On sets $W \subseteq \mathbb{N} \setminus \{0\}$ for which we can compute $t(W) \in \mathbb{N}$ such that any element of W which is greater than t(W) proves that W is infinite

Apoloniusz Tyszka

Abstract

Let f(1) = 2, f(2) = 4, and let f(n+1) = f(n)! for every integer $n \ge 2$. For a positive integer n, let Γ_n denote the statement: if a system $S \subseteq \{x_i! = x_k : i, k \in \{1, \dots, n\}\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\}$ has at most finitely many solutions in integers x_1, \dots, x_n greater than 1, then each such solution (x_1, \dots, x_n) satisfies $\min(x_1, \dots, x_n) \le f(n)$. We conjecture that the statements $\Gamma_1, \dots, \Gamma_{16}$ are true. The statement Γ_9 proves the implication: if there exists an integer x > f(9) such that $x^2 + 1$ is prime, then there are infinitely many primes of the form $n^2 + 1$. The statement Γ_{16} proves the implication: if there exists a twin prime greater than f(16) + 3, then there are infinitely many twin primes. Let g(1) = 1, and let $g(n + 1) = 2^{2^{g(n)}}$ for every positive integer n. We formulate a conjecture which proves the implication: if $2^{2^n} + 1$ is composite for some integer n > g(13), then $2^{2^n} + 1$ is composite for infinitely many positive integers n.

Key words and phrases: composite Fermat numbers, prime numbers of the form $n^2 + 1$, proving the infinitude of a subset of positive integers, single query to an oracle for the halting problem, twin prime conjecture.

2010 Mathematics Subject Classification: 11U05.

1. Introduction and basic lemmas

In sections 1–4, we study a conjecture which provides a common approach to Brocard's problem, the problem of the infinitude of primes of the form $n^2 + 1$, and the twin prime problem. Let f(1) = 2, f(2) = 4, and let f(n+1) = f(n)! for every integer $n \ge 2$. Let V_1 denote the system of equations $\{x_1! = x_1\}$, and let V_2 denote the system of equations $\{x_1! = x_1, x_1 \cdot x_1 = x_2\}$. For an integer $n \ge 3$, let V_n denote the following system of equations:

$$\begin{cases} x_1! = x_1 \\ x_1 \cdot x_1 = x_2 \\ \forall i \in \{2, \dots, n-1\} \ x_i! = x_{i+1} \end{cases}$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{V}_n .

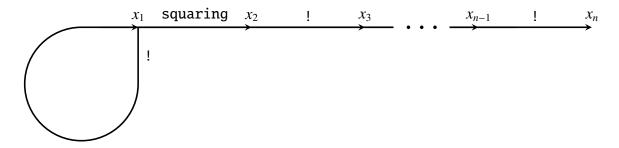


Fig. 1 Construction of the system V_n

Lemma 1. For every positive integer n, the system V_n has exactly one solution in integers greater than 1, namely $(f(1), \ldots, f(n))$.

Let

$$H_n = \{x_i! = x_k : i, k \in \{1, \dots, n\}\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\}$$

For a positive integer n, let Γ_n denote the following statement: if a system $S \subseteq H_n$ has at most finitely many solutions in integers x_1, \ldots, x_n greater than 1, then each such solution (x_1, \ldots, x_n) satisfies $\min(x_1, \ldots, x_n) \leq f(n)$. We conjecture that the statements $\Gamma_1, \ldots, \Gamma_{16}$ are true. For every positive integer n, the system H_n has a finite number of subsystems. Therefore, every statement Γ_n is true with an unknown integer bound that depends on n.

Lemma 2. For every integers x and y greater than 1, $x! \cdot y = y!$ if and only if x + 1 = y.

Lemma 3. If
$$x \ge 4$$
, then $\frac{(x-1)!+1}{x} > 1$.

Lemma 4. (Wilson's theorem, [2, p. 89]). For every integer $x \ge 2$, x is prime if and only if x divides (x - 1)! + 1.

2. Brocard's problem

A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the Brocard-Ramanujan equation $x! + 1 = y^2$, see [6]. It is conjectured that x! + 1 is a square only for $x \in \{4, 5, 7\}$, see [7, p. 297].

