Are there a set X C N and a constructively defined integer n such that
(card(X) < w = X C (-0, n]) A (a constructively defined algorithm decides X
and there are many elements of X) A (the infiniteness of X is conjectured and

cannot be decided by any known method) A (X has the simplest definition
among known sets Y C N with the same set of known elements)?
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AssTrACT. Let f(1) =2, f(2) =4, and let f(n+ 1) = f(n)! for every integer n > 2.
Edmund Landau’s conjecture states that the set #,,; of primes of the form
n® + 1 is infinite. Landau’s conjecture implies the following unproven statement ®:
card(P2 ) <w= P,y C[2,f(D]. Let B denote the system of equations:
{xi!=x kel .., 90U {x;i-xj=x : 0,k €{l,...,9}}. We write down a system
U C B of 9 equations which has exactly two solutions in positive integers xp, ..., X9,
namely (1,...,1) and (f(1),..., f(9)). We write down a system A C B of 8 equations.
Let A denote the statement: if the system A has at most finitely many solutions in positive
integers Xxi,...,X9, then each such solution (xi,...,x9) satisfies xi,...,x9 < f(9). The
statement A is equivalent to the statement @. It heuristically proves the statement ®. This
proof does not yield that card(P,>, ) = w. Let ¥(X) denote the conjunction of the first
three conditions from the title. The set X = {k e N : (f(7) <k) = (f(1), k) NP2, # 0}
satisfies the formula #(X). No set X C N will satisfy the formula 7 (X) forever, if for
every algorithm with no input, at some future day, a computer will be able to execute this
algorithm in 1 second or less. The physical limits of computation disprove this assumption.
The set X = P 2, satisfies the conjunction of the last three conditions from the title. The

statement ® implies that the conjunction from the title holds for X = > ;.
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1. DEFINITIONS AND THE DISTINCTION BETWEEN EXISTING ALGORITHMS AND KNOWN ALGORITHMS

Algorithms always terminate. Semi-algorithms may not terminate. Examples [TH4] and
the proof of Statement[T|explain the distinction between existing algorithms (i.e. algorithms
whose existence is provable in ZFC) and known algorithms (i.e. algorithms whose
definition is constructive and currently known to us). A definition of an integer 7 is called
constructive, if it provides a known algorithm with no input that returns n.

Definition 1. Conditions (1) -(5) concern sets X C N.
(1) There are many elements of X and it is conjectured that X is infinite.

(2) No known algorithm with no input returns the logical value of the statement
card(X) = w.

(3) A known algorithm for every k € N decides whether or not k € X.

(4) A known algorithm with no input returns an integer n satisfying card(X) < w =
X C (—o0,n].

(5) X is naturally defined i.e. X has the simplest definition among known sets Y C N with
the same set of known elements.

Condition (2) implies that no known proof shows the finiteness/infiniteness of X.
Definition 2. Let 8 = (((24)HDHL
Lemma 1. log,(log,(log,(log,(log,(log,(log,(5))))))) ~ 1.42298.
Proof. We ask Wolfram Alpha athttp://wolframalpha. com. O

Edmund Landau’s conjecture states that the set .., of primes of the form n? + 1 is
infinite, see [6]—[8]. Let [-] denote the integer part function.

Example 1. The set X = P, satifies condition (2).

N, if [2]is odd

. does not satisfy condition (2) because we
0, otherwise

Example 2. The set X = {

know an algorithm with no input that computes [g].

Example 3. ([1], (4], [3 p. 9]). The function

N5 h 1, if the decimal expansion of & contains n consecutive zeros
n— .
0, otherwise

is computable because h = N X {1} or there exists k € N such that
h=({0,....k}x{1Hh Uk +1, k+2, k+3, ...} x{0})

No known algorithm computes the function h.

Example 4. The set

X = N, if the continuum hypothesis is true
1 0, otherwise

is decidable. No constructively existing algorithm decides X, which holds forever.


http://wolframalpha.com

Are there a naturally defined set X C N and a constructively defined integer n 3

Definition 3. Let @ denote the following unproven statement:
card(Ppoy1) < w = Py C [z»ﬁ]

Landau’s conjecture implies the statement ®. In Section 4] we heuristically prove the
statement @. This proof does not yield that card(P,2,) = w.

Statement 1. Condition (4) remains unproven for X = P,2,1.

Proof. For every set X C N, there exists an algorithm Alg(X) with no input that returns
B 0, if card(X) € {0, w}
max(X), otherwise

This n satisfies the implication in condition (4), but the algorithm Al1g(?,,) is unknown
for us because its definition is ineffective. O

Proving the statement ® will disprove Statement [T} Statement [I] cannot be formalized
in mathematics because it refers to the current mathematical knowledge. The same is true
for Open Problem [T]and Statements [2]and 3]

Definition 4. We say that an integer n is a threshold number of a set X C N, if
card(X) < w = X C (—oo,n).

