On sets $\mathcal{W} \subseteq \mathbb{N}$ whose infinity follows from the existence in \mathcal{W} of an element which is greater than a threshold number computed for \mathcal{W}

Apoloniusz Tyszka
University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
Email: rttyszka@cyf-kr.edu.pl

Abstract

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 2$. For a positive integer n, let Θ_{n} denote the statement: if a system $\mathcal{S} \subseteq\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup$ $\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}$ has only finitely many solutions in integers x_{1}, \ldots, x_{n} greater than 1 , then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$. The statement Θ_{9} proves that if there exists an integer $x>f(9)$ such that $x^{2}+1$ (alternatively, $x!+1$) is prime, then there are infinitely many primes of the form $n^{2}+1$ (respectively, $n!+1$). The statement Θ_{16} proves that if there exists a twin prime greater than $f(16)+3$, then there are infinitely many twin primes. We formulate the statements Φ_{n} and prove: Φ_{4} equivalently expresses that there are infinitely many primes of the form $n!+1, \Phi_{6}$ implies that for infinitely many primes p the number $p!+1$ is prime, Φ_{6} implies that there are infinitely many primes of the form $n!-1, \Phi_{7}$ implies that there are infinitely many twin primes.

Index Terms-composite Fermat numbers, prime numbers of the form $n!+1$, prime numbers of the form $n!-1$, prime numbers of the form $n^{2}+1$, prime numbers p such that $p!+1$ is prime, single query to an oracle for the halting problem, twin prime conjecture.

I. Spectra of sentences and their threshold numbers

TIHE following observation concerns the theme described in the title of the article.

Observation 1. If \mathcal{W} is a subset of $\{0, \ldots, n\}$ where n is a non-negative integer, then we take any integer $m \geqslant n$ as a threshold number for \mathcal{W}. If \mathcal{W} is an infinite subset of \mathbb{N}, then we take any non-negative integer m as a threshold number for \mathcal{W}.

We define the set $\mathcal{U} \subseteq \mathbb{N}$ by declaring that a non-negative integer n belongs to \mathcal{U} if and only if $\sin \left(10^{10^{10^{10}}}\right)>0$. This inequality is practically undecidable, see [5].
Corollary 1. The set \mathcal{U} equals \emptyset or \mathbb{N}. The statement " $\mathcal{U}=\emptyset$ " remains unproven and the statement " $\mathcal{U}=\mathbb{N}$ " remains unproven. Every non-negative integer m is a threshold number for \mathcal{U}. For every non-negative integer k, the sentence " $k \in \mathcal{U}$ " is only theoretically decidable.

The first-order language of graph theory contains two relation symbols of arity $2: \sim$ and $=$, respectively for adjacency and equality of vertices. The term first-order imposes the condition that the variables represent vertices and hence the quantifiers apply to vertices only. For a first-order sentence Λ about graphs, let $\operatorname{Spectrum}(\Lambda)$ denote the set of all positive integers n such that there is a graph on n vertices satisfying Λ. By a graph on n vertices we understand a set of n elements with a binary relation which is symmetric and irreflexive.

Theorem 1. ([]12 p. 171]). If a sentence Λ in the language of graph theory has the form $\exists x_{1} \ldots x_{k} \forall y_{1} \ldots y_{l}$ $\Upsilon\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}\right)$, where $\Upsilon\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}\right)$ is quantifier-free, then either $\operatorname{Spectrum}(\Lambda) \subseteq\left[1,\left(2^{k} \cdot 4^{l}\right)-1\right]$ or $\operatorname{Spectrum}(\Lambda) \supseteq[k+l, \infty) \cap \mathbb{N}$.
Corollary 2. The number $\left(2^{k} \cdot 4^{l}\right)-1$ is a threshold number for $\operatorname{Spectrum}(\Lambda)$.

The classes of the infinite recursively enumerable sets and of the infinite recursive sets are not recursively enumerable, see [10, p. 234].
Corollary 3. If an algorithm Alg_{1} for every recursive set $\mathcal{W} \subseteq \mathbb{N}$ finds a non-negative integer $\operatorname{Alg}_{1}(\mathcal{W})$, then there exists a finite set $\mathcal{M} \subseteq \mathbb{N}$ such that $\mathcal{M} \cap\left[\operatorname{Alg}_{1}(\mathcal{M})+1, \infty\right) \neq \emptyset$.

Corollary 4. If an algorithm Alg_{2} for every recursively enumerable set $\mathcal{W} \subseteq \mathbb{N}$ finds a non-negative integer $\operatorname{Alg}_{2}(\mathcal{W})$, then there exists a finite set $\mathcal{M} \subseteq \mathbb{N}$ such that $\mathcal{M} \cap\left[\mathrm{Alg}_{2}(\mathcal{M})+1, \infty\right) \neq \emptyset$.

$$
\text { Let } K=\left\{j \in \mathbb{N}: 2^{\boldsymbol{\aleph}_{j}}=\boldsymbol{\aleph}_{j+1}\right\}
$$

Theorem 2. If ZFC is consistent, then for every non-negative integer n the sentence
$" n$ is a threshold number for $K "$
is not provable in $Z F C$.

Proof. There exists a model \mathcal{E} of ZFC such that

$$
\forall i \in\{0, \ldots, n+1\} \mathcal{E} \vDash 2^{\boldsymbol{\aleph}_{i}}=\boldsymbol{\aleph}_{i+1}
$$

and

$$
\forall i \in\{n+2, n+3, n+4, \ldots\} \mathcal{E} \vDash 2^{\boldsymbol{\aleph}_{i}}=\boldsymbol{\aleph}_{i+2}
$$

see [3] and [6, p. 232]. In the model $\mathcal{E}, K=\{0, \ldots, n+1\}$ and n is not a threshold number for K.

Theorem 3. If ZFC is consistent, then for every non-negative integer n the sentence
$" n$ is not a threshold number for $K "$
is not provable in ZFC.
Proof. The Generalized Continuum Hypothesis (GCH) is consistent with ZFC, see [6, p. 188] and [6, p. 190]. GCH implies that $K=\mathbb{N}$. Consequently, GCH implies that every non-negative integer n is a threshold number for K.

