The physical limits of computation inspire an open problem that concerns abstract computable sets $\mathcal{X} \subseteq \mathbb{N}$ and cannot be formalized in the set theory $Z F C$ as it refers to our current knowledge on X

Sławomir Kurpaska, Apoloniusz Tyszka

Abstract

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 2$. Edmund Landau's conjecture states that the set $\mathcal{P}_{n^{2}+1}$ of primes of the form $n^{2}+1$ is infinite. Landau's conjecture implies the following unproven statement Φ : $\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)<\omega \Rightarrow \mathcal{P}_{n^{2}+1} \subseteq[2, f(7)]$. Let B denote the system of equations: $\left\{x_{i}!=x_{k}: i, k \in\right.$ $\{1, \ldots, 9\}\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, 9\}\right\}$. We write down a system $\mathcal{U} \subseteq B$ of 9 equations which has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(f(1), \ldots, f(9))$. Let Ψ denote the statement: if a system $\mathcal{S} \subseteq B$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{9}, then each such solution $\left(x_{1}, \ldots, x_{9}\right)$ satisfies $x_{1}, \ldots, x_{9} \leqslant f(9)$. We write down a system $\mathcal{A} \subseteq B$ of 8 equations. Theorem 1. The statement Ψ restricted to the system \mathcal{A} is equivalent to the statement Φ. Open Problem. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions (1)-(5)? (1) There are many elements of \mathcal{X} and it is conjectured that \mathcal{X} is infinite. (2) No known algorithm decides the finiteness/infiniteness of \mathcal{X}. (3) There is a known algorithm that for every $k \in \mathbb{N}$ decides whether or not $k \in \mathcal{X}$. (4) There is a known algorithm that computes an integer n satisfying $\operatorname{card}(\mathcal{X})<\omega \Rightarrow \mathcal{X} \subseteq(-\infty, n]$. (5) There is a simple condition \mathcal{C}, which can be formalized in $Z F C$, such that for almost all $k \in \mathbb{N}, k$ satisfies the condition C if and only if $k \in \mathcal{X}$. The simplest known such condition C defines in \mathbb{N} the set \mathcal{X}. Condition (5) excludes artificially defined sets $\mathcal{X} \subseteq \mathbb{N}$ as that in the statement (i). We prove: (i) the set $\mathcal{X}=\left\{k \in \mathbb{N}:(f(7)<k) \Rightarrow(f(7), k) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}$ satisfies conditions (1)-(4); (ii) the set $\mathcal{X}=\{1\} \cup \mathcal{P}_{n^{2}+1}$ satisfies conditions (1)-(3) and (5). Proving Landau's conjecture will disprove the statements (i) and (ii). Theorem 2. The statement Φ implies that the set $\mathcal{X}=\{1\} \cup \mathcal{P}_{n^{2}+1}$ satisfies condition (4). Theorem 3. No set $\mathcal{X} \subseteq \mathbb{N}$ will satisfy conditions (1)-(4) forever, if for every algorithm with no inputs that operates on integers, at some future day, a computer will be able to execute this algorithm in 1 second or less. Physics disproves the assumption of Theorem 3.

2020 Mathematics Subject Classification: 03D20.

Key words and phrases: algorithm with no inputs that operates on integers, argument against logicism, artificially defined set $\mathcal{X} \subseteq \mathbb{N}$, computable set $\mathcal{X} \subseteq \mathbb{N}$, conjecturally infinite set $\mathcal{X} \subseteq \mathbb{N}$, current knowledge on \mathcal{X}, naturally defined set $\mathcal{X} \subseteq \mathbb{N}$, physical limits of computation, primes of the form $n^{2}+1$.

1. Basic definitions and the philosophical goal of the article

Logicism is a programme in the philosophy of mathematics. It is mainly characterized by the contention that mathematics can be reduced to logic, provided that the latter includes set theory, see [3, p. 199].

Definition 1. Conditions (1)-(5) concern sets $\mathcal{X} \subseteq \mathbb{N}$.
(1) There are many elements of \mathcal{X} and it is conjectured that \mathcal{X} is infinite.
(2) No known algorithm decides the finiteness/infiniteness of \mathcal{X}.
(3) There is a known algorithm that for every $k \in \mathbb{N}$ decides whether or not $k \in \mathcal{X}$.
(4) There is a known algorithm that computes an integer n satisfying $\operatorname{card}(\mathcal{X})<\omega \Rightarrow \mathcal{X} \subseteq(-\infty, n]$.
(5) There is a simple condition C, which can be formalized in $Z F C$, such that for almost all $k \in \mathbb{N}$, k satisfies the condition C if and only if $k \in \mathcal{X}$. The simplest known such condition C defines in \mathbb{N} the set \mathcal{X}.

