The physical limits of computation inspire an open problem that concerns decidable sets $\mathcal{X} \subseteq \mathbb{N}$ and cannot be formalized in $Z F C$ as it refers to the current knowledge on \mathcal{X}

Agnieszka Kozdęba, Apoloniusz Tyszka

Abstract

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 2$. Edmund Landau's conjecture states that the set $\mathcal{P}_{n^{2}+1}$ of primes of the form $n^{2}+1$ is infinite. Landau's conjecture implies the following unproven statement Φ : $\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)<\omega \Rightarrow \mathcal{P}_{n^{2}+1} \subseteq[2, f(7)]$. Let B denote the system of equations: $\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, 9\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, 9\}\right\}$. We write some system $\mathcal{U} \subseteq B$ of 9 equations which has exactly two solutions in positive integers x_{1}, \ldots, x_{9}, namely $(1, \ldots, 1)$ and $(f(1), \ldots, f(9))$. No known system $\mathcal{S} \subseteq B$ with a finite number of solutions in positive integers x_{1}, \ldots, x_{9} has a solution $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$ satisfying $\max \left(x_{1}, \ldots, x_{9}\right)>f(9)$. We write some system $\mathcal{A} \subseteq B$ of 8 equations. Let Λ denote the statement: if the system \mathcal{A} has at most finitely many solutions in positive integers x_{1}, \ldots, x_{9}, then each such solution $\left(x_{1}, \ldots, x_{9}\right)$ satisfies $x_{1}, \ldots, x_{9} \leqslant f(9)$. The statement Λ is equivalent to the statement Φ. It heuristically proves the statement Φ. This proof does not yield that $\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)=\omega$. Algorithms always terminate. We explain the distinction between existing algorithms (i.e. algorithms whose existence is provable in $Z F C$) and known algorithms (i.e. algorithms whose definition is constructive and currently known to us). We explain which elements of a set $\mathcal{X} \subseteq \mathbb{N}$ are classified as known. No known set $X \subseteq \mathbb{N}$ satisfies conditions (1)-(4) and is widely known in number theory or naturally defined, where this term has only informal meaning. (1) A known algorithm with no input returns an integer n satisfying $\operatorname{card}(X)<\omega \Rightarrow X \subseteq(-\infty, n]$. (2) A known algorithm for every $k \in \mathbb{N}$ decides whether or not $k \in \mathcal{X}$. (3) No known algorithm with no input returns the logical value of the statement $\operatorname{card}(\mathcal{X})=\omega$. (4) There are many elements of \mathcal{X} and it is conjectured that \mathcal{X} is infinite. (5) \mathcal{X} has the simplest definition among known sets $\mathcal{Y} \subseteq \mathbb{N}$ with the same set of known elements. The set $\mathcal{X}=\mathcal{P}_{n^{2}+1}$ satisfies conditions (2)-(5). The statement Φ implies condition (1) for $\mathcal{X}=\mathcal{P}_{n^{2}+1}$. The set $\mathcal{X}=\left\{k \in \mathbb{N}:\left(10^{13}<k\right) \Rightarrow\left(f\left(10^{13}\right), f(k)\right) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}$ satisfies conditions (1)-(4) and does not satisfy condition (5) as the set of known elements of \mathcal{X} equals $\left\{0, \ldots, 10^{13}\right\}$. No set $X \subseteq \mathbb{N}$ will satisfy conditions (1)-(4) forever, if for every algorithm with no input, at some future day, a computer will be able to execute this algorithm in 1 second or less. The physical limits of computation disprove this assumption.

2020 Mathematics Subject Classification: 03D20.
Key words and phrases: conjecturally infinite set $\mathcal{X} \subseteq \mathbb{N}$, constructively defined integer n satisfies $\operatorname{card}(\mathcal{X})<\omega \Rightarrow \mathcal{X} \subseteq(-\infty, n]$, current knowledge on a set $\mathcal{X} \subseteq \mathbb{N}$, distinction between existing algorithms and known algorithms, known elements of a set $\mathcal{X} \subseteq \mathbb{N}$, physical limits of computation, primes of the form $n^{2}+1, \mathcal{X}$ is decidable by a constructively defined algorithm.

