Pn2+1 satisfies condition (4).

Proof. The set Pn2+1 is conjecturally infinite. There are 2199894223892 primes
of the form n2 + 1 in the interval [2, 1028), see [5]. These two facts imply condi-
tion (1). Conditions (3) and (5) hold trivially. By Lemma 1, due to known physics
we are not able to confirm by a direct computation that some element of Pn2+1
is greater than f (7) = (((24!)!)!)! = β, see [2]. Thus condition (2) holds. Condi-
tion (6) holds as the algorithm in Figure 4 returns a true sentence for every input
k ∈ N ∩ [3,∞).

No

No

Yes

Yes

Start

i := 2

Does
i divide k

or
(i−1)2+1 < k < i2+1? Print "k < X"

i := i + 1

Is
i < k?

Print "k ∈ X"

Stop

Fig. 4 An algorithm that satisfies condition (6)

Suppose that the statement Φ is true. This means that β is a threshold number of
X = Pn2+1. Thus condition (4) holds. �

Acknowledgment. Sławomir Kurpaska prepared four diagrams in TikZ. Apolo-
niusz Tyszka wrote the article.
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