Let \mathcal{A} denote the following system of equations:

$$\begin{cases} x_1! = x_2 \\ x_2! = x_3 \\ x_5! = x_6 \\ x_4 \cdot x_4 = x_5 \\ x_3 \cdot x_5 = x_6 \end{cases}$$

Lemma 2 and the diagram in Figure 2 explain the construction of the system \mathcal{A} .

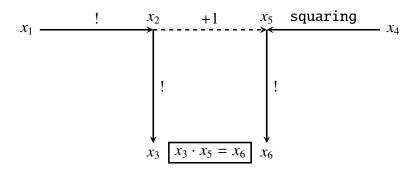


Fig. 2 Construction of the system \mathcal{A}

Lemma 5. For every integers x_1 and x_4 greater than 1, the system \mathcal{A} is solvable in integers x_2, x_3, x_5, x_6 greater than 1 if and only if $x_1! + 1 = x_4^2$. In this case, the integers x_2, x_3, x_5, x_6 are uniquely determined by the following equalities:

$$x_2 = x_1!$$

 $x_3 = (x_1!)!$
 $x_5 = x_1! + 1$
 $x_6 = (x_1! + 1)!$

and $x_1 = \min(x_1, \ldots, x_6)$.

Theorem 1. If the equation $x_1! + 1 = x_4^2$ has only finitely many solutions in positive integers, then the statement Γ_6 implies that each such solution (x_1, x_4) satisfies $x_1 \le f(6)$.

Proof. Let positive integers x_1 and x_4 satisfy $x_1! + 1 = x_4^2$. Then, $x_1, x_4 \in \mathbb{N} \setminus \{0, 1\}$. By Lemma 5, there exists a unique tuple $(x_2, x_3, x_5, x_6) \in (\mathbb{N} \setminus \{0, 1\})^4$ such that the tuple (x_1, \dots, x_6) solves the system \mathcal{A} . Lemma 5 guarantees that $x_1 = \min(x_1, \dots, x_6)$. By the antecedent and Lemma 5, the system \mathcal{A} has only finitely many solutions in integers x_1, \dots, x_6 greater than 1. Therefore, the statement Γ_6 implies that $x_1 = \min(x_1, \dots, x_6) \leq f(6)$.

3. Are there infinitely many prime numbers of the form $n^2 + 1$?

Landau's conjecture states that there are infinitely many primes of the form $n^2 + 1$, see [5, pp. 37–38].

Let \mathcal{B} denote the following system of equations:

$$\begin{cases} x_2! = x_3 \\ x_3! = x_4 \\ x_5! = x_6 \\ x_8! = x_9 \\ x_1 \cdot x_1 = x_2 \\ x_3 \cdot x_5 = x_6 \\ x_4 \cdot x_8 = x_9 \\ x_5 \cdot x_7 = x_8 \end{cases}$$

Lemma 2 and the diagram in Figure 3 explain the construction of the system \mathcal{B} .



Fig. 3 Construction of the system \mathcal{B}

Lemma 6. For every integer $x_1 \ge 2$, the system \mathcal{B} is solvable in integers x_2, \ldots, x_9 greater than 1 if and only if $x_1^2 + 1$ is prime. In this case, the integers x_2, \ldots, x_9 are uniquely determined

by the following equalities:

$$x_{2} = x_{1}^{2}$$

$$x_{3} = (x_{1}^{2})!$$

$$x_{4} = ((x_{1}^{2})!)!$$

$$x_{5} = x_{1}^{2} + 1$$

$$x_{6} = (x_{1}^{2} + 1)!$$

$$x_{7} = \frac{(x_{1}^{2})! + 1}{x_{1}^{2} + 1}$$

$$x_{8} = (x_{1}^{2})! + 1$$

$$x_{9} = ((x_{1}^{2})! + 1)!$$

and $min(x_1,\ldots,x_9)=x_1$.

Proof. By Lemmas 2 and 3, for every integer $x_1 \ge 2$, the system \mathcal{B} is solvable in integers x_2, \ldots, x_9 greater than 1 if and only if $x_1^2 + 1$ divides $(x_1^2)! + 1$. Hence, the claim of Lemma 6 follows from Lemma 4.