1. Definitions and the distinction between existing algorithms and known algorithms

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 2$. Algorithms always terminate. Semi-algorithms may not terminate. Examples $2-5$ and the proof of Statement 1 explain the distinction between existing algorithms (i.e. algorithms whose existence is provable in $Z F C$) and known algorithms (i.e. algorithms whose definition is
constructive and currently known to us). A definition of an integer n is called constructive, if it provides a known algorithm with no input that returns n. Example 1 explains which elements of a set $\mathcal{X} \subseteq \mathbb{N}$ are classified as known.

Example 1. Let \mathcal{T} denote the set of twin primes. The known elements of the set $\left.\left.\left\{0, \ldots, 10^{13}\right\} \cup[((()!)!)!)!\right)!+1, \infty\right) \cap \mathcal{T}$ form the set $\left\{0, \ldots, 10^{13}\right\}$. The numbers $t_{1}=459 \cdot 2^{8529}-1$ and $t_{2}=459 \cdot 2^{8529}+1$ belong to \mathcal{T} (Harvey Dubner, [9, p. 108]). We classify t_{1} and t_{2} as known elements of \mathcal{T} because we know the two algebraic expressions (i.e. terms) that define t_{1} and t_{2} in the field of real numbers. We assume that every known algebraic expression can be physically written. Physics implies that they form a finite set. Let t denote the largest twin prime that is smaller than ((()(9!)!)!)!)!. We classify t as an unknown element of \mathcal{T} because no known algebraic expression (i.e. term) defines t in the field of real numbers.

Definition 1. Conditions (1)-(5) concern sets $\mathcal{X} \subseteq \mathbb{N}$.
(1) A known algorithm with no input returns an integer n satisfying $\operatorname{card}(X)<\omega \Rightarrow$ $X \subseteq(-\infty, n]$.
(2) A known algorithm for every $k \in \mathbb{N}$ decides whether or not $k \in \mathcal{X}$.
(3) No known algorithm with no input returns the logical value of the statement $\operatorname{card}(X)=\omega$.
(4) There are many elements of \mathcal{X} and it is conjectured that \mathcal{X} is infinite.
(5) X has the simplest definition among known sets $\mathcal{Y} \subseteq \mathbb{N}$ with the same set of known elements.

Every set $\mathcal{X} \subseteq \mathbb{N}$ studied in this article has at most finitely many known elements, which does not depend on physics. Condition (3) implies that no known proof shows the finiteness/infiniteness of \mathcal{X}. No known set $\mathcal{X} \subseteq \mathbb{N}$ satisfies conditions (1)-(4) and is widely known in number theory or naturally defined, where this term has only informal meaning.
Definition 2. Let $\beta=(((24!)!)!)!$.
Lemma 1. $\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}(\beta)\right)\right)\right)\right)\right)\right) \approx 1.42298$.
Proof. We ask Wolfram Alpha at https://wolframalpha.com
Edmund Landau's conjecture states that the set $\mathcal{P}_{n^{2}+1}$ of primes of the form $n^{2}+1$ is infinite, see [6]-[8]. Let [•] denote the integer part function.
Example 2. The set $\mathcal{X}=\mathcal{P}_{n^{2}+1}$ satisfies condition (3).
Example 3. The set $X=\left\{\begin{array}{cl}\mathbb{N}, & \text { if }\left[\frac{\beta}{\pi}\right] \text { is odd } \\ \emptyset, & \text { otherwise }\end{array}\right.$ does not satisfy condition (3) because we know an algorithm with no input that computes $\left[\frac{\beta}{\pi}\right]$. The set of known elements of \mathcal{X} is empty. Hence, condition (5) fails for \mathcal{X}.
Example 4. ([1], [4], [5], p. 9]). The function
$\mathbb{N} \ni n \xrightarrow{h} \begin{cases}1, & \text { if the decimal expansion of } \pi \text { contains } n \text { consecutive zeros } \\ 0, & \text { otherwise }\end{cases}$
is computable because $h=\mathbb{N} \times\{1\}$ or there exists $k \in \mathbb{N}$ such that

$$
h=(\{0, \ldots, k\} \times\{1\}) \cup(\{k+1, k+2, k+3, \ldots\} \times\{0\})
$$

No known algorithm computes the function h.

