The physical limits of computation inspires
an open problem that concerns abstract com-
putable sets X C N and cannot be formalized
in the set theory ZFC as it refers to our cur-
rent knowledge on X

Stawomir Kurpaska, Apoloniusz Tyszka

Summary. Let f(1) =2, f(2) =4, and let f(n + 1) = f(n)! for every integer n > 2. Edmund
Landau’s conjecture states that the set P2, of primes of the form n? + 1 is infinite. Landau’s
conjecture implies the following statement ®: card(P,2,,) < w = P,2,; € [2, f(7)]. Let Bde-
note the system of equations: {x,-! =x: i,ke {1,...,9}} U {x,- cxj=x i, k€ {1,..‘,9}}.
We observe that some system U C B has exactly two solutions in positive integers, namely
(1,...,1) and (f(1),..., f(9)). Let ¥ denote the statement: if a system S C B has at most
finitely many solutions in positive integers xi,..., Xy, then each such solution (xi,...,X9)
satisfies x1,...,X9 < f(9). There is no reason to assume the validity of the statement Y. We
write down a system A C B of 8 equations and prove that the statement ¥ restricted to the
system A is equivalent to the statement ®. Open Problem: Is there a set X C N that satis-
fies conditions (1)-(5)? (1) There are many elements of X and it is conjectured that X
is infinite. (2) No known algorithm decides the finitenessfinfiniteness of X. (3) There is a
known algorithm that for every k € N decides whether or not k € X. (4) There is a known
algorithm that computes an integer n satisfying card(X) < w = X C (—co,n]. (5) There is a
simple condition C, which can be formalized in ZFC, such that for almost all k € N, k sat-
isfies the condition C if and only if k € X. The simplest known such condition C defines in N
the set X. We prove: (1) the set X ={k e N: (f(7) < k) = (f(7),k) NP2, # 0} satisfies
conditions (1)-(4), (ii) the set X = {1} U P 2, satisfies conditions (1)-(3) and (5),
(iii) the statement @ implies that the set X = {1} U P2, satisfies condition (4), (iv) no
set X € N will satisfy conditions (1)-(4) forever, if for every positive integer b and every
algorithm working on integers from the interval [-b, b], at some future day, this algorithm
will be performed by a computer in 1 second or less.
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1. Basic definitions and the philosophical goal of the article

Logicism is a programme in the philosophy of mathematics. It is mainly character-
ized by the contention that mathematics can be reduced to logic, provided that the
latter includes set theory, see [13, p. 199].

Definition 1. Conditions (1)-(5) concern sets X C N.

(1) There are many elements of X and it is conjectured that X is infinite.

(2) No known algorithm decides the finiteness/infiniteness of X.

(3) There is a known algorithm that for every k € N decides whether or not k € X.

(4) There is a known algorithm that computes an integer n satisfying
card(X) < w = X C (—oo,n].

(5) There is a simple condition C, which can be formalized in ZFC, such that for
almost all k € N, k satisfies the condition C if and only if k € X. The simplest known
such condition C defines in N the set X.

The goal of condition (5) is to avoid non-naturally defined sets X C N like
the set X in Statement 2]

Definition 2. We say that an integer n is a threshold number of a set X C N, if
card(X) < w = X C (—oo,n], cf. [[7] and [8].

If a set X € N is empty or infinite, then any integer # is a threshold number
of X. If a set X C N is non-empty and finite, then the all threshold numbers of X
form the set [max(X), co) N N.

Edmund Landau’s conjecture states that the set $,2,; of primes of the form
n? + 1 is infinite, see [4]-[6].
Definition 3. Ler @ denote the implication:
card(P,241) < w = P2y S (—o0, (24NHNHNH!]

Landau’s conjecture implies the statement ®@. In Section 4] we heuristically
justify the statement @ without invoking Landau’s conjecture.

Statement 1. No known algorithm computes an integer k such that
Card(PnZJrl) <w= pn2+1 C (—oo, k]

Proving the statement ® will falsify Statement[T] Statement [I] cannot be for-
malized in ZFC because it refers to the current mathematical knowledge. The same
is true for Statements[2H3]and Open Problem I]in the next sections. It argues against
logicism as Open Problem T|concerns abstract computable sets X C N.