II. Basic lemmas

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 2$. Let \mathcal{V}_{1} denote the system of equations $\left\{x_{1}!=x_{1}\right\}$, and let \mathcal{V}_{2} denote the system of equations $\left\{x_{1}!=x_{1}, x_{1} \cdot x_{1}=x_{2}\right\}$. For an integer $n \geqslant 3$, let \mathcal{V}_{n} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{1} \\
x_{1} \cdot x_{1} & =x_{2} \\
\forall i \in\{2, \ldots, n-1\} x_{i}! & =x_{i+1}
\end{aligned}\right.
$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{V}_{n}.

Fig. 1 Construction of the system \mathcal{V}_{n}
Lemma 1. For every positive integer n, the system \mathcal{V}_{n} has exactly one solution in integers greater than 1, namely $(f(1), \ldots, f(n))$.

Let

$$
\begin{array}{r}
H_{n}=\left\{x_{i}!=x_{k}: \quad i, k \in\{1, \ldots, n\}\right\} \cup \\
\left\{x_{i} \cdot x_{j}=x_{k}: \quad i, j, k \in\{1, \ldots, n\}\right\}
\end{array}
$$

For a positive integer n, let Θ_{n} denote the following statement: if a system $\mathcal{S} \subseteq H_{n}$ has at most finitely many solutions in integers x_{1}, \ldots, x_{n} greater than 1 , then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$. The assumption $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$ is weaker than the assumption $\max \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$ suggested by Lemma 1
Lemma 2. For every positive integer n, the system H_{n} has a finite number of subsystems.

Theorem 4. Every statement Θ_{n} is true with an unknown integer bound that depends on n.
Proof. It follows from Lemma 2.
Lemma 3. For every integers x and y greater than 1 , $x!\cdot y=y!$ if and only if $x+1=y$.
Lemma 4. If $x \geqslant 4$, then $\frac{(x-1)!+1}{x}>1$.
Lemma 5. (Wilson's theorem, [4] p. 89]). For every integer $x \geqslant 2, x$ is prime if and only if x divides $(x-1)!+1$.

III. Brocard's problem

A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the Brocard-Ramanujan equation $x!+1=y^{2}$, see [11]. It is conjectured that $x!+1$ is a square only for $x \in\{4,5,7\}$, see [18, p. 297].

Let \mathcal{A} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{5}! & =x_{6} \\
x_{4} \cdot x_{4} & =x_{5} \\
x_{3} \cdot x_{5} & =x_{6}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 2 explain the construction of the system \mathcal{A}.

Fig. 2 Construction of the system \mathcal{A}
Lemma 6. For every integers x_{1} and x_{4} greater than 1 , the system \mathcal{A} is solvable in integers $x_{2}, x_{3}, x_{5}, x_{6}$ greater than 1 if and only if $x_{1}!+1=x_{4}^{2}$. In this case, the integers $x_{2}, x_{3}, x_{5}, x_{6}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
& x_{2}=x_{1}! \\
& x_{3}=\left(x_{1}!\right)! \\
& x_{5}=x_{1}!+1 \\
& x_{6}=\left(x_{1}!+1\right)!
\end{aligned}
$$

and $x_{1}=\min \left(x_{1}, \ldots, x_{6}\right)$.
Proof. It follows from Lemma 3.
Theorem 5. The statement Θ_{6} proves the following implication: if the equation $x_{1}!+1=x_{4}^{2}$ has only finitely many solutions in positive integers, then each such solution $\left(x_{1}, x_{4}\right)$ satisfies $x_{1} \leqslant f(6)$.
Proof. Let positive integers x_{1} and x_{4} satisfy $x_{1}!+1=x_{4}^{2}$. Then, $x_{1}, x_{4} \in \mathbb{N} \backslash\{0,1\}$. By Lemma 6, there exists a
unique tuple $\left(x_{2}, x_{3}, x_{5}, x_{6}\right) \in(\mathbb{N} \backslash\{0,1\})^{4}$ such that the tuple $\left(x_{1}, \ldots, x_{6}\right)$ solves the system \mathcal{A}. Lemma 6 guarantees that $x_{1}=\min \left(x_{1}, \ldots, x_{6}\right)$. By the antecedent and Lemma 6 , the system \mathcal{A} has only finitely many solutions in integers x_{1}, \ldots, x_{6} greater than 1 . Therefore, the statement Θ_{6} implies that $x_{1}=\min \left(x_{1}, \ldots, x_{6}\right) \leqslant f(6)$.

Hypothesis 1. The implication in Theorem 5 is true.
Corollary 5. Assuming Hypothesis [1] a single query to an oracle for the halting problem decides the problem of the infinitude of the solutions of the equation $x!+1=y^{2}$.
IV. Are there infinitely many prime numbers of the form

$$
n^{2}+1 ?
$$

Landau's conjecture states that there are infinitely many primes of the form $n^{2}+1$, see [9, pp. 37-38].

Let \mathcal{B} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{1} \cdot x_{1} & =x_{2} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 3 explain the construction of the system \mathcal{B}.

Fig. 3 Construction of the system \mathcal{B}
Lemma 7. For every integer $x_{1} \geqslant 2$, the system \mathcal{B} is solvable in integers x_{2}, \ldots, x_{9} greater than 1 if and only if $x_{1}^{2}+1$
is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}^{2} \\
x_{3} & =\left(x_{1}^{2}\right)! \\
x_{4} & =\left(\left(x_{1}^{2}\right)!\right)! \\
x_{5} & =x_{1}^{2}+1 \\
x_{6} & =\left(x_{1}^{2}+1\right)! \\
x_{7} & =\frac{\left(x_{1}^{2}\right)!+1}{x_{1}^{2}+1} \\
x_{8} & =\left(x_{1}^{2}\right)!+1 \\
x_{9} & =\left(\left(x_{1}^{2}\right)!+1\right)!
\end{aligned}
$$

and $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}$.
Proof. By Lemmas 3 and 4 for every integer $x_{1} \geqslant 2$, the system \mathcal{B} is solvable in integers x_{2}, \ldots, x_{9} greater than 1 if and only if $x_{1}^{2}+1$ divides $\left(x_{1}^{2}\right)!+1$. Hence, the claim of Lemma 7 follows from Lemma 5

Theorem 6. The statement Θ_{9} proves the following implication: if there exists an integer $x_{1}>f(9)$ such that $x_{1}^{2}+1$ is prime, then there are infinitely many primes of the form $n^{2}+1$.

