On sets $\mathcal{W} \subseteq \mathbb{N}$ whose infinity follows from the existence in \mathcal{W} of an element which is greater than a threshold number computed for \mathcal{W}

Apoloniusz Tyszka

Abstract

We define computable functions $f, g: \mathbb{N} \backslash\{0\} \rightarrow \mathbb{N} \backslash\{0\}$. For a positive integer n, let Θ_{n} denote the following statement: if a system $\mathcal{S} \subseteq\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}\right.$: $i, j, k \in\{1, \ldots, n\}\}$ has only finitely many solutions in integers x_{1}, \ldots, x_{n} greater than 1 , then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$. The statement Θ_{9} proves that if there exists an integer $x>f(9)$ such that $x^{2}+1$ (alternatively, $x!+1$) is prime, then there are infinitely many primes of the form $n^{2}+1$ (respectively, $n!+1$). The statement Θ_{16} proves that if there exists a twin prime greater than $f(16)+3$, then there are infinitely many twin primes. We formulate a statement which proves that if $2^{2^{n}}+1$ is composite for some integer $n>g(13)$, then $2^{2^{n}}+1$ is composite for infinitely many positive integers n.

Key words and phrases: Brocard's problem, Brocard-Ramanujan equation, composite Fermat numbers, composite numbers of the form $2^{2^{n}}+1$, prime numbers of the form $n^{2}+1$, prime numbers of the form $n!+1$, Richert's lemma, twin prime conjecture.

2010 Mathematics Subject Classification: 03B30, 03D20, 11A41.

1 Introduction

The following observation concerns the theme described in the title of the article.
Observation 1. If $n \in \mathbb{N}$ and $\mathcal{W} \subseteq\{0, \ldots, n\}$, then we take any integer $m \geqslant n$ as a threshold number for \mathcal{W}. If $\mathcal{W} \subseteq \mathbb{N}$ and W is infinite, then we take any non-negative integer m as a threshold number for \mathcal{W}.

We define the set $\mathcal{U} \subseteq \mathbb{N}$ by declaring that a non-negative integer n belongs to \mathcal{U} if and only if $\sin \left(10^{10^{10^{10}}}\right)>0$. This inequality is practically undecidable, see [7].

Corollary 1. The set \mathcal{U} equals \emptyset or \mathbb{N}. The statement " $\mathcal{U}=\emptyset$ " remains unproven and the statement " $\mathcal{U}=\mathbb{N}$ " remains unproven. Every non-negative integer m is a threshold number for \mathcal{U}. For every non-negative integer k, the sentence " $k \in \mathcal{U}$ " is only theoretically decidable.

The first-order language of graph theory contains two relation symbols of arity 2: \sim and $=$, respectively for adjacency and equality of vertices. The term first-order imposes the condition that the variables represent vertices and hence the quantifiers apply to vertices only. For a firstorder sentence Λ about graphs, let Spectrum(Λ) denote the set of all positive integers n such that there is a graph on n vertices satisfying Λ. By a graph on n vertices we understand a set of n elements with a binary relation which is symmetric and irreflexive.

Theorem 1. ([14, p. 171]). If a sentence Λ in the language of graph theory has the form $\exists x_{1} \ldots x_{k} \forall y_{1} \ldots y_{l} \Upsilon\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}\right)$, where $\Upsilon\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}\right)$ is quantifier-free, then either $\operatorname{Spectrum}(\Lambda) \subseteq\left[1,\left(2^{k} \cdot 4^{l}\right)-1\right] \operatorname{or} \operatorname{Spectrum}(\Lambda) \supseteq[k+l, \infty) \cap \mathbb{N}$.

Corollary 2. The number $\left(2^{k} \cdot 4^{l}\right)-1$ is a threshold number for $\operatorname{Spectrum}(\Lambda)$.
The classes of the infinite recursively enumerable sets and of the infinite recursive sets are not recursively enumerable, see [12, p. 234].

Corollary 3. If an algorithm Al_{1} for every recursive set $\mathcal{W} \subseteq \mathbb{N}$ finds a non-negative integer $\mathrm{Al}_{1}(\mathcal{W})$, then there exists a finite set $\mathcal{M} \subseteq \mathbb{N}$ such that $\mathcal{M} \cap\left[\mathrm{Al}_{1}(\mathcal{M})+1, \infty\right) \neq \emptyset$.