Condition (5) excludes artificially defined sets $\mathcal{X} \subseteq \mathbb{N}$ as that in Statement 2 .
Definition 2. We say that an integer n is a threshold number of a set $\mathcal{X} \subseteq \mathbb{N}$, if $\operatorname{card}(X)<\omega \Rightarrow X \subseteq(-\infty, n], c f$. [7] and [8].

If a set $X \subseteq \mathbb{N}$ is empty or infinite, then any integer n is a threshold number of \mathcal{X}. If a set $\mathcal{X} \subseteq \mathbb{N}$ is non-empty and finite, then the all threshold numbers of \mathcal{X} form the set $[\max (\mathcal{X}), \infty) \cap \mathbb{N}$.

Edmund Landau's conjecture states that the set $\mathcal{P}_{n^{2}+1}$ of primes of the form $n^{2}+1$ is infinite, see [4]-[6].

Definition 3. Let Φ denote the following unproven statement:

$$
\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)<\omega \Rightarrow \mathcal{P}_{n^{2}+1} \subseteq(-\infty,(((24!)!)!)!]
$$

Landau's conjecture implies the statement Φ. In Section 4, we heuristically justify the statement Φ without invoking Landau's conjecture.

Statement 1. No known algorithm computes an integer k such that

$$
\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)<\omega \Rightarrow \mathcal{P}_{n^{2}+1} \subseteq(-\infty, k]
$$

Proving the statement Φ will disprove Statement 1 . Statement 1 cannot be formalized in ZFC because it refers to the current mathematical knowledge. The same is true for Statements $2 \sqrt{3}$ and Open Problem 1 in the next sections. It argues against logicism as Open Problem 1 concerns abstract computable sets $\mathcal{X} \subseteq \mathbb{N}$.

2. The physical limits of computation inspire Open Problem 1

Definition 4. Let $\beta=(((24!)!)!)!$.
Lemma 1. $\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}(\beta)\right)\right)\right)\right)\right)\right) \approx 1.42298$.
Proof. We ask Wolfram Alpha at http://wolframalpha.com

Statement 2. The set $\mathcal{X}=\left\{k \in \mathbb{N}:(\beta<k) \Rightarrow(\beta, k) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}$ satisfies conditions (1)-(4).

Proof. Condition (1) holds as $\mathcal{X} \supseteq\{0, \ldots, \beta\}$ and the set $\mathcal{P}_{n^{2}+1}$ is conjecturally infinite. By Lemma 1 , due to known physics we are not able to confirm by a direct computation that some element of $\mathcal{P}_{n^{2}+1}$ is greater than β, see [2]. Thus condition (2) holds. Condition (3) holds trivially. Since the set

$$
\left\{k \in \mathbb{N}:(\beta<k) \wedge(\beta, k) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}
$$

is empty or infinite, the integer β is a threshold number of X. Thus condition (4) holds.

Proving Landau's conjecture will disprove Statement 2 .
Open Problem 1. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies conditions (1)-(5)?
Theorem 1. No set $\mathcal{X} \subseteq \mathbb{N}$ will satisfy conditions (1)-(4) forever, if for every algorithm with no inputs that operates on integers, at some future day, a computer will be able to execute this algorithm in 1 second or less.

Proof. The proof goes by contradiction. Since conditons (2)-(4) will hold forever, the algorithm in Figure 1 never terminates and sequentially prints the following sentences:

$$
\begin{equation*}
n+1 \notin \mathcal{X}, n+2 \notin \mathcal{X}, n+3 \notin \mathcal{X}, \ldots \tag{T}
\end{equation*}
$$

Fig. 1 An algorithm whose execution never terminates if the set X is finite
The sentences from the sequence (T) and our assumption imply that for every integer $m>n$ computed by a known algorithm, at some future day, a computer will be able to confirm in 1 second or less that $(n, m] \cap \mathcal{X}=\emptyset$. Thus, at some future day, numerical evidence will support the conjecture that the set \mathcal{X} is finite, contrary to the conjecture in condition (1).

Physics disproves the assumption of Theorem 1

3. Number-theoretic statements Ψ_{n}

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)!$ for every integer $n \geqslant 2$. Let \mathcal{U}_{1} denote the system of equations which consists of the equation $x_{1}!=x_{1}$. For an integer $n \geqslant 2$, let \mathcal{U}_{n} denote the following system of equations:

$$
\left\{\begin{array}{rll}
x_{1}! & = & x_{1} \\
x_{1} \cdot x_{1} & = & x_{2} \\
\forall i \in\{2, \ldots, n-1\} x_{i}! & = & x_{i+1}
\end{array}\right.
$$

The diagram in Figure 2 illustrates the construction of the system \mathcal{U}_{n}.