Theorem 2. The statement Γ_9 proves the implication: if there exists an integer $x_1 > f(9)$ such that $x_1^2 + 1$ is prime, then there are infinitely many primes of the form $n^2 + 1$.

Proof. Assume that an integer x_1 is greater than f(9) and $x_1^2 + 1$ is prime. By Lemma 6, there exists a unique tuple $(x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^8$ such that the tuple (x_1, x_2, \ldots, x_9) solves the system \mathcal{B} . Lemma 6 guarantees that $\min(x_1, \ldots, x_9) = x_1$. Since $\mathcal{B} \subseteq H_9$, the statement Γ_9 and the inequality $\min(x_1, \ldots, x_9) = x_1 > f(9)$ imply that the system \mathcal{B} has infinitely many solutions $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^9$. According to Lemma 6, there are infinitely many primes of the form $n^2 + 1$.

Corollary 1. Assuming the statement Γ_9 , a single query to an oracle for the halting problem decides the problem of the infinitude of primes of the form $n^2 + 1$.

4. The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [5, p. 39].

Let *C* denote the following system of equations:

$$\begin{cases} x_1! &= x_2 \\ x_2! &= x_3 \\ x_4! &= x_5 \\ x_6! &= x_7 \\ x_7! &= x_8 \\ x_9! &= x_{10} \\ x_{12}! &= x_{13} \\ x_{15}! &= x_{16} \\ x_2 \cdot x_4 &= x_5 \\ x_5 \cdot x_6 &= x_7 \\ x_7 \cdot x_9 &= x_{10} \\ x_4 \cdot x_{11} &= x_{12} \\ x_3 \cdot x_{12} &= x_{13} \\ x_9 \cdot x_{14} &= x_{15} \\ x_8 \cdot x_{15} &= x_{16} \end{cases}$$

Lemma 2 and the diagram in Figure 4 explain the construction of the system *C*.

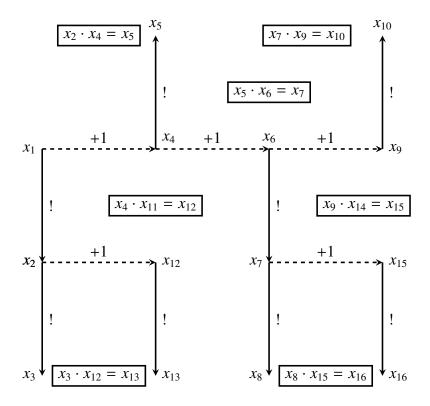


Fig. 4 Construction of the system *C*

Lemma 7. If $x_4 = 2$, then the system C has no solutions in integers x_1, \ldots, x_{16} greater than 1.

Proof. The equality $x_2 \cdot x_4 = x_5 = x_4!$ and the equality $x_4 = 2$ imply that $x_2 = 1$.

Lemma 8. If $x_4 = 3$, then the system C has no solutions in integers x_1, \ldots, x_{16} greater than 1.

Proof. The equality $x_4 \cdot x_{11} = x_{12} = (x_4 - 1)! + 1$ and the equality $x_4 = 3$ imply that $x_{11} = 1$. \square

Lemma 9. For every $x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$ and for every $x_9 \in \mathbb{N} \setminus \{0, 1\}$, the system C is solvable in integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if x_4 and x_9 are prime and $x_4 + 2 = x_9$. In this case, the integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ are uniquely determined by the following equalities:

$$x_{1} = x_{4} - 1$$

$$x_{2} = (x_{4} - 1)!$$

$$x_{3} = ((x_{4} - 1)!)!$$

$$x_{5} = x_{4}!$$

$$x_{6} = x_{9} - 1$$

$$x_{7} = (x_{9} - 1)!$$

$$x_{8} = ((x_{9} - 1)!)!$$

$$x_{10} = x_{9}!$$

$$x_{11} = \frac{(x_{4} - 1)! + 1}{x_{4}}$$

$$x_{12} = (x_{4} - 1)! + 1$$

$$x_{13} = ((x_{4} - 1)! + 1)!$$

$$x_{14} = \frac{(x_{9} - 1)! + 1}{x_{9}}$$

$$x_{15} = (x_{9} - 1)! + 1$$

$$x_{16} = ((x_{9} - 1)! + 1)!$$

and $min(x_1, ..., x_{16}) = x_1 = x_9 - 3$.