Proof. Assume that an integer x_{1} is greater than $f(9)$ and $x_{1}^{2}+1$ is prime. By Lemma 7, there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{B}. Lemma 7 guarantees that $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}$. Since $\mathcal{B} \subseteq H_{9}$, the statement Θ_{9} and the inequality $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}>f(9)$ imply that the system \mathcal{B} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{9}$. According to Lemma 7, there are infinitely many primes of the form $n^{2}+1$.

Hypothesis 2. The implication in Theorem 6 is true.
Corollary 6. Assuming Hypothesis 2, a single query to an oracle for the halting problem decides the problem of the infinitude of primes of the form $n^{2}+1$.
V. Are there infinitely many prime numbers of the form

$$
n!+1 ?
$$

It is conjectured that there are infinitely many primes of the form $n!+1$, see [1, p. 443] and [14]. Let \mathcal{G} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 4 explain the construction of the system \mathcal{G}.

Fig. 4 Construction of the system \mathcal{G}
Lemma 8. For every integer $x_{1} \geqslant 2$, the system \mathcal{G} is solvable in integers x_{2}, \ldots, x_{9} greater than 1 if and only if $x_{1}!+1$ is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined by the following equalities:

$$
\begin{aligned}
& x_{2}=x_{1}! \\
& x_{3}=\left(x_{1}!\right)! \\
& x_{4}=\left(\left(x_{1}!\right)!\right)! \\
& x_{5}=x_{1}^{!}+1 \\
& x_{6}=\left(x_{1}!+1\right)! \\
& x_{7}=\frac{\left(x_{1}!\right)!+1}{x_{1}!+1} \\
& x_{8}=\left(x_{1}!\right)!+1 \\
& x_{9}=\left(\left(x_{1}!\right)!+1\right)!
\end{aligned}
$$

and $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}$.
Proof. By Lemmas 3 and 4, for every integer $x_{1} \geqslant 2$, the system \mathcal{G} is solvable in integers x_{2}, \ldots, x_{9} greater than 1 if and only if $x_{1}!+1$ divides $\left(x_{1}!\right)!+1$. Hence, the claim of Lemma 8 follows from Lemma 5

Theorem 7. The statement Θ_{9} proves the following implication: if there exists an integer $x_{1}>f(9)$ such that $x_{1}!+1$ is prime, then there are infinitely many primes of the form $n!+1$.

Proof. Assume that an integer x_{1} is greater than $f(9)$ and $x_{1}!+1$ is prime. By Lemma 8, there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{G}. Lemma 8 guarantees that $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}$. Since $\mathcal{G} \subseteq H_{9}$, the statement Θ_{9} and the inequality $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}>f(9)$ imply that the system \mathcal{G} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{9}$. According to Lemma 8, there are infinitely many primes of the form $n!+1$.

Hypothesis 3. The implication in Theorem 7 is true.
Corollary 7. Assuming Hypothesis 3 a single query to an oracle for the halting problem decides the problem of the infinitude of primes of the form $n!+1$.

VI. The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [9, p. 39].

Let C denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{4}! & =x_{5} \\
x_{6}! & =x_{7} \\
x_{7}! & =x_{8} \\
x_{9}! & =x_{10} \\
x_{12}! & =x_{13} \\
x_{15}! & =x_{16} \\
x_{2} \cdot x_{4} & =x_{5} \\
x_{5} \cdot x_{6} & =x_{7} \\
x_{7} \cdot x_{9} & =x_{10} \\
x_{4} \cdot x_{11} & =x_{12} \\
x_{3} \cdot x_{12} & =x_{13} \\
x_{9} \cdot x_{14} & =x_{15} \\
x_{8} \cdot x_{15} & =x_{16}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 5 explain the construction of the system C.

Fig. 5 Construction of the system C
Lemma 9. If $x_{4}=2$, then the system C has no solutions in integers x_{1}, \ldots, x_{16} greater than 1.

Proof. The equality $x_{2} \cdot x_{4}=x_{5}=x_{4}$! and the equality $x_{4}=2$ imply that $x_{2}=1$.

Lemma 10. If $x_{4}=3$, then the system C has no solutions in integers x_{1}, \ldots, x_{16} greater than 1 .

Proof. The equality $x_{4} \cdot x_{11}=x_{12}=\left(x_{4}-1\right)!+1$ and the equality $x_{4}=3$ imply that $x_{11}=1$.

Lemma 11. For every $x_{4} \in \mathbb{N} \backslash\{0,1,2,3\}$ and for every $x_{9} \in \mathbb{N} \backslash\{0,1\}$, the system C is solvable in integers x_{1}, x_{2}, x_{3}, $x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if x_{4} and x_{9} are prime and $x_{4}+2=x_{9}$. In this case, the integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}$, x_{15}, x_{16} are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{1} & =x_{4}-1 \\
x_{2} & =\left(x_{4}-1\right)! \\
x_{3} & =\left(\left(x_{4}-1\right)!\right)! \\
x_{5} & =x_{4}! \\
x_{6} & =x_{9}-1 \\
x_{7} & =\left(x_{9}-1\right)! \\
x_{8} & =\left(\left(x_{9}-1\right)!\right)! \\
x_{10} & =x_{9}! \\
x_{11} & =\frac{\left(x_{4}-1\right)!+1}{x_{4}} \\
x_{12} & =\left(x_{4}-1\right)!+1 \\
x_{13} & =\left(\left(x_{4}-1\right)!+1\right)! \\
x_{14} & =\frac{\left(x_{9}-1\right)!+1}{x_{9}} \\
x_{15} & =\left(x_{9}-1\right)!+1 \\
x_{16} & =\left(\left(x_{9}-1\right)!+1\right)!
\end{aligned}
$$