Corollary 4. If an algorithm Al_{2} for every recursively enumerable set $\mathcal{W} \subseteq \mathbb{N}$ finds a nonnegative integer $\mathrm{Al}_{2}(\mathcal{W})$, then there exists a finite set $\mathcal{M} \subseteq \mathbb{N}$ such that $\mathcal{M} \cap\left[\mathrm{Al}_{2}(\mathcal{M})+1, \infty\right) \neq \emptyset$.

$$
\text { Let } K=\left\{j \in \mathbb{N}: 2^{\boldsymbol{\aleph}_{j}}=\boldsymbol{\aleph}_{j+1}\right\}
$$

Theorem 2. If ZFC is consistent, then for every non-negative integer n the sentence
" n is a threshold number for K "
is not provable in ZFC

Proof. There exists a model \mathcal{E} of ZFC such that

$$
\forall i \in\{0, \ldots, n+1\} \mathcal{E} \vDash 2^{\boldsymbol{\aleph}_{i}}=\boldsymbol{\aleph}_{i+1}
$$

and

$$
\forall i \in\{n+2, n+3, n+4, \ldots\} \mathcal{E} \vDash 2^{\boldsymbol{\aleph}_{i}}=\boldsymbol{\aleph}_{i+2}
$$

see [5] and [8, p. 232]. In the model $\mathcal{E}, K=\{0, \ldots, n+1\}$ and n is not a threshold number for K.

Theorem 3. If ZFC is consistent, then for every non-negative integer n the sentence

$$
" n \text { is not a threshold number for } K "
$$

is not provable in ZFC.
Proof. The Generalized Continuum Hypothesis (GCH) is consistent with ZFC, see [8, p. 188] and [8, p. 190]. GCH implies that $K=\mathbb{N}$. Consequently, GCH implies that every non-negative integer n is a threshold number for K.

Theorem 4. ([2] p. 35]). There exists a polynomial $D\left(x_{1}, \ldots, x_{m}\right)$ with integer coefficients such that if ZFC is arithmetically consistent, then the sentences
"The equation $D\left(x_{1}, \ldots, x_{m}\right)=0$ is solvable in non-negative integers" and
"The equation $D\left(x_{1}, \ldots, x_{m}\right)=0$ is not solvable in non-negative integers" are not provable in ZFC.

Let Δ denote the set of all non-negative integers k such that the equation $D\left(x_{1}, \ldots, x_{m}\right)=0$ has no solutions in $\{0, \ldots, k\}^{m}$. Since the set $\{0, \ldots, k\}^{m}$ is finite, the set Δ is computable. Theorem 4 implies the following corollary.

Corollary 5. If ZFC is arithmetically consistent, then for every non-negative integer n the sentences

$$
" n \text { is a threshold number for } \Delta "
$$

and

$$
" n \text { is not a threshold number for } \Delta "
$$

are not provable in ZFC.

Let $g(1)=1$, and let $g(n+1)=2^{2^{g(n)}}$ for every positive integer n.
Hypothesis 1. ([][19]). If a system

$$
\mathcal{S} \subseteq\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i}+1=x_{k}: i, k \in\{1, \ldots, n\}\right\}
$$

has only finitely many solutions in non-negative integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant g(2 n)$.

Theorem 5. ([[19]]). Hypothesis 1 implies that for every $W\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ we can compute a threshold number $b \in \mathbb{N} \backslash\{0\}$ such that any non-negative integers a_{1}, \ldots, a_{n} which satisfy

$$
\left(W\left(a_{1}, \ldots, a_{n}\right)=0\right) \wedge\left(\max \left(a_{1}, \ldots, a_{n}\right)>b\right)
$$

guarantee that the equation $W\left(x_{1}, \ldots, x_{n}\right)=0$ has infinitely many solutions in non-negative integers.

2 Basic lemmas

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 2$. Let \mathcal{V}_{1} denote the system of equations $\left\{x_{1}!=x_{1}\right\}$, and let \mathcal{V}_{2} denote the system of equations $\left\{x_{1}!=x_{1}, x_{1} \cdot x_{1}=x_{2}\right\}$. For an integer $n \geqslant 3$, let \mathcal{V}_{n} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{1} \\
x_{1} \cdot x_{1} & =x_{2} \\
\forall i \in\{2, \ldots, n-1\} x_{i}! & =x_{i+1}
\end{aligned}\right.
$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{V}_{n}.