Example 5. The set

$$
X=\left\{\begin{aligned}
\mathbb{N}, & \text { if the continuum hypothesis holds } \\
\emptyset, & \text { otherwise }
\end{aligned}\right.
$$

is decidable. This \mathcal{X} satisfies conditions (1) and (3) and does not satisfy conditions (2), (4), and (5). These facts will hold forever.

Definition 3. Let Φ denote the following unproven statement:

$$
\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)<\omega \Rightarrow \mathcal{P}_{n^{2}+1} \subseteq[2, \beta]
$$

Landau's conjecture implies the statement Φ. Theorem 6 heuristically justifies the statement Φ. This proof does not yield that $\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)=\omega$.

Statement 1. Condition (1) remains unproven for $\mathcal{X}=\mathcal{P}_{n^{2}+1}$.
Proof. For every set $\mathcal{X} \subseteq \mathbb{N}$, there exists an algorithm $\operatorname{Alg}(\mathcal{X})$ with no input that returns

$$
n=\left\{\begin{aligned}
0, & \text { if } \operatorname{card}(\mathcal{X}) \in\{0, \omega\} \\
\max (\mathcal{X}), & \text { otherwise }
\end{aligned}\right.
$$

This n satisfies the implication in condition (1), but the algorithm $\operatorname{Alg}\left(\mathcal{P}_{n^{2}+1}\right)$ is unknown for us because its definition is ineffective.

Proving the statement Φ will disprove Statement 1. Statement 1 cannot be formalized in ZFC because it refers to the current mathematical knowledge. The same is true for Open Problem 1 and Statements 2 and 3 .

Definition 4. We say that an integer n is a threshold number of a set $\mathcal{X} \subseteq \mathbb{N}$, if $\operatorname{card}(\mathcal{X})<\omega \Rightarrow \mathcal{X} \subseteq(-\infty, n]$.

If a set $\mathcal{X} \subseteq \mathbb{N}$ is empty or infinite, then any integer n is a threshold number of \mathcal{X}. If a set $\mathcal{X} \subseteq \mathbb{N}$ is non-empty and finite, then the all threshold numbers of \mathcal{X} form the set $[\max (\mathcal{X}), \infty) \cap \mathbb{N}$.

2. The physical limits of computation inspire Open Problem 1

Open Problem 1. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ which satisfies conditions (1)-(5)?
Open Problem 1 asks: Are there a set $\mathcal{X} \subseteq \mathbb{N}$ and a constructively defined integer n such that $(\operatorname{card}(\mathcal{X})<\omega \Rightarrow \mathcal{X} \subseteq(-\infty, n]) \wedge(\mathcal{X}$ is decidable by a constructively defined algorithm) \wedge (there are many elements of $\mathcal{X}) \wedge$ (the infiniteness of \mathcal{X} is conjectured and cannot be decided by any known method) $\wedge(\mathcal{X}$ has the simplest definition among known sets $\mathcal{Y} \subseteq \mathbb{N}$ with the same set of known elements)?
Statement 2. The set $\mathcal{X}=\left\{k \in \mathbb{N}:\left(10^{13}<k\right) \Rightarrow\left(f\left(10^{13}\right), f(k)\right) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}$ satisfies conditions (1)-(4). Condition (5) fails for \mathcal{X}.
Proof. Condition (4) holds as $\mathcal{X} \supseteq\left\{0, \ldots, 10^{13}\right\}$ and the set $\mathcal{P}_{n^{2}+1}$ is conjecturally infinite. By Lemma 1, due to known physics we are not able to confirm by a direct computation that some element of $\mathcal{P}_{n^{2}+1}$ is greater than $f\left(10^{13}\right)>f(7)=\beta$, see [3]. Thus condition (3) holds. Condition (2) holds trivially. Since the set

$$
\left\{k \in \mathbb{N}:\left(10^{13}<k\right) \wedge\left(f\left(10^{13}\right), f(k)\right) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}
$$

is empty or infinite, the integer 10^{13} is a threshold number of \mathcal{X}. Thus \mathcal{X} satisfies condition (1). Condition (5) fails for \mathcal{X} as the set of known elements of \mathcal{X} equals $\left\{0, \ldots, 10^{13}\right\}$.

