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Abstract—Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for
every integer n > 2. For a positive integer n, let Θn denote
the statement: if a system S ⊆

{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪{

xi · x j = xk : i, j, k ∈ {1, . . . , n}
}

has only finitely many solutions
in integers x1, . . . , xn greater than 1, then each such solu-
tion (x1, . . . , xn) satisfies min(x1, . . . , xn) 6 f (n). The statement Θ9
proves that if there exists an integer x > f (9) such that x2 + 1
(alternatively, x! + 1) is prime, then there are infinitely many
primes of the form n2 + 1 (respectively, n! + 1). The statement Θ16
proves that if there exists a twin prime greater than f (16) + 3,
then there are infinitely many twin primes. We formulate the
statements Φn and prove: Φ4 equivalently expresses that there
are infinitely many primes of the form n! + 1, Φ6 implies that
for infinitely many primes p the number p! + 1 is prime,
Φ6 implies that there are infinitely many primes of the form
n! − 1, Φ7 implies that there are infinitely many twin primes.

Index Terms—composite Fermat numbers, prime numbers of
the form n! + 1, prime numbers of the form n! − 1, prime numbers
of the form n2 + 1, prime numbers p such that p! + 1 is prime,
single query to an oracle for the halting problem, twin prime
conjecture.

I. Spectra of sentences and their threshold numbers

THE following observation concerns the theme described
in the title of the article.

Observation 1. If W is a subset of {0, . . . , n} where n is
a non-negative integer, then we take any integer m > n as a
threshold number forW. IfW is an infinite subset of N, then
we take any non-negative integer m as a threshold number
for W.

We define the set U ⊆ N by declaring that a non-negative

integer n belongs toU if and only if sin

10101010  > 0. This

inequality is practically undecidable, see [4].

Corollary 1. The setU equals ∅ or N. The statement “U = ∅”
remains unproven and the statement “U = N” remains un-
proven. Every non-negative integer m is a threshold number
forU. For every non-negative integer k, the sentence “k ∈ U”
is only theoretically decidable.

The first-order language of graph theory contains two rela-
tion symbols of arity 2: ∼ and =, respectively for adjacency
and equality of vertices. The term first-order imposes the
condition that the variables represent vertices and hence the
quantifiers apply to vertices only. For a first-order sentence Λ

about graphs, let Spectrum(Λ) denote the set of all positive
integers n such that there is a graph on n vertices satisfying Λ.
By a graph on n vertices we understand a set of n elements
with a binary relation which is symmetric and irreflexive.

Theorem 1. ([10, p. 171]). If a sentence Λ in the
language of graph theory has the form ∃x1 . . . xk ∀y1 . . . yl

Υ(x1, . . . , xk, y1, . . . , yl), where Υ(x1, . . . , xk, y1, . . . , yl) is
quantifier-free, then either Spectrum(Λ) ⊆ [1, (2k · 4l) − 1] or
Spectrum(Λ) ⊇ [k + l,∞) ∩ N.

Corollary 2. The number
(
2k · 4l

)
− 1 is a threshold number

for Spectrum(Λ).

The classes of the infinite recursively enumerable sets and
of the infinite recursive sets are not recursively enumerable,
see [8, p. 234].

Corollary 3. If an algorithm Alg1 for every recursive set
W ⊆ N finds a non-negative integer Alg1(W), then there
exists a finite setM ⊆ N such thatM∩ [Alg1(M) + 1,∞) , ∅.

Corollary 4. If an algorithm Alg2 for every recur-
sively enumerable set W ⊆ N finds a non-negative integer
Alg2(W), then there exists a finite set M ⊆ N such that
M∩ [Alg2(M) + 1,∞) , ∅.

II. Basic lemmas

Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for ev-
ery integer n > 2. Let V1 denote the system of equa-
tions {x1! = x1}, and let V2 denote the system of equations
{x1! = x1, x1 · x1 = x2}. For an integer n > 3, let Vn denote



the following system of equations:
x1! = x1

x1 · x1 = x2
∀i ∈ {2, . . . , n − 1} xi! = xi+1

The diagram in Figure 1 illustrates the construction of the
system Vn.

!

x1 squaring x2 ! x3 . . . xn−1 ! xn

Fig. 1 Construction of the system Vn

Lemma 1. For every positive integer n, the system Vn

has exactly one solution in integers greater than 1, namely(
f (1), . . . , f (n)

)
.

Let
Hn =

{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪{

xi · x j = xk : i, j, k ∈ {1, . . . , n}
}

For a positive integer n, let Θn denote the following state-
ment: if a system S ⊆ Hn has at most finitely many solu-
tions in integers x1, . . . , xn greater than 1, then each such
solution (x1, . . . , xn) satisfies min(x1, . . . , xn) 6 f (n). The as-
sumption min(x1, . . . , xn) 6 f (n) is weaker than the assumption
max(x1, . . . , xn) 6 f (n) suggested by Lemma 1.

