The distinction between constructively defined algorithms and algorithms whose existence is provable in $Z F C$ inspires theorems and open problems that concern decidable sets $\mathcal{X} \subseteq \mathbb{N}$ and cannot be formalized in mathematics understood as an a priori science as they refer to the current knowledge on \mathcal{X}

Agnieszka Kozdęba, Apoloniusz Tyszka

Abstract

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 2$. Edmund Landau's conjecture states that the set $\mathcal{P}_{n^{2}+1}$ of primes of the form $n^{2}+1$ is infinite. We present a new heuristic argument for the infiniteness of $\mathcal{P}_{n^{2}+1}$. Landau's conjecture implies the following unproven statement Φ : $\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)<\omega \Rightarrow \mathcal{P}_{n^{2}+1} \subseteq[2, f(7)]$. Let B denote the system of equations: $\quad\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, 9\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, 9\}\right\}$. We write some system $\mathcal{U} \subseteq B$ of 9 equations which has exactly two solutions in positive integers x_{1}, \ldots, x_{9}, namely $(1, \ldots, 1)$ and $(f(1), \ldots, f(9))$. No known system $\mathcal{S} \subseteq B$ with a finite number of solutions in positive integers x_{1}, \ldots, x_{9} has a solution $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$ satisfying $\max \left(x_{1}, \ldots, x_{9}\right)>f(9)$. For every known system $\mathcal{S} \subseteq B$, if the finiteness/infiniteness of the set $\left\{\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}:\left(x_{1}, \ldots, x_{9}\right)\right.$ solves $\left.\mathcal{S}\right\}$ is unknown, then the statement $\exists x_{1}, \ldots, x_{9} \in \mathbb{N} \backslash\{0\}\left(\left(x_{1}, \ldots, x_{9}\right)\right.$ solves $\left.\mathcal{S}\right) \wedge\left(\max \left(x_{1}, \ldots, x_{9}\right)>f(9)\right)$ remains unproven. We write some system $\mathcal{A} \subseteq B$ of 8 equations. Let Λ denote the statement: if the system \mathcal{A} has at most finitely many solutions in positive integers x_{1}, \ldots, x_{9}, then each such solution $\left(x_{1}, \ldots, x_{9}\right)$ satisfies $x_{1}, \ldots, x_{9} \leqslant f(9)$. The statement Λ is equivalent to the statement Φ. It heuristically justifies the statement Φ. This justification does not yield the finiteness/infiniteness of $\mathcal{P}_{n^{2}+1}$. Algorithms always terminate. We explain the distinction between existing algorithms (i.e. algorithms whose existence is provable in $Z F C$) and known algorithms (i.e. algorithms whose definition is constructive and currently known). Assuming that the infiniteness of a set $\mathcal{X} \subseteq \mathbb{N}$ is false or unproven, we define which elements of \mathcal{X} are classified as known. No known set $\mathcal{X} \subseteq \mathbb{N}$ satisfies Conditions (1)- (4) and is widely known in number theory or naturally defined, where this term has only informal meaning. (1) A known algorithm with no input returns an integer n satisfying $\operatorname{card}(\mathcal{X})<\omega \Rightarrow$ $\mathcal{X} \subseteq(-\infty, n]$. (2) A known algorithm for every $k \in \mathbb{N}$ decides whether or not $k \in \mathcal{X}$. (3) No known algorithm with no input returns the logical value of the statement $\operatorname{card}(X)=\omega$. (4) There are many elements of \mathcal{X} and it is conjectured, though so far unproven, that \mathcal{X} is infinite. (5) \mathcal{X} is naturally defined. The infiniteness of \mathcal{X} is false or unproven. \mathcal{X} has the simplest definition among known sets $\boldsymbol{Y} \subseteq \mathbb{N}$ with the same set of known elements. Conditions (2)-(5) hold for $\mathcal{X}=\mathcal{P}_{n^{2}+1}$. The statement Φ implies the conjunction of Conditions (1)-(5) for $\mathcal{X}=\mathcal{P}_{n^{2}+1}$. We define a set $\mathcal{X} \subseteq \mathbb{N}$ which satisfies Conditions (1)-(5) except the requirement that \mathcal{X} is naturally defined. We present a table that shows satisfiable conjunctions of the form \#(Condition 1) ^(Condition 2) \wedge \#(Condition 3) ^(Condition 4) ^ \#(Condition 5), where \# denotes the negation \neg or its absence. No set $X \subseteq \mathbb{N}$ will satisfy Conditions (1)-(4) forever, if for every algorithm with no input, at some future day, a computer will be able to execute this algorithm in 1 second or less. The physical limits of computation disprove this assumption.

