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as they refer to the current knowledge on X
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Abstract. Algorithms always terminate. We explain the distinction between existing
algorithms (i.e. algorithms whose existence is provable in ZFC) and known algorithms
(i.e. algorithms whose definition is constructive and currently known). Assuming that
the infiniteness of a set X ⊆ N is false or unproven, we define which elements of X are
classified as known. No known set X ⊆ N satisfies Conditions (1)�(4) and is widely
known in number theory or naturally defined, where this term has only informal meaning.
(1) A known algorithm with no input returns an integer n satisfying card(X) < ω⇒
X ⊆ (−∞, n]. (2) A known algorithm for every k ∈ N decides whether or not k ∈ X.
(3) No known algorithm with no input returns the logical value of the statement
card(X) = ω. (4) There are many elements of X and it is conjectured, though so far
unproven, that X is infinite. (5) X is naturally defined. The infiniteness of X is false
or unproven. X has the simplest definition among known sets Y ⊆ N with the same set
of known elements. We define a set X ⊆ N which satisfies Conditions (1)�(5) except
the requirement that X is naturally defined. Let Pn2+1 denote the set of primes of the
form n2 + 1. Conditions (2)�(5) hold for X = Pn2+1. We discuss a conjecture which
implies the conjunction of Conditions (1)�(5) for X = Pn2+1. No set X ⊆ N will satisfy
Conditions (1)�(4) forever, if for every algorithm with no input, at some future day,
a computer will be able to execute this algorithm in 1 second or less. The physical
limits of computation disprove this assumption. We present a table that shows satisfiable
conjunctions consisting of Conditions (1)�(5) and their negations.
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1. Definitions and the distinction between existing algorithms and known algorithms

Algorithms always terminate. Semi-algorithms may not terminate. Examples 1–4 and
the proof of Statement 1 explain the distinction between existing algorithms (i.e. algorithms
whose existence is provable in ZFC) and known algorithms (i.e. algorithms whose
definition is constructive and currently known). A definition of an integer n is called
constructive, if it provides a known algorithm with no input that returns n. Definition 1
applies to sets X ⊆ N whose infiniteness is false or unproven.

Definition 1. We say that a non-negative integer k is a known element of X, if k ∈ X
and we know an algebraic expression that defines k and consists of the following signs:
1 (one), + (addition), − (subtraction), · (multiplication), / (division), ˆ (exponentiation),
! (factorial), ( (left parenthesis), ) (right parenthesis).
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Let t denote the largest twin prime that is smaller than ((((((((9!)!)!)!)!)!)!)!)!. The
number t is an unknown element of the set of twin primes.

Lemma 1. (Wilson’s theorem, [2, p. 89]). For every integer x > 2, x is prime if and only if
x divides (x − 1)! + 1.

Edmund Landau’s conjecture states that the set Pn2+1 of primes of the form n2 + 1 is
infinite, see [10]–[12]. Let [·] denote the integer part function. By Lemma 1, for every
positive integer n,

1 + 1 +

(n2
)
! −

(
n2 + 1

)
·


(
n2

)
!

n2 + 1


 · n2 − 1

n2 =

{
n2 + 1, i f n2 + 1 is prime

2, otherwise

Similar identities are unknown for algebraic expressions considered in Definition 1, so
Definition 1 seems to be correct.

Definition 2. Conditions (1)�(5) concern sets X ⊆ N.
(1) A known algorithm with no input returns an integer n satisfying card(X) < ω⇒
X ⊆ (−∞, n].
(2) A known algorithm for every k ∈ N decides whether or not k ∈ X.
(3) No known algorithm with no input returns the logical value of the statement
card(X) = ω.
(4) There are many elements of X and it is conjectured, though so far unproven, that X is
infinite.
(5) X is naturally defined. The infiniteness of X is false or unproven. X has the simplest
definition among known sets Y ⊆ N with the same set of known elements.

Condition (3) implies that no known proof shows the finiteness/infiniteness of X. No
known set X ⊆ N satisfies Conditions (1)�(4) and is widely known in number theory or
naturally defined, where this term has only informal meaning.