If a set X C N is empty or infinite, then any integer n is a threshold number of X. If
a set X €N is non-empty and finite, then the all threshold numbers of X form the set
[max(X), ) N N.

2. THE PHYSICAL LIMITS OF COMPUTATION INSPIRE OPEN PROBLEM
Open Problem 1. Is there a set X C N which satisfies conditions (1)-(5)?

Open Problem|[T|asks: Are there a set X C N and a constructively defined integer n such that
(card(X) < w = X C (—oo,n]) A (a constructively defined algorithm decides X and there
are many elements of X) A (the infiniteness of X is conjectured and cannot be decided by
any known method) A (X has the simplest definition among known sets Y C N with the
same set of known elements)?

Statement 2. The set
X={keN:(B<k)= B,k)NP,.q #0}
satisfies conditions (1)-(4). Condition (5) fails for X.

Proof. Condition (1) holds as X 2 {0,...,[} and the set P,2,, is conjecturally infinite. By
Lemmal|[I] due to known physics we are not able to confirm by a direct computation that
some element of P, is greater than 3, see [3]. Thus condition (2) holds. Condition (3)
holds trivially. Since the set

(keN:B<k)A@Bk)NP,q # 0}

is empty or infinite, the integer S is a threshold number of X. Thus X satisfies
condition (4). Condition (5) fails for X as the set of known elements of X equals

{0,....8} O

Proving Landau’s conjecture will disprove Statement 2}
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Theorem 1. No set X C N will satisfy conditions (1) - (4) forever, if for every algorithm
with no input, at some future day, a computer will be able to execute this algorithm in
1 second or less.

Proof. The proof goes by contradiction. We fix an integer n that satisfies condition (4).
Since conditons (2)-(4) will hold forever, the semi-algorithm in Figure 1 never
terminates and sequentially prints the following sentences:

M n+l1¢X,n+2¢X,n+3¢X, ...

Print "n+k ¢ X"

/Print "The set X is infinite"/

Fig. 1 Semi-algorithm that terminates if and only if the set X is infinite

The sentences from the sequence (T) and our assumption imply that for every integer
m > n computed by a known algorithm, at some future day, a computer will be able to
confirm in 1 second or less that (n,m] N X = 0. Thus, at some future day, numerical
evidence will support the conjecture that the set X is finite, contrary to the conjecture
in condition (1). O

The physical limits of computation ([3]]) disprove the assumption of Theorem E}

3. NUMBER-THEORETIC STATEMENTS ¥,

Let f(1) =2, f(2) =4, and let f(n + 1) = f(n)! for every integer n > 2. Let U, denote
the system of equations which consists of the equation x;! = x;. For an integer n > 2, let
U, denote the following system of equations:

X! = x
X1 X1 = X2
Vie{2,....,.n—1}x;! = x4

The diagram in Figure 2 illustrates the construction of the system U,,.

squaring x; | X3 Xpo1 1 Xy
X1 > > o e e ————»

Fig. 2 Construction of the system U,

Lemma 2. For every positive integer n, the system U, has exactly two solutions in positive
integers, namely (1,...,1) and (f(1),..., f(n)).
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Let B, denote the following system of equations:
{xil=xe: ikeflmfufx-x;=x:ijke(l....n}

For a positive integer n, let ¥, denote the following statement: if a system of equations
S C B, has at most finitely many solutions in positive integers X\, ..., X,, then each such
solution (x1, ..., x,) satisfies xi, ..., x, < f(n). The statement ¥,, says that for subsystems
of B, with a finite number of solutions, the largest known solution is indeed the largest
possible. The statements ¥, and ¥, hold trivially. There is no reason to assume the
validity of the statement Yn € N\ {0} ¥,,.

Theorem 2. For every statement ¥, the bound f(n) cannot be decreased.
Proof. 1t follows from Lemma@]because U, C B,. O
Theorem 3. For every integer n > 2, the statement ¥, implies the statement \¥,,.

Proof. If a system S C B, has at most finitely many solutions in positive integers

X1,...,Xxn, then for every integer i € {1,...,n} the system S U {x;! = x,;1} has at most
finitely many solutions in positive integers xi, ..., X,+1. The statement ¥, implies that
X! = xp11 < f(n+ 1) = f(n)!. Hence, x; < f(n). ]

Theorem 4. Every statement ¥, is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system B, has a finite number of subsystems. 0O

4. A cONJECTURAL SOLUTION TO OPEN PROBLEM
Lemma 3. For every positive integers x and y, x! - y = y! if and only if
x+1=yvx=y=1

Lemma 4. (Wilson’s theorem, |2, p. 89]). For every integer x > 2, x is prime if and only if
x divides (x — 1)! + 1.