2020 Mathematics Subject Classification: 03D20.

Key words and phrases: conjecturally infinite set $\mathcal{X} \subseteq \mathbb{N}$, constructively defined integer n satisfies $\operatorname{card}(X)<\omega \Rightarrow X \subseteq(-\infty, n]$, current knowledge on a set $X \subseteq \mathbb{N}$, distinction between existing algorithms and constructively defined algorithms which are currently known, known elements of a set $X \subseteq \mathbb{N}$ whose infiniteness is false or unproven, physical limits of computation, primes of the form $n^{2}+1, X$ is decidable by a constructively defined algorithm.

1. Definitions and the distinction between existing algorithms and constructively DEFINED ALGORITHMS WHICH ARE CURRENTLY KNOWN

Algorithms always terminate. Semi-algorithms may not terminate. Examples 1,4 and the proof of Statement 1 explain the distinction between existing algorithms (i.e. algorithms whose existence is provable in $Z F C$) and known algorithms (i.e. algorithms whose definition is constructive and currently known). A definition of an integer n is called constructive, if it provides a known algorithm with no input that returns n. Definition 1 applies to sets $\mathcal{X} \subseteq \mathbb{N}$ whose infiniteness is false or unproven.

Definition 1. We say that a non-negative integer k is a known element of \mathcal{X}, if $k \in \mathcal{X}$ and we know an algebraic expression that defines k and consists of the following signs: 1 (one), $+($ addition $), ~-($ subtraction $), ~ \cdot(m u l t i p l i c a t i o n), ~ ` ~(e x p o n e n t i a t i o n ~ w i t h ~ e x p o n e n t ~ i n ~ \mathbb{N})$, ! (factorial of a non-negative integer), ((left parenthesis),) (right parenthesis).

Let t denote the largest twin prime that is smaller than $((((((()!)!)!)!)!)!)!)!)!$. The number t is an unknown element of the set of twin primes.

Definition 2. Conditions (1)-(5) concern sets $\mathcal{X} \subseteq \mathbb{N}$.
(1) A known algorithm with no input returns an integer n satisfying $\operatorname{card}(\mathcal{X})<\omega \Rightarrow$ $X \subseteq(-\infty, n]$.
(2) A known algorithm for every $k \in \mathbb{N}$ decides whether or not $k \in \mathcal{X}$.
(3) No known algorithm with no input returns the logical value of the statement $\operatorname{card}(X)=\omega$.
(4) There are many elements of \mathcal{X} and it is conjectured, though so far unproven, that \mathcal{X} is infinite.
(5) \mathcal{X} is naturally defined. The infiniteness of \mathcal{X} is false or unproven. \mathcal{X} has the simplest definition among known sets $\mathcal{Y} \subseteq \mathbb{N}$ with the same set of known elements.

Condition (3) implies that no known proof shows the finiteness/infiniteness of \mathcal{X}. No known set $\mathcal{X} \subseteq \mathbb{N}$ satisfies Conditions (1)-(4) and is widely known in number theory or naturally defined, where this term has only informal meaning.

Edmund Landau's conjecture states that the set $\mathcal{P}_{n^{2}+1}$ of primes of the form $n^{2}+1$ is infinite, see [14]-[16]. Let [•] denote the integer part function. Let $\beta=(((24!)!)!)!$.
Lemma 1. $\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}\left(\log _{2}(\beta)\right)\right)\right)\right)\right)\right) \approx 1.42298$.
Proof. We ask Wolfram Alpha at http://wolframalpha.com.
Example 1. The set $\mathcal{X}=\mathcal{P}_{n^{2}+1}$ satisfies Condition (3).
Example 2. The set $\mathcal{X}=\left\{\begin{array}{ll}\mathbb{N}, & \text { if }\left[\frac{\beta}{\pi}\right] \text { is odd } \\ \emptyset, & \text { otherwise }\end{array}\right.$ does not satisfy Condition (3) because we know an algorithm with no input that computes $\left[\frac{\beta}{\pi}\right]$. The set of known elements of \mathcal{X} is empty. Hence, Condition (5) fails for \mathcal{X}.
Example 3. ([1], [11], [13, p. 9]). The function
$\mathbb{N} \ni n \xrightarrow{h} \begin{cases}1, & \text { if the decimal expansion of } \pi \text { contains } n \text { consecutive zeros } \\ 0, & \text { otherwise }\end{cases}$
is computable because $h=\mathbb{N} \times\{1\}$ or there exists $k \in \mathbb{N}$ such that

$$
h=(\{0, \ldots, k\} \times\{1\}) \cup(\{k+1, k+2, k+3, \ldots\} \times\{0\})
$$

No known algorithm computes the function h.

Example 4. The set

$$
X=\left\{\begin{array}{cl}
\mathbb{N}, & \text { if the continuum hypothesis holds } \\
\emptyset, & \text { otherwise }
\end{array}\right.
$$

is decidable. This \mathcal{X} satisfies Conditions (1) and (3) and does not satisfy Conditions (2), (4), and (5). These facts will hold forever.

Let Φ denote the following unproven statement:

$$
\operatorname{card}\left(\mathcal{P}_{n^{2}+1}\right)<\omega \Rightarrow \mathcal{P}_{n^{2}+1} \subseteq[2, \beta]
$$

Landau's conjecture implies the statement Φ. Theorem 6 heuristically justifies the statement Φ. This justification does not yield the finiteness/infiniteness of $\mathcal{P}_{n^{2}+1}$.
Statement 1. Condition (1) remains unproven for $\mathcal{X}=\mathcal{P}_{n^{2}+1}$.
Proof. For every set $\mathcal{X} \subseteq \mathbb{N}$, there exists an algorithm $\operatorname{Alg}(\mathcal{X})$ with no input that returns

$$
n=\left\{\begin{aligned}
0, & \text { if } \operatorname{card}(\mathcal{X}) \in\{0, \omega\} \\
\max (\mathcal{X}), & \text { otherwise }
\end{aligned}\right.
$$

This n satisfies the implication in Condition (1), but the algorithm $\operatorname{Alg}\left(\mathcal{P}_{n^{2}+1}\right)$ is unknown because its definition is ineffective.

Proving the statement Φ will disprove Statement 1 . Statement 1 cannot be formalized in mathematics understood as an a priori science because it refers to the current mathematical knowledge. The same is true for Open Problems $1-5$ and Statements $2-5$.

Definition 3. We say that an integer n is a threshold number of a set $\mathcal{X} \subseteq \mathbb{N}$, if $\operatorname{card}(\mathcal{X})<\omega \Rightarrow \mathcal{X} \subseteq(-\infty, n]$.

If a set $X \subseteq \mathbb{N}$ is empty or infinite, then any integer n is a threshold number of \mathcal{X}. If a set $\mathcal{X} \subseteq \mathbb{N}$ is non-empty and finite, then the all threshold numbers of \mathcal{X} form the set $[\max (\mathcal{X}), \infty) \cap \mathbb{N}$.

2. The physical limits of computation inspire Open Problem 1

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 2$.
Statement 2. The set

$$
\mathcal{X}=\left\{k \in \mathbb{N}:\left(10^{6}<k\right) \Rightarrow\left(f\left(10^{6}\right), f(k)\right) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}
$$

satisfies Conditions (1)-(4). Condition (5) fails for \mathcal{X}.
Proof. Condition (4) holds as $\mathcal{X} \supseteq\left\{0, \ldots, 10^{6}\right\}$ and the set $\mathcal{P}_{n^{2}+1}$ is conjecturally infinite. By Lemma 1, due to known physics we are not able to confirm by a direct computation that some element of $\mathcal{P}_{n^{2}+1}$ is greater than $f\left(10^{6}\right)>f(7)=\beta$, see [7]. Thus Condition (3) holds. Condition (2) holds trivially. Since the set

$$
\left\{k \in \mathbb{N}:\left(10^{6}<k\right) \wedge\left(f\left(10^{6}\right), f(k)\right) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\}
$$

is empty or infinite, the integer 10^{6} is a threshold number of \mathcal{X}. Thus \mathcal{X} satisfies Condition (1). Condition (5) fails for \mathcal{X} as the set of known elements of \mathcal{X} equals $\left\{0, \ldots, 10^{6}\right\}$.

For a non-negative integer n, let $\theta(n)$ denote the largest integer divisor of $10^{10^{10}}$ smaller than n. For a non-negative integer n, let $\theta_{1}(n)$ denote the largest integer divisor of 10^{10} smaller than n.

Lemma 2. For every integer $j>10^{10^{10}}, \theta(j)=10^{10^{10}}$.
Lemma 3. For every integer $j \in(6553600,7812500], \theta(j)=6553600$.
Proof. 6553600 equals $2^{18} \cdot 5^{2}$ and divides $10^{10^{10}} .7812500<2^{24} .7812500<5^{10}$. We need to prove that every integer $j \in(6553600,7812500)$ does not divide $10^{10^{10}}$. It holds as the set

$$
\left\{2^{u} \cdot 5^{v}:(u \in\{0, \ldots, 23\}) \wedge(v \in\{0, \ldots, 9\})\right\}
$$

contains 6553600 and 7812500 as consecutive elements.
Lemma 4. The number $6553600^{2}+1$ is prime.
Proof. The following PARI/GP ([8]) command

```
isprime(6553600^2+1,{flag=2})
```

returns 1. This command performs the APRCL primality test, the best deterministic primality test algorithm ([17, p. 226]). It rigorously shows that the number $6553600^{2}+1$ is prime.