Proving Landau's conjecture will disprove Statement 2 ,
Theorem 1. No set $\mathcal{X} \subseteq \mathbb{N}$ will satisfy conditions (1)-(4) forever, if for every algorithm with no input, at some future day, a computer will be able to execute this algorithm in 1 second or less.

Proof. The proof goes by contradiction. We fix an integer n that satisfies condition (1). Since conditions (1)-(3) will hold forever, the semi-algorithm in Figure 1 never terminates and sequentially prints the following sentences:

$$
\begin{equation*}
n+1 \notin \mathcal{X}, n+2 \notin \mathcal{X}, n+3 \notin \mathcal{X}, \ldots \tag{T}
\end{equation*}
$$

Fig. 1 Semi-algorithm that terminates if and only if \mathcal{X} is infinite
The sentences from the sequence (T) and our assumption imply that for every integer $m>n$ computed by a known algorithm, at some future day, a computer will be able to confirm in 1 second or less that $(n, m] \cap \mathcal{X}=\emptyset$. Thus, at some future day, numerical evidence will support the conjecture that the set \mathcal{X} is finite, contrary to the conjecture in condition (4).

The physical limits of computation ([3]) disprove the assumption of Theorem 1

$$
\text { 3. Number-theoretic statements } \Psi_{n}
$$

Let \mathcal{U}_{1} denote the system of equations which consists of the equation $x_{1}!=x_{1}$. For an integer $n \geqslant 2$, let \mathcal{U}_{n} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{1} \\
x_{1} \cdot x_{1} & =x_{2} \\
\forall i \in\{2, \ldots, n-1\} x_{i}! & =x_{i+1}
\end{aligned}\right.
$$

The diagram in Figure 2 illustrates the construction of the system \mathcal{U}_{n}.

Fig. 2 Construction of the system \mathcal{U}_{n}

Lemma 2. For every positive integer n, the system \mathcal{U}_{n} has exactly two solutions in positive integers, namely $(1, \ldots, 1)$ and $(f(1), \ldots, f(n))$.

Let B_{n} denote the following system of equations:

$$
\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

For every positive integer n, no known system $\mathcal{S} \subseteq B_{n}$ with a finite number of solutions in positive integers x_{1}, \ldots, x_{n} has a solution $\left(x_{1}, \ldots, x_{n}\right) \in(\mathbb{N} \backslash\{0\})^{n}$ satisfying $\max \left(x_{1}, \ldots, x_{n}\right)>f(n)$. For a positive integer n, let Ψ_{n} denote the following statement: if a system $\mathcal{S} \subseteq B_{n}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant f(n)$. The statement Ψ_{n} says that for subsystems of B_{n} with a finite number of solutions, the largest known solution is indeed the largest possible. The statements Ψ_{1} and Ψ_{2} hold trivially. There is no reason to assume the validity of the statement $\forall n \in \mathbb{N} \backslash\{0\} \Psi_{n}$.

Theorem 2. For every statement Ψ_{n}, the bound $f(n)$ cannot be decreased.
Proof. It follows from Lemma 2 because $\mathcal{U}_{n} \subseteq B_{n}$.
Theorem 3. For every integer $n \geqslant 2$, the statement Ψ_{n+1} implies the statement Ψ_{n}.
Proof. If a system $\mathcal{S} \subseteq B_{n}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then for every integer $i \in\{1, \ldots, n\}$ the system $\mathcal{S} \cup\left\{x_{i}!=x_{n+1}\right\}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n+1}. The statement Ψ_{n+1} implies that $x_{i}!=x_{n+1} \leqslant f(n+1)=f(n)!$. Hence, $x_{i} \leqslant f(n)$.

