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Abstract

Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer
n > 2. For a positive integer n, let Γn denote the statement: if a system
S ⊆

{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
has at most finitely

many solutions in integers x1, . . . , xn greater than 1, then each such solution (x1, . . . , xn)
satisfies min(x1, . . . , xn) 6 f (n). We conjecture that the statements Γ1, . . . ,Γ16 are true. The
statement Γ9 proves the implication: if there exists an integer x > f (9) such that x2 + 1 is
prime, then there are infinitely many primes of the form n2 + 1. The statement Γ16 proves
the implication: if there exists a twin prime greater than f (16) + 3, then there are infinitely

many twin primes. Let g(1) = 1, and let g(n + 1) = 22g(n)
for every positive integer n. We

formulate a conjecture which proves the implication: if 22n
+ 1 is composite for some

integer n > g(13), then 22n
+ 1 is composite for infinitely many positive integers n.
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proving the infinitude of a subset of positive integers, single query to an oracle for the halting
problem, twin prime conjecture.
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1. Introduction and basic lemmas

In sections 1–4, we study a conjecture which provides a common approach to Brocard’s
problem, the problem of the infinitude of primes of the form n2 + 1, and the twin prime
problem. Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2. Let
V1 denote the system of equations {x1! = x1}, and let V2 denote the system of equations
{x1! = x1, x1 · x1 = x2}. For an integer n > 3, letVn denote the following system of equations:

x1! = x1

x1 · x1 = x2

∀i ∈ {2, . . . , n − 1} xi! = xi+1

The diagram in Figure 1 illustrates the construction of the systemVn.

!

x1 squaring x2 ! x3 . . . xn−1 ! xn

Fig. 1 Construction of the systemVn
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Lemma 1. For every positive integer n, the system Vn has exactly one solution in integers
greater than 1, namely

(
f (1), . . . , f (n)

)
.

Let
Hn =

{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
For a positive integer n, let Γn denote the following statement: if a system S ⊆ Hn has at most
finitely many solutions in integers x1, . . . , xn greater than 1, then each such solution (x1, . . . , xn)
satisfies min(x1, . . . , xn) 6 f (n). We conjecture that the statements Γ1, . . . ,Γ16 are true. For
every positive integer n, the system Hn has a finite number of subsystems. Therefore, every
statement Γn is true with an unknown integer bound that depends on n.

Lemma 2. For every integers x and y greater than 1, x! · y = y! if and only if x + 1 = y.

Lemma 3. If x > 4, then (x − 1)! + 1
x > 1.

Lemma 4. (Wilson’s theorem, [2, p. 89]). For every integer x > 2, x is prime if and only if x
divides (x − 1)! + 1.

2. Brocard’s problem

A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the
Brocard-Ramanujan equation x! + 1 = y2, see [6]. It is conjectured that x! + 1 is a square only
for x ∈ {4, 5, 7}, see [7, p. 297].

LetA denote the following system of equations:
x1! = x2

x2! = x3

x5! = x6

x4 · x4 = x5

x3 · x5 = x6

Lemma 2 and the diagram in Figure 2 explain the construction of the systemA.

x1
! x2 x4

squaringx5+1

!

x3

!

x6x3 · x5 = x6

Fig. 2 Construction of the systemA

Lemma 5. For every integers x1 and x4 greater than 1, the system A is solvable in integers
x2, x3, x5, x6 greater than 1 if and only if x1! + 1 = x2

4. In this case, the integers x2, x3, x5, x6 are
uniquely determined by the following equalities:

x2 = x1!
x3 = (x1!)!
x5 = x1! + 1
x6 = (x1! + 1)!

and x1 = min(x1, . . . , x6).
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Proof. It follows from Lemma 2. �

Theorem 1. If the equation x1! + 1 = x2
4 has only finitely many solutions in positive integers,

then the statement Γ6 implies that each such solution (x1, x4) satisfies x1 6 f (6).

Proof. Let positive integers x1 and x4 satisfy x1! + 1 = x2
4. Then, x1, x4 ∈ N \ {0, 1}. By

Lemma 5, there exists a unique tuple (x2, x3, x5, x6) ∈ (N \ {0, 1})4 such that the tuple (x1, . . . , x6)
solves the system A. Lemma 5 guarantees that x1 = min(x1, . . . , x6). By the antecedent and
Lemma 5, the system A has only finitely many solutions in integers x1, . . . , x6 greater than 1.
Therefore, the statement Γ6 implies that x1 = min(x1, . . . , x6) 6 f (6). �

3. Are there infinitely many prime numbers of the form n2 + 1?

Landau’s conjecture states that there are infinitely many primes of the form n2 + 1, see
[5, pp. 37–38].

