On sets W C N \ {0} for which we can compute 7("W) € N such that any
element of W which is greater than #(“IW) proves that W is infinite
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Abstract
Let f(1)=2, f(2)=4, and let f(n+1)=f(n)! for every integer
nz2. For a positive integer n, let I, denote the statement: if a system
S cfxt=xc: ikell,...nfUlxi-xj=xc: i jke{l,....n}} has at most finitely
many solutions in integers xi,..., x, greater than 1, then each such solution (xi,..., x;,)
satisfies min(xy, ..., x,) < f(n). We conjecture that the statements I'y,. .., ;¢ are true. The

statement I'y proves the implication: if there exists an integer x > f(9) such that x> + 1 is
prime, then there are infinitely many primes of the form n? + 1. The statement I';¢ proves
the implication: if there exists a twin prime greater than f(16) + 3, then there are infinitely
n
many twin primes. Let g(1) = 1, and let g(n + 1) = 22g( ) for every positive integer n. We
n
formulate a conjecture which proves the implication: if 227 4 1is composite for some

n
integer n > g(13), then 227 4 1is composite for infinitely many positive integers #.

Key words and phrases: composite Fermat numbers, prime numbers of the form n? + 1,
proving the infinitude of a subset of positive integers, single query to an oracle for the halting
problem, twin prime conjecture.
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1. Introduction and basic lemmas

In sections 1-4, we study a conjecture which provides a common approach to Brocard’s
problem, the problem of the infinitude of primes of the form n? + 1, and the twin prime
problem. Let f(1)=2, f(2) =4, and let f(n+ 1) = f(n)! for every integer n > 2. Let
V, denote the system of equations {x;! = x;}, and let V, denote the system of equations
{x1! = x1, x1 - x; = xp}. For an integer n > 3, let V,, denote the following system of equations:

.X]! = X
X1+ X1 X2
Yie{2,...,n— 1} x;!

Xit+1
The diagram in Figure 1 illustrates the construction of the system V,,.

X; squaring x, ] X3 Xpo1 ! Xy,

Fig.1 Construction of the system YV,



Lemma 1. For every positive integer n, the system V, has exactly one solution in integers
greater than 1, namely (f(l), e ,f(n)).

Let
Hy={x!'=x: ikell,...mpUlx x;=x: ijkell,....n}

For a positive integer n, let I',, denote the following statement: if a system & C H, has at most
finitely many solutions in integers xi, . .., X, greater than 1, then each such solution (xi, ..., x,)
satisfies min(xy, ..., x,) < f(n). We conjecture that the statements I',...,I['j¢ are true. For
every positive integer n, the system H, has a finite number of subsystems. Therefore, every
statement I, is true with an unknown integer bound that depends on 7.

Lemma 2. For every integers x and y greater than 1, x! -y =yl ifand only if x + 1 = y.

(x—lx)!+1>

Lemma 3. If x > 4, then 1.

Lemma 4. (Wilson’s theorem, [2 p. 89]). For every integer x > 2, x is prime if and only if x
divides (x — 1)! + 1.

2. Brocard’s problem

A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the
Brocard-Ramanujan equation x! + 1 = y%, see [6]]. It is conjectured that x! + 1 is a square only
for x € {4,5,7}, see [[7, p. 297].

Let A denote the following system of equations:

X! = x
Xz! = X3
X5 ! = X6
X4 X4 = X5
X3+X5 = Xg

Lemma 2] and the diagram in Figure 2 explain the construction of the system A.

! X +1 X5 squaring
Xl —— s — e e e - - - X4

X3 | X3 X5 = X6 | Xg

Fig. 2 Construction of the system A

Lemma 5. For every integers x; and x4 greater than 1, the system A is solvable in integers
X2, X3, X5, X greater than 1 if and only if x,! + 1 = xﬁ. In this case, the integers x,, X3, Xs, X¢ are
uniquely determined by the following equalities:

X2 = xp!

X3 = (xl‘)'

xs = x!+1
Xe = (x!+1)!

and x; = min(xy, . .., Xg).



Proof. 1t follows from Lemma 2} |

Theorem 1. If the equation x;! + 1 = xi has only finitely many solutions in positive integers,
then the statement U implies that each such solution (xy, x4) satisfies x, < f(6).

Proof. Let positive integers x; and x4 satisfy x;!+1 = x2. Then, x;,xs € N\ {0, 1}. By

Lemma there exists a unique tuple (x, X3, x5, xX¢) € (N \ {0, 1})* such that the tuple (xi,. .., x¢)
solves the system A. Lemma [5] guarantees that x; = min(xy,...,xs). By the antecedent and
Lemma [5] the system A has only finitely many solutions in integers xi, ..., x¢ greater than 1.
Therefore, the statement I'q implies that x; = min(xy, ..., xs) < f(6). O

3. Are there infinitely many prime numbers of the form n”> + 1?

Landau’s conjecture states that there are infinitely many primes of the form n? + 1, see
(5, pp. 37-38].

Let B denote the following system of equations:

Xz! = X3
)C3! = X
X5! = Xp
Xg! = X9
X1-X1 = X
X3+ X5 = Xg
X4+ Xg = Xg
X5 X7 = Xg

Lemma 2] and the diagram in Figure 3 explain the construction of the system 5.

squaring x» +1 X5 !
X ———r - e e e e e e - - - - X6

X3+ X5 = Xg
X5+ X7 = X3

X3 pmmmmm e mm = > X8

X4 | X4 Xg = X9 | X9

Fig. 3 Construction of the system B

Lemma 6. For every integer x| > 2, the system B is solvable in integers x, ..., X9 greater
than 1 if and only if x% + 1 is prime. In this case, the integers x,, . . ., Xg are uniquely determined



by the following equalities:
2

Xy = xl

x3 = (&)

X o= (@)

X5 = .X% +1

xe = (xF+1)!

v = (x%)! +1
T x? +1

xg = (DI+1

X9 = ((x%)! + 1)!

and min(xy, ..., X9) = Xj.

Proof. By Lemmas [2| and 3} for every integer x; > 2, the system & is solvable in integers
X2, ..., X9 greater than 1 if and only if x% + 1 divides (x%)! + 1. Hence, the claim of Lemma @
follows from Lemma [} o

Theorem 2. The statement I'g proves the implication: if there exists an integer x; > f(9) such
that x% + 1 is prime, then there are infinitely many primes of the form n* + 1.

Proof. Assume that an integer x; is greater than f(9) and x? + 1 is prime. By Lemma@ there
exists a unique tuple (xs,...,xy) € (N\ {0, 1})® such that the tuple (x;, x,,...,Xo) solves the
system 8. Lemma @] guarantees that min(xy, ..., x9) = x;. Since B C Hy, the statement I'y and
the inequality min(xy, ..., x9) = x; > f(9) imply that the system $ has infinitely many solutions
(X1,...,%) € (N\ {0, 1})°. According to Lemma@ there are infinitely many primes of the form
n’+1. o

Corollary 1. Assuming the statement Iy, a single query to an oracle for the halting problem
decides the problem of the infinitude of primes of the form n®> + 1.

4. The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number.
The twin prime conjecture states that there are infinitely many twin primes, see [, p. 39].

Let C denote the following system of equations:

Xl! = X2
)Cz! = X3
X4! = X5
Xg! = x7
X7l = xg
Xo! = xi0
xpp! = xi3
xis! = Xie
X2+ X4 = X5
X5+ X = X7
X7+X9 = X0
X4 X111 = X12
X3+ X2 = X3
X9 - X14 = Xi5
Xg*X15 = Xie

Lemma |2 and the diagram in Figure 4 explain the construction of the system C.
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— X5 — X10
X2 » X4 = X5 X7 * X9 = X10
! X5+ Xg = X7 !
+1 X4 +1 X6 +1
Xl p-====-===-===-=-3 e T > X9

X) Fm=mmmmmm == > X12 X7 pm=mmmmmm == > X15

X3Y (X3 X120 = X13| Y X3 Xg ¥ [ x5 X15 = X16 | ¥ X16

Fig. 4 Construction of the system C

Lemma 7. If x4 = 2, then the system C has no solutions in integers xi, ..., X greater than 1.
Proof. The equality x, - x4 = x5 = x4! and the equality x4 = 2 imply that x, = 1. O
Lemma 8. If x4 = 3, then the system C has no solutions in integers xi, ..., X1¢ greater than 1.

Proof. The equality x4 - x;; = x12 = (x4 — 1)! + 1 and the equality x, = 3 imply that x;; = 1. O

Lemma 9. For every x, € N\{0,1,2,3} and for every xo € N\{0,1}, the system C
is solvable in integers Xxi,Xs,X3,Xs,Xe, X7, X8, X105 X11, X12, X13, X14, X15, X1¢ gFeater than 1
if and only if x4 and x9 are prime and x4+ 2 = xo. In this case, the integers
X1, X2, X3, X5, X6, X7, X8, X105 X11, X12, X13, X14, X15, X16 are uniquely determined by the following
equalities:

X1 = Xa -1

X, = (x4 —1)!

x3 = ((xs— D!

Xs = Xy

X6 = Xo -1

X7 = (X9 - 1)'

xg = ((xo— D!

X10 = Xg!

o = @=Dlxl

X1 = ()C4 - 1)' +1

xi3 = (= DI+ D!
(=D +1

X4 = X9

X5 = ()Cg - 1)' +1

X1 = ((XQ - 1)' + 1)'

and min(xy, ..., X16) = X1 = X9 — 3.



Proof. By Lemmas | and [3] for every x4 € N\ {0,1,2,3} and for every xo € N\ {0, 1}, the
system C is solvable in integers x;, X, X3, Xs, X6, X7, X, X105 X115 X125 X13, X14, X15, X16 greater
than 1 if and only if

(x4 +2 = x0) A (3l = D!+ 1) A (0l = 1)+ 1)
Hence, the claim of Lemma [9] follows from Lemma 4] m|

Theorem 3. The statement I'\¢ proves the implication: if there exists a twin prime greater
than f(16) + 3, then there are infinitely many twin primes.

Proof. Assume the antecedent holds. Then, there exist prime numbers x, and xy9 such
that xo = x4 +2 > f(16) +3. Hence, x, € N\{0,1,2,3}. By Lemma [0 there exists a
unique tuple (xy, X2, X3, X5, X6, X7, Xs, X10, X11, X12, X13, X14, X15, X16) € (N \ {0, 1})!* such that the

tuple (xy,...,x;6) solves the system C. Lemma [ guarantees that min(xy,..., x5 ) = x; =
X9 —3 > f(16). Since C C Hie, the statement I';¢ and the inequality min(xy,..., x16) > f(16)
imply that the system C has infinitely many solutions in integers xi,..., Xx;¢ greater than 1.
According to Lemmas [JH9, there are infinitely many twin primes. O

Corollary 2. (cf. [1l]). Assuming the statement I'y¢, a single query to an oracle for the halting
problem decides the twin prime problem.

5. Composite Fermat numbers

Primes of the form 22n + 1 are called Fermat primes, as Fermat conjectured that every
integer of the form 22n + 1 is prime, see [4, p. 1]. Fermat correctly remarked that 227 41 = 3,
02! 125027 01 217.22% 12257, and 22* 41 = 65537 are all prime, see [4, p. 1].
Open Problem. ([4, p. 159]). Are there infinitely many composite numbers of the form 22n +1?

n
Most mathematicians believe that 22 + 1 is composite for every integer n > 5, see [3, p. 23].

n
Lemma 10. (/4, p. 38]). For every positive integer n, if a prime number p divides 227 4 1, then
there exists a positive integer k such that p = k -2+ i

Corollary 3. Since k-2 * L L S [ 3, for every positive integers x, y, and n,
n
the equality (x+ 1)(y + 1) = 227 11 implies that min(n, x,x + 1,y,y+ 1) = n.

Letg(l)=1,andletg(n+ 1) = 22g(n) for every positive integer n. Let

Go={ri-x=x: kel m)u(22 = x: ikell,... )

The following subsystem of G,

X1 X1 = X
. 2Xi
Yie{l,...,.n—1}2 = Xt
has exactly one solution (xi, ..., x,) € N\ {0})", namely (g(1), ..., g(n)).

For a positive integer n, let '¥,, denote the following statement: if a system S C G, has at
most finitely many solutions in positive integers xi, . .., X,, then each such solution (x, ..., x,)
satisfies min(xy, ..., x,) < g(n). We conjecture that the statements ¥,...,¥ 3 are true. For
every positive integer n, the system G, has a finite number of subsystems. Therefore, every
statement ¥, is true with an unknown integer bound that depends on n.
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b »b
Lemma 11. For every positive integers b and c, b + 1 = c if and only if 227027 = 22C.

n
Theorem 4. The statement W3 proves the implication: if 227 4 lis composite for some integer

n
n > g(13), then 227 4 1is composite for infinitely many positive integers n.

Proof. Let us consider the equation
Z
x+Dy+1D=2%+1 )

in positive integers. By Lemma|l 1] we can transform equation (I)) into an equivalent system #
which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the

(07
forms a - 8 =y and 22" = v, see the diagram in Figure 5.

X x+1
22(') 22(')
2 ¥ squaring 22x+1
y

22(')
‘2y squaring
2
7(*)
Z 2 22Z
22(') 22(')
squaring
522 52251
2 2

Fig. 5 Construction of the system F
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Assume that 2211 + 1 is composite for some integer n > g(13). By this and Corollary
equation has a solution (x,y,z) € (N \ {0})® such that z = n and z = min(z, x, x + 1, y,y + 1).
Hence, the system ¥ has a solution in positive integers such that z = n and n is the smallest
number in the solution sequence. Since n > g(13), the statement W3 implies that the system 7
has infinitely many solutions in positive integers. Therefore, there are infinitely many positive

integers n such that 227 4 1is composite. m|

Corollary 4. Assuming the statement Y13, a single query to an oracle for the halting problem
decides whether or not the set of composite Fermat numbers is infinite.

6. The implication from the title
If a set ‘W C N\ {0} satisfies

Vn(ne(W:{n, 2n, 3n, ...}Q"W)

then the implication from the title holds for W with #(W) =0. If W equals the set of
positive integers n such that n*> + 1 is prime, then Theorem [2| suggests a possibility that the
implication from the title holds for ‘W with (‘W) = f(9). If ‘W equals the set of twin primes,
then Theorem [3| suggests a possibility that the implication from the title holds for ‘W with

n
(W) = f(16) + 3. If W equals the set of positive integers n such that 22" 4 1is composite,
then Theorem ] suggests a possibility that the implication from the title holds for ‘W with
1(W) = g(13).
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