2. The physical limits of computation inspires Open Problem ]
Definition 4. Ler 8 = ((24HHNH

Lemma 1. log,(log,(log,(log,(log,(log,(log,(5))))))) = 1.42298.
Proof. We ask Wolfram Alpha athttp://wolframalpha.com. O

Statement 2. The set X = {k e N: (B <k) = (B,k)NP,2,1 # 0} satisfies conditions
(L-.

Proof. Condition (1) holds as X 2 {0, ..., 8} and the set #,2, is conjecturally infi-
nite. By Lemmal[T] due to known physics we are not able to confirm by a direct com-
putation that some element of #,2,, is greater than 8, see [2]. Thus condition (2)
holds. Condition (3) holds trivially. Since the set

(keN:B<k)ABkNP,q # 0}

is empty or infinite, the integer § is a threshold number of X. Thus condition (4)
holds. O

Open Problem 1. Is there a set X C N that satisfies conditions (1)-(5)?

Theorem 1. No set X C N will satisfy conditions (1)-(4) forever, if for every
positive integer b and every algorithm working on integers from the interval [—b, b],
at some future day, this algorithm will be performed by a computer in 1 second or
less.

Proof. The proof goes by contradiction. Since conditons (2) - (4) will hold forever,
the algorithm in Figure 1 never terminates and sequentially prints the following
sentences:

n+l1¢X,n+2¢X,n+3¢X, ... M

/Print "n+kgX"

/Print "The set X is infinite"

|k:=l:+1|—

Fig.1 An algorithm whose execution never terminates if the set X is finite

The sentences from the sequence (T) and our assumptions imply that for every
integer m > n computed by a known algorithm, at some future day, a computer will


http://wolframalpha.com

be able to confirm in 1 second or less that (n,m] N X = (. Thus, at some future day,
numerical evidence will support the conjecture that the set X is finite, contrary to
the conjecture in condition (1). O

Theorem [I| whose assumptions contradict the current paradigm of physics,
explains the title of the article.

3. Number-theoretic statements ¥,

Let f(1) =2, f(2) =4, and let f(n + 1) = f(n)! for every integer n > 2. Let U de-
note the system of equations which consists of the equation x;! = x;. For an integer
n > 2, let U, denote the following system of equations:

xl! = X1
X1 X1 = X2
ViE{Z,...,n—l}Xi! = Xit+1

The diagram in Figure 2 illustrates the construction of the system U,,.

squaring X ! X3 Xpo1 1 Xn
X > > L N
1 L4 4

Fig. 2 Construction of the system U,

Lemma 2. For every positive integer n, the system U, has exactly two solutions in
positive integers, namely (1,...,1) and (f(l), ey f(n)).

Let B, denote the following system of equations:
fxt=xe: ikefl,omfufxxj=x i jkell,... n}

For a positive integer #n, let ¥, denote the following statement: if a system of equa-
tions S C By, has at most finitely many solutions in positive integers xi, . . ., X, then
each such solution (xi,...,x,) satisfies xi,...,x, < f(n). The statement ¥, says
that for subsystems of B, with a finite number of solutions, the largest known solu-
tion is indeed the largest possible. The statements ¥; and ¥, hold trivially. There is
no reason to assume the validity of the statement Wy, cf. Conjecture[I]in Section 4]

Theorem 2. For every statement P, the bound f(n) cannot be decreased.

Proof. Tt follows from Lemma 2| because U, C B,. mi

Theorem 3. For every integer n > 2, the statement W,,| implies the statement \V,,.

Proof. If a system S C B, has at most finitely many solutions in positive integers
X1,...,Xy, then for every integer i € {1,...,n} the system S U {x;! = x,,} has at
most finitely many solutions in positive integers xi, ..., x,.1. The statement ¥,
implies that x;! = x,.1 < f(n + 1) = f(n)!. Hence, x; < f(n). ]



Theorem 4. Every statement ¥, is true with an unknown integer bound that de-
pends on n.

Proof. For every positive integer n, the system B, has a finite number of subsystems.
O

4. A conjectural solution to Open Problem ]
Lemma 3. For every positive integers x and y, x! -y = y! if and only if
x+l=yVvix=y=1

Lemma 4. (Wilson’s theorem, |1, p. 89]). For every integer x > 2, x is prime if and
only if x divides (x — 1)! + 1.