Proof. By Lemmas 2 and 3, for every $x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$ and for every $x_9 \in \mathbb{N} \setminus \{0, 1\}$, the system *C* is solvable in integers x_1 , x_2 , x_3 , x_5 , x_6 , x_7 , x_8 , x_{10} , x_{11} , x_{12} , x_{13} , x_{14} , x_{15} , x_{16} greater than 1 if and only if

$$(x_4 + 2 = x_9) \wedge (x_4|(x_4 - 1)! + 1) \wedge (x_9|(x_9 - 1)! + 1)$$

Hence, the claim of Lemma 9 follows from Lemma 4.

Theorem 3. The statement Γ_{16} proves the implication: if there exists a twin prime greater than f(16) + 3, then there are infinitely many twin primes.

Proof. Assume the antecedent holds. Then, there exist prime numbers x_4 and x_9 such that $x_9 = x_4 + 2 > f(16) + 3$. Hence, $x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$. By Lemma 9, there exists a unique tuple $(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) \in (\mathbb{N} \setminus \{0, 1\})^{14}$ such that the tuple (x_1, \ldots, x_{16}) solves the system C. Lemma 9 guarantees that $\min(x_1, \ldots, x_{16}) = x_1 = x_9 - 3 > f(16)$. Since $C \subseteq H_{16}$, the statement Γ_{16} and the inequality $\min(x_1, \ldots, x_{16}) > f(16)$ imply that the system C has infinitely many solutions in integers x_1, \ldots, x_{16} greater than 1. According to Lemmas 7–9, there are infinitely many twin primes.

Corollary 2. (cf. [1]). Assuming the statement Γ_{16} , a single query to an oracle for the halting problem decides the twin prime problem.

5. Composite Fermat numbers

Primes of the form $2^{2^n} + 1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^n} + 1$ is prime, see [4, p. 1]. Fermat correctly remarked that $2^{2^0} + 1 = 3$, $2^{2^1} + 1 = 5$, $2^{2^2} + 1 = 17$, $2^{2^3} + 1 = 257$, and $2^{2^4} + 1 = 65537$ are all prime, see [4, p. 1].

Open Problem. ([4, p. 159]). Are there infinitely many composite numbers of the form $2^{2^n} + 1$? Most mathematicians believe that $2^{2^n} + 1$ is composite for every integer $n \ge 5$, see [3, p. 23].

Lemma 10. ([4, p. 38]). For every positive integer n, if a prime number p divides $2^{2^n} + 1$, then there exists a positive integer k such that $p = k \cdot 2^{n+1} + 1$.

Corollary 3. Since $k \cdot 2^{n+1} + 1 \ge 2^{n+1} + 1 \ge n+3$, for every positive integers x, y, and n, the equality $(x+1)(y+1) = 2^{2^n} + 1$ implies that $\min(n, x, x+1, y, y+1) = n$.

Let g(1) = 1, and let $g(n + 1) = 2^{2g(n)}$ for every positive integer n. Let

$$G_n = \left\{ x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\} \right\} \cup \left\{ 2^{2^{x_i}} = x_k : i, k \in \{1, \dots, n\} \right\}$$

The following subsystem of G_n

$$\begin{cases} x_1 \cdot x_1 &= x_1 \\ \forall i \in \{1, \dots, n-1\} \ 2^{2^{x_i}} &= x_{i+1} \end{cases}$$

has exactly one solution $(x_1, \ldots, x_n) \in (\mathbb{N} \setminus \{0\})^n$, namely $(g(1), \ldots, g(n))$.

For a positive integer n, let Ψ_n denote the following statement: if a system $S \subseteq G_n$ has at most finitely many solutions in positive integers x_1, \ldots, x_n , then each such solution (x_1, \ldots, x_n) satisfies $\min(x_1, \ldots, x_n) \le g(n)$. We conjecture that the statements $\Psi_1, \ldots, \Psi_{13}$ are true. For every positive integer n, the system G_n has a finite number of subsystems. Therefore, every statement Ψ_n is true with an unknown integer bound that depends on n.

Lemma 11. For every positive integers b and c, b + 1 = c if and only if $2^{2^b} \cdot 2^{2^b} = 2^{2^c}$.