Theorem 4. Every statement Ψ_{n} is true with an unknown integer bound that depends on n.
Proof. For every positive integer n, the system B_{n} has a finite number of subsystems.

4. A conjectural solution to Open Problem 1

Lemma 3. For every positive integers x and $y, x!\cdot y=y!$ if and only if

$$
(x+1=y) \vee(x=y=1)
$$

Lemma 4. (Wilson's theorem, [2] p. 89]). For every integer $x \geqslant 2, x$ is prime if and only if x divides $(x-1)!+1$.

Let \mathcal{A} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{1} \cdot x_{1} & =x_{2} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 3 explain the construction of the system \mathcal{A}.

Fig. 3 Construction of the system \mathcal{A}
Lemma 5. For every integer $x_{1} \geqslant 2$, the system \mathcal{A} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}^{2} \\
x_{3} & =\left(x_{1}^{2}\right)! \\
x_{4} & =\left(\left(x_{1}^{2}\right)!\right)! \\
x_{5} & =x_{1}^{2}+1 \\
x_{6} & =\left(x_{1}^{2}+1\right)! \\
x_{7} & =\frac{\left(x_{1}^{2}\right)!+1}{x_{1}^{2}+1} \\
x_{8} & =\left(x_{1}^{2}\right)!+1 \\
x_{9} & =\left(\left(x_{1}^{2}\right)!+1\right)!
\end{aligned}
$$

Proof. By Lemma 3 for every integer $x_{1} \geqslant 2$, the system \mathcal{A} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ divides $\left(x_{1}^{2}\right)!+1$. Hence, the claim of Lemma 5 follows from Lemma 4

Lemma 6. There are only finitely many tuples $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$, which solve the system \mathcal{A} and satisfy $x_{1}=1$. This is true as every such tuple $\left(x_{1}, \ldots, x_{9}\right)$ satisfies $x_{1}, \ldots, x_{9} \in\{1,2\}$.

Proof. The equality $x_{1}=1$ implies that $x_{2}=x_{1} \cdot x_{1}=1$. Hence, $x_{3}=x_{2}!=1$. Therefore, $x_{4}=x_{3}!=1$. The equalities $x_{5}!=x_{6}$ and $x_{5}=1 \cdot x_{5}=x_{3} \cdot x_{5}=x_{6}$ imply that $x_{5}, x_{6} \in$ $\{1,2\}$. The equalities $x_{8}!=x_{9}$ and $x_{8}=1 \cdot x_{8}=x_{4} \cdot x_{8}=x_{9}$ imply that $x_{8}, x_{9} \in\{1,2\}$. The equality $x_{5} \cdot x_{7}=x_{8}$ implies that $x_{7}=\frac{x_{8}}{x_{5}} \in\left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{2}{2}\right\} \cap \mathbb{N}=\{1,2\}$.

Conjecture 1. The statement Ψ_{9} is true when is restricted to the system \mathcal{A}.
Theorem 5. Conjecture 1 proves the following implication: if there exists an integer $x_{1} \geqslant 2$ such that $x_{1}^{2}+1$ is prime and greater than $f(7)$, then the $\operatorname{set} \mathcal{P}_{n^{2}+1}$ is infinite.
Proof. Suppose that the antecedent holds. By Lemma 5, there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{A}. Since $x_{1}^{2}+1>f(7)$, we obtain that $x_{1}^{2} \geqslant f(7)$. Hence, $\left(x_{1}^{2}\right)!\geqslant f(7)!=f(8)$. Consequently,

$$
x_{9}=\left(\left(x_{1}^{2}\right)!+1\right)!\geqslant(f(8)+1)!>f(8)!=f(9)
$$

Conjecture 1 and the inequality $x_{9}>f(9)$ imply that the system \mathcal{A} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$. According to Lemmas 5 and 6 , the set $\mathcal{P}_{n^{2}+1}$ is infinite.