Lemma 2. For every positive integer n, the system Hn has a
finite number of subsystems.

Theorem 2. Every statement Θn is true with an unknown
integer bound that depends on n.

Proof. It follows from Lemma 2. �

Lemma 3. For every integers x and y greater than 1,
x! · y = y! if and only if x + 1 = y.

Lemma 4. If x > 4, then (x − 1)! + 1
x > 1.

Lemma 5. (Wilson’s theorem, [3, p. 89]). For every integer
x > 2, x is prime if and only if x divides (x − 1)! + 1.

III. Brocard’s problem
A weak form of Szpiro’s conjecture implies that there

are only finitely many solutions to the Brocard-Ramanujan
equation x! + 1 = y2, see [9]. It is conjectured that x! + 1 is a
square only for x ∈ {4, 5, 7}, see [16, p. 297].

Let A denote the following system of equations:
x1! = x2
x2! = x3
x5! = x6

x4 · x4 = x5
x3 · x5 = x6

Lemma 3 and the diagram in Figure 2 explain the construction
of the system A.

x1
! x2 x4

squaringx5+1

!

x3

!

x6x3 · x5 = x6

Fig. 2 Construction of the system A
Lemma 6. For every integers x1 and x4 greater than 1, the
system A is solvable in integers x2, x3, x5, x6 greater than 1 if
and only if x1! + 1 = x2

4. In this case, the integers x2, x3, x5, x6
are uniquely determined by the following equalities:

x2 = x1!
x3 = (x1!)!
x5 = x1! + 1
x6 = (x1! + 1)!

and x1 = min(x1, . . . , x6).

Proof. It follows from Lemma 3. �

Theorem 3. The statement Θ6 proves the following impli-
cation: if the equation x1! + 1 = x2

4 has only finitely many
solutions in positive integers, then each such solution (x1, x4)
satisfies x1 6 f (6).

Proof. Let positive integers x1 and x4 satisfy x1! + 1 = x2
4.

Then, x1, x4 ∈ N \ {0, 1}. By Lemma 6, there exists a
unique tuple (x2, x3, x5, x6) ∈ (N \ {0, 1})4 such that the tu-
ple (x1, . . . , x6) solves the system A. Lemma 6 guarantees
that x1 = min(x1, . . . , x6). By the antecedent and Lemma 6,
the system A has only finitely many solutions in integers
x1, . . . , x6 greater than 1. Therefore, the statement Θ6 implies
that x1 = min(x1, . . . , x6) 6 f (6). �

Hypothesis 1. The implication in Theorem 3 is true.

Corollary 5. Assuming Hypothesis 1, a single query to an
oracle for the halting problem decides the problem of the
infinitude of the solutions of the equation x! + 1 = y2.

IV. Are there infinitely many prime numbers of the form
n2 + 1?

Landau’s conjecture states that there are infinitely many
primes of the form n2 + 1, see [7, pp. 37–38].

Let B denote the following system of equations:

x2! = x3
x3! = x4
x5! = x6
x8! = x9

x1 · x1 = x2
x3 · x5 = x6
x4 · x8 = x9
x5 · x7 = x8

Lemma 3 and the diagram in Figure 3 explain the construction
of the system B.



x1
squaring x2 +1 x5 ! x6

!

x3

!

x4

+1 x8

!

x9

x5 · x7 = x8

x3 · x5 = x6

x4 · x8 = x9

Fig. 3 Construction of the system B
Lemma 7. For every integer x1 > 2, the system B is solvable
in integers x2, . . . , x9 greater than 1 if and only if x2

1 + 1
is prime. In this case, the integers x2, . . . , x9 are uniquely
determined by the following equalities:

x2 = x2
1

x3 = (x2
1)!

x4 = ((x2
1)!)!

x5 = x2
1 + 1

x6 = (x2
1 + 1)!

x7 =
(x2

1)! + 1
x2

1 + 1
x8 = (x2

1)! + 1
x9 = ((x2

1)! + 1)!

and min(x1, . . . , x9) = x1.

Proof. By Lemmas 3 and 4, for every integer x1 > 2, the
system B is solvable in integers x2, . . . , x9 greater than 1 if and
only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of Lemma 7

follows from Lemma 5. �

Theorem 4. The statement Θ9 proves the following impli-
cation: if there exists an integer x1 > f (9) such that x2

1 + 1 is
prime, then there are infinitely many primes of the form n2 + 1.