Theorem 4. The statement Ψ_{13} proves the implication: if $2^{2^n} + 1$ is composite for some integer n > g(13), then $2^{2^n} + 1$ is composite for infinitely many positive integers n.

Proof. Let us consider the equation

$$(x+1)(y+1) = 2^{2^{Z}} + 1 \tag{1}$$

in positive integers. By Lemma 11, we can transform equation (1) into an equivalent system \mathcal{F} which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms $\alpha \cdot \beta = \gamma$ and $2^{2^{\alpha}} = \gamma$, see the diagram in Figure 5.

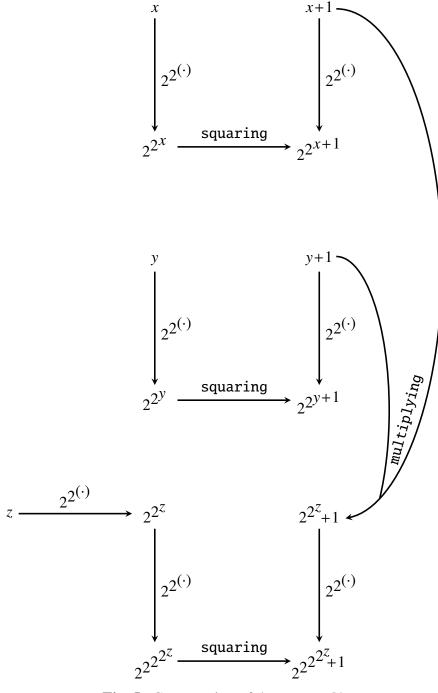


Fig. 5 Construction of the system \mathcal{F}

Assume that $2^{2^n} + 1$ is composite for some integer n > g(13). By this and Corollary 3, equation (1) has a solution $(x, y, z) \in (\mathbb{N} \setminus \{0\})^3$ such that z = n and $z = \min(z, x, x + 1, y, y + 1)$. Hence, the system \mathcal{F} has a solution in positive integers such that z = n and n is the smallest number in the solution sequence. Since n > g(13), the statement Ψ_{13} implies that the system \mathcal{F} has infinitely many solutions in positive integers. Therefore, there are infinitely many positive integers n such that $2^{2^n} + 1$ is composite.

Corollary 4. Assuming the statement Ψ_{13} , a single query to an oracle for the halting problem decides whether or not the set of composite Fermat numbers is infinite.

6. The implication from the title

If a set $W \subseteq \mathbb{N} \setminus \{0\}$ satisfies

$$\forall n (n \in \mathcal{W} \Longrightarrow \{n, 2n, 3n, \ldots\} \subseteq \mathcal{W})$$

then the implication from the title holds for W with t(W) = 0. If W equals the set of positive integers n such that $n^2 + 1$ is prime, then Theorem 2 suggests a possibility that the implication from the title holds for W with t(W) = f(9). If W equals the set of twin primes, then Theorem 3 suggests a possibility that the implication from the title holds for W with t(W) = f(16) + 3. If W equals the set of positive integers n such that $2^{2^n} + 1$ is composite, then Theorem 4 suggests a possibility that the implication from the title holds for W with t(W) = g(13).

References

- [1] F. G. Dorais, Can the twin prime problem be solved with a single use of a halting oracle? July 23, 2011, http://mathoverflow.net/questions/71050.
- [2] M. Erickson, A. Vazzana, D. Garth, *Introduction to number theory*, 2nd ed., CRC Press, Boca Raton, FL, 2016.
- [3] J.-M. De Koninck and F. Luca, *Analytic number theory: Exploring the anatomy of integers*, American Mathematical Society, Providence, RI, 2012.
- [4] M. Křížek, F. Luca, L. Somer, 17 lectures on Fermat numbers: from number theory to geometry, Springer, New York, 2001.
- [5] W. Narkiewicz, *Rational number theory in the 20th century: From PNT to FLT*, Springer, London, 2012.
- [6] M. Overholt, *The Diophantine equation* $n! + 1 = m^2$, Bull. London Math. Soc. 25 (1993), no. 2, 104.
- [7] E. W. Weisstein, *CRC Concise Encyclopedia of Mathematics*, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2002.

Apoloniusz Tyszka
University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl