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Abstract. Edmund Landau’s conjecture states that the set #,2,, of primes of
the form n? + 1 is infinite. Let 8 = (((24!)")!)!, and let ® denote the implication:
card(P,2,1) < w = P,2,; € (—o0,B]. We heuristically justify the statement ®
without invoking Landau’s conjecture. Open problem: Is there a set X C N that
satisfies conditions (1)-(5)? (1) There are a large number of elements of X
and it is conjectured that X is infinite. (2) No known algorithm decides the
finiteness/infiniteness of X. (3) There is a known algorithm that for every k € N
decides whether or not k € X. (4) There is an explicitly known integer n such
that card(X) < w = X C (—oo,n]. (5) We know an algorithm such that for ev-
ery input k € N it returns the sentence k € X or k ¢ X and every returned sen-
tence is true when k is sufficiently large. The simplest known such algorithm
may return a false sentence only when a non-negative integer k on the input
is small. The set X = {k e N : (8 < k) = (B,k) N P,2,, # 0} satisfies conditions
(1)-(4). The set X = P,2,, satisfies conditions (1)-(3) and (5). The state-
ment O implies that the set X = P2, satisfies condition (4).
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1. Basic definitions and the goal of the article

Logicism is a programme in the philosophy of mathematics. It is mainly character-
ized by the contention that mathematics can be reduced to logic, provided that the
latter includes set theory, see [3} p. 199].



Definition 1. Conditions (1)-(5) concern sets X C N.

(1) There are a large number of elements of X and it is conjectured that X is infinite.
(2) No known algorithm decides the finitenessfinfiniteness of X.

(3) There is a known algorithm that for every k € N decides whether or not k € X.
(4) There is an explicitly known integer n such that card(X) < w = X C (—oo,n).

(5) We know an algorithm such that for every input k € N it returns the sen-
tence k € X or k ¢ X and every returned sentence is true when k is sufficiently
large. The simplest known such algorithm may return a false sentence only when
a non-negative integer k on the input is small.

Definition 2. We say that an integer n is a threshold number of a set X C N, if
card(X) < w = X C (—oo,n], cf. [1] and [8].

If a set X € N is empty or infinite, then any integer #n is a threshold number
of X. If a set X C N is non-empty and finite, then the all threshold numbers of X
form the set [max(X), co) N N.

Edmund Landau’s conjecture states that the set #,2,, of primes of the form
n? + 1 is infinite, see [4]-[6].

Definition 3. Let @ denote the implication:
card(Pye,1) < @ = Py € (—o0, ((24DDHN!]

Landau’s conjecture implies the statement ®. In Section A we heuristically
justify the statement ® without invoking Landau’s conjecture.

Statement 1. There is no explicitly known threshold number of P,2.,. It means that
there is no explicitly known integer k such that card(P,2,1) < w = P21 C (=00, k].

Proving the statement @ will falsify Statement |1} Statement |l| cannot be for-
malized in ZFC because it refers to the current mathematical knowledge. The same
is true for Statements [2H3]and Open Problem I]in the next sections. It argues against
logicism as Open Problem [T| concerns abstract computable sets X C N.

2. The physical impossibility of machine computations on
sufficiently large integers inspires Open Problem 1]

Definition 4. Let B = (((24))HNH)!.
Lemma 1. log,(log,(log,(log,(log,(log,(log,(5))))))) ~ 1.42298.
Proof. We ask Wolfram Alpha athttp://wolframalpha.com. |


http://wolframalpha.com

Statement 2. The set X = {k e N: (B < k) = (B,k)NP,2.1 # 0} satisfies conditions
(D-.

Proof. Condition (1) holds as X 2 {0, ...,3} and the set P,2,; is conjecturally infi-
nite. By Lemmal[T] due to known physics we are not able to confirm by a direct com-
putation that some element of #,2,, is greater than 3, see [2]. Thus condition (2)
holds. Condition (3) holds trivially. Since the set

keN:B<kAQBNP,2, # 0}

is empty or infinite, the integer § is a threshold number of X. Thus condition (4)
holds. O

Open Problem 1. Is there a set X C N that satisfies conditions (1)-(5)?