Let A denote the following system of equations:

Xz! = X3
X3! = X4
)C5! = Xe
.Xg! = X9
X1 " X1 = X2
X3+X5 =  Xg
X4°Xg = X9
X5+X7 = X8

Lemma 3| and the diagram in Figure 3 explain the construction of the system A.
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squaring x, +1 X5
X ——— e

X3 F=-=mmmmmmmm === X8
or Xx3 = Xg = 1

Vv

X4 | X4 - Xg = X9 | X9

Fig. 3 Construction of the system A

Lemma 5. For every integer x| > 2, the system A is solvable in positive integers x,, . . . , Xg
if and only if x% + 1 is prime. In this case, the integers x,, . .., X9 are uniquely determined
by the following equalities:

X2 = X%

X3 = (xf)!

o= (!

X5 = x% +1

X = (x% + 1)!

: (x%)! +1

7= x% +1

Xg = (xf)! +1

X9 = ((x%)! + 1)!
Proof. By Lemma[3] for every integer x; > 2, the system A is solvable in positive integers
X2,...,Xg9 if and only if x% + 1 divides (x%)! + 1. Hence, the claim of Lemma (5| follows
from Lemma m]

Lemma 6. There are only finitely many tuples (xi,...,x9) € (N \ {0})°, which solve the
system A and satisfy x; = 1. This is true as every such tuple (xi,...,x9) satisfies
Xlyeuoy X9 € {1,2}

Proof. The equality x; = 1 implies that x, = x; - x; = 1. Hence, x3 = x! = 1. Therefore,
x4 = x3! = 1. The equalities x5! = x5 and x5 = 1 - x5 = x3 - x5 = X6 imply that x5, x5 €
{1,2}. The equalities xg! = x9 and xg = 1 - xg = x4 - x3 = x9 imply that xg, x9 € {1,2}. The
equality x5 - x7 = xg implies that x; = 32 € {1,4,3, 3} n N ={1,2}. O
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Conjecture 1. The statement Vg is true when is restricted to the system A.

Theorem 5. Conjecture[l|proves the following implication: if there exists an integer x; > 2
such that x% + 1 is prime and greater than f(7), then the set P,2,, is infinite.

Proof. Suppose that the antecedent holds. By Lemma [5] there exists a unique tuple
(x2,...,%) € (N\ {0OD® such that the tuple (x1, xp,...,Xx9) solves the system A. Since
xf + 1 > f(7), we obtain that x% > f(7). Hence, (x%)! > f(7)! = f(8). Consequently,

x9 = (D! + D> (F®) + D! > f®)! = f(9)
Conjecture |1| and the inequality x9 > f(9) imply that the system A has infinitely many
solutions (xp,...,X9) € (N \ {0})°. According to Lemmas and@, the set P2, is infinite.

[m}
Theorem 6. Conjecture|l|implies the statement ®@.
Proof. Tt follows from TheoremE] and the equality f(7) = (((24)HDH!. O
Theorem 7. The statement ® implies Conjecture ]|
Proof. By Lemmas [5]and [6] if positive integers xi, ..., X9 solve the system A, then

(x1 22)A (x5 = x? + 1) A (x5 is prime)

or Xxp,...,x9 €{1,2}. In the first case, Lemma E] and the statement ® imply
that the inequality x5 < (((24)H!D! = f(7) holds when the system A has at most
finitely many solutions in positive integers xi,...,X9. Hence, x, = x5 — 1 < f(7) and
x3 = x2! < f(7)! = f(8). Continuing this reasoning in the same manner, we can show that
every x; does not exceed f(9). O

Statement 3. Conditions (1)-(3) and (5) hold for X = P,2,1. The statement ® implies
that condition (4) holds for X = P,2,1.

Proof. The set P,2,; is conjecturally infinite. There are 2199894223892 primes of the
form n? + 1 in the interval [2,10?®), see [7]. These two facts imply condition (1). By
Lemmal (I} due to known physics we are not able to confirm by a direct computation that
some element of P,2, is greater than f(7) = (((24)H!)! = B, see [3]. Thus condition (2)
holds. Conditions (3) and (5) hold trivially. The statement ® implies that S is a threshold
number of P2, . Hence, the statement @ implies that condition (4) holds for X = P,2,;.

|

Proving Landau’s conjecture will disprove Statement 3}
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