Fig. 2 Construction of the system \mathcal{U}_{n}
Lemma 2. For every positive integer n, the system \mathcal{U}_{n} has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(f(1), \ldots, f(n))$.

Let B_{n} denote the following system of equations:

$$
\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

For a positive integer n, let Ψ_{n} denote the following statement: if a system of equations $\mathcal{S} \subseteq B_{n}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant f(n)$. The statement Ψ_{n} says that for subsystems of B_{n} with a finite number of solutions, the largest known solution is indeed the largest possible. The statements Ψ_{1} and Ψ_{2} hold trivially. There is no reason to assume the validity of the statement $\forall n \in \mathbb{N} \backslash\{0\} \Psi_{n}$.

Theorem 2. For every statement Ψ_{n}, the bound $f(n)$ cannot be decreased.
Proof. It follows from Lemma 2 because $\mathcal{U}_{n} \subseteq B_{n}$.
Theorem 3. For every integer $n \geqslant 2$, the statement Ψ_{n+1} implies the statement Ψ_{n}.
Proof. If a system $\mathcal{S} \subseteq B_{n}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then for every integer $i \in\{1, \ldots, n\}$ the system $\mathcal{S} \cup\left\{x_{i}!=x_{n+1}\right\}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n+1}. The statement Ψ_{n+1} implies that $x_{i}!=x_{n+1} \leqslant f(n+1)=f(n)!$. Hence, $x_{i} \leqslant f(n)$.

Theorem 4. Every statement Ψ_{n} is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system B_{n} has a finite number of subsystems.

4. A conjectural solution to Open Problem 1

Lemma 3. For every positive integers x and $y, x!\cdot y=y!$ if and only if

$$
(x+1=y) \vee(x=y=1)
$$

Lemma 4. (Wilson's theorem, [1, p. 89]). For every integer $x \geqslant 2, x$ is prime if and only if x divides $(x-1)!+1$.

Let \mathcal{A} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{1} \cdot x_{1} & =x_{2} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 3 explain the construction of the system \mathcal{A}.

Fig. 3 Construction of the system \mathcal{A}

Lemma 5. For every integer $x_{1} \geqslant 2$, the system \mathcal{A} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}^{2} \\
x_{3} & =\left(x_{1}^{2}\right)! \\
x_{4} & =\left(\left(x_{1}^{2}\right)!\right)! \\
x_{5} & =x_{1}^{2}+1 \\
x_{6} & =\left(x_{1}^{2}+1\right)! \\
x_{7} & =\frac{\left(x_{1}^{2}\right)!+1}{x_{1}^{2}+1} \\
x_{8} & =\left(x_{1}^{2}\right)!+1 \\
x_{9} & =\left(\left(x_{1}^{2}\right)!+1\right)!
\end{aligned}
$$

Proof. By Lemma 3, for every integer $x_{1} \geqslant 2$, the system \mathcal{A} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ divides $\left(x_{1}^{2}\right)!+1$. Hence, the claim of Lemma 5 follows from Lemma 4

Lemma 6. There are only finitely many tuples $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$, which solve the system \mathcal{A} and satisfy $x_{1}=1$. This is true as every such tuple $\left(x_{1}, \ldots, x_{9}\right)$ satisfies $x_{1}, \ldots, x_{9} \in\{1,2\}$.

Proof. The equality $x_{1}=1$ implies that $x_{2}=x_{1} \cdot x_{1}=1$. Hence, $x_{3}=x_{2}!=1$. Therefore, $x_{4}=x_{3}!=1$. The equalities $x_{5}!=x_{6}$ and $x_{5}=1 \cdot x_{5}=x_{3} \cdot x_{5}=x_{6}$ imply that $x_{5}, x_{6} \in\{1,2\}$. The equalities $x_{8}!=x_{9}$ and $x_{8}=1 \cdot x_{8}=x_{4} \cdot x_{8}=x_{9}$ imply that $x_{8}, x_{9} \in\{1,2\}$. The equality $x_{5} \cdot x_{7}=x_{8}$ implies that $x_{7}=\frac{x_{8}}{x_{5}} \in\left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{2}{2}\right\} \cap \mathbb{N}=$ $\{1,2\}$.