Proof. Assume that an integer x1 is greater than f (9)
and x2

1 + 1 is prime. By Lemma 7, there exists a
unique tuple (x2, . . . , x9) ∈ (N \ {0, 1})8 such that the tuple
(x1, x2, . . . , x9) solves the system B. Lemma 7 guarantees
that min(x1, . . . , x9) = x1. Since B ⊆ H9, the statement Θ9 and
the inequality min(x1, . . . , x9) = x1 > f (9) imply that the sys-
tem B has infinitely many solutions (x1, . . . , x9) ∈ (N \ {0, 1})9.
According to Lemma 7, there are infinitely many primes of
the form n2 + 1. �

Hypothesis 2. The implication in Theorem 4 is true.

Corollary 6. Assuming Hypothesis 2, a single query to an
oracle for the halting problem decides the problem of the
infinitude of primes of the form n2 + 1.

V. Are there infinitely many prime numbers of the form
n! + 1?

It is conjectured that there are infinitely many primes of
the form n! + 1, see [1, p. 443] and [12]. Let G denote the
following system of equations:

x1! = x2
x2! = x3
x3! = x4
x5! = x6
x8! = x9

x3 · x5 = x6
x4 · x8 = x9
x5 · x7 = x8

Lemma 3 and the diagram in Figure 4 explain the construction
of the system G.

x1
! x2 +1 x5 ! x6

!

x3

!

x4

+1 x8

!

x9

x5 · x7 = x8

x3 · x5 = x6

x4 · x8 = x9

Fig. 4 Construction of the system G
Lemma 8. For every integer x1 > 2, the system G is solvable
in integers x2, . . . , x9 greater than 1 if and only if x1! + 1
is prime. In this case, the integers x2, . . . , x9 are uniquely
determined by the following equalities:

x2 = x1!
x3 = (x1!)!
x4 = ((x1!)!)!
x5 = x!

1 + 1
x6 = (x1! + 1)!

x7 =
(x1!)! + 1

x1! + 1
x8 = (x1!)! + 1
x9 = ((x1!)! + 1)!

and min(x1, . . . , x9) = x1.

Proof. By Lemmas 3 and 4, for every integer x1 > 2, the
system G is solvable in integers x2, . . . , x9 greater than 1 if and
only if x1! + 1 divides (x1!)! + 1. Hence, the claim of Lemma 8
follows from Lemma 5. �

Theorem 5. The statement Θ9 proves the following implica-
tion: if there exists an integer x1 > f (9) such that x1! + 1 is
prime, then there are infinitely many primes of the form n! + 1.

Proof. Assume that an integer x1 is greater than f (9)
and x1! + 1 is prime. By Lemma 8, there exists a



unique tuple (x2, . . . , x9) ∈ (N \ {0, 1})8 such that the tuple
(x1, x2, . . . , x9) solves the system G. Lemma 8 guarantees
that min(x1, . . . , x9) = x1. Since G ⊆ H9, the statement Θ9 and
the inequality min(x1, . . . , x9) = x1 > f (9) imply that the sys-
tem G has infinitely many solutions (x1, . . . , x9) ∈ (N \ {0, 1})9.
According to Lemma 8, there are infinitely many primes of
the form n! + 1. �

Hypothesis 3. The implication in Theorem 5 is true.

Corollary 7. Assuming Hypothesis 3, a single query to an
oracle for the halting problem decides the problem of the
infinitude of primes of the form n! + 1.

VI. The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2
more than another prime number. The twin prime conjecture
states that there are infinitely many twin primes, see [7, p. 39].

Let C denote the following system of equations:

x1! = x2
x2! = x3
x4! = x5
x6! = x7
x7! = x8
x9! = x10

x12! = x13
x15! = x16

x2 · x4 = x5
x5 · x6 = x7
x7 · x9 = x10

x4 · x11 = x12
x3 · x12 = x13
x9 · x14 = x15
x8 · x15 = x16

Lemma 3 and the diagram in Figure 5 explain the construction
of the system C.

!

x5

!

x10

x1
+1 x4 +1 x6 +1 x9

x2
+1 x12

+1 x15

!

x2

!

x3

!

x13

!

x7

!

x8

!

x16

x2 · x4 = x5 x7 · x9 = x10

x5 · x6 = x7

x4 · x11 = x12 x9 · x14 = x15

x3 · x12 = x13 x8 · x15 = x16

Fig. 5 Construction of the system C

Lemma 9. If x4 = 2, then the system C has no solutions in
integers x1, . . . , x16 greater than 1.

Proof. The equality x2 · x4 = x5 = x4! and the equality x4 = 2
imply that x2 = 1. �

Lemma 10. If x4 = 3, then the system C has no solutions in
integers x1, . . . , x16 greater than 1.