Let A denote the following system of equations:

XQ! = X3
X3! = X4
X5! = Xp
xg! = X9
XXy = X2
X3+ X5 = X6
X4 Xg = Xog
X5+ X7 = X8

Lemma [3]and the diagram in Figure 3 explain the construction of the system A.

squaring X +1 X5
X ——)t e e e e e e e - - -

or X3=Xg=l

h 4 h 4
X4 X4+ Xg = X9 X9

Fig. 3 Construction of the system A



Lemma 5. For every integer x| > 2, the system A is solvable in positive integers

X2,...,X9 if and only ifx% + 1 is prime. In this case, the integers x,...,X9 are
uniquely determined by the following equalities:

Xy = X%

X3 = (x%)!

xo= (D!

X5 = x% +1

X = (x% + 1)!

B (x%)! +1

7= x% +1

Xg = (x%)! +1

X9 = ((xf)! +1)!
Proof. By Lemma [3] for every integer x; > 2, the system A is solvable in posi-
tive integers xo, ..., xo if and only if x> + 1 divides (x2)! + 1. Hence, the claim of
Lemma[3l follows from Lemma 4] O
Lemma 6. There are only finitely many tuples (x1, . .., x9) € N\ {0))°, which solve
the system A and satisfy x; = 1. This is true as every such tuple (xy, . .., x9) satisfies
X1,...,%X9 € {1,2}.

Proof. The equality x; =1 implies that x, = x; - x; = 1. Hence, x3 = x! = 1.

Therefore, x4 = x3! = 1. The equalities x5! = xg and x5 = 1 - x5 = x3 - x5 = xg imply

that x5, x¢ € {1,2}. The equalities xg! = x9 and xg = 1 - xg = x4 - Xg = x9 imply that
Xg 112

xg, X9 € {1,2}. The equality x5 - x; = xg implies that x; = %5 € {T’ 3 T %} NN =

{1,2}. O
Conjecture 1. The statement Wy is true when is restricted to the system A.

Theorem 5. Conjecture[l|proves the following implication: if there exists an integer
x1 = 2 such that x% + 1 is prime and greater than f(7), then the set P, is infinite.

Proof. Suppose that the antecedent holds. By Lemma 5] there exists a unique tuple

(X2, ..., X9) € (N\{0})® such that the tuple (x1, x2, . .., X9) solves the system A. Since

x% + 1> f(7), we obtain that x% > f(7). Hence, (x%)! > f(7)! = f(8). Consequently,
X9 = (D! + D> (f®) + D! > fB®)! = £(9)

Conjecture [I] and the inequality x9 > f(9) imply that the system A has infinitely

many solutions (xy,...,x9) € (N {0)°. According to Lemmas [5| and E], the set
P 241 is infinite. O

Theorem 6. Conjecture[l|implies the statement ®.
Proof. 1Tt follows from TheoremE] and the equality f(7) = (((24)HDH!. O



Theorem 7. The statement ® implies Conjecturell]
Proof. By Lemmas [5]and[6] if positive integers xi, ..., X9 solve the system A, then
X1 Z22)AN (x5 = x% + 1) A (x5 is prime)

or xi,...,x9 €{1,2}. In the first case, Lemma E] and the statement @ imply
that the inequality x5 < (((24))!D)! = f(7) holds when the system A has at most
finitely many solutions in positive integers xi,...,X9. Hence, x, = x5 — 1 < f(7)
and x3 = x3! < f(7)! = f(8). Continuing this reasoning in the same manner, we can
show that every x; does not exceed f(9). O

Statement 3. The set X = {1} U P2, satisfies conditions (1)-(3) and (5). The
statement ® implies that the set X = {1} U P2, satisfies condition (4).

Proof. The set P,2,; is conjecturally infinite. There are 2199894223892 primes
of the form n? + 1 in the interval [2, 10?®), see [5]]. These two facts imply condi-
tion (1). Condition (3) holds trivially. By Lemma m due to known physics we
are not able to confirm by a direct computation that some element of {1} U P2, is
greater than f(7) = ((24)H!)! = B, see [2]. Thus condition (2) holds. The follow-
ing condition:

k — 1 is a square and k has no divisors greater than 1 and smaller than k

defines in N the set {1} U #,2,. This proves condition (5). Suppose that the state-
ment O is true. This means that 8 is a threshold number of X = {1} U P,2,;. Thus
condition (4) holds. 0O
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