Let B denote the following system of equations:

x2! = x3

x3! = x4

x5! = x6

x8! = x9

x1 · x1 = x2

x3 · x5 = x6

x4 · x8 = x9

x5 · x7 = x8

Lemma 2 and the diagram in Figure 3 explain the construction of the system B.

x1
squaring x2 +1 x5 ! x6

!

x3

!

x4

+1 x8

!

x9

x5 · x7 = x8

x3 · x5 = x6

x4 · x8 = x9

Fig. 3 Construction of the system B

Lemma 6. For every integer x1 > 2, the system B is solvable in integers x2, . . . , x9 greater
than 1 if and only if x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are uniquely determined
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by the following equalities:
x2 = x2

1
x3 = (x2

1)!
x4 = ((x2

1)!)!
x5 = x2

1 + 1
x6 = (x2

1 + 1)!

x7 =
(x2

1)! + 1
x2

1 + 1
x8 = (x2

1)! + 1
x9 = ((x2

1)! + 1)!

and min(x1, . . . , x9) = x1.

Proof. By Lemmas 2 and 3, for every integer x1 > 2, the system B is solvable in integers
x2, . . . , x9 greater than 1 if and only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of Lemma 6

follows from Lemma 4. �

Theorem 2. The statement Γ9 proves the implication: if there exists an integer x1 > f (9) such
that x2

1 + 1 is prime, then there are infinitely many primes of the form n2 + 1.

Proof. Assume that an integer x1 is greater than f (9) and x2
1 + 1 is prime. By Lemma 6, there

exists a unique tuple (x2, . . . , x9) ∈ (N \ {0, 1})8 such that the tuple (x1, x2, . . . , x9) solves the
system B. Lemma 6 guarantees that min(x1, . . . , x9) = x1. Since B ⊆ H9, the statement Γ9 and
the inequality min(x1, . . . , x9) = x1 > f (9) imply that the systemB has infinitely many solutions
(x1, . . . , x9) ∈ (N \ {0, 1})9. According to Lemma 6, there are infinitely many primes of the form
n2 + 1. �

Corollary 1. Assuming the statement Γ9, a single query to an oracle for the halting problem
decides the problem of the infinitude of primes of the form n2 + 1.

4. The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number.
The twin prime conjecture states that there are infinitely many twin primes, see [5, p. 39].

Let C denote the following system of equations:

x1! = x2

x2! = x3

x4! = x5

x6! = x7

x7! = x8

x9! = x10

x12! = x13

x15! = x16

x2 · x4 = x5

x5 · x6 = x7

x7 · x9 = x10

x4 · x11 = x12

x3 · x12 = x13

x9 · x14 = x15

x8 · x15 = x16

Lemma 2 and the diagram in Figure 4 explain the construction of the system C.
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!

x5

!

x10

x1
+1 x4 +1 x6 +1 x9

x2
+1 x12

+1 x15

!

x2

!

x3

!

x13

!

x7

!

x8

!

x16

x2 · x4 = x5 x7 · x9 = x10

x5 · x6 = x7

x4 · x11 = x12 x9 · x14 = x15

x3 · x12 = x13 x8 · x15 = x16

Fig. 4 Construction of the system C

Lemma 7. If x4 = 2, then the system C has no solutions in integers x1, . . . , x16 greater than 1.

Proof. The equality x2 · x4 = x5 = x4! and the equality x4 = 2 imply that x2 = 1. �

Lemma 8. If x4 = 3, then the system C has no solutions in integers x1, . . . , x16 greater than 1.

Proof. The equality x4 · x11 = x12 = (x4 − 1)! + 1 and the equality x4 = 3 imply that x11 = 1. �

Lemma 9. For every x4 ∈ N \ {0, 1, 2, 3} and for every x9 ∈ N \ {0, 1}, the system C

is solvable in integers x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 greater than 1
if and only if x4 and x9 are prime and x4 + 2 = x9. In this case, the integers
x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 are uniquely determined by the following
equalities:

x1 = x4 − 1
x2 = (x4 − 1)!
x3 = ((x4 − 1)!)!
x5 = x4!
x6 = x9 − 1
x7 = (x9 − 1)!
x8 = ((x9 − 1)!)!

x10 = x9!

x11 =
(x4 − 1)! + 1

x4
x12 = (x4 − 1)! + 1
x13 = ((x4 − 1)! + 1)!

x14 =
(x9 − 1)! + 1

x9
x15 = (x9 − 1)! + 1
x16 = ((x9 − 1)! + 1)!

and min(x1, . . . , x16) = x1 = x9 − 3.
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Proof. By Lemmas 2 and 3, for every x4 ∈ N \ {0, 1, 2, 3} and for every x9 ∈ N \ {0, 1}, the
system C is solvable in integers x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 greater
than 1 if and only if (

x4 + 2 = x9

)
∧

(
x4|(x4 − 1)! + 1

)
∧

(
x9|(x9 − 1)! + 1

)
Hence, the claim of Lemma 9 follows from Lemma 4. �

Theorem 3. The statement Γ16 proves the implication: if there exists a twin prime greater
than f (16) + 3, then there are infinitely many twin primes.