Theorem 1. Assume that for every positive integers b and s, at some future day, ma-
chine computations will be possible on every integers from the interval [-b, b] and
this will be possible with the speed of s FLOPS. These assumptions contradict the
current paradigm of physics, although they alone have no consequences in mathe-
matics formalized in ZFC. We claim that our assumptions alone imply that no set
X C N will satisfy conditions (1) - (4) forever.

Proof. The proof goes by contradiction. Since conditons (2) - (4) will hold forever,
the algorithm in Figure 1 never terminates and sequentially prints the following
sentences:

n+l1¢X,n+2¢X,n+3¢X, ... M

/Print "n+kegX"

/Print "The set X is infinite"/

|k::;<’+1|—

Fig. 1 An algorithm whose execution never terminates if the set X is finite

The sentences from the sequence (T) and our assumptions alone imply that for
every explicitly given integer m > n, at some future day, a computer will be able to
confirm in 1 second or less that (1, m] N X = 0. Thus, at some future day, numerical
evidence will support the conjecture that the set X is finite, contrary to the conjecture
in condition (1). O



3. Number-theoretic statements ¥,

Let f(1) =2, f(2) =4, and let f(n + 1) = f(n)! for every integer n > 2. Let U de-
note the system of equations which consists of the equation x;! = x;. For an integer
n > 2, let U, denote the following system of equations:

xl! = X1
X1 X1 = X2
ViE{Z,...,n—l}Xi! = Xit+1

The diagram in Figure 2 illustrates the construction of the system U,,.

squaring X ! X3 Xpo1 1 Xn
X > > L N
1 L4 4

Fig. 2 Construction of the system U,

Lemma 2. For every positive integer n, the system U, has exactly two solutions in
positive integers, namely (1,...,1) and (f(l), ... ,f(n)).

Let
By={x!=x:ike(l,...nm}Ulxi-x;=x: ijke(l,...n)

For a positive integer n, let ¥,, denote the following statement: if a system of equa-
tions S C By, has at most finitely many solutions in positive integers xi, . . ., X, then
each such solution (xy,...,Xx,) satisfies xi,...,x, < f(n). The statement ¥, says
that for subsystems of B, with a finite number of solutions, the largest known solu-
tion is indeed the largest possible. The statements V| and W5 hold trivially. There is
no reason to assume the validity of the statement Py, cf. Conjecture[I]in Section 4]

Theorem 2. For every statement P, the bound f(n) cannot be decreased.
Proof. It follows from Lemma [Z]because U, C B,. O
Theorem 3. For every integer n > 2, the statement ¥, implies the statement ..

Proof. If a system S C B, has at most finitely many solutions in positive integers

X1,...,Xy, then for every integer i € {1,...,n} the system S U {x;! = x,,} has at
most finitely many solutions in positive integers xi, ..., X,+;. The statement ¥,
implies that x;! = x,.1 < f(n + 1) = f(n)!. Hence, x; < f(n). ]

Theorem 4. Every statement ¥, is true with an unknown integer bound that de-
pends on n.

Proof. For every positive integer n, the system B,, has a finite number of subsystems.
O



4. A conjectural solution to Open Problem (]
Lemma 3. For every positive integers x and y, x! -y = y! if and only if
x+l=y»Vix=y=1

Lemma 4. (Wilson’s theorem, |1, p. 89]). For every integer x > 2, x is prime if and
only if x divides (x — 1)! + 1.