Theorem 6. Conjecture 1 implies the statement Φ.
Proof. It follows from Theorem 5 and the equality $f(7)=(((24!)!)!)!$.
Theorem 7. The statement Φ implies Conjecture 1
Proof. By Lemmas 5 and 6, if positive integers x_{1}, \ldots, x_{9} solve the system \mathcal{A}, then

$$
\left(x_{1} \geqslant 2\right) \wedge\left(x_{5}=x_{1}^{2}+1\right) \wedge\left(x_{5} \text { is prime }\right)
$$

or $x_{1}, \ldots, x_{9} \in\{1,2\}$. In the first case, Lemma 5 and the statement Φ imply that the inequality $x_{5} \leqslant(((24!)!)!)!=f(7)$ holds when the system \mathcal{A} has at most finitely many solutions in positive integers x_{1}, \ldots, x_{9}. Hence, $x_{2}=x_{5}-1<f(7)$ and $x_{3}=x_{2}!<f(7)!=f(8)$. Continuing this reasoning in the same manner, we can show that every x_{i} does not exceed $f(9)$.

Statement 3. Conditions (2)-(5) hold for $\mathcal{X}=\mathcal{P}_{n^{2}+1}$. The statement Φ implies condition (1) for $\mathcal{X}=\mathcal{P}_{n^{2}+1}$.

Proof. The set $\mathcal{P}_{n^{2}+1}$ is conjecturally infinite. There are 2199894223892 primes of the form $n^{2}+1$ in the interval $\left[2,10^{28}\right.$), see [7]. These two facts imply condition (4). By Lemma 1, due to known physics we are not able to confirm by a direct computation that some element of $\mathcal{P}_{n^{2}+1}$ is greater than $f(7)=(((24!)!)!)!=\beta$, see [3]. Thus condition (3) holds. Conditions (2) and (5) hold trivially. The statement Φ implies that β is a threshold number of $\mathcal{P}_{n^{2}+1}$. Hence, the statement Φ implies condition (1) for $\mathcal{X}=\mathcal{P}_{n^{2}+1}$.

Proving Landau's conjecture will disprove Statement 3
Acknowledgement. Agnieszka Kozdęba prepared three diagrams. Apoloniusz Tyszka wrote the article.

References

[1] J. Case and M. Ralston, Beyond Rogers' non-constructively computable function, in: The nature of computation, Lecture Notes in Comput. Sci., 7921, 45-54, Springer, Heidelberg, 2013, https://link. springer.com/chapter/10.1007/978-3-642-39053-1_6
[2] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[3] S. Lloyd, Ultimate physical limits to computation, Nature 406 (2000), 1047-1054, https://doi.org/10. 1038/35023282
[4] R. Reitzig, How can it be decidable whether π has some sequence of digits?, https://cs. stackexchange. com/questions/367/how-can-it-be-decidable-whether-pi-has-some-sequence-of-digits
[5] H. Rogers, Jr., Theory of recursive functions and effective computability, 2nd ed., MIT Press, Cambridge, MA, 1987.
[6] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002496, Primes of the form $n^{2}+1$, https://oeis.org/A002496
[7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A083844, Number of primes of the form $x^{2}+1<10^{n}$,https://oeis.org/A083844
[8] Wolfram MathWorld, Landau's Problems, https://mathworld.wolfram.com/LandausProblems. html
[9] S. Y. Yan, Number theory for computing, 2nd ed., Springer, Berlin, 2002.

Agnieszka Kozdęba

Faculty of Environmental Engineering and Land Surveying
Hugo Kołłątaj University
Balicka 253C, 30-198 Kraków, Poland
Institute of Mathematics
Jagiellonian University
Łojasiewicza 6, 30-348 Kraków, Poland
E-mail address: Agnieszka.Kozdeba@im.uj.edu.pl
Apoloniusz Tyszka
Technical Faculty
Hugo Kołłataj University
Balicka 116B, 30-149 Kraków, Poland
E-mail address: rttyszka@cyf-kr.edu.pl