and $\min \left(x_{1}, \ldots, x_{16}\right)=x_{1}=x_{9}-3$.
Proof. By Lemmas 3 and 4 for every $x_{4} \in \mathbb{N} \backslash\{0,1,2,3\}$ and for every $x_{9} \in \mathbb{N} \backslash\{0,1\}$, the system C is solvable in integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if

$$
\left(x_{4}+2=x_{9}\right) \wedge\left(x_{4} \mid\left(x_{4}-1\right)!+1\right) \wedge\left(x_{9} \mid\left(x_{9}-1\right)!+1\right)
$$

Hence, the claim of Lemma 11 follows from Lemma 5
Theorem 8. The statement Θ_{16} proves the following implication: if there exists a twin prime greater than $f(16)+3$, then there are infinitely many twin primes.

Proof. Assume the antecedent holds. Then, there exist prime numbers x_{4} and x_{9} such that $x_{9}=x_{4}+2>f(16)+3$. Hence, $x_{4} \in \mathbb{N} \backslash\{0,1,2,3\}$. By Lemma 11 , there exists a unique tuple $\left(x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right) \in$ $(\mathbb{N} \backslash\{0,1\})^{14}$ such that the tuple $\left(x_{1}, \ldots, x_{16}\right)$ solves the system C. Lemma 11 guarantees that $\min \left(x_{1}, \ldots, x_{16}\right)=x_{1}=$ $x_{9}-3>f(16)$. Since $C \subseteq H_{16}$, the statement Θ_{16} and the inequality $\min \left(x_{1}, \ldots, x_{16}\right)>f(16)$ imply that the system C has infinitely many solutions in integers x_{1}, \ldots, x_{16} greater than 1. According to Lemmas 9,11 , there are infinitely many twin primes.

Hypothesis 4. The implication in Theorem 8 is true.
Corollary 8. (cf. [2]]). Assuming Hypothesis 4. a single query to an oracle for the halting problem decides the twin prime problem.
VII. Are there infinitely many composite Fermat numbers?

Primes of the form $2^{2^{n}}+1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^{n}}+1$ is prime, see [8, p. 1]. Fermat correctly remarked that
$2^{2^{0}}+1=3,2^{2^{1}}+1=5,2^{2^{2}}+1=17,2^{2^{3}}+1=257$, and $2^{2^{4}}+1=65537$ are all prime, see [8, p. 1].
Open Problem. ([8, p. 159]). Are there infinitely many composite numbers of the form $2^{2^{n}}+1$?
Most mathematicians believe that $2^{2^{n}}+1$ is composite for every integer $n \geqslant 5$, see [7, p. 23].

Lemma 12. ([8 p. 38]). For every positive integer n, if a prime number p divides $2^{2^{n}}+1$, then there exists a positive integer k such that $p=k \cdot 2^{n+1}+1$.
Corollary 9. Since $k \cdot 2^{n+1}+1 \geqslant 2^{n+1}+1 \geqslant n+3$, for every positive integers x, y, and n, the equality $(x+1)(y+1)=2^{2^{n}}+1$ implies that $\min (n, x, x+1, y, y+1)=n$.

Let $g(1)=1$, and let $g(n+1)=2^{2^{g(n)}}$ for every positive integer n. Let

$$
\begin{aligned}
G_{n}= & \left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\} \cup \\
& \left\{2^{2^{x_{i}}}=x_{k}: i, k \in\{1, \ldots, n\}\right\}
\end{aligned}
$$

Lemma 13. The following subsystem of G_{n}

$$
\left\{\begin{aligned}
x_{1} \cdot x_{1} & =x_{1} \\
\forall i \in\{1, \ldots, n-1\} 2^{2^{x_{i}}} & =x_{i+1}
\end{aligned}\right.
$$

has exactly one solution $\left(x_{1}, \ldots, x_{n}\right) \in(\mathbb{N} \backslash\{0\})^{n}$, namely $(g(1), \ldots, g(n))$.

For a positive integer n, let Ψ_{n} denote the following statement: if a system $S \subseteq G_{n}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant g(n)$. The assumption $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant g(n)$ is weaker than the assumption $\max \left(x_{1}, \ldots, x_{n}\right) \leqslant g(n)$ suggested by Lemma 13

Lemma 14. For every positive integer n, the system G_{n} has a finite number of subsystems.

Theorem 9. Every statement Ψ_{n} is true with an unknown integer bound that depends on n.

Proof. It follows from Lemma 14
Lemma 15. For every non-negative integers b and $c, b+1=c$ if and only if $2^{2^{b}} \cdot 2^{2^{b}}=2^{2^{c}}$.

Theorem 10. The statement Ψ_{13} proves the following implication: if $2^{2^{n}}+1$ is composite for some integer $n>g(13)$, then $2^{2^{n}}+1$ is composite for infinitely many positive integers n.
Proof. Let us consider the equation

$$
\begin{equation*}
(x+1)(y+1)=2^{2^{z}}+1 \tag{1}
\end{equation*}
$$

in positive integers. By Lemma 15 , we can transform equation (1) into an equivalent system \mathcal{F} which has 13 variables
(x, y, z, and 10 other variables) and which consists of equations of the forms $\alpha \cdot \beta=\gamma$ and $2^{2^{\alpha}}=\gamma$, see the diagram in Figure 6.

Fig. 6 Construction of the system \mathcal{F}
Assume that $2^{2^{n}}+1$ is composite for some integer $n>g(13)$. By this and Corollary 9 , equation (1) has a solution $(x, y, z) \in(\mathbb{N} \backslash\{0\})^{3}$ such that $z=n$ and $z=\min (z, x, x+1, y, y+1)$. Hence, the system \mathcal{F} has a solution in positive integers such that $z=n$ and n is the smallest number in the solution sequence. Since $n>g(13)$, the statement Ψ_{13} implies that the system \mathcal{F} has infinitely many solutions in positive integers. Therefore, there are infinitely many positive integers n such that $2^{2^{n}}+1$ is composite.

Hypothesis 5. The implication in Theorem 10 is true.
Corollary 10. Assuming Hypothesis 5 a single query to an oracle for the halting problem decides whether or not the set of composite Fermat numbers is infinite.
VIII. Computations of length n and the statements Φ_{n}

For a positive integer x, let $\Gamma(x)$ denote $(x-1)$!. Let fact $^{-1}:\{1,2,6,24, \ldots\} \rightarrow \mathbb{N} \backslash\{0\}$ denote the inverse function to the factorial function. For positive integers x and y, let $\operatorname{rem}(x, y)$ denote the remainder from dividing x by y.
Definition. For a positive integer n, by a computation of length n we understand any sequence of terms x_{1}, \ldots, x_{n} such that x_{1} is defined as the variable x, and for every integer $i \in\{2, \ldots, n\}, x_{i}$ is defined as $\Gamma\left(x_{i-1}\right)$, or fact $^{-1}\left(x_{i-1}\right)$, or $\operatorname{rem}\left(x_{i-1}, x_{i-2}\right)$ (only if $i \geqslant 3$ and x_{i-1} is defined as $\Gamma\left(x_{i-2}\right)$).

For a positive integer n, let $c(n)$ denote the number of computations of length n. Then, $c(1)=1, c(2)=2$, and $c(n)=c(n-2)+2 \cdot c(n-1)$ for every integer $n \geqslant 3$. Hence, $c(3)=5, c(4)=12, c(5)=29, c(6)=70$, and $c(7)=169$.

Let \mathcal{P} denote the set of prime numbers.
Lemma 16. ([]3] pp. 214-215]). For every positive integer x, $\operatorname{rem}(\Gamma(x), x) \in \mathbb{N} \backslash\{0\}$ if and only if $x \in\{4\} \cup \mathcal{P}$.

Let $h(4)=3$, and let $h(n+1)=h(n)$! for every integer $n \geqslant 4$.
Theorem 11. For every integer $n \geqslant 4$ and for every positive integer x, the following computation \mathcal{H}_{n}

$$
\left\{\begin{aligned}
x_{1} & :=x \\
\forall i \in\{2, \ldots, n-3\} x_{i} & :=\operatorname{fact}^{-1}\left(x_{i-1}\right) \\
x_{n-2} & :=\Gamma\left(x_{n-3}\right) \\
x_{n-1} & :=\Gamma\left(x_{n-2}\right) \\
x_{n} & :=\operatorname{rem}\left(x_{n-1}, x_{n-2}\right)
\end{aligned}\right.
$$

returns positive integers x_{1}, \ldots, x_{n} if and only if $x=h(n)$.
Proof. We make three observations.
Observation 2. If $x_{n-3}=3$, then $x_{1}, \ldots, x_{n-3} \in \mathbb{N} \backslash\{0\}$ and $x=x_{1}=h(n)$. If $x=h(n)$, then $x_{1}, \ldots, x_{n-3} \in \mathbb{N} \backslash\{0\}$ and $x_{n-3}=3$. Hence, $x_{n-2}=\Gamma\left(x_{n-3}\right)=2$ and $x_{n-1}=\Gamma\left(x_{n-2}\right)=1$. Therefore, $x_{n}=\operatorname{rem}\left(x_{n-1}, x_{n-2}\right)=1$.

Observation 3. If $x_{n-3}=2$, then $x=x_{1}=\ldots=x_{n-3}=2$. If $x=2$, then $x_{1}=\ldots=x_{n-3}=2$. Hence, $x_{n-2}=\Gamma\left(x_{n-3}\right)=1$ and $x_{n-1}=\Gamma\left(x_{n-2}\right)=1$. Therefore, $x_{n}=\operatorname{rem}\left(x_{n-1}, x_{n-2}\right)=0 \notin$ $\mathbb{N} \backslash\{0\}$.

Observation 4. If $x_{n-3}=1$, then $x_{n-2}=\Gamma\left(x_{n-3}\right)=1$. Hence, $x_{n-1}=\Gamma\left(x_{n-2}\right)=1$. Therefore, $x_{n}=\operatorname{rem}\left(x_{n-1}, x_{n-2}\right)=0 \notin$ $\mathbb{N} \backslash\{0\}$.

Observations 2 4 cover the case when $x_{n-3} \in\{1,2,3\}$. If $x_{n-3} \geqslant 4$, then $x_{n-2}=\Gamma\left(x_{n-3}\right)$ is greater than 4 and composite. By Lemma 16, $x_{n}=\operatorname{rem}\left(x_{n-1}, x_{n-2}\right)=\operatorname{rem}\left(\Gamma\left(x_{n-2}\right), x_{n-2}\right)=$ $0 \notin \mathbb{N} \backslash\{0\}$.

For an integer $n \geqslant 4$, let Φ_{n} denote the following statement: if a computation of length n returns positive integers x_{1}, \ldots, x_{n} for at most finitely many positive integers x, then every such x does not exceed $h(n)$.

Theorem 12．For every integer $n \geqslant 4$ ，the bound $h(n)$ in the statement Φ_{n} cannot be decreased．

Proof．It follows from Theorem 11
Lemma 17．For every positive integer n ，there are only finitely many computations of length n ．

Theorem 13．For every integer $n \geqslant 4$ ，the statement Φ_{n} is true with an unknown integer bound that depends on n ．
Proof．It follows from Lemma 17.
IX．Consequences of the statements $\Phi_{4}, \ldots, \Phi_{7}$
Lemma 18．If $x \in \mathcal{P}$ ，then $\operatorname{rem}(\Gamma(x), x)=x-1$ ．
Proof．It follows from Lemma 5 ．
Lemma 19．For every positive integer x ，the following com－ putation \mathcal{T}

$$
\left\{\begin{aligned}
x_{1} & :=x \\
x_{2} & :=\Gamma\left(x_{1}\right) \\
x_{3} & :=\operatorname{rem}^{\left(x_{2}, x_{1}\right)} \\
x_{4} & :=\operatorname{fact}^{-1}\left(x_{3}\right)
\end{aligned}\right.
$$

returns positive integers x_{1}, \ldots, x_{4} if and only if $x=4$ or x is a prime number of the form $n!+1$ ．

Proof．For an integer $i \in\{1, \ldots, 4\}$ ，let T_{i} denote the set of positive integers x such that the first i instructions of the computation \mathcal{T} returns positive integers x_{1}, \ldots, x_{i} ．We show that

$$
\begin{equation*}
T_{4}=\{4\} \cup(\{n!+1: n \in \mathbb{N} \backslash\{0\}\} \cap \mathcal{P}) \tag{2}
\end{equation*}
$$

For every positive integer x ，the terms x_{1} and x_{2} belong to $\mathbb{N} \backslash\{0\}$ ．By Lemma 16，the term x_{3}（which equals $\operatorname{rem}(\Gamma(x), x)$ ）belongs to $\overline{\mathbb{N}} \backslash\{0\}$ if and only if $x \in\{4\} \cup \mathcal{P}$ ． Hence，$T_{3}=\{4\} \cup \mathcal{P}$ ．If $x=4$ ，then $x_{1}, \ldots, x_{4} \in \mathbb{N} \backslash\{0\}$ ． Hence， $4 \in T_{4}$ ．If $x \in \mathcal{P}$ ，then Lemma 18 implies that $x_{3}=\operatorname{rem}(\Gamma(x), x)=x-1 \in \mathbb{N} \backslash\{0\}$ ．Therefore，for every $x \in \mathcal{P}$ ，the term $x_{4}=\operatorname{fact}^{-1}\left(x_{3}\right)$ belongs to $\mathbb{N} \backslash\{0\}$ if and only if $x \in\{n!+1: n \in \mathbb{N} \backslash\{0\}\}$ ．This proves equality（2）．

Theorem 14．The statement Φ_{4} implies that the set of primes of the form $n!+1$ is infinite．
Proof．The number $3!+1=7$ is prime．By Lemma 19，for $x=7$ the computation \mathcal{T} returns positive integers x_{1}, \ldots, x_{4} ． Since $x=7>3=h(4)$ ，the statement Φ_{4} guarantees that the computation \mathcal{T} returns positive integers x_{1}, \ldots, x_{4} for infinitely many positive integers x ．By Lemma 19 there are infinitely many primes of the form $n!+1$ ．

Lemma 20．If $x \in \mathbb{N} \backslash\{0,1\}$ ，then fact $^{-1}(\Gamma(x))=x-1$ ．
Theorem 15．If the set of primes of the form $n!+1$ is infinite， then the statement Φ_{4} is true．

Proof．There exist exactly 10 computations of length 4 that differ from \mathcal{H}_{4} and \mathcal{T} ，see Table 1．For every such computa－ tion \mathcal{F}_{i} ，we determine the set S_{i} of all positive integers x such that the computation \mathcal{F}_{i} outputs positive integers x_{1}, \ldots, x_{4} on
input x ．We omit 10 easy proofs which use Lemmas 16 and 20 The sets S_{i} are infinite，see Table 1.

0_{0}^{7}	${ }_{6}{ }^{4}$	∞^{4}	c^{4}	0^{4}	4	U4	${ }_{+}^{+7}$	ω^{4}	\pm	N^{4}	－
$\begin{aligned} & \dddot{x} \\ & \text { ii } \\ & \vdots \end{aligned}$	$\begin{aligned} & \dddot{y} \\ & \text { ii } \\ & \underset{y}{2} \end{aligned}$	$\begin{aligned} & x \\ & \text { ii } \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \ddot{x} \\ & \text { ii } \\ & \ddot{x} \end{aligned}$	$\begin{aligned} & \Varangle \\ & \vdots \\ & i i \\ & \vdots \end{aligned}$	$\begin{aligned} & \ddot{z} \\ & i i \\ & z \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{y}{x} \\ & \text { ii } \\ & \ddot{x} \end{aligned}$	\＃		$\begin{aligned} & \vdots \\ & \vdots \\ & \vdots \\ & \hdashline \end{aligned}$	$\begin{aligned} & \varkappa \\ & \text { ii } \\ & \vdots \end{aligned}$	$\begin{aligned} & \varkappa \\ & \text { ii } \\ & \underset{y}{n} \end{aligned}$
						$$		$$	$\begin{gathered} \text { N } \\ \text { ii } \\ \underset{y}{\Xi} \\ \hline \end{gathered}$	$$	$\begin{aligned} & \text { ふ } \\ & \text { ii } \\ & \underset{~}{¿} \end{aligned}$
	$\begin{aligned} & \dot{\omega} \\ & \text { ii } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \underset{\sim}{\prime} \\ & \underset{\sim}{心} \end{aligned}$	$\begin{aligned} & \dot{心} \\ & \text { ii } \\ & \underset{\sim}{\mathcal{N}} \\ & \hline \end{aligned}$		$\begin{aligned} & \dot{\omega} \\ & \text { ii } \\ & \underset{\widetilde{\prime}}{心} \end{aligned}$					$\begin{gathered} \stackrel{y}{\omega} \\ \text { ii } \\ \underset{\sim}{心} \\ \stackrel{y}{c} \end{gathered}$	$$	$\begin{aligned} & \text { w } \\ & \text { ii } \\ & \underset{\sim}{心} \\ & \text { in } \end{aligned}$
				$\begin{aligned} & \stackrel{y}{\stackrel{1}{2}} \\ & \text { ii } \\ & \underset{\sim}{\underset{心}{2}} \end{aligned}$							$\begin{aligned} & \ddagger \\ & \text { ※i } \\ & \text { ii } \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$

Tab． 112 computations of length $4, x \in \mathbb{N} \backslash\{0\}$
This completes the proof．
Hypothesis 6．The statements $\Phi_{4}, \ldots, \Phi_{7}$ are true．
Lemma 21．For every positive integer x ，the following com－ putation y

$$
\left\{\begin{aligned}
x_{1} & :=x \\
x_{2} & :=\Gamma\left(x_{1}\right) \\
x_{3} & :=\operatorname{rem}^{2}\left(x_{2}, x_{1}\right) \\
x_{4} & :=\operatorname{fact}^{-1}\left(x_{3}\right) \\
x_{5} & :=\Gamma\left(x_{4}\right) \\
x_{6} & :=\operatorname{rem}\left(x_{5}, x_{4}\right)
\end{aligned}\right.
$$

returns positive integers x_{1}, \ldots, x_{6} if and only if $x \in\{4\} \cup$ $\{p!+1: p \in \mathcal{P}\} \cap \mathcal{P}$.

Proof. For an integer $i \in\{1, \ldots, 6\}$, let Y_{i} denote the set of positive integers x such that the first i instructions of the computation y returns positive integers x_{1}, \ldots, x_{i}. Since the computations \mathcal{T} and \mathcal{Y} have the same first four instructions, the equality $Y_{i}=T_{i}$ holds for every $i \in\{1, \ldots, 4\}$. In particular,

$$
Y_{4}=\{4\} \cup(\{n!+1: n \in \mathbb{N} \backslash\{0\}\} \cap \mathcal{P})
$$

We show that

$$
\begin{equation*}
Y_{6}=\{4\} \cup(\{p!+1: p \in \mathcal{P}\} \cap \mathcal{P}) \tag{3}
\end{equation*}
$$

If $x=4$, then $x_{1}, \ldots, x_{6} \in \mathbb{N} \backslash\{0\}$. Hence, $4 \in Y_{6}$. Let $x \in \mathcal{P}$, and let $x=n!+1$, where $n \in \mathbb{N} \backslash\{0\}$. Hence, $n \neq 4$. Lemma 18 implies that $x_{3}=\operatorname{rem}(\Gamma(x), x)=x-1=n!$. Hence, $x_{4}=$ fact $^{-1}\left(x_{3}\right)=n$ and $x_{5}=\Gamma\left(x_{4}\right)=\Gamma(n) \in \mathbb{N} \backslash\{0\}$. By Lemma 16, the term x_{6} (which equals rem $(\Gamma(n), n)$) belongs to $\mathbb{N} \backslash\{0\}$ if and only if $n \in\{4\} \cup \mathcal{P}$. This proves equality (3) as $n \neq 4$.

Theorem 16. The statement Φ_{6} implies that for infinitely many primes p the number $p!+1$ is prime.

Proof. The numbers 11 and $11!+1$ are prime, see [1] p. 441] and [16]. By Lemma [21, for $x=11!+1$ the computation y returns positive integers x_{1}, \ldots, x_{6}. Since $x=11!+1>6!=h(6)$, the statement Φ_{6} guarantees that the computation \mathcal{Y} returns positive integers x_{1}, \ldots, x_{6} for infinitely many positive integers x. By Lemma 21, for infinitely many primes p the number $p!+1$ is prime.

Lemma 22. For every positive integer x, the following computation \mathcal{L}

$$
\left\{\begin{aligned}
x_{1} & :=x \\
x_{2} & :=\Gamma\left(x_{1}\right) \\
x_{3} & :=\Gamma\left(x_{2}\right) \\
x_{4} & :=\operatorname{fact}^{-1}\left(x_{3}\right) \\
x_{5} & :=\Gamma\left(x_{4}\right) \\
x_{6} & :=\operatorname{rem}\left(x_{5}, x_{4}\right)
\end{aligned}\right.
$$

returns positive integers x_{1}, \ldots, x_{6} if and only if $(x-1)$! -1 is prime.

Proof. For an integer $i \in\{1, \ldots, 6\}$, let L_{i} denote the set of positive integers x such that the first i instructions of the computation \mathcal{L} returns positive integers x_{1}, \ldots, x_{i}. If $x \in\{1,2,3\}$, then $x_{6}=0$. Therefore, $L_{6} \subseteq \mathbb{N} \backslash\{0,1,2,3\}$. By Lemma 20 , for every integer $x \geqslant 4, x_{4}=(x-1)!-1, x_{5}=\Gamma((x-1)!-1)$, and $x_{1}, \ldots, x_{5} \in \mathbb{N} \backslash\{0\}$. By Lemma 16, for every integer $x \geqslant 4$,

$$
x_{6}=\operatorname{rem}(\Gamma((x-1)!-1),(x-1)!-1)
$$

belongs to $\mathbb{N} \backslash\{0\}$ if and only if $(x-1)!-1 \in\{4\} \cup \mathcal{P}$. The last condition equivalently expresses that $(x-1)!-1$ is prime as $(x-1)!-1 \geqslant 5$ for every integer $x \geqslant 4$. Hence,

$$
\begin{gathered}
L_{6}=(\mathbb{N} \backslash\{0,1,2,3\}) \cap\{x \in \mathbb{N} \backslash\{0,1,2,3\}:(x-1)!-1 \in \mathcal{P}\}= \\
\{x \in \mathbb{N} \backslash\{0\}:(x-1)!-1 \in \mathcal{P}\}
\end{gathered}
$$

It is conjectured that there are infinitely many primes of the form $n!-1$, see [1, p. 443] and [15].

Theorem 17. The statement Φ_{6} implies that there are infinitely many primes of the form $x!-1$.
Proof. The number $(975-1)!-1$ is prime, see [1] p. 441] and [15]. By Lemma 22, for $x=975$ the computation \mathcal{L} returns positive integers x_{1}, \ldots, x_{6}. Since $x=975>720=h(6)$, the statement Φ_{6} guarantees that the computation \mathcal{L} returns positive integers x_{1}, \ldots, x_{6} for infinitely many positive integers x. By Lemma 22, the set $\{x \in \mathbb{N} \backslash\{0\}:(x-1)!-1 \in \mathcal{P}\}$ is infinite.

Lemma 23. For every positive integer x, the following computation \mathcal{D}

$$
\left\{\begin{aligned}
x_{1} & :=x \\
x_{2} & :=\Gamma\left(x_{1}\right) \\
x_{3} & :=\operatorname{rem}\left(x_{2}, x_{1}\right) \\
x_{4} & :=\Gamma\left(x_{3}\right) \\
x_{5} & :=\operatorname{fact}^{-1}\left(x_{4}\right) \\
x_{6} & :=\Gamma\left(x_{5}\right) \\
x_{7} & :=\operatorname{rem}\left(x_{6}, x_{5}\right)
\end{aligned}\right.
$$

returns positive integers x_{1}, \ldots, x_{7} if and only if both x and $x-2$ are prime.

Proof. For an integer $i \in\{1, \ldots, 7\}$, let D_{i} denote the set of positive integers x such that the first i instructions of the computation \mathcal{D} returns positive integers x_{1}, \ldots, x_{i}. If $x=1$, then $x_{3}=0$. Hence, $D_{7} \subseteq D_{3} \subseteq \mathbb{N} \backslash\{0,1\}$. If $x \in\{2,3,4\}$, then $x_{7}=0$. Therefore,

$$
D_{7} \subseteq(\mathbb{N} \backslash\{0,1\}) \cap(\mathbb{N} \backslash\{0,2,3,4\})=\mathbb{N} \backslash\{0,1,2,3,4\}
$$

By Lemma 16 for every integer $x \geqslant 5$, the term x_{3} (which equals $\operatorname{rem}(\Gamma(x), x)$) belongs to $\mathbb{N} \backslash\{0\}$ if and only if $x \in \mathcal{P} \backslash\{2,3\}$. By Lemma 18 , for every $x \in \mathcal{P} \backslash\{2,3\}$, $x_{3}=x-1 \in \mathbb{N} \backslash\{0,1,2,3\}$. By Lemma 20. for every $x \in \mathcal{P} \backslash\{2,3\}$, the terms x_{4} and x_{5} belong to $\mathbb{N} \backslash\{0\}$ and $x_{5}=x_{3}-1=x-2$. By Lemma 16, for every $x \in \mathcal{P} \backslash\{2,3\}$, the term x_{7} (which equals rem $\left(\Gamma\left(x_{5}\right), x_{5}\right)$) belongs to $\mathbb{N} \backslash\{0\}$ if and only if $x_{5}=x-2 \in\{4\} \cup \mathcal{P}$. From these facts, we obtain that

$$
\begin{gathered}
D_{7}=(\mathbb{N} \backslash\{0,1,2,3,4\}) \cap(\mathcal{P} \backslash\{2,3\}) \cap(\{6\} \cup\{p+2: p \in \mathcal{P}\})= \\
\{p \in \mathcal{P}: p-2 \in \mathcal{P}\}
\end{gathered}
$$

Theorem 18. The statement Φ_{7} implies that there are infinitely many twin primes.
Proof. Harvey Dubner proved that the numbers $459 \cdot 2^{8529}-1$ and $459 \cdot 2^{8529}+1$ are prime, see [17] p. 87]. By Lemma 23, for $x=459 \cdot 2^{8529}+1$ the computation \mathcal{D} returns positive integers x_{1}, \ldots, x_{7}. Since $x>720!=h(7)$, the statement Φ_{7} guarantees that the computation \mathcal{D} returns positive integers x_{1}, \ldots, x_{7} for infinitely many positive integers x. By Lemma 23, there are infinitely many twin primes.

References

[1] C. K. Caldwell and Y. Gallot, On the primality of $n!\pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, Math. Comp. 71 (2002), no. 237, 441-448, https://doi.org/10.1090/S0025-5718-01-01315-1
[2] F. G. Dorais, Can the twin prime problem be solved with a single use of a halting oracle? July 23, 2011, https://mathoverflow.net/ questions/71050
[3] W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139-178.
[4] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[5] J. van der Hoeven, Undecidability versus undecidability, Bull. Symbolic Logic 5 (1999), no. 1, 75, https://dx.doi.org/10.2307/421141
[6] T. Jech, Set theory, Springer, Berlin, 2003.
[7] J.-M. De Koninck and F. Luca, Analytic number theory: Exploring the anatomy of integers, American Mathematical Society, Providence, RI, 2012.
[8] M. Křížek, F. Luca, L. Somer, 17 lectures on Fermat numbers: from number theory to geometry, Springer, New York, 2001.
[9] W. Narkiewicz, Rational number theory in the 20th century: From PNT to FLT, Springer, London, 2012.
[10] P. Odifreddi, Classical recursion theory: the theory of functions and sets of natural numbers, North-Holland, Amsterdam, 1989.
[11] M. Overholt, The Diophantine equation $n!+1=m^{2}$, Bull. London Math. Soc. 25 (1993), no. 2, 104, https://doi.org/10.1112/blms/ 25.2 .104
[12] O. Pikhurko and O. Verbitsky, Logical complexity of graphs: a survey; in: Model theoretic methods in finite combinatorics, Contemp. Math. 558, 129-179, Amer. Math. Soc., Providence, RI, 2011, https://dx. doi.org/10.1090/conm/558
[13] W. Sierpiński, Elementary theory of numbers, 2nd ed. (ed. A. Schinzel), PWN - Polish Scientific Publishers and North-Holland, WarsawAmsterdam, 1987.
[14] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002981, Numbers n such that $n!+1$ is prime, https://oeis.org/ A002981
[15] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002982, Numbers n such that $n!-1$ is prime, https://oeis.org/ A002982
[16] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A093804, Primes p such that $p!+1$ is also prime, https://oeis. org/A093804
[17] S. Y. Yan, Number theory for computing, 2nd ed., Springer, Berlin, 2002.
[18] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chapman \& Hall/CRC, Boca Raton, FL, 2002.