Fig. 1 Construction of the system \mathcal{V}_{n}
Lemma 1. For every positive integer n, the system \mathcal{V}_{n} has exactly one solution in integers greater than 1, namely $(f(1), \ldots, f(n))$.

Let

$$
H_{n}=\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

For a positive integer n, let Θ_{n} denote the following statement: if a system $\mathcal{S} \subseteq H_{n}$ has at most finitely many solutions in integers x_{1}, \ldots, x_{n} greater than 1 , then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$. The assumption $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$ is weaker than the assumption $\max \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$ suggested by Lemma 1 .

Lemma 2. For every positive integer n, the system H_{n} has a finite number of subsystems.
Theorem 6. Every statement Θ_{n} is true with an unknown integer bound that depends on n.
Proof. It follows from Lemma 2 .
Lemma 3. For every integers x and y greater than $1, x!\cdot y=y!$ if and only if $x+1=y$.
Lemma 4. If $x \geqslant 4$, then $\frac{(x-1)!+1}{x}>1$.
Lemma 5. (Wilson's theorem, [6] p. 89]). For every integer $x \geqslant 2, x$ is prime if and only if x divides $(x-1)!+1$.

3 Brocard's problem

A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the Brocard-Ramanujan equation $x!+1=y^{2}$, see [13]. It is conjectured that $x!+1$ is a square only for $x \in\{4,5,7\}$, see [20, p. 297].

Let \mathcal{A} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{5}! & =x_{6} \\
x_{4} \cdot x_{4} & =x_{5} \\
x_{3} \cdot x_{5} & =x_{6}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 2 explain the construction of the system \mathcal{A}.

Fig. 2 Construction of the system \mathcal{A}
Lemma 6. For every integers x_{1} and x_{4} greater than 1 , the system \mathcal{A} is solvable in integers $x_{2}, x_{3}, x_{5}, x_{6}$ greater than 1 if and only if $x_{1}!+1=x_{4}^{2}$. In this case, the integers $x_{2}, x_{3}, x_{5}, x_{6}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}! \\
x_{3} & =\left(x_{1}!\right)! \\
x_{5} & =x_{1}!+1 \\
x_{6} & =\left(x_{1}!+1\right)!
\end{aligned}
$$

and $x_{1}=\min \left(x_{1}, \ldots, x_{6}\right)$.
Proof. It follows from Lemma 3 .
Theorem 7. The statement Θ_{6} proves the following implication: if the equation $x_{1}!+1=x_{4}^{2}$ has only finitely many solutions in positive integers, then each such solution $\left(x_{1}, x_{4}\right)$ satisfies $x_{1} \leqslant f(6)$.

Proof. Let positive integers x_{1} and x_{4} satisfy $x_{1}!+1=x_{4}^{2}$. Then, $x_{1}, x_{4} \in \mathbb{N} \backslash\{0,1\}$. By Lemma 6 , there exists a unique tuple $\left(x_{2}, x_{3}, x_{5}, x_{6}\right) \in(\mathbb{N} \backslash\{0,1\})^{4}$ such that the tuple $\left(x_{1}, \ldots, x_{6}\right)$ solves the system \mathcal{A}. Lemma 6 guarantees that $x_{1}=\min \left(x_{1}, \ldots, x_{6}\right)$. By the antecedent and Lemma6, the system \mathcal{A} has only finitely many solutions in integers x_{1}, \ldots, x_{6} greater than 1 . Therefore, the statement Θ_{6} implies that $x_{1}=\min \left(x_{1}, \ldots, x_{6}\right) \leqslant f(6)$.

Hypothesis 2. The implication in Theorem 7 is true.
Corollary 6. Assuming Hypothesis 2 a single query to an oracle for the halting problem decides the problem of the infinitude of the solutions of the equation $x!+1=y^{2}$.

4 Are there infinitely many prime numbers of the form $n^{2}+1$?

Edmund Landau's conjecture states that there are infinitely many primes of the form $n^{2}+1$, see [11, pp. 37-38]. Let \mathcal{B} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{1} \cdot x_{1} & =x_{2} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 3 explain the construction of the system \mathcal{B}.

