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Abstract. Open Problem: Is there a set X ⊆ N that satisfies conditions (1)-(5)?
(1) There are many elements of X and it is conjectured that X is infinite. (2) No known
algorithm decides the finiteness/infiniteness of X. (3) There is a known algorithm that for
every k ∈ N decides whether or not k ∈ X. (4) There is a known algorithm that computes
an integer n satisfying card(X) < ω⇒ X ⊆ (−∞, n]. (5) There is a naturally defined con-
dition C, which can be formalized in ZFC, such that for all except at most finitely many
k ∈ N, k satisfies the condition C if and only if k ∈ X. The simplest known such condi-
tion C defines in N the set X. For every set X ⊆ N, there exists an algorithm that returns

n =

{
0 if card(X) ∈ {0, ω}

max(X) if card(X) < {0, ω}
. This n satisfies the implication in condition (4).

For many setsX ⊆ N, the presented algorithm is unknown for us because its definition is in-
effective. This clarifies the distinction between known algorithms and existing algorithms.
There is a set X ⊆ N that satisfies conditions (1)-(5) except the requirement that X is
naturally defined. Let Pn2+1 denote the set of primes of the form n2 + 1. We heuristically
prove the following statement Φ: card(Pn2+1) < ω⇒ Pn2+1 ⊆ [2, (((24!)!)!)!]. This proof
does not argue that card(Pn2+1) = ω. The statement Φ implies that the set X = {1} ∪ Pn2+1
satisfies conditions (1)-(5). If we ignore the physical limits of computation, then no set
X ⊆ N will satisfy conditions (1)-(4) forever.
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1. Basic definitions

Definition 1. We say that an integer n is a threshold number of a set X ⊆ N, if
card(X) < ω⇒ X ⊆ (−∞, n], cf. [6] and [7].

If a set X ⊆ N is empty or infinite, then any integer n is a threshold number of X. If
a set X ⊆ N is non-empty and finite, then the all threshold numbers of X form the set
[max(X),∞) ∩ N.

Edmund Landau’s conjecture states that the set Pn2+1 of primes of the form n2 + 1 is
infinite, see [3]–[5].

Definition 2. Let Φ denote the following unproven statement:

card(Pn2+1) < ω⇒ Pn2+1 ⊆ (−∞, (((24!)!)!)!]

Landau’s conjecture implies the statement Φ. In Section 4, we heuristically prove the
statement Φ. This proof does not argue that card(Pn2+1) = ω.
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Statement 1. No known algorithm computes an integer k such that

card(Pn2+1) < ω⇒ Pn2+1 ⊆ (−∞, k]

There exists an algorithm that returns k =

{
0 if card(Pn2+1) = ω

max(X) if card(Pn2+1) < ω . This k sat-

isfies the implication in Statement 1. The presented algorithm is unknown for us because
its definition is ineffective. This clarifies the distinction between known algorithms and ex-
isting algorithms. Proving the statement Φ will disprove Statement 1. Statement 1 cannot
be formalized in ZFC because it refers to the current mathematical knowledge. The same
is true for Statements 2–4 in the next sections.

Definition 3. Conditions (1)�(5) concern sets X ⊆ N.

(1) There are many elements of X and it is conjectured that X is infinite.

(2) No known algorithm decides the finiteness/infiniteness of X.

(3) There is a known algorithm that for every k ∈ N decides whether or not k ∈ X.

(4) There is a known algorithm that computes an integer n satisfying card(X) < ω⇒
X ⊆ (−∞, n].

(5) There is a naturally defined condition C, which can be formalized in ZFC, such that
for all except at most finitely many k ∈ N, k satisfies the condition C if and only if k ∈ X.
The simplest known such condition C defines in N the set X.

2. The physical limits of computation inspire Open Problem 1

Open Problem 1. Is there a set X ⊆ N that satisfies conditions (1)�(5)?

Open Problem 1, which concerns abstract computable sets X ⊆ N, represents an open
problem in computability theory that cannot be formalized in ZFC and is related to funda-
mental concepts of arithmetic.

Definition 4. Let β = (((24!)!)!)!.

Lemma 1. log2(log2(log2(log2(log2(log2(log2(β))))))) ≈ 1.42298.

Proof. We ask Wolfram Alpha at http://wolframalpha.com. �

Statement 2. The set

X = {k ∈ N : (β < k)⇒ (β, k) ∩ Pn2+1 , ∅}

satisfies conditions (1)�(4).

Proof. Condition (1) holds asX ⊇ {0, . . . , β} and the set Pn2+1 is conjecturally infinite. By
Lemma 1, due to known physics we are not able to confirm by a direct computation that
some element of Pn2+1 is greater than β, see [2]. Thus condition (2) holds. Condition (3)
holds trivially. Since the set

{k ∈ N : (β < k) ∧ (β, k) ∩ Pn2+1 , ∅}

is empty or infinite, the integer β is a threshold number ofX. Thus condition (4) holds. �

Let [·] denote the integer part function. For a non-negative integer n, let g(n) denote the
greatest non-negative integer k such that 2k divides max

(
2β ·

[
n
β

]
, 1

)
.

Lemma 2. The function g : N→ N satisfies g(0) = . . . = g(β − 1) = 0 and maps
N ∩ [β,∞) onto itself taking every value in N ∩ [β,∞) infinitely many times.

http://wolframalpha.com
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Statement 3. The set

X =
{
n ∈ N : g(n)2 + 1 has no divisors greater than 1 and smaller than g(n)2 + 1

}
satisfies conditions (1)�(5) except the requirement that X is naturally defined.

Proof. We use Lemma 2 and argue as in the proof of Statement 2. �

Proving Landau’s conjecture will disprove Statements 2 and 3.

Theorem 1. No set X ⊆ N will satisfy conditions (1)-(4) forever, if for every algorithm
with no inputs that operates on integers, at some future day, a computer will be able to
execute this algorithm in 1 second or less.

Proof. The proof goes by contradiction. We fix an integer n that satisfies condition (4).
Since conditons (2)�(4) will hold forever, the semi-algorithm in Figure 1 never termi-
nates and sequentially prints the following sentences:

(T) n + 1 < X, n + 2 < X, n + 3 < X, . . .

Fig. 1 Semi-algorithm that halts if and only if the set X is infinite

The sentences from the sequence (T) and our assumption imply that for every integer
m > n computed by a known algorithm, at some future day, a computer will be able to
confirm in 1 second or less that (n,m] ∩ X = ∅. Thus, at some future day, numerical ev-
idence will support the conjecture that the set X is finite, contrary to the conjecture in
condition (1). �

Physics disproves the assumption of Theorem 1.
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3. Number-theoretic statements Ψn

Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2. LetU1 denote
the system of equations which consists of the equation x1! = x1. For an integer n > 2, let
Un denote the following system of equations:

x1! = x1
x1 · x1 = x2

∀i ∈ {2, . . . , n − 1} xi! = xi+1

The diagram in Figure 2 illustrates the construction of the systemUn.

Fig. 2 Construction of the systemUn

Lemma 3. For every positive integer n, the systemUn has exactly two solutions in positive
integers, namely (1, . . . , 1) and ( f (1), . . . , f (n)).

Let Bn denote the following system of equations:{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
For a positive integer n, let Ψn denote the following statement: if a system of equations
S ⊆ Bn has at most finitely many solutions in positive integers x1, . . . , xn, then each such
solution (x1, . . . , xn) satisfies x1, . . . , xn 6 f (n). The statement Ψn says that for subsystems
of Bn with a finite number of solutions, the largest known solution is indeed the largest
possible. The statements Ψ1 and Ψ2 hold trivially. There is no reason to assume the
validity of the statement ∀n ∈ N \ {0} Ψn.

Theorem 2. For every statement Ψn, the bound f (n) cannot be decreased.

Proof. It follows from Lemma 3 becauseUn ⊆ Bn. �

Theorem 3. For every integer n > 2, the statement Ψn+1 implies the statement Ψn.

Proof. If a system S ⊆ Bn has at most finitely many solutions in positive integers
x1, . . . , xn, then for every integer i ∈ {1, . . . , n} the system S ∪ {xi! = xn+1} has at most
finitely many solutions in positive integers x1, . . . , xn+1. The statement Ψn+1 implies that
xi! = xn+1 6 f (n + 1) = f (n)!. Hence, xi 6 f (n). �

Theorem 4. Every statement Ψn is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system Bn has a finite number of subsystems. �

4. A conjectural solution to Open Problem 1

Lemma 4. For every positive integers x and y, x! · y = y! if and only if

(x + 1 = y) ∨ (x = y = 1)

Lemma 5. (Wilson’s theorem, [1, p. 89]). For every integer x > 2, x is prime if and only if
x divides (x − 1)! + 1.
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LetA denote the following system of equations:

x2! = x3
x3! = x4
x5! = x6
x8! = x9

x1 · x1 = x2
x3 · x5 = x6
x4 · x8 = x9
x5 · x7 = x8

Lemma 4 and the diagram in Figure 3 explain the construction of the systemA.