Proof. Assume the antecedent holds. Then, there exist prime numbers x4 and x9 such
that x9 = x4 + 2 > f (16) + 3. Hence, x4 ∈ N \ {0, 1, 2, 3}. By Lemma 9, there exists a
unique tuple (x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16) ∈ (N \ {0, 1})14 such that the
tuple (x1, . . . , x16) solves the system C. Lemma 9 guarantees that min(x1, . . . , x16) = x1 =

x9 − 3 > f (16). Since C ⊆ H16, the statement Γ16 and the inequality min(x1, . . . , x16) > f (16)
imply that the system C has infinitely many solutions in integers x1, . . . , x16 greater than 1.
According to Lemmas 7–9, there are infinitely many twin primes. �

Corollary 2. (cf. [1]). Assuming the statement Γ16, a single query to an oracle for the halting
problem decides the twin prime problem.

5. Composite Fermat numbers

Primes of the form 22n
+ 1 are called Fermat primes, as Fermat conjectured that every

integer of the form 22n
+ 1 is prime, see [4, p. 1]. Fermat correctly remarked that 220

+ 1 = 3,

221
+ 1 = 5, 222

+ 1 = 17, 223
+ 1 = 257, and 224

+ 1 = 65537 are all prime, see [4, p. 1].

Open Problem. ([4, p. 159]). Are there infinitely many composite numbers of the form 22n
+ 1?

Most mathematicians believe that 22n
+ 1 is composite for every integer n > 5, see [3, p. 23].

Lemma 10. ([4, p. 38]). For every positive integer n, if a prime number p divides 22n
+ 1, then

there exists a positive integer k such that p = k · 2n + 1 + 1.

Corollary 3. Since k · 2n + 1 + 1 > 2n + 1 + 1 > n + 3, for every positive integers x, y, and n,
the equality (x + 1)(y + 1) = 22n

+ 1 implies that min(n, x, x + 1, y, y + 1) = n.

Let g(1) = 1, and let g(n + 1) = 22g(n)
for every positive integer n. Let

Gn =
{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
∪

{
22xi

= xk : i, k ∈ {1, . . . , n}
}

The following subsystem of Gn x1 · x1 = x1

∀i ∈ {1, . . . , n − 1} 22xi
= xi+1

has exactly one solution (x1, . . . , xn) ∈ (N \ {0})n, namely (g(1), . . . , g(n)).

For a positive integer n, let Ψn denote the following statement: if a system S ⊆ Gn has at
most finitely many solutions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn)
satisfies min(x1, . . . , xn) 6 g(n). We conjecture that the statements Ψ1, . . . ,Ψ13 are true. For
every positive integer n, the system Gn has a finite number of subsystems. Therefore, every
statement Ψn is true with an unknown integer bound that depends on n.
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Lemma 11. For every positive integers b and c, b + 1 = c if and only if 22b
· 22b

= 22c
.

Theorem 4. The statement Ψ13 proves the implication: if 22n
+ 1 is composite for some integer

n > g(13), then 22n
+ 1 is composite for infinitely many positive integers n.

Proof. Let us consider the equation

(x + 1)(y + 1) = 22z
+ 1 (1)

in positive integers. By Lemma 11, we can transform equation (1) into an equivalent system F
which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the
forms α · β = γ and 22α = γ, see the diagram in Figure 5.

x

22(·)

22x

x+1

22(·)

22x+1

y

22(·)

22y

y+1

22(·)

22y+1

22z

22(·)

2222z

22z
+1

22(·)

2222z
+1

squaring

squaring

z 22(·)

squaring

m
u
l
t
i
p
l
y
i
n
g

Fig. 5 Construction of the system F
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Assume that 22n
+ 1 is composite for some integer n > g(13). By this and Corollary 3,

equation (1) has a solution (x, y, z) ∈ (N \ {0})3 such that z = n and z = min(z, x, x + 1, y, y + 1).
Hence, the system F has a solution in positive integers such that z = n and n is the smallest
number in the solution sequence. Since n > g(13), the statement Ψ13 implies that the system F
has infinitely many solutions in positive integers. Therefore, there are infinitely many positive
integers n such that 22n

+ 1 is composite. �

Corollary 4. Assuming the statement Ψ13, a single query to an oracle for the halting problem
decides whether or not the set of composite Fermat numbers is infinite.

6. The implication from the title

If a setW ⊆ N \ {0} satisfies

∀n
(
n ∈ W =⇒ {n, 2n, 3n, . . .} ⊆ W

)
then the implication from the title holds for W with t(W) = 0. If W equals the set of
positive integers n such that n2 + 1 is prime, then Theorem 2 suggests a possibility that the
implication from the title holds forW with t(W) = f (9). IfW equals the set of twin primes,
then Theorem 3 suggests a possibility that the implication from the title holds for W with
t(W) = f (16) + 3. If W equals the set of positive integers n such that 22n

+ 1 is composite,
then Theorem 4 suggests a possibility that the implication from the title holds for W with
t(W) = g(13).
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