In the next lemmas, the execution of the command isprime ($n,\{f 1 \mathrm{ag}=2\}$) proves the primality of n.
Lemma 5. The number $10142101504^{2}+1$ is prime. $10142101504>10^{10}$.
Lemma 6. The function

$$
\mathbb{N} \ni n \xrightarrow{\kappa} \text { the_exponent_of_2_in_the_prime_factorization_of_ } \underbrace{n+1} \in \mathbb{N}
$$

takes every non-negative integer value infinitely often.
Before Open Problem $1, X$ denotes the set $\left\{n \in \mathbb{N}:(\theta(n)+\kappa(n))^{2}+1\right.$ is prime $\}$.
Lemma 7. The set \mathcal{X} satisfies $\operatorname{card}(\mathcal{X}) \geqslant 629450$.
Proof. By Lemmas 3 and 4, for every even integer $j \in(6553600,7812500]$, the number $(\theta(j)+\kappa(j))^{2}+1=(6553600+0)^{2}+1$ is prime. Hence,

$$
\{2 k: k \in \mathbb{N}\} \cap(6553600,7812500] \subseteq \mathcal{X}
$$

Consequently,

$$
\operatorname{card}(\mathcal{X}) \geqslant \operatorname{card}(\{2 k: k \in \mathbb{N}\} \cap(6553600,7812500])=\frac{7812500-6553600}{2}=629450
$$

Lemma 8. $10242 \in \mathcal{X} .10242 \notin \mathcal{X}_{1}=\left\{n \in \mathbb{N}:\left(\theta_{1}(n)+\kappa(n)\right)^{2}+1\right.$ is prime $\}$.
Proof. The number $10240=2^{11} \cdot 5$ divides $10^{10^{10}}$. Hence, $\theta(10242)=10240$. The number $(\theta(10242)+\kappa(10242))^{2}+1=(10240+0)^{2}+1$ is prime. The set

$$
\left\{2^{u} \cdot 5^{v}:(u \in\{0, \ldots, 10\}) \wedge(v \in\{0, \ldots, 10\})\right\}
$$

contains 10000 and 12500 as consecutive elements. Hence, $\theta_{1}(10242)=10000$. The number $\left(\theta_{1}(10242)+\kappa(10242)\right)^{2}+1=(10000+0)^{2}+1=17 \cdot 5882353$ is composite.

Statement 3. The set \mathcal{X} satisfies Conditions (1)-(5) except the requirement that \mathcal{X} is naturally defined.

Proof. Condition (2) holds trivially. Let δ denote $10^{10^{10}}$. By Lemmas 2 and 6 Condition (1) holds for $n=\delta$. Since the statement $\mathcal{P}_{n^{2}+1} \cap\left(\delta^{2}+1, \infty\right) \neq \emptyset$ remains unproven, Condition (3) holds. Lemma 7 and the implication

$$
\mathcal{P}_{n^{2}+1} \cap\left(\delta^{2}+1, \infty\right) \neq \emptyset \Longrightarrow \operatorname{card}(\mathcal{X})=\omega
$$

show that Condition (4) holds. By Lemma 5, the set \mathcal{X}_{1} is infinite. Since Definition 1 applies to sets $\mathcal{X} \subseteq \mathbb{N}$ whose infiniteness is false or unproven, Condition 5 holds except the requirement that \mathcal{X} is naturally defined.

The set \mathcal{X} satisfies Condition (5) except the requirement that \mathcal{X} is naturally defined. It is true because \mathcal{X}_{1} is infinite and Definition 1 applies only to sets $\mathcal{X} \subseteq \mathbb{N}$ whose infiniteness is false or unproven. Ignoring this restriction, \mathcal{X} still satisfies the same identical condition due to Lemma 8
Open Problem 1. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ which satisfies Conditions (1)-(5)?
The answers to Open Problems $1-5$ may change in time as they depend on the current mathematical knowledge. These answers are currently negative.
Theorem 1. No set $\mathcal{X} \subseteq \mathbb{N}$ will satisfy Conditions (1)-(4) forever, if for every algorithm with no input, at some future day, a computer will be able to execute this algorithm in 1 second or less.

Proof. The proof goes by contradiction. We fix an integer n that satisfies Condition (1). Since Conditions (1)-(3) will hold forever, the semi-algorithm in Figure 1 never terminates and sequentially prints the following sentences:

$$
\begin{equation*}
n+1 \notin \mathcal{X}, n+2 \notin \mathcal{X}, n+3 \notin \mathcal{X}, \ldots \tag{T}
\end{equation*}
$$

Fig. 1 Semi-algorithm that terminates if and only if \mathcal{X} is infinite
The sentences from the sequence (T) and our assumption imply that for every integer $m>n$ computed by a known algorithm, at some future day, a computer will be able to confirm in 1 second or less that $(n, m] \cap \mathcal{X}=\emptyset$. Thus, at some future day, numerical evidence will support the conjecture that the set \mathcal{X} is finite, contrary to the conjecture in Condition (4).

The physical limits of computation ([7]) disprove the assumption of Theorem 1

3. Number-theoretic statements Ψ_{n}

Let \mathcal{U}_{1} denote the system of equations which consists of the equation $x_{1}!=x_{1}$. For an integer $n \geqslant 2$, let \mathcal{U}_{n} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{1} \\
x_{1} \cdot x_{1} & =x_{2} \\
\forall i \in\{2, \ldots, n-1\} x_{i}! & =x_{i+1}
\end{aligned}\right.
$$

Lemma 9. For every positive integer n, the system \mathcal{U}_{n} has exactly two solutions in positive integers x_{1}, \ldots, x_{n}, namely $(1, \ldots, 1)$ and $(f(1), \ldots, f(n))$.

Let B_{n} denote the following system of equations:

$$
\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

For every positive integer n, no known system $\mathcal{S} \subseteq B_{n}$ with a finite number of solutions in positive integers x_{1}, \ldots, x_{n} has a solution $\left(x_{1}, \ldots, x_{n}\right) \in(\mathbb{N} \backslash\{0\})^{n}$ satisfying $\max \left(x_{1}, \ldots, x_{n}\right)>f(n)$. For every positive integer n and for every known system $\mathcal{S} \subseteq B_{n}$, if the finiteness/infiniteness of the set

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in(\mathbb{N} \backslash\{0\})^{n}:\left(x_{1}, \ldots, x_{n}\right) \text { solves } \mathcal{S}\right\}
$$

is unknown, then the statement

$$
\exists x_{1}, \ldots, x_{n} \in \mathbb{N} \backslash\{0\}\left(\left(x_{1}, \ldots, x_{n}\right) \text { solves } \mathcal{S}\right) \wedge\left(\max \left(x_{1}, \ldots, x_{n}\right)>f(n)\right)
$$

remains unproven.
For a positive integer n, let Ψ_{n} denote the following statement: if a system $\mathcal{S} \subseteq B_{n}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant f(n)$. The statement Ψ_{n} says that for subsystems of B_{n} with a finite number of solutions, the largest known solution is indeed the largest possible. The statements Ψ_{1} and Ψ_{2} hold trivially. There is no reason to assume the validity of the statement $\forall n \in \mathbb{N} \backslash\{0\} \Psi_{n}$.
Theorem 2. For every statement Ψ_{n}, the bound $f(n)$ cannot be decreased.
Proof. It follows from Lemma 9 because $\mathcal{U}_{n} \subseteq B_{n}$.
Theorem 3. For every integer $n \geqslant 2$, the statement Ψ_{n+1} implies the statement Ψ_{n}.
Proof. If a system $\mathcal{S} \subseteq B_{n}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then for every integer $i \in\{1, \ldots, n\}$ the system $\mathcal{S} \cup\left\{x_{i}!=x_{n+1}\right\}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n+1}. The statement Ψ_{n+1} implies that $x_{i}!=x_{n+1} \leqslant f(n+1)=f(n)!$. Hence, $x_{i} \leqslant f(n)$.

Theorem 4. Every statement Ψ_{n} is true with an unknown integer bound that depends on n.
Proof. For every positive integer n, the system B_{n} has a finite number of subsystems.

4. A conjectural solution of Open Problem 1

Lemma 10. For every positive integers x and $y, x!\cdot y=y!$ if and only if

$$
(x+1=y) \vee(x=y=1)
$$

Let \mathcal{A} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{1} \cdot x_{1} & =x_{2} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 10 and the diagram in Figure 2 explain the construction of the system \mathcal{A}.