Let A denote the following system of equations:

)CQ! = X3
X3! = X4
x5! = X6
)Cg! = X9
X1-X1 = X2
X3-X5 = Xp
X4-Xg = Xo
X5+X7 = X8

Lemma [3]and the diagram in Figure 3 explain the construction of the system A.

squaring X +1 X5
X —— e e e e e e e e e —-—-—

X6
X3+ X5 = Xg X5+ X7 = Xg
X3F=-===== + -1 ------ X
3 b

A 4 A 4
X4 X4+ Xg = X9 X9

Fig. 3 Construction of the system A



Lemma 5. For every integer x| > 2, the system A is solvable in positive integers

X2,...,X9 if and only ifx% + 1 is prime. In this case, the integers x,...,X9 are
uniquely determined by the following equalities:

Xy = X%

X3 = (x%)!

xo= (!

X5 = x% +1

X = (x% + 1)!

B (x%)! +1

7T x% +1

Xg = (x%)! +1

X9 = ((xf)! +1)!
Proof. By Lemma (3] for every integer x; > 2, the system A is solvable in posi-
tive integers x», ..., X9 if and only if x% + 1 divides (x%)! + 1. Hence, the claim of
Lemma[3l follows from Lemma 4] a

Lemma 6. There are only finitely many tuples (x1, . .., X9) € (N'\ {0})°, which solve
the system A and satisfy x| = 1. This is true as every such tuple (xi,. .., x9) satisfies
X1y X9 € {1,2}

Proof. The equality x; =1 implies that x; = x% = 1. Hence, for example,
x3 = xp! = 1. Therefore, xg = x3 + | =2 or xg = 1. Consequently, xg = xg! < 2. O
Conjecture 1. The statement Yy is true when is restricted to the system A.

Theorem 5. Conjecture|l|proves the following implication: if there exists an integer
x1 = 2 such that x% + 1 is prime and greater than f(7), then the set P, is infinite.

Proof. Suppose that the antecedent holds. By Lemma 5] there exists a unique tuple
(X2, ..., x9) € (N\{0})® such that the tuple (x1, x2, . .., Xg) solves the system A. Since
x% + 1 > f(7), we obtain that x% > f(7). Hence, (x%)! > f(7)! = f(8). Consequently,
X9 = (D! + D> (f®) + D! > f(8)! = f(9)

Conjecture |1| and the inequality x9 > f(9) imply that the system A has infinitely
many solutions (xy,...,x9) € (N'\ {op°. According to Lemmas |5| and @ the set
P,241 1s infinite. O
Theorem 6. Conjecture[l|implies the statement ®.

Proof. 1t follows from Theorem [5|and the equality f(7) = (((24H)D!. ]

Theorem 7. The statement ® implies Conjecturell]
Proof. By Lemmas [5]and 6] if positive integers xi, ..., X solve the system A, then
(x1 > 2) A (x5 = x} + 1) A (xs is prime)

or xi,...,x9 €{1,2}. In the first case, Lemma E] and the statement @ imply
that the inequality x5 < (((24))!D)! = f(7) holds when the system A has at most
finitely many solutions in positive integers xi,...,Xx9. Hence, xp = x5 — 1 < f(7)
and x3 = x,! < f(7)! = f(8). Continuing this reasoning in the same manner, we can
show that every x; does not exceed f(9). O



Statement 3. The set X = P,z satisfies conditions (1)-(3) and (5). The state-
ment ®© implies that the set X = P2, satisfies condition (4).

Proof. The set P,2,; is conjecturally infinite. There are 2199894223892 primes
of the form n? + 1 in the interval [2, 10%®), see [5]]. These two facts imply condi-
tion (1). Condition (3) holds trivially. By Lemmam due to known physics we are
not able to confirm by a direct computation that some element of $,2,; is greater
than f(7) = (((24)H!)! = B, see [2]. Thus condition (2) holds. Condition (5) holds
as the algorithm in Figure 4 returns a true sentence for every input k € N N [3, 00).

Does
idivide k
or
(-1)2+1 <k < #+17

Print "k ¢ X'/

/Print "ke X"

Fig. 4 An algorithm that satisfies condition (5)

Suppose that the statement @ is true. This means that § is a threshold number of
X = P,2,1. Thus condition (4) holds. O
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