Let β = (((24!)!)!)!.

Lemma 2. log2(log2(log2(log2(log2(log2(log2(β))))))) ≈ 1.42298.

Proof. We ask Wolfram Alpha at https://wolframalpha.com. �

Example 1. The set X = Pn2+1 satisfies Condition (3).

Example 2. The set X =

{
N, if [ β

π
] is odd

∅, otherwise
does not satisfy Condition (3) because we

know an algorithm with no input that computes [ β
π
]. The set of known elements of X is

empty. Hence, Condition (5) fails for X.

Example 3. ([1], [7], [9, p. 9]). The function

N 3 n
h
−→

{
1, i f the decimal expansion o f π contains n consecutive zeros
0, otherwise

is computable because h = N × {1} or there exists k ∈ N such that

h = ({0, . . . , k} × {1}) ∪ ({k + 1, k + 2, k + 3, . . .} × {0})

No known algorithm computes the function h.

https://wolframalpha.com
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Example 4. The set

X =

{
N, i f the continuum hypothesis holds
∅, otherwise

is decidable. ThisX satisfies Conditions (1) and (3) and does not satisfy Conditions (2),
(4), and (5). These facts will hold forever.

Let Φ denote the following unproven statement:

card(Pn2+1) < ω⇒ Pn2+1 ⊆ [2, β]

Landau’s conjecture implies the statement Φ. Theorem 6 heuristically justifies the
statement Φ. This justification does not yield the finiteness/infiniteness of Pn2+1.

Statement 1. Condition (1) remains unproven for X = Pn2+1.

Proof. For every set X ⊆ N, there exists an algorithm Alg(X) with no input that returns

n =

{
0, if card(X) ∈ {0, ω}

max(X), otherwise

This n satisfies the implication in Condition (1), but the algorithm Alg(Pn2+1) is unknown
because its definition is ineffective. �

Proving the statement Φ will disprove Statement 1. Statement 1 cannot be formalized in
mathematics understood as an a priori science because it refers to the current mathematical
knowledge. The same is true for Open Problems 1–3 and Statements 2–4.

Definition 3. We say that an integer n is a threshold number of a set X ⊆ N, if
card(X) < ω⇒ X ⊆ (−∞, n].

If a set X ⊆ N is empty or infinite, then any integer n is a threshold number of X. If
a set X ⊆ N is non-empty and finite, then the all threshold numbers of X form the set
[max(X),∞) ∩ N.

2. The physical limits of computation inspire Open Problem 1

Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2.

Statement 2. The set

X = {k ∈ N : (106 < k)⇒ ( f (106), f (k)) ∩ Pn2+1 , ∅}

satisfies Conditions (1)�(4). Condition (5) fails for X.

Proof. Condition (4) holds as X ⊇ {0, . . . , 106} and the set Pn2+1 is conjecturally infinite.
By Lemma 2, due to known physics we are not able to confirm by a direct computation
that some element of Pn2+1 is greater than f (106) > f (7) = β, see [5]. Thus Condition (3)
holds. Condition (2) holds trivially. Since the set

{k ∈ N : (106 < k) ∧ ( f (106), f (k)) ∩ Pn2+1 , ∅}

is empty or infinite, the integer 106 is a threshold number of X. Thus X satisfies
Condition (1). Condition (5) fails for X as the set of known elements of X equals
{0, . . . , 106}. �
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For a non-negative integer n, let θ(n) denote the largest integer divisor of 101010
smaller

than n.

Lemma 3. For every integer j > 101010
, θ( j) = 101010

.

Lemma 4. For every integer j ∈ (6553600, 7812500], θ( j) = 6553600.

Proof. 6553600 equals 218 · 52 and divides 101010
. 7812500 < 224. 7812500 < 510.

We need to prove that every integer j ∈ (6553600, 7812500) does not divide 101010
. The

following MuPAD code
A:={}:
for e2 from 0 to 23 do
for e5 from 0 to 9 do
A:=A union {(2^e2)*(5^e5)}:
end_for:
end_for:
A intersect {$ 6553600..7812500};

proves this because returns the set {6553600, 7812500}. �

Lemma 5. The number 65536002 + 1 is prime.