Fig. 2 Construction of the system \mathcal{A}
Lemma 11. (Wilson's theorem, [4] p. 89]). For every integer $x \geqslant 2, x$ is prime if and only if x divides $(x-1)!+1$.

Lemma 12. For every integer $x_{1} \geqslant 2$, the system \mathcal{A} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}^{2} \\
x_{3} & =\left(x_{1}^{2}\right)! \\
x_{4} & =\left(\left(x_{1}^{2}\right)!\right)! \\
x_{5} & =x_{1}^{2}+1 \\
x_{6} & =\left(x_{1}^{2}+1\right)! \\
x_{7} & =\frac{\left(x_{1}^{2}\right)!+1}{x_{1}^{2}+1} \\
x_{8} & =\left(x_{1}^{2}\right)!+1 \\
x_{9} & =\left(\left(x_{1}^{2}\right)!+1\right)!
\end{aligned}
$$

Proof. By Lemma 10, for every integer $x_{1} \geqslant 2$, the system \mathcal{A} is solvable in positive integers x_{2}, \ldots, x_{9} if and only if $x_{1}^{2}+1$ divides $\left(x_{1}^{2}\right)!+1$. Hence, the claim of Lemma 12 follows from Lemma 11

Lemma 13. There are only finitely many tuples $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$, which solve the system \mathcal{A} and satisfy $x_{1}=1$. It is true as every such tuple $\left(x_{1}, \ldots, x_{9}\right)$ satisfies $x_{1}, \ldots, x_{9} \in\{1,2\}$.
Proof. The equality $x_{1}=1$ implies that $x_{2}=x_{1} \cdot x_{1}=1$. Hence, $x_{3}=x_{2}!=1$. Therefore, $x_{4}=x_{3}!=1$. The equalities $x_{5}!=x_{6}$ and $x_{5}=1 \cdot x_{5}=x_{3} \cdot x_{5}=x_{6}$ imply that $x_{5}, x_{6} \in$ $\{1,2\}$. The equalities $x_{8}!=x_{9}$ and $x_{8}=1 \cdot x_{8}=x_{4} \cdot x_{8}=x_{9}$ imply that $x_{8}, x_{9} \in\{1,2\}$. The equality $x_{5} \cdot x_{7}=x_{8}$ implies that $x_{7}=\frac{x_{8}}{x_{5}} \in\left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{2}{2}\right\} \cap(\mathbb{N} \backslash\{0\})=\{1,2\}$.
Conjecture 1. The statement Ψ_{9} is true when is restricted to the system \mathcal{A}.
Theorem 5. Conjecture 1 proves the following implication: if there exists an integer $x_{1} \geqslant 2$ such that $x_{1}^{2}+1$ is prime and greater than $f(7)$, then the $\operatorname{set} \mathcal{P}_{n^{2}+1}$ is infinite.
Proof. Suppose that the antecedent holds. By Lemma 12, there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{A}. Since $x_{1}^{2}+1>f(7)$, we obtain that $x_{1}^{2} \geqslant f(7)$. Hence, $\left(x_{1}^{2}\right)!\geqslant f(7)!=f(8)$. Consequently,

$$
x_{9}=\left(\left(x_{1}^{2}\right)!+1\right)!\geqslant(f(8)+1)!>f(8)!=f(9)
$$

Conjecture 1 and the inequality $x_{9}>f(9)$ imply that the system \mathcal{A} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}$. According to Lemmas 12 and 13 , the set $\mathcal{P}_{n^{2}+1}$ is infinite.

Theorem 6. Conjecture 1 implies the statement Φ.
Proof. It follows from Theorem 5 and the equality $f(7)=(((24!)!)!)!$.
Theorem 7. The statement Φ implies Conjecture 1
Proof. By Lemmas 12 and 13, if positive integers x_{1}, \ldots, x_{9} solve the system \mathcal{A}, then

$$
\left(x_{1} \geqslant 2\right) \wedge\left(x_{5}=x_{1}^{2}+1\right) \wedge\left(x_{5} \text { is prime }\right)
$$

or $x_{1}, \ldots, x_{9} \in\{1,2\}$. In the first case, Lemma 12 and the statement Φ imply that the inequality $x_{5} \leqslant(((24!)!)!)!=f(7)$ holds when the system \mathcal{A} has at most finitely many solutions in positive integers x_{1}, \ldots, x_{9}. Hence, $x_{2}=x_{5}-1<f(7)$ and $x_{3}=x_{2}!<f(7)!=f(8)$. Continuing this reasoning in the same manner, we can show that every x_{i} does not exceed $f(9)$.