Proof. The equality x4 · x11 = x12 = (x4 − 1)! + 1 and the
equality x4 = 3 imply that x11 = 1. �

Lemma 11. For every x4 ∈ N \ {0, 1, 2, 3} and for every
x9 ∈ N \ {0, 1}, the system C is solvable in integers x1, x2, x3,
x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 greater than 1 if
and only if x4 and x9 are prime and x4 + 2 = x9. In this case,
the integers x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14,
x15, x16 are uniquely determined by the following equalities:

x1 = x4 − 1
x2 = (x4 − 1)!
x3 = ((x4 − 1)!)!
x5 = x4!
x6 = x9 − 1
x7 = (x9 − 1)!
x8 = ((x9 − 1)!)!

x10 = x9!

x11 =
(x4 − 1)! + 1

x4
x12 = (x4 − 1)! + 1
x13 = ((x4 − 1)! + 1)!

x14 =
(x9 − 1)! + 1

x9
x15 = (x9 − 1)! + 1
x16 = ((x9 − 1)! + 1)!

and min(x1, . . . , x16) = x1 = x9 − 3.

Proof. By Lemmas 3 and 4, for every x4 ∈ N \ {0, 1, 2, 3} and
for every x9 ∈ N \ {0, 1}, the system C is solvable in integers
x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 greater
than 1 if and only if(

x4 + 2 = x9

)
∧

(
x4|(x4 − 1)! + 1

)
∧

(
x9|(x9 − 1)! + 1

)
Hence, the claim of Lemma 11 follows from Lemma 5. �

Theorem 6. The statement Θ16 proves the following implica-
tion: if there exists a twin prime greater than f (16) + 3, then
there are infinitely many twin primes.

Proof. Assume the antecedent holds. Then, there exist prime
numbers x4 and x9 such that x9 = x4 + 2 > f (16) + 3. Hence,
x4 ∈ N \ {0, 1, 2, 3}. By Lemma 11, there exists a unique
tuple (x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16) ∈
(N \ {0, 1})14 such that the tuple (x1, . . . , x16) solves the sys-
tem C. Lemma 11 guarantees that min(x1, . . . , x16) = x1 =

x9 − 3 > f (16). Since C ⊆ H16, the statement Θ16 and the
inequality min(x1, . . . , x16) > f (16) imply that the system C
has infinitely many solutions in integers x1, . . . , x16 greater
than 1. According to Lemmas 9–11, there are infinitely many
twin primes. �



Hypothesis 4. The implication in Theorem 6 is true.

Corollary 8. (cf. [2]). Assuming Hypothesis 4, a single query
to an oracle for the halting problem decides the twin prime
problem.

VII. Are there infinitely many composite Fermat numbers?

Primes of the form 22n
+ 1 are called Fermat primes, as

Fermat conjectured that every integer of the form 22n
+ 1

is prime, see [6, p. 1]. Fermat correctly remarked that

220
+ 1 = 3, 221

+ 1 = 5, 222
+ 1 = 17, 223

+ 1 = 257, and

224
+ 1 = 65537 are all prime, see [6, p. 1].

Open Problem. ([6, p. 159]). Are there infinitely many com-
posite numbers of the form 22n

+ 1?

Most mathematicians believe that 22n
+ 1 is composite for

every integer n > 5, see [5, p. 23].

Lemma 12. ([6, p. 38]). For every positive integer n, if a
prime number p divides 22n

+ 1, then there exists a positive
integer k such that p = k · 2n + 1 + 1.

Corollary 9. Since k ·2n + 1 +1 > 2n + 1 +1 > n+3, for every
positive integers x, y, and n, the equality (x+1)(y+1) = 22n

+1
implies that min(n, x, x + 1, y, y + 1) = n.

Let g(1) = 1, and let g(n + 1) = 22g(n)
for every positive

integer n. Let

Gn =
{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
∪{

22xi
= xk : i, k ∈ {1, . . . , n}

}
Lemma 13. The following subsystem of Gn x1 · x1 = x1

∀i ∈ {1, . . . , n − 1} 22xi
= xi+1

has exactly one solution (x1, . . . , xn) ∈ (N \ {0})n, namely
(g(1), . . . , g(n)).

For a positive integer n, let Ψn denote the following
statement: if a system S ⊆ Gn has at most finitely many
solutions in positive integers x1, . . . , xn, then each such solu-
tion (x1, . . . , xn) satisfies min(x1, . . . , xn) 6 g(n). The assump-
tion min(x1, . . . , xn) 6 g(n) is weaker than the assumption
max(x1, . . . , xn) 6 g(n) suggested by Lemma 13.

Lemma 14. For every positive integer n, the system Gn has
a finite number of subsystems.

Theorem 7. Every statement Ψn is true with an unknown
integer bound that depends on n.

Proof. It follows from Lemma 14. �

Lemma 15. For every non-negative integers b and c, b + 1 = c

if and only if 22b · 22b
= 22c

.

Theorem 8. The statement Ψ13 proves the following implica-
tion: if 22n

+ 1 is composite for some integer n > g(13), then
22n

+ 1 is composite for infinitely many positive integers n.

Proof. Let us consider the equation

(x + 1)(y + 1) = 22z
+ 1 (1)

in positive integers. By Lemma 15, we can transform equa-
tion (1) into an equivalent system F which has 13 variables
(x, y, z, and 10 other variables) and which consists of equa-
tions of the forms α · β = γ and 22α = γ, see the diagram in
Figure 6.

x

22(·)

22x

x+1

22(·)

22x+1

y

22(·)

22y

y+1

22(·)

22y+1

22z

22(·)

2222z

22z
+1

22(·)

2222z
+1

squaring

squaring

z 22(·)

squaring

m
u
l
t
i
p
l
y
i
n
g

Fig. 6 Construction of the system F
Assume that 22n

+ 1 is composite for some integer
n > g(13). By this and Corollary 9, equation (1) has
a solution (x, y, z) ∈ (N \ {0})3 such that z = n and
z = min(z, x, x + 1, y, y + 1). Hence, the system F has a
solution in positive integers such that z = n and n is the
smallest number in the solution sequence. Since n > g(13), the
statement Ψ13 implies that the system F has infinitely many
solutions in positive integers. Therefore, there are infinitely
many positive integers n such that 22n

+ 1 is composite. �

Hypothesis 5. The implication in Theorem 8 is true.

Corollary 10. Assuming Hypothesis 5, a single query to an
oracle for the halting problem decides whether or not the set
of composite Fermat numbers is infinite.



VIII. Computations of length n and the statements Φn

For a positive integer x, let Γ(x) denote (x − 1)!. Let
fact−1 : {1, 2, 6, 24, . . .} → N \ {0} denote the inverse function
to the factorial function. For positive integers x and y, let
rem(x, y) denote the remainder from dividing x by y.

Definition. For a positive integer n, by a computation of
length n we understand any sequence of terms x1, . . . , xn

such that x1 is defined as the variable x, and for every
integer i ∈ {2, . . . , n}, xi is defined as Γ(xi−1), or fact−1(xi−1),
or rem(xi−1, xi−2) (only if i > 3 and xi−1 is defined as Γ(xi−2)).

For a positive integer n, let c(n) denote the number
of computations of length n. Then, c(1) = 1, c(2) = 2, and
c(n) = c(n − 2) + 2c(n − 1) for every integer n > 3.

Let P denote the set of prime numbers.

Lemma 16. ([11, pp. 214–215]) . For every positive integer x,
rem(Γ(x), x) ∈ N \ {0} if and only if x ∈ {4} ∪ P.

Let h(4) = 3, and let h(n + 1) = h(n)! for every integer
n > 4.

Theorem 9. For every integer n > 4 and for every positive
integer x, the following computation Hn

x1 := x
∀i ∈ {2, . . . , n − 3} xi := fact−1(xi−1)

xn−2 := Γ(xn−3)
xn−1 := Γ(xn−2)

xn := rem(xn−1, xn−2)

returns positive integers x1, . . . , xn if and only if x = h(n).

Proof. We make three observations.

Observation 2. If xn−3 = 3, then x1, . . . , xn−3 ∈ N \ {0} and
x = x1 = h(n). If x = h(n), then x1, . . . , xn−3 ∈ N \ {0} and
xn−3 = 3. Hence, xn−2 = Γ(xn−3) = 2 and xn−1 = Γ(xn−2) = 1.
Therefore, xn = rem(xn−1, xn−2) = 1.

Observation 3. If xn−3 = 2, then x = x1 = . . . = xn−3 = 2. If
x = 2, then x1 = . . . = xn−3 = 2. Hence, xn−2 = Γ(xn−3) = 1
and xn−1 = Γ(xn−2) = 1. Therefore, xn = rem(xn−1, xn−2) = 0 <
N \ {0}.
Observation 4. If xn−3 = 1, then xn−2 = Γ(xn−3) = 1. Hence,
xn−1 = Γ(xn−2) = 1. Therefore, xn = rem(xn−1, xn−2) = 0 <
N \ {0}.
Observations 2–4 cover the case when xn−3 ∈ {1, 2, 3}. If
xn−3 > 4, then xn−2 = Γ(xn−3) is greater than 4 and composite.
By Lemma 16, xn = rem(xn−1, xn−2) = rem(Γ(xn−2), xn−2) =

0 < N \ {0}. �

For an integer n > 4, let Φn denote the following statement:
if a computation of length n returns positive integers x1, . . . , xn

for at most finitely many positive integers x, then every such x
does not exceed h(n).

Theorem 10. For every integer n > 4, the bound h(n) in the
statement Φn cannot be decreased.

Proof. It follows from Theorem 9. �

Lemma 17. For every positive integer n, there are only finitely
many computations of length n.

Theorem 11. For every integer n > 4, the statement Φn is true
with an unknown integer bound that depends on n.

Proof. It follows from Lemma 17. �

IX. Consequences of the statements Φ4, . . . ,Φ7

Lemma 18. If x ∈ P, then rem(Γ(x), x) = x − 1.

Proof. It follows from Lemma 5. �

Lemma 19. For every positive integer x, the following com-
putation T 

x1 := x
x2 := Γ(x1)
x3 := rem(x2, x1)
x4 := fact−1(x3)

returns positive integers x1, . . . , x4 if and only if x = 4 or x is
a prime number of the form n! + 1.

Proof. For an integer i ∈ {1, . . . , 4}, let Ti denote the set of
positive integers x such that the first i instructions of the
computation T returns positive integers x1, . . . , xi. We show
that

T4 = {4} ∪ ({n! + 1 : n ∈ N \ {0}} ∩ P) (2)

For every positive integer x, the terms x1 and x2 belong
to N \ {0}. By Lemma 16, the term x3 (which equals
rem(Γ(x), x)) belongs to N \ {0} if and only if x ∈ {4} ∪ P.
Hence, T3 = {4} ∪ P. If x = 4, then x1, . . . , x4 ∈ N \ {0}.
Hence, 4 ∈ T4. If x ∈ P, then Lemma 18 implies that
x3 = rem(Γ(x), x) = x − 1 ∈ N \ {0}. Therefore, for every
x ∈ P, the term x4 = fact−1(x3) belongs to N \ {0} if and only
if x ∈ {n! + 1 : n ∈ N \ {0}}. This proves equality (2). �

Theorem 12. The statement Φ4 implies that the set of primes
of the form n! + 1 is infinite.

Proof. The number 3! + 1 = 7 is prime. By Lemma 19, for
x = 7 the computation T returns positive integers x1, . . . , x4.
Since x = 7 > 3 = h(4), the statement Φ4 guarantees that the
computation T returns positive integers x1, . . . , x4 for infinitely
many positive integers x. By Lemma 19, there are infinitely
many primes of the form n! + 1. �

Lemma 20. If x ∈ N \ {0, 1}, then fact−1(Γ(x)) = x − 1.

Theorem 13. If the set of primes of the form n! + 1 is infinite,
then the statement Φ4 is true.

Proof. There exist exactly 10 computations of length 4 that
differ from H4 and T , see Table 1. For every such computa-
tion Fi, we determine the set S i of all positive integers x such
that the computation Fi outputs positive integers x1, . . . , x4 on
input x. We omit 10 easy proofs which use Lemmas 16 and 20.
The sets S i are infinite, see Table 1.



F1 x1 := x x2 := Γ(x1) x3 := Γ(x2) x4 := Γ(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ N \ {0} = S 1

F2 x1 := x x2 := Γ(x1) x3 := Γ(x2) x4 := fact−1(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ N \ {0} = S 2

H4 x1 := x x2 := Γ(x1) x3 := Γ(x2) x4 := rem(x3, x2)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x = 3

F3 x1 := x x2 := Γ(x1) x3 := fact−1(x2) x4 := Γ(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ N \ {0} = S 3

F4 x1 := x x2 := Γ(x1) x3 := fact−1(x2) x4 := fact−1(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ {1} ∪ {n! + 1 : n ∈ N \ {0}} = S 4

F5 x1 := x x2 := Γ(x1) x3 := rem(x2, x1) x4 := Γ(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ {4} ∪ P = S 5

T x1 := x x2 := Γ(x1) x3 := rem(x2, x1) x4 := fact−1(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ {4} ∪ ({n! + 1 : n ∈ N \ {0}} ∩ P)

F6 x1 := x x2 := fact−1(x1) x3 := Γ(x2) x4 := Γ(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ {n! : n ∈ N \ {0}} = S 6

F7 x1 := x x2 := fact−1(x1) x3 := Γ(x2) x4 := fact−1(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ {n! : n ∈ N \ {0}} = S 7

F8 x1 := x x2 := fact−1(x1) x3 := Γ(x2) x4 := rem(x3, x2)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ {4!} ∪ {p! : p ∈ P} = S 8

F9 x1 := x x2 := fact−1(x1) x3 := fact−1(x2) x4 := Γ(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ {(n!)! : n ∈ N \ {0}} = S 9

F10 x1 := x x2 := fact−1(x1) x3 := fact−1(x2) x4 := fact−1(x3)
x1, . . . , x4 ∈ N \ {0} ⇐⇒

x ∈ {((n!)!)! : n ∈ N \ {0}} = S 10

Tab. 1 12 computations of length 4, x ∈ N \ {0}
This completes the proof. �

Hypothesis 6. The statements Φ4, . . . ,Φ7 are true.