Fig. 3 Construction of the system \mathcal{B}
Lemma 7. For every integer $x_{1} \geqslant 2$, the system \mathcal{B} is solvable in integers x_{2}, \ldots, x_{9} greater than 1 if and only if $x_{1}^{2}+1$ is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined
by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}^{2} \\
x_{3} & =\left(x_{1}^{2}\right)! \\
x_{4} & =\left(\left(x_{1}^{2}\right)!\right)! \\
x_{5} & =x_{1}^{2}+1 \\
x_{6} & =\left(x_{1}^{2}+1\right)! \\
x_{7} & =\frac{\left(x_{1}^{2}\right)!+1}{x_{1}^{2}+1} \\
x_{8} & =\left(x_{1}^{2}\right)!+1 \\
x_{9} & =\left(\left(x_{1}^{2}\right)!+1\right)!
\end{aligned}
$$

and $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}$.
Proof. By Lemmas 3 and 4, for every integer $x_{1} \geqslant 2$, the system \mathcal{B} is solvable in integers x_{2}, \ldots, x_{9} greater than 1 if and only if $x_{1}^{2}+1$ divides $\left(x_{1}^{2}\right)!+1$. Hence, the claim of Lemma 7 follows from Lemma 5 ,

Theorem 8. The statement Θ_{9} proves the following implication: if there exists an integer $x_{1}>f(9)$ such that $x_{1}^{2}+1$ is prime, then there are infinitely many primes of the form $n^{2}+1$.

Proof. Assume that an integer x_{1} is greater than $f(9)$ and $x_{1}^{2}+1$ is prime. By Lemma 7 , there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{B}. Lemma 7 guarantees that $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}$. Since $\mathcal{B} \subseteq H_{9}$, the statement Θ_{9} and the inequality $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}>f(9)$ imply that the system \mathcal{B} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{9}$. According to Lemma 7 , there are infinitely many primes of the form $n^{2}+1$.

Hypothesis 3. The implication in Theorem 8 is true.
Corollary 7. Assuming Hypothesis 3 a single query to an oracle for the halting problem decides the problem of the infinitude of primes of the form $n^{2}+1$.

Let \mathcal{P} denote the set of prime numbers. For a non-negative integer n, let $\Omega(n)$ denote the following statement: $\exists m \in \mathbb{N} \cap(n, \infty) m^{2}+1 \in \mathcal{P}$. By Theorem 8 , assuming the statement Θ_{9}, we can infer the statement $\forall n \in \mathbb{N} \Omega(n)$ from any statement $\Omega(n)$ with $n \geqslant f(9)$. A similar situation holds for inference by the so called "super-induction method", see [21]-[24]. In section 8, we present a theorem whose computer-assisted proof is based on the super-induction method.

5 Are there infinitely many prime numbers of the form $n!+1$?

It is conjectured that there are infinitely many primes of the form $n!+1$, see [1, p. 443] and [17]. Let \mathcal{G} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 4 explain the construction of the system \mathcal{G}.

Fig. 4 Construction of the system \mathcal{G}
Lemma 8. For every integer $x_{1} \geqslant 2$, the system \mathcal{G} is solvable in integers x_{2}, \ldots, x_{9} greater than 1 if and only if $x_{1}!+1$ is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined by
the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}! \\
x_{3} & =\left(x_{1}!\right)! \\
x_{4} & =\left(\left(x_{1}!\right)!\right)! \\
x_{5} & =x_{1}^{!}+1 \\
x_{6} & =\left(x_{1}!+1\right)! \\
x_{7} & =\frac{\left(x_{1}!\right)!+1}{x_{1}!+1} \\
x_{8} & =\left(x_{1}!\right)!+1 \\
x_{9} & =\left(\left(x_{1}!\right)!+1\right)!
\end{aligned}
$$

and $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}$.
Proof. By Lemmas 3 and 4, for every integer $x_{1} \geqslant 2$, the system \mathcal{G} is solvable in integers x_{2}, \ldots, x_{9} greater than 1 if and only if $x_{1}!+1$ divides $\left(x_{1}!\right)!+1$. Hence, the claim of Lemma 8 follows from Lemma 5 ,

Theorem 9. The statement Θ_{9} proves the following implication: if there exists an integer $x_{1}>f(9)$ such that $x_{1}!+1$ is prime, then there are infinitely many primes of the form $n!+1$.

Proof. Assume that an integer x_{1} is greater than $f(9)$ and $x_{1}!+1$ is prime. By Lemma 8 , there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{G}. Lemma 8 guarantees that $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}$. Since $\mathcal{G} \subseteq H_{9}$, the statement Θ_{9} and the inequality $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}>f(9)$ imply that the system \mathcal{G} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{9}$. According to Lemma 8 , there are infinitely many primes of the form $n!+1$.

Hypothesis 4. The implication in Theorem 9 is true.
Corollary 8. Assuming Hypothesis 4 a single query to an oracle for the halting problem decides the problem of the infinitude of primes of the form $n!+1$.

6 The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [11, p. 39].

Let C denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{4}! & =x_{5} \\
x_{6}! & =x_{7} \\
x_{7}! & =x_{8} \\
x_{9}! & =x_{10} \\
x_{12}! & =x_{13} \\
x_{15}! & =x_{16} \\
x_{2} \cdot x_{4} & =x_{5} \\
x_{5} \cdot x_{6} & =x_{7} \\
x_{7} \cdot x_{9} & =x_{10} \\
x_{4} \cdot x_{11} & =x_{12} \\
x_{3} \cdot x_{12} & =x_{13} \\
x_{9} \cdot x_{14} & =x_{15} \\
x_{8} \cdot x_{15} & =x_{16}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 5 explain the construction of the system C.

Fig. 5 Construction of the system C

Lemma 9. If $x_{4}=2$, then the system C has no solutions in integers x_{1}, \ldots, x_{16} greater than 1.
Proof. The equality $x_{2} \cdot x_{4}=x_{5}=x_{4}$! and the equality $x_{4}=2$ imply that $x_{2}=1$.
Lemma 10. If $x_{4}=3$, then the system C has no solutions in integers x_{1}, \ldots, x_{16} greater than 1.
Proof. The equality $x_{4} \cdot x_{11}=x_{12}=\left(x_{4}-1\right)!+1$ and the equality $x_{4}=3$ imply that $x_{11}=1$.
Lemma 11. For every $x_{4} \in \mathbb{N} \backslash\{0,1,2,3\}$ and for every $x_{9} \in \mathbb{N} \backslash\{0,1\}$, the system C is solvable in integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if x_{4} and x_{9} are prime and $x_{4}+2=x_{9}$. In this case, the integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}$, $x_{13}, x_{14}, x_{15}, x_{16}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{1} & =x_{4}-1 \\
x_{2} & =\left(x_{4}-1\right)! \\
x_{3} & =\left(\left(x_{4}-1\right)!\right)! \\
x_{5} & =x_{4}! \\
x_{6} & =x_{9}-1 \\
x_{7} & =\left(x_{9}-1\right)! \\
x_{8} & =\left(\left(x_{9}-1\right)!\right)! \\
x_{10} & =x_{9}! \\
x_{11} & =\frac{\left(x_{4}-1\right)!+1}{x_{4}} \\
x_{12} & =\left(x_{4}-1\right)!+1 \\
x_{13} & =\left(\left(x_{4}-1\right)!+1\right)! \\
x_{14} & =\frac{\left(x_{9}-1\right)!+1}{x_{9}} \\
x_{15} & =\left(x_{9}-1\right)!+1 \\
x_{16} & =\left(\left(x_{9}-1\right)!+1\right)!
\end{aligned}
$$

and $\min \left(x_{1}, \ldots, x_{16}\right)=x_{1}=x_{9}-3$.
Proof. By Lemmas 3 and 4 , for every $x_{4} \in \mathbb{N} \backslash\{0,1,2,3\}$ and for every $x_{9} \in \mathbb{N} \backslash\{0,1\}$, the system C is solvable in integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if

$$
\left(x_{4}+2=x_{9}\right) \wedge\left(x_{4} \mid\left(x_{4}-1\right)!+1\right) \wedge\left(x_{9} \mid\left(x_{9}-1\right)!+1\right)
$$

Hence, the claim of Lemma 11 follows from Lemma 5 .

Theorem 10. The statement Θ_{16} proves the following implication: if there exists a twin prime greater than $f(16)+3$, then there are infinitely many twin primes.

Proof. Assume that the antecedent holds. Then, there exist prime numbers x_{4} and x_{9} such that $x_{9}=x_{4}+2>f(16)+3$. Hence, $x_{4} \in \mathbb{N} \backslash\{0,1,2,3\}$. By Lemma 11, there exists a unique tuple $\left(x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right) \in(\mathbb{N} \backslash\{0,1\})^{14}$ such that the tuple $\left(x_{1}, \ldots, x_{16}\right)$ solves the system C. Lemma 11 guarantees that $\min \left(x_{1}, \ldots, x_{16}\right)=x_{1}=x_{9}-3>$ $f(16)$. Since $C \subseteq H_{16}$, the statement Θ_{16} and the inequality $\min \left(x_{1}, \ldots, x_{16}\right)>f(16)$ imply that the system C has infinitely many solutions in integers x_{1}, \ldots, x_{16} greater than 1 . According to Lemmas 9,11 , there are infinitely many twin primes.

Hypothesis 5. The implication in Theorem 10 is true.
Corollary 9. (cf. [3]). Assuming Hypothesis [5] a single query to an oracle for the halting problem decides the twin prime problem.

7 Are there infinitely many composite Fermat numbers?

Primes of the form $2^{2^{n}}+1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^{n}}+1$ is prime, see [10, p. 1]. Fermat correctly remarked that $2^{2^{0}}+1=3$, $2^{2^{1}}+1=5,2^{2^{2}}+1=17,2^{2^{3}}+1=257$, and $2^{2^{4}}+1=65537$ are all prime, see [10, p. 1].

Open Problem. ([10, p. 159]). Are there infinitely many composite numbers of the form $2^{2^{n}}+1$?
Most mathematicians believe that $2^{2^{n}}+1$ is composite for every integer $n \geqslant 5$, see [9, p. 23].
Theorem 11. ([[18]). An unproven inequality stated in [18] implies that $2^{2^{n}}+1$ is composite for every integer $n \geqslant 5$.

Lemma 12. ([[10] p. 38]). For every positive integer n, if a prime number p divides $2^{2^{n}}+1$, then there exists a positive integer k such that $p=k \cdot 2^{n+1}+1$.

Corollary 10. Since $k \cdot 2^{n+1}+1 \geqslant 2^{n+1}+1 \geqslant n+3$, for every positive integers x, y, and n, the equality $(x+1)(y+1)=2^{2^{n}}+1$ implies that $\min (n, x, x+1, y, y+1)=n$.

Let

$$
G_{n}=\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\} \cup\left\{2^{2^{x_{i}}}=x_{k}: i, k \in\{1, \ldots, n\}\right\}
$$

Lemma 13. The following subsystem of G_{n}

$$
\left\{\begin{aligned}
x_{1} \cdot x_{1} & =x_{1} \\
\forall i \in\{1, \ldots, n-1\} 2^{2^{x_{i}}} & =x_{i+1}
\end{aligned}\right.
$$

has exactly one solution $\left(x_{1}, \ldots, x_{n}\right) \in(\mathbb{N} \backslash\{0\})^{n}$, namely $(g(1), \ldots, g(n))$.
For a positive integer n, let Ψ_{n} denote the following statement: if a system $S \subseteq G_{n}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant g(n)$. The assumption $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant g(n)$ is weaker than the assumption $\max \left(x_{1}, \ldots, x_{n}\right) \leqslant g(n)$ suggested by Lemma 13

Lemma 14. For every positive integer n, the system G_{n} has a finite number of subsystems.
Theorem 12. Every statement Ψ_{n} is true with an unknown integer bound that depends on n.
Proof. It follows from Lemma 14 .
Lemma 15. For every non-negative integers b and $c, b+1=c$ if and only if $2^{2^{b}} \cdot 2^{2^{b}}=2^{2^{c}}$.
Theorem 13. The statement Ψ_{13} proves the following implication: if $2^{2^{n}}+1$ is composite for some integer $n>g(13)$, then $2^{2^{n}}+1$ is composite for infinitely many positive integers n.

Proof. Let us consider the equation

$$
\begin{equation*}
(x+1)(y+1)=2^{2^{z}}+1 \tag{1}
\end{equation*}
$$

in positive integers. By Lemma 15, we can transform equation (1) into an equivalent system \mathcal{F} which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms $\alpha \cdot \beta=\gamma$ and $2^{2^{\alpha}}=\gamma$, see the diagram in Figure 6.

Fig. 6 Construction of the system \mathcal{F}
Assume that $2^{2^{n}}+1$ is composite for some integer $n>g(13)$. By this and Corollary 10 , equation (1) has a solution $(x, y, z) \in(\mathbb{N} \backslash\{0\})^{3}$ such that $z=n$ and $z=\min (z, x, x+1, y, y+1)$. Hence, the system \mathcal{F} has a solution in positive integers such that $z=n$ and n is the smallest number in the solution sequence. Since $n>g(13)$, the statement Ψ_{13} implies that the system \mathcal{F} has infinitely many solutions in positive integers. Therefore, there are infinitely many positive integers n such that $2^{2^{n}}+1$ is composite.

Hypothesis 6. The implication in Theorem 13 is true.

Corollary 11. Assuming Hypothesis 6, a single query to an oracle for the halting problem decides whether or not the set of composite Fermat numbers is infinite.

8 An application of Richert's lemma

Lemma 16. ([4], [15], [16] p.152]). Let $\left\{m_{i}\right\}_{i=1}^{\infty}$ be an increasing sequence of positive integers such that for some positive integer k the inequality $m_{i+1} \leqslant 2 m_{i}$ holds for all $i>k$. Suppose there exists a non-negative integer b such that the numbers $b+1, b+2, b+3, \ldots, b+m_{k+1}$ are all expressible as sums of one or more distinct elements of the set $\left\{m_{1}, \ldots, m_{k}\right\}$. Then every integer greater than b is expressible as a sum of one or more distinct elements of the set $\left\{m_{1}, m_{2}, m_{3}, \ldots\right\}$.

Let [•] denote the integer part function. For a positive integer i, let $t_{i}=\frac{(i+19)^{i+19}}{(i+19)!\cdot 2^{i+19}}$, and let $m_{i}=\left[t_{i}\right]$.

Lemma 17. The inequality $m_{i+1} \leqslant 2 m_{i}$ holds for every positive integer i.
Proof. For every positive integer i,

$$
\begin{gathered}
\frac{m_{i}}{m_{i+1}}=\frac{\left[t_{i}\right]}{\left[t_{i+1}\right]}>\frac{t_{i}-1}{t_{i+1}}=\left(\frac{t_{i}}{t_{i+1}}\right)-\left(\frac{1}{t_{i+1}}\right) \geqslant\left(\frac{t_{i}}{t_{i+1}}\right)-\left(\frac{1}{t_{2}}\right)= \\
2 \cdot \frac{i+20}{i+19} \cdot\left(1-\frac{1}{i+20}\right)^{i+20}-\left(\frac{21!\cdot 2^{21}}{21^{21}}\right)>2 \cdot\left(1-\frac{1}{21}\right)^{21}-\left(\frac{21!\cdot 2^{21}}{21^{21}}\right)= \\
\frac{4087158528442715204485120000}{5842587018385982521381124421}
\end{gathered}
$$

The above fraction was computed by $M u P A D$ and is greater than $\frac{1}{2}$.
Let B denote the set of all positive integers x which are expressible as a sum of one or more distinct elements of the set $\left\{m_{i}: i \in\{1, \ldots, 15\}\right\}$. Let \mathcal{T} denote the set of all positive integers x which are expressible as a sum of one or more distinct elements of the set $\left\{m_{i}: i \in \mathbb{N} \backslash\{0\}\right\}$.

Theorem 14. 2761 is the largest integer which does not belong to \mathcal{T}.
Proof. The following MuPAD code

```
TEXTWIDTH:=80:
M:={floor((i+19)^(i+19)/((i+19)!*2^(i+19))) $i=1..16};
A:={M[i] $i=1..15};
B:={A[1]}:
```

for i from 2 to 15 do
$B:=B$ union $\{A[i]\}$ union $\{B[j]+A[i] \$ j=1 . . n o p s(B)\}$:
end_for:
\{2761\} minus B;
\{2761+i \$i=1..M[16]\} minus B;
first displays the sets $\left\{m_{i}: i \in\{1, \ldots, 16\}\right\}$ and $\left\{m_{i}: i \in\{1, \ldots, 15\}\right\}$. Next, it displays the sets $\{2761\} \backslash B$ and $\left\{2761+1, \ldots, 2761+m_{16}\right\} \backslash B$. The code gives the following output:
$\{41,54,72,96,128,170,227,303,404,540,722,966,1293,1730,2317,3105\}$
$\{41,54,72,96,128,170,227,303,404,540,722,966,1293,1730,2317\}$
\{2761\}

\{\}

Since the set $\{2761\}$ equals $\{2761\} \backslash B$, we conclude that $2761 \notin B$. By this and the inequality $m_{16}=3105>2761$, we conclude that $2761 \notin \mathcal{T}$. Since the empty set $\}$ equals

$$
\left\{2761+1, \ldots, 2761+m_{16}\right\} \backslash B
$$

we conclude that each of the integers

$$
2761+1,2761+2,2761+3, \ldots, 2761+m_{16}
$$

belongs to B. Consequently, in virtue of Lemma 17, we can apply Lemma 16 with $k=15$ and $b=2761$ to confirm that every integer greater than 2761 belongs to \mathcal{T}.
$M u P A D$ is a general-purpose computer algebra system. The commercial version of MuPAD is no longer available as a stand-alone product, but only as the Symbolic Math Toolbox of MATLAB. Fortunately, the presented code can be executed by MuPAD Light, which was offered for free for research and education until autumn 2005.