Statement 4. Conditions (2)-(5) hold for $\mathcal{X}=\mathcal{P}_{n^{2}+1}$. The statement Φ implies that Condition (1) holds for $\mathcal{X}=\mathcal{P}_{n^{2}+1}$.

Proof. The set $\mathcal{P}_{n^{2}+1}$ is conjecturally infinite. There are 2199894223892 primes of the form $n^{2}+1$ in the interval $\left[2,10^{28}\right.$), see [15]. These two facts imply Condition (4). By Lemma 1, due to known physics we are not able to confirm by a direct computation that some element of $\mathcal{P}_{n^{2}+1}$ is greater than $f(7)=(((24!)!)!)!=\beta$, see [7]. Thus Condition (3) holds. Conditions (2) and (5) hold trivially. The statement Φ implies that Condition (1) holds for $\mathcal{X}=\mathcal{P}_{n^{2}+1}$ with $n=\beta=(((24!)!)!)!$.

Proving Landau's conjecture will disprove Statement 4
Conjecture 2. (Conditions (1)-(5) hold for $\left.\mathcal{X}=\mathcal{P}_{n^{2}+1}\right) \wedge \Phi$.
Conjecture 2 implies that every known proof of the statement Φ does not yield the finiteness/infiniteness of $\mathcal{P}_{n^{2}+1}$.
5. Satisfiable conjunctions which consist of Conditions 1-5 and their negations

The set $\mathcal{X}=\mathcal{P}_{n^{2}+1}$ satisfies the conjunction
$\neg($ Condition 1$) \wedge($ Condition 2$) \wedge($ Condition 3$) \wedge($ Condition 4$) \wedge($ Condition 5$)$
The set $\mathcal{X}=\{0, \ldots, f(7)\} \cup \mathcal{P}_{n^{2}+1}$ satisfies the conjunction
$\neg($ Condition 1$) \wedge($ Condition 2$) \wedge($ Condition 3$) \wedge($ Condition 4$) \wedge \neg($ Condition 5$)$
The set $\mathcal{X}=\left\{\begin{array}{l}\mathbb{N}, \text { if }\left(f\left(9^{8}\right), f\left(9^{9}\right)\right) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset \\ \left\{0, \ldots, 10^{6}\right\}, \text { otherwise }\end{array}\right.$ satisfies the conjunction
$($ Condition 1$) \wedge($ Condition 2$) \wedge \neg($ Condition 3$) \wedge($ Condition 4$) \wedge \neg($ Condition 5$)$
Open Problem 2. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies the conjunction
$($ Condition 1$) \wedge($ Condition 2$) \wedge \neg($ Condition 3$) \wedge($ Condition 4$) \wedge($ Condition 5$)$?
The numbers $2^{2^{k}}+1$ are prime for $k \in\{0,1,2,3,4\}$. It is open whether or not there are infinitely many primes of the form $2^{2^{k}}+1$, see [6, p. 158] and [12], p. 74]. It is open whether or not there are infinitely many composite numbers of the form $2^{2^{k}}+1$, see [6, p. 159] and [12, p. 74]. Most mathematicians believe that $2^{2^{k}}+1$ is composite for every integer $k \geqslant 5$, see [5] p. 23].

The set

$$
\mathcal{X}=\left\{\begin{array}{l}
\mathbb{N}, \text { if }\left(f\left(9^{8}\right), f\left(9^{9}\right)\right) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset \\
\left\{0, \ldots, 10^{6}\right\} \cup\left\{n \in \mathbb{N}: n \text { is the sixth prime number of the form } 2^{2^{k}}+1\right\}, \text { otherwise }
\end{array}\right.
$$

satisfies the conjunction
$\neg($ Condition 1$) \wedge($ Condition 2$) \wedge \neg($ Condition 3$) \wedge($ Condition 4$) \wedge \neg($ Condition 5$)$
Open Problem 3. Is there a set $\mathcal{X} \subseteq \mathbb{N}$ that satisfies the conjunction
$\neg($ Condition 1$) \wedge($ Condition 2$) \wedge \neg($ Condition 3$) \wedge($ Condition 4$) \wedge($ Condition 5$)$?
It is possible, although very doubtful, that at some future day, the set $\mathcal{X}=\mathcal{P}_{n^{2}+1}$ will solve Open Problem 2, The same is true for Open Problem 3 It is possible, although very doubtful, that at some future day, the set $\mathcal{X}=\left\{k \in \mathbb{N}: 2^{2^{k}}+1\right.$ is composite $\}$ will solve Open Problem 1. The same is true for Open Problems 2 and 3 .