Proof. The following PARI/GP command
isprime(6553600^2+1,{flag=2})

returns 1. This command performs the APRCL primality test, the best deterministic
primality test algorithm ([13, p. 226]). It rigorously shows that the number 65536002 + 1
is prime. �

Lemma 6. The number 101421015042 + 1 is prime. 10142101504 > 1010.

Proof. The following PARI/GP command
isprime(10142101504^2+1,{flag=2})

returns 1. �

Lemma 7. The function

N 3 n
κ
−→ the_exponent_o f _2_in_the_prime_ f actorization_o f _ n + 1︸︷︷︸ ∈ N

takes every non-negative integer value infinitely often.

Lemma 8. The set X = {n ∈ N : (θ(n) + κ(n))2 + 1 is prime} satisfies card(X) > 629450.

Proof. By Lemmas 4 and 5, for every even integer j ∈ (6553600, 7812500], the number
(θ( j) + κ( j))2 + 1 = (6553600 + 0)2 + 1 is prime. Hence,

{2k : k ∈ N} ∩ (6553600, 7812500] ⊆ X

Consequently,

card(X) > card({2k : k ∈ N} ∩ (6553600, 7812500]) =
7812500 − 6553600

2
= 629450

�
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Statement 3. The set X from Lemma 8 satisfies Conditions (1)�(5) except the
requirement that X is naturally defined.

Proof. Condition (2) holds trivially. Let δ denote 101010
. By Lemmas 3 and 7,

Condition (1) holds for n = δ. Since the statement Pn2+1 ∩
(
δ2 + 1,∞

)
, ∅ remains

unproven, Condition (3) holds. Lemma 8 and the implication

Pn2+1 ∩
(
δ2 + 1,∞

)
, ∅ =⇒ card(X) = ω

show that Condition (4) holds. By Lemma 6, the set X is infinite after defining the

function θ with the number 1010 instead of the number 101010
. Since Definition 1

applies to sets X ⊆ N whose infiniteness is false or unproven, Condition 5 holds except
the requirement that X is naturally defined. �

Proving Landau’s conjecture will disprove Statements 2 and 3.

Open Problem 1. Is there a set X ⊆ N which satisfies Conditions (1)�(5)?

Theorem 1. No set X ⊆ N will satisfy Conditions (1)-(4) forever, if for every algorithm
with no input, at some future day, a computer will be able to execute this algorithm in
1 second or less.

Proof. The proof goes by contradiction. We fix an integer n that satisfies Condition (1).
Since Conditions (1)�(3) will hold forever, the semi-algorithm in Figure 1 never
terminates and sequentially prints the following sentences:

(T) n + 1 < X, n + 2 < X, n + 3 < X, . . .

Fig. 1 Semi-algorithm that terminates if and only if X is infinite

The sentences from the sequence (T) and our assumption imply that for every integer
m > n computed by a known algorithm, at some future day, a computer will be able to
confirm in 1 second or less that (n,m] ∩ X = ∅. Thus, at some future day, numerical
evidence will support the conjecture that the set X is finite, contrary to the conjecture
in Condition (4). �

The physical limits of computation ([5]) disprove the assumption of Theorem 1.
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3. Number-theoretic statements Ψn

LetU1 denote the system of equations which consists of the equation x1! = x1. For an
integer n > 2, letUn denote the following system of equations:

x1! = x1
x1 · x1 = x2

∀i ∈ {2, . . . , n − 1} xi! = xi+1

Lemma 9. For every positive integer n, the systemUn has exactly two solutions in positive
integers x1, . . . , xn, namely (1, . . . , 1) and ( f (1), . . . , f (n)).

Let Bn denote the following system of equations:{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
For every positive integer n, no known system S ⊆ Bn with a finite number of
solutions in positive integers x1, . . . , xn has a solution (x1, . . . , xn) ∈ (N \ {0})n satisfying
max(x1, . . . , xn) > f (n). For every positive integer n and for every known system S ⊆ Bn,
if the finiteness/infiniteness of the set

{(x1, . . . , xn) ∈ (N \ {0})n : (x1, . . . , xn) solves S}

is unknown, then the statement

∃x1, . . . , xn ∈ N \ {0} ((x1, . . . , xn) solves S) ∧ (max(x1, . . . , xn) > f (n))

remains unproven.

For a positive integer n, let Ψn denote the following statement: if a system S ⊆ Bn

has at most finitely many solutions in positive integers x1, . . . , xn, then each such solution
(x1, . . . , xn) satisfies x1, . . . , xn 6 f (n). The statement Ψn says that for subsystems of Bn

with a finite number of solutions, the largest known solution is indeed the largest possible.
The statements Ψ1 and Ψ2 hold trivially. There is no reason to assume the validity of the
statement ∀n ∈ N \ {0} Ψn.

Theorem 2. For every statement Ψn, the bound f (n) cannot be decreased.

Proof. It follows from Lemma 9 becauseUn ⊆ Bn. �

Theorem 3. For every integer n > 2, the statement Ψn+1 implies the statement Ψn.

Proof. If a system S ⊆ Bn has at most finitely many solutions in positive integers
x1, . . . , xn, then for every integer i ∈ {1, . . . , n} the system S ∪ {xi! = xn+1} has at most
finitely many solutions in positive integers x1, . . . , xn+1. The statement Ψn+1 implies that
xi! = xn+1 6 f (n + 1) = f (n)!. Hence, xi 6 f (n). �

Theorem 4. Every statement Ψn is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system Bn has a finite number of subsystems. �
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4. A conjectural solution of Open Problem 1

Lemma 10. For every positive integers x and y, x! · y = y! if and only if

(x + 1 = y) ∨ (x = y = 1)

LetA denote the following system of equations:

x2! = x3
x3! = x4
x5! = x6
x8! = x9

x1 · x1 = x2
x3 · x5 = x6
x4 · x8 = x9
x5 · x7 = x8

Lemma 10 and the diagram in Figure 2 explain the construction of the systemA.

Fig. 2 Construction of the systemA

Lemma 11. For every integer x1 > 2, the system A is solvable in positive integers
x2, . . . , x9 if and only if x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are uniquely
determined by the following equalities:

x2 = x2
1

x3 =
(
x2

1

)
!

x4 =
((

x2
1

)
!
)
!

x5 = x2
1 + 1

x6 =
(
x2

1 + 1
)
!

x7 =

(
x2

1

)
! + 1

x2
1 + 1

x8 =
(
x2

1

)
! + 1

x9 =
((

x2
1

)
! + 1

)
!

Proof. By Lemma 10, for every integer x1 > 2, the systemA is solvable in positive integers
x2, . . . , x9 if and only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of Lemma 11 follows

from Lemma 1. �
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Lemma 12. There are only finitely many tuples (x1, . . . , x9) ∈ (N \ {0})9, which solve
the system A and satisfy x1 = 1. It is true as every such tuple (x1, . . . , x9) satisfies
x1, . . . , x9 ∈ {1, 2}.

Proof. The equality x1 = 1 implies that x2 = x1 · x1 = 1. Hence, x3 = x2! = 1. Therefore,
x4 = x3! = 1. The equalities x5! = x6 and x5 = 1 · x5 = x3 · x5 = x6 imply that x5, x6 ∈

{1, 2}. The equalities x8! = x9 and x8 = 1 · x8 = x4 · x8 = x9 imply that x8, x9 ∈ {1, 2}. The
equality x5 · x7 = x8 implies that x7 =

x8
x5
∈

{
1
1 ,

1
2 ,

2
1 ,

2
2

}
∩ (N \ {0}) = {1, 2}. �

Conjecture 1. The statement Ψ9 is true when is restricted to the systemA.

Theorem 5. Conjecture 1 proves the following implication: if there exists an integer x1 > 2
such that x2

1 + 1 is prime and greater than f (7), then the set Pn2+1 is infinite.

Proof. Suppose that the antecedent holds. By Lemma 11, there exists a unique tuple
(x2, . . . , x9) ∈ (N \ {0})8 such that the tuple (x1, x2, . . . , x9) solves the system A. Since
x2

1 + 1 > f (7), we obtain that x2
1 > f (7). Hence, (x2

1)! > f (7)! = f (8). Consequently,

x9 = ((x2
1)! + 1)! > ( f (8) + 1)! > f (8)! = f (9)

Conjecture 1 and the inequality x9 > f (9) imply that the system A has infinitely many
solutions (x1, . . . , x9) ∈ (N \ {0})9. According to Lemmas 11 and 12, the set Pn2+1 is
infinite. �

Theorem 6. Conjecture 1 implies the statement Φ.

Proof. It follows from Theorem 5 and the equality f (7) = (((24!)!)!)!. �

Theorem 7. The statement Φ implies Conjecture 1.

Proof. By Lemmas 11 and 12, if positive integers x1, . . . , x9 solve the systemA, then

(x1 > 2) ∧ (x5 = x2
1 + 1) ∧ (x5 is prime)

or x1, . . . , x9 ∈ {1, 2}. In the first case, Lemma 11 and the statement Φ imply
that the inequality x5 6 (((24!)!)!)! = f (7) holds when the system A has at most
finitely many solutions in positive integers x1, . . . , x9. Hence, x2 = x5 − 1 < f (7) and
x3 = x2! < f (7)! = f (8). Continuing this reasoning in the same manner, we can show that
every xi does not exceed f (9). �

Statement 4. Conditions (2)�(5) hold for X = Pn2+1. The statement Φ implies that
Condition (1) holds for X = Pn2+1.

Proof. The set Pn2+1 is conjecturally infinite. There are 2199894223892 primes of the
form n2 + 1 in the interval [2, 1028), see [11]. These two facts imply Condition (4). By
Lemma 2, due to known physics we are not able to confirm by a direct computation that
some element of Pn2+1 is greater than f (7) = (((24!)!)!)! = β, see [5]. Thus Condition (3)
holds. Conditions (2) and (5) hold trivially. The statement Φ implies that Condition (1)
holds for X = Pn2+1 with n = β = (((24!)!)!)!. �

Proving Landau’s conjecture will disprove Statement 4.

Conjecture 2. (Conditions (1)�(5) hold for X = Pn2+1) ∧ Φ.

Conjecture 2 implies that every known proof of the statement Φ does not yield the
finiteness/infiniteness of Pn2+1.
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5. A new heuristic argument for the infiniteness of Pn2+1

The system A contains four factorials and four multiplications. Let F denote the
family of all systems S ⊆ B9 which contain at most four factorials and at most four
multiplications.

Among known systems S ∈ F , the following system C

x1! = x2
x2 · x9 = x1
x2 · x2 = x3
x3 · x3 = x4
x4 · x4 = x5

x5! = x6
x6! = x7
x7! = x8

attains the greatest solution in positive integers x1, . . . , x9 and has at
most finitely many solutions in (N \ {0})9. Only the tuples (1, . . . , 1) and
(2, 2, 4, 16, 256, 256!, (256!)!, ((256!)!)!, 1) solve C and belong to (N \ {0})9.

For every known system S ∈ F , if the finiteness of the set

{(x1, . . . , x9) ∈ (N \ {0})9 : (x1, . . . , x9) solves S}

is unproven and conjectured, then the statement

∃x1, . . . , x9 ∈ N \ {0} ((x1, . . . , x9) solves S) ∧ (max(x1, . . . , x9) > ((256!)!)!)

remains unproven.

Let Γ denote the statement: if the systemA has at most finitely many solutions in positive
integers x1, . . . , x9, then each such solution (x1, . . . , x9) satisfies x1, . . . , x9 6 ((256!)!)!.
The number 46512 + 1 is prime ([6]) and greater than 256!, see also [8, p. 239] for the
primality of 1502048 + 1. Hence, the statement Γ is equivalent to the infiniteness of Pn2+1.
It heuristically justifies the infiniteness of Pn2+1 in a sophisticated way.

6. Satisfiable conjunctions which consist of Conditions 1�5 and their negations

The set X = Pn2+1 satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ (Condition 5)

The set X = {0, . . . , f (7)} ∪ Pn2+1 satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

The set X =

{
N, i f ( f (98), f (99)) ∩ Pn2+1 , ∅
{0, . . . , 106}, otherwise satisfies the conjunction

(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

Open Problem 2. Is there a set X ⊆ N that satisfies the conjunction

(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ (Condition 5)?
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The numbers 22k
+ 1 are prime for k ∈ {0, 1, 2, 3, 4}. It is open whether or not there are

infinitely many primes of the form 22k
+ 1, see [4, p. 158] and [8, p. 74]. It is open whether

or not there are infinitely many composite numbers of the form 22k
+ 1, see [4, p. 159] and

[8, p. 74]. Most mathematicians believe that 22k
+ 1 is composite for every integer k > 5,

see [3, p. 23].

The set

X =

 N, i f ( f (98), f (99)) ∩ Pn2+1 , ∅

{0, . . . , 106} ∪ {n ∈ N : n is the sixth prime number o f the f orm 22k
+ 1}, otherwise

satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

Open Problem 3. Is there a set X ⊆ N that satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ (Condition 5)?

It is possible, although very doubtful, that at some future day, the set X = Pn2+1 will
solve Open Problem 2. The same is true for Open Problem 3. It is possible, although very

doubtful, that at some future day, the set X = {k ∈ N : 22k
+ 1 is composite} will solve

Open Problem 1. The same is true for Open Problems 2 and 3.

The following table shows satisfiable conjunctions consisting of Conditions (1)�(5)
and their negations.

(Condition 2) ∧ (Condition 3) ∧
(Condition 4)

(Condition 2) ∧ ¬(Condition 3) ∧
(Condition 4)

(Condition 1) ∧
(Condition 5)

Open Problem 1 (conjecturally
solved with X = Pn2+1)

Open Problem 2

(Condition 1) ∧
¬(Condition 5)

X = {k ∈ N : (106 < k)⇒
( f (106), f (k)) ∩ Pn2+1 , ∅}

X =

{
N, i f ( f (98), f (99)) ∩ Pn2+1 , ∅
{0, . . . , 106}, otherwise

¬(Condition 1) ∧
(Condition 5)

X = Pn2+1 Open Problem 3

¬(Condition 1) ∧
¬(Condition 5)

X = {0, . . . , f (7)} ∪ Pn2+1 X =


N, i f ( f (98), f (99)) ∩ Pn2+1 , ∅
{0, . . . , 106} ∪ {n ∈ N : n is
the sixth prime number o f

the f orm 22k
+ 1}, otherwise
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Hugo Kołłątaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail address: rttyszka@cyf-kr.edu.pl

https://link.springer.com/chapter/10.1007/978-3-642-39053-1_6
https://link.springer.com/chapter/10.1007/978-3-642-39053-1_6
https://doi.org/10.1038/35023282
https://doi.org/10.1038/35023282
https://cs.stackexchange.com/questions/367/how-can-it-be-decidable-whether-pi-has-some-sequence-of-digits
https://cs.stackexchange.com/questions/367/how-can-it-be-decidable-whether-pi-has-some-sequence-of-digits
https://oeis.org/A002496
https://oeis.org/A083844
https://mathworld.wolfram.com/LandausProblems.html
Agnieszka.Kozdeba@im.uj.edu.pl
rttyszka@cyf-kr.edu.pl

	1. Definitions and the distinction between existing algorithms and known algorithms
	2. The physical limits of computation inspire Open Problem 1
	3. Number-theoretic statements n
	4. A conjectural solution of Open Problem 1
	5. A new heuristic argument for the infiniteness of Pn2+1
	6. Satisfiable conjunctions which consist of Conditions 1–5 and their negations
	References