References

[1] C. K. Caldwell and Y. Gallot, On the primality of $n!\pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, Math. Comp. 71 (2002), no. 237, 441-448, https://doi.org/10.1090/ S0025-5718-01-01315-1.
[2] N. C. A. da Costa and F. A. Doria, On the foundations of science (LIVRO): essays, first series, E-papers Serviços Editoriais Ltda, Rio de Janeiro, 2013.
[3] F. G. Dorais, Can the twin prime problem be solved with a single use of a halting oracle? July 23, 2011, https://mathoverflow.net/questions/71050.
[4] R. E. Dressler, A. Mąkowski, T. Parker, Sums of distinct primes from congruence classes modulo 12, Math. Comp. 28 (1974), 651-652.
[5] W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139-178.
[6] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[7] J. van der Hoeven, Undecidability versus undecidability, Bull. Symbolic Logic 5 (1999), no. 1, 75, https://dx.doi.org/10.2307/421141.
[8] T. Jech, Set theory, Springer, Berlin, 2003.
[9] J.-M. De Koninck and F. Luca, Analytic number theory: Exploring the anatomy of integers, American Mathematical Society, Providence, RI, 2012.
[10] M. Křížek, F. Luca, L. Somer, 17 lectures on Fermat numbers: from number theory to geometry, Springer, New York, 2001.
[11] W. Narkiewicz, Rational number theory in the 20th century: From PNT to FLT, Springer, London, 2012.
[12] P. Odifreddi, Classical recursion theory: the theory of functions and sets of natural numbers, North-Holland, Amsterdam, 1989.
[13] M. Overholt, The Diophantine equation $n!+1=m^{2}$, Bull. London Math. Soc. 25 (1993), no. 2, 104, https://doi.org/10.1112/blms/25.2.104.
[14] O. Pikhurko and O. Verbitsky, Logical complexity of graphs: a survey; in: Model theoretic methods in finite combinatorics, Contemp. Math. 558, 129-179, Amer. Math. Soc., Providence, RI, 2011, https://dx.doi.org/10.1090/conm/558.
[15] H.-E. Richert, Über Zerlegungen in paarweise verschiedene Zahlen, Norsk Mat. Tidsskr. 31 (1949), 120-122.
[16] W. Sierpiński, Elementary theory of numbers, 2nd ed. (ed. A. Schinzel), PWN - Polish Scientific Publishers and North-Holland, Warsaw-Amsterdam, 1987.
[17] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002981, Numbers n such that $n!+1$ is prime, https://oeis.org/A002981.
[18] A. Tyszka, Is there a computable upper bound for the height of a solution of a Diophantine equation with a unique solution in positive integers?, Open Comput. Sci. 7 (2017), no. 1, 17-23, https://doi.org/10.1515/comp-2017-0003.
[19] A. Tyszka, A hypothetical upper bound on the heights of the solutions of a Diophantine equation with a finite number of solutions, Open Comput. Sci. 8 (2018), no. 1, 109-114, https://dx.doi.org/10.1515/comp-2018-0012.
[20] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chapman \& Hall/CRC, Boca Raton, FL, 2002.
[21] A. A. Zenkin, Superinduction: a new method for proving general mathematical statements with a computer, Dokl. Math. 55 (1997), no. 3, 410-413.
[22] A. A. Zenkin, Superinduction method: logical acupuncture of mathematical infinity (in Russian), in: Infinity in mathematics: philosophical and historical aspects (ed. A. G. Barabashev), Janus-K, Moscow, 1997, 152-168, 173-176.
[23] A. A. Zenkin, The generalized Waring problem: estimation of the function $G(m, r)$ in terms of the function $g(m-1, r)$ by the superinduction method, Dokl. Math. 56 (1997), no. 1, 597-600.
[24] A. A. Zenkin, Super-induction method: logical acupuncture of mathematical infinity, paper presented at the Twentieth World Congress of Philosophy, Boston, MA, August 10-15, 1998, https://www.bu.edu/wcp/Papers/Logi/LogiZenk.htm.

Apoloniusz Tyszka
University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