Lemma 21. For every positive integer x, the following com-
putation Y 

x1 := x
x2 := Γ(x1)
x3 := rem(x2, x1)
x4 := fact−1(x3)
x5 := Γ(x4)
x6 := rem(x5, x4)

returns positive integers x1, . . . , x6 if and only if x ∈ {4}∪
{p! + 1 : p ∈ P} ∩ P.

Proof. For an integer i ∈ {1, . . . , 6}, let Yi denote the set of
positive integers x such that the first i instructions of the
computation Y returns positive integers x1, . . . , xi. Since the
computations T and Y have the same first four instructions,
the equality Yi = Ti holds for every i ∈ {1, . . . , 4}. In particular,

Y4 = {4} ∪ ({n! + 1 : n ∈ N \ {0}} ∩ P)

We show that

Y6 = {4} ∪ ({p! + 1 : p ∈ P} ∩ P) (3)

If x = 4, then x1, . . . , x6 ∈ N \ {0}. Hence, 4 ∈ Y6. Let
x ∈ P, and let x = n! + 1, where n ∈ N \ {0}. Hence,
n , 4. Lemma 18 implies that x3 = rem(Γ(x), x) = x − 1 = n!.
Hence, x4 = fact−1(x3) = n and x5 = Γ(x4) = Γ(n) ∈ N \ {0}.
By Lemma 16, the term x6 (which equals rem(Γ(n), n)) belongs
to N \ {0} if and only if n ∈ {4} ∪ P. This proves equality (3)
as n , 4. �

Theorem 14. The statement Φ6 implies that for infinitely many
primes p the number p! + 1 is prime.

Proof. The numbers 11 and 11! + 1 are prime, see
[1, p. 441] and [14]. By Lemma 21, for x = 11! + 1 the
computation Y returns positive integers x1, . . . , x6. Since
x = 11! + 1 > 6! = h(6), the statement Φ6 guarantees that the
computation Y returns positive integers x1, . . . , x6 for infinitely
many positive integers x. By Lemma 21, for infinitely many
primes p the number p! + 1 is prime. �

Lemma 22. For every positive integer x, the following com-
putation L 

x1 := x
x2 := Γ(x1)
x3 := Γ(x2)
x4 := fact−1(x3)
x5 := Γ(x4)
x6 := rem(x5, x4)

returns positive integers x1, . . . , x6 if and only if (x − 1)! − 1
is prime.

Proof. For an integer i ∈ {1, . . . , 6}, let Li denote the set of
positive integers x such that the first i instructions of the com-
putation L returns positive integers x1, . . . , xi. If x ∈ {1, 2, 3},
then x6 = 0. Therefore, L6 ⊆ N \ {0, 1, 2, 3}. By Lemma 20, for
every integer x > 4, x4 = (x − 1)! − 1, x5 = Γ((x − 1)! − 1), and
x1, . . . , x5 ∈ N \ {0}. By Lemma 16, for every integer x > 4,

x6 = rem(Γ((x − 1)! − 1), (x − 1)! − 1)



belongs to N \ {0} if and only if (x − 1)! − 1 ∈ {4} ∪ P. The
last condition equivalently expresses that (x − 1)! − 1 is prime
as (x − 1)! − 1 > 5 for every integer x > 4. Hence,

L6 = (N \ {0, 1, 2, 3})∩ {x ∈ N \ {0, 1, 2, 3} : (x− 1)!− 1 ∈ P} =

{x ∈ N \ {0} : (x − 1)! − 1 ∈ P}
�

It is conjectured that there are infinitely many primes of the
form n! − 1, see [1, p. 443] and [13].

Theorem 15. The statement Φ6 implies that there are infinitely
many primes of the form x! − 1.

Proof. The number (975 − 1)! − 1 is prime, see [1, p. 441]
and [13]. By Lemma 22, for x = 975 the computation L re-
turns positive integers x1, . . . , x6. Since x = 975 > 720 = h(6),
the statement Φ6 guarantees that the computation L returns
positive integers x1, . . . , x6 for infinitely many positive inte-
gers x. By Lemma 22, the set {x ∈ N \ {0} : (x − 1)! − 1 ∈ P}
is infinite. �

Lemma 23. For every positive integer x, the following com-
putation D 

x1 := x
x2 := Γ(x1)
x3 := rem(x2, x1)
x4 := Γ(x3)
x5 := fact−1(x4)
x6 := Γ(x5)
x7 := rem(x6, x5)

returns positive integers x1, . . . , x7 if and only if both x and
x − 2 are prime.

Proof. For an integer i ∈ {1, . . . , 7}, let Di denote the set of
positive integers x such that the first i instructions of the
computation D returns positive integers x1, . . . , xi. If x = 1,
then x3 = 0. Hence, D7 ⊆ D3 ⊆ N \ {0, 1}. If x ∈ {2, 3, 4}, then
x7 = 0. Therefore,

D7 ⊆ (N \ {0, 1}) ∩ (N \ {0, 2, 3, 4}) = N \ {0, 1, 2, 3, 4}
By Lemma 16, for every integer x > 5, the term x3
(which equals rem(Γ(x), x)) belongs to N \ {0} if and only
if x ∈ P \ {2, 3}. By Lemma 18, for every x ∈ P \ {2, 3},
x3 = x − 1 ∈ N \ {0, 1, 2, 3}. By Lemma 20, for every
x ∈ P \ {2, 3}, the terms x4 and x5 belong to N \ {0} and
x5 = x3 − 1 = x − 2. By Lemma 16, for every x ∈ P \ {2, 3},
the term x7 (which equals rem(Γ(x5), x5)) belongs to N \ {0} if
and only if x5 = x − 2 ∈ {4} ∪ P. From these facts, we obtain
that

D7 = (N\{0, 1, 2, 3, 4})∩(P \ {2, 3})∩({6} ∪ {p + 2 : p ∈ P}) =

{p ∈ P : p − 2 ∈ P}
�

Theorem 16. The statement Φ7 implies that there are infinitely
many twin primes.

Proof. Harvey Dubner proved that the numbers
459 · 28529 − 1 and 459 · 28529 + 1 are prime, see [15, p. 87].
By Lemma 23, for x = 459 · 28529 + 1 the computation D
returns positive integers x1, . . . , x7. Since x > 720! = h(7),
the statement Φ7 guarantees that the computation D returns
positive integers x1, . . . , x7 for infinitely many positive
integers x. By Lemma 23, there are infinitely many twin
primes. �

The following MuPAD code sequentially displays all com-
putations of length n, where n ∈ {1, 2, 3, 4, 5, 6, 7}.
print(Unquoted,"--------------------------------"):
for n from 1 to 7 do
print(Unquoted,"Computations of length",n):
print(Unquoted,"--------------------------------"):
A:=[2,3,3,3,3,3]:
for j from n to 6 do
A[j]:=1:
end_for:
for i1 from 1 to A[1] do
for i2 from 1 to A[2] do
for i3 from 1 to A[3] do
for i4 from 1 to A[4] do
for i5 from 1 to A[5] do
for i6 from 1 to A[6] do
if (i2<>3 or i1=1) and (i3<>3 or i2=1) and
(i4<>3 or i3=1) and (i5<>3 or i4=1) and
(i6<>3 or i5=1) then
print(Unquoted,"x_1:=x"):
if (n>1 and i1=1) then
print(Unquoted,"x_2:=Gamma(x_1)") end_if:
if (n>1 and i1=2) then
print(Unquoted,"x_2:=factˆ{-1}(x_1)") end_if:
if (n>2 and i2=1) then
print(Unquoted,"x_3:=Gamma(x_2)") end_if:
if (n>2 and i2=2) then
print(Unquoted,"x_3:=factˆ{-1}(x_2)") end_if:
if (n>2 and i2=3) then
print(Unquoted,"x_3:=rem(x_2,x_1)") end_if:
if (n>3 and i3=1) then
print(Unquoted,"x_4:=Gamma(x_3)") end_if:
if (n>3 and i3=2) then
print(Unquoted,"x_4:=factˆ{-1}(x_3)") end_if:
if (n>3 and i3=3) then
print(Unquoted,"x_4:=rem(x_3,x_2)") end_if:
if (n>4 and i4=1)
then print(Unquoted,"x_5:=Gamma(x_4)") end_if:
if (n>4 and i4=2) then
print(Unquoted,"x_5:=factˆ{-1}(x_4)") end_if:
if (n>4 and i4=3) then
print(Unquoted,"x_5:=rem(x_4,x_3)") end_if:
if (n>5 and i5=1) then
print(Unquoted,"x_6:=Gamma(x_5)") end_if:
if (n>5 and i5=2) then
print(Unquoted,"x_6:=factˆ{-1}(x_5)") end_if:
if (n>5 and i5=3) then
print(Unquoted,"x_6:=rem(x_5,x_4)") end_if:
if (n>6 and i6=1) then
print(Unquoted,"x_7:=Gamma(x_6)") end_if:
if (n>6 and i6=2) then
print(Unquoted,"x_7:=factˆ{-1}(x_6)") end_if:



if (n>6 and i6=3) then
print(Unquoted,"x_7:=rem(x_6,x_5)") end_if:
print(Unquoted,"--------------------------------"):
end_if:
end_for:
end_for:
end_for:
end_for:
end_for:
end_for:
end_for:

MuPAD is a general-purpose computer algebra system. The
commercial version of MuPAD is no longer available as a
stand-alone product, but only as the Symbolic Math Toolbox
of MATLAB. Fortunately, the above code can be executed by
MuPAD Light, which was offered for free for research and
education until autumn 2005.
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