Conjecture 1. The statement Ψ_{9} is true when is restricted to the system \mathcal{A}.
Theorem 5. Conjecture 1 proves the following implication: if there exists an integer $x_{1} \geqslant 2$ such that $x_{1}^{2}+1$ is prime and greater than $f(7)$, then the $\operatorname{set} \mathcal{P}_{n^{2}+1}$ is infinite.
Proof. Suppose that the antecedent holds. By Lemma 5, there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{A}. Since $x_{1}^{2}+1>f(7)$, we obtain that $x_{1}^{2} \geqslant f(7)$. Hence, $\left(x_{1}^{2}\right)!\geqslant f(7)!=f(8)$. Consequently,

$$
x_{9}=\left(\left(x_{1}^{2}\right)!+1\right)!\geqslant(f(8)+1)!>f(8)!=f(9)
$$

Conjecture 1 and the inequality $x_{9}>f(9)$ imply that the system \mathcal{A} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$. According to Lemmas 5 and 6, the set $\mathcal{P}_{n^{2}+1}$ is infinite.
Theorem 6. Conjecture 1 implies the statement Φ.
Proof. It follows from Theorem 5 and the equality $f(7)=(((24!)!)!)!$.

Theorem 7. The statement Φ implies Conjecture 1

Proof. By Lemmas 5 and 6 , if positive integers x_{1}, \ldots, x_{9} solve the system \mathcal{A}, then

$$
\left(x_{1} \geqslant 2\right) \wedge\left(x_{5}=x_{1}^{2}+1\right) \wedge\left(x_{5} \text { is prime }\right)
$$

or $x_{1}, \ldots, x_{9} \in\{1,2\}$. In the first case, Lemma 5 and the statement Φ imply that the inequality $x_{5} \leqslant(((24!)!)!)!=f(7)$ holds when the system \mathcal{A} has at most finitely many solutions in positive integers x_{1}, \ldots, x_{9}. Hence, $x_{2}=x_{5}-1<f(7)$ and $x_{3}=x_{2}!<f(7)!=f(8)$. Continuing this reasoning in the same manner, we can show that every x_{i} does not exceed $f(9)$.

Statement 3. The set $\mathcal{X}=\{1\} \cup \mathcal{P}_{n^{2}+1}$ satisfies conditions (1)-(3) and (5).
Proof. The set $\mathcal{P}_{n^{2}+1}$ is conjecturally infinite. There are 2199894223892 primes of the form $n^{2}+1$ in the interval $\left[2,10^{28}\right.$), see [5]. These two facts imply condition (1). Condition (3) holds trivially. By Lemma 1, due to known physics we are not able to confirm by a direct computation that some element of $\{1\} \cup \mathcal{P}_{n^{2}+1}$ is greater than $f(7)=(((24!)!)!)!=\beta$, see [2]. Thus condition (2) holds. The following condition:
$k-1$ is a square and k has no divisors greater than 1 and smaller than k defines in \mathbb{N} the set $\{1\} \cup \mathcal{P}_{n^{2}+1}$. This proves condition (5).

Proving Landau's conjecture will disprove Statement 3 .
Theorem 8. The statement Φ implies that the set $\mathcal{X}=\{1\} \cup \mathcal{P}_{n^{2}+1}$ satisfies condition (4).

Proof. Suppose that the statement Φ is true. This means that β is a threshold number of $\mathcal{X}=\{1\} \cup \mathcal{P}_{n^{2}+1}$. Thus condition (4) holds.

Acknowledgment. Sławomir Kurpaska prepared three diagrams in TikZ. Apoloniusz Tyszka wrote the article.

References

[1] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[2] S. Lloyd, Ultimate physical limits to computation, Nature 406 (2000), 1047-1054, http: //doi.org/10.1038/35023282
[3] W. Marciszewski, Logic, modern, history of, in: Dictionary of logic as applied in the study of language (ed. W. Marciszewski), pp. 183-200, Springer, Dordrecht, 1981.
[4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002496, Primes of the form $n^{2}+1$, http://oeis.org/A002496
[5] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A083844, Number of primes of the form $x^{2}+1<10^{n}$, http://oeis.org/A083844.
[6] Wolfram MathWorld, Landau's Problems, http://mathworld.wolfram.com/ LandausProblems.html.
[7] A. A. Zenkin, Super-induction method: logical acupuncture of mathematical infinity, Twentieth World Congress of Philosophy, Boston, MA, August 10-15, 1998, http: //www.bu.edu/wcp/Papers/Logi/LogiZenk.htm
[8] A. A. Zenkin, Superinduction: new logical method for mathematical proofs with a computer, in: J. Cachro and K. Kijania-Placek (eds.), Volume of Abstracts, 11th International Congress of Logic, Methodology and Philosophy of Science, August 20-26, 1999, Cracow, Poland, p. 94, The Faculty of Philosophy, Jagiellonian University, Cracow, 1999.

Sławomir Kurpaska
Technical Faculty
Hugo Kołła̧taj University
Balicka 116B, 30-149 Kraków, Poland
E-mail:rtkurpas@cyf-kr.edu.pl

Apoloniusz Tyszka
Technical Faculty
Hugo Kołłạtaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