Fig. 3 Construction of the systemA

Lemma 6. For every integer x1 > 2, the systemA is solvable in positive integers x2, . . . , x9
if and only if x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are uniquely determined
by the following equalities:

x2 = x2
1

x3 = (x2
1)!

x4 = ((x2
1)!)!

x5 = x2
1 + 1

x6 = (x2
1 + 1)!

x7 =
(x2

1)! + 1
x2

1 + 1
x8 = (x2

1)! + 1
x9 = ((x2

1)! + 1)!

Proof. By Lemma 4, for every integer x1 > 2, the systemA is solvable in positive integers
x2, . . . , x9 if and only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of Lemma 6 follows

from Lemma 5. �
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Lemma 7. There are only finitely many tuples (x1, . . . , x9) ∈ (N \ {0})9, which solve the
system A and satisfy x1 = 1. This is true as every such tuple (x1, . . . , x9) satisfies
x1, . . . , x9 ∈ {1, 2}.

Proof. The equality x1 = 1 implies that x2 = x1 · x1 = 1. Hence, x3 = x2! = 1. Therefore,
x4 = x3! = 1. The equalities x5! = x6 and x5 = 1 · x5 = x3 · x5 = x6 imply that x5, x6 ∈

{1, 2}. The equalities x8! = x9 and x8 = 1 · x8 = x4 · x8 = x9 imply that x8, x9 ∈ {1, 2}. The
equality x5 · x7 = x8 implies that x7 =

x8
x5
∈

{
1
1 ,

1
2 ,

2
1 ,

2
2

}
∩ N = {1, 2}. �

Conjecture 1. The statement Ψ9 is true when is restricted to the systemA.

Theorem 5. Conjecture 1 proves the following implication: if there exists an integer x1 > 2
such that x2

1 + 1 is prime and greater than f (7), then the set Pn2+1 is infinite.

Proof. Suppose that the antecedent holds. By Lemma 6, there exists a unique tuple
(x2, . . . , x9) ∈ (N \ {0})8 such that the tuple (x1, x2, . . . , x9) solves the system A. Since
x2

1 + 1 > f (7), we obtain that x2
1 > f (7). Hence, (x2

1)! > f (7)! = f (8). Consequently,

x9 = ((x2
1)! + 1)! > ( f (8) + 1)! > f (8)! = f (9)

Conjecture 1 and the inequality x9 > f (9) imply that the system A has infinitely many
solutions (x1, . . . , x9) ∈ (N \ {0})9. According to Lemmas 6 and 7, the set Pn2+1 is infinite.

�

Theorem 6. Conjecture 1 implies the statement Φ.

Proof. It follows from Theorem 5 and the equality f (7) = (((24!)!)!)!. �

Theorem 7. The statement Φ implies Conjecture 1.

Proof. By Lemmas 6 and 7, if positive integers x1, . . . , x9 solve the systemA, then

(x1 > 2) ∧ (x5 = x2
1 + 1) ∧ (x5 is prime)

or x1, . . . , x9 ∈ {1, 2}. In the first case, Lemma 6 and the statement Φ imply that the inequal-
ity x5 6 (((24!)!)!)! = f (7) holds when the system A has at most finitely many solutions
in positive integers x1, . . . , x9. Hence, x2 = x5 − 1 < f (7) and x3 = x2! < f (7)! = f (8).
Continuing this reasoning in the same manner, we can show that every xi does not ex-
ceed f (9). �

Statement 4. The statement Φ implies that the set X = {1} ∪ Pn2+1 satisfies conditions
(1)�(5).

Proof. The setPn2+1 is conjecturally infinite. There are 2199894223892 primes of the form
n2 + 1 in the interval [2, 1028), see [4]. These two facts imply condition (1). By Lemma 1,
due to known physics we are not able to confirm by a direct computation that some element
of {1} ∪ Pn2+1 is greater than f (7) = (((24!)!)!)! = β, see [2]. Thus condition (2) holds.
Condition (3) holds trivially. The statement Φ implies that β is a threshold number of
X = {1} ∪ Pn2+1. Thus condition (4) holds. The following condition:

k − 1 is a square and k has no divisors greater than 1 and smaller than k

defines in N the set {1} ∪ Pn2+1. This proves condition (5). �

Proving Landau’s conjecture will disprove Statement 4.
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