The following table shows satisfiable conjunctions of the form \#(Condition 1$) \wedge$ $($ Condition 2$) \wedge \#($ Condition 3$) \wedge($ Condition 4$) \wedge \#($ Condition 5$)$, where $\#$ denotes the negation \neg or its absence.

	(Condition 2) ^(Condition 3) \wedge (Condition 4)	(Condition 2) $\wedge \neg($ Condition 3) \wedge (Condition 4)
(Condition 1) ^ (Condition 5)	Open Problem 1 (conjecturally solved with $\mathcal{X}=\mathcal{P}_{n^{2}+1}$)	Open Problem 2
(Condition 1) \wedge $\neg($ Condition 5)	$\begin{aligned} & \mathcal{X}=\left\{k \in \mathbb{N}:\left(10^{6}<k\right) \Rightarrow\right. \\ & \left.\left(f\left(10^{6}\right), f(k)\right) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset\right\} \end{aligned}$	$\mathcal{X}=\left\{\begin{array}{l} \mathbb{N}, \text { if }\left(f\left(9^{8}\right), f\left(9^{9}\right)\right) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset \\ \left\{0, \ldots, 10^{6}\right\}, \text { otherwise } \end{array}\right.$
$\neg($ Condition 1$) \wedge$ (Condition 5)	$\boldsymbol{X}=\mathcal{P}_{n^{2}+1}$	Open Problem 3
$\neg($ Condition 1$) \wedge$ $\neg($ Condition 5)	$X=\{0, \ldots, f(7)\} \cup \mathcal{P}_{n^{2}+1}$	$X=\left\{\begin{array}{l} \mathbb{N}, \text { if }\left(f\left(9^{8}\right), f\left(9^{9}\right)\right) \cap \mathcal{P}_{n^{2}+1} \neq \emptyset \\ \left\{0, \ldots, 10^{6}\right\} \cup\{n \in \mathbb{N}: n \text { is } \\ \text { the sixth prime number of } \\ \text { the form } \left.2^{2^{k}}+1\right\}, \text { otherwise } \end{array}\right.$

6. Previously known results of a similar type

Statements 1.4 and Open Problems 1.3 cannot be formalized in mathematics understood as an a priori science. Previously known statements of this type, such as Statement 5, express the current knowledge on particular elements of \mathbb{N}, which are known to us according to Definition 1. Previously known open problems of this type, such as Open Problems 4 and 5, ask about constructive existence of special elements of \mathbb{N}.

Statement 5. ([2], [3], [6, p. 209], [10]). The numbers $2^{2^{22}}+1$ and $2^{2^{24}}+1$ are composite. The known integer divisors of $2^{2^{22}}+1$ form the set $\left\{-2^{2^{22}}-1,-1,1,2^{2^{22}}+1\right\}$. The known integer divisors of $2^{2^{24}}+1$ form the set $\left\{-2^{2^{24}}-1,-1,1,2^{2^{24}}+1\right\}$.
Open Problem 4. Is there a known prime number greater than $10^{10^{10^{10}}}$?
Open Problem 5. Is there a known threshold number of $\mathcal{P}_{n^{2}+1}$?
7. A new heuristic argument for the infiniteness of $\mathcal{P}_{n^{2}+1}$

The system \mathcal{A} contains four factorials and four multiplications. Let \mathcal{F} denote the family of all systems $\mathcal{S} \subseteq B_{9}$ which contain at most four factorials and at most four multiplications.

Among known systems $\mathcal{S} \in \mathcal{F}$, the following system C

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2} \cdot x_{9} & =x_{1} \\
x_{2} \cdot x_{2} & =x_{3} \\
x_{3} \cdot x_{3} & =x_{4} \\
x_{4} \cdot x_{4} & =x_{5} \\
x_{5}! & =x_{6} \\
x_{6}! & =x_{7} \\
x_{7}! & =x_{8}
\end{aligned}\right.
$$

attains the greatest solution in positive integers x_{1}, \ldots, x_{9} and has at most finitely many solutions in $(\mathbb{N} \backslash\{0\})^{9}$. Only the tuples $(1, \ldots, 1)$ and $(2,2,4,16,256,256!,(256!)!,((256!)!)!, 1)$ solve C and belong to $(\mathbb{N} \backslash\{0\})^{9}$.

For every known system $\mathcal{S} \in \mathcal{F}$, if the finiteness of the set

$$
\left\{\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0\})^{9}:\left(x_{1}, \ldots, x_{9}\right) \text { solves } \mathcal{S}\right\}
$$

is unproven and conjectured, then the statement

$$
\exists x_{1}, \ldots, x_{9} \in \mathbb{N} \backslash\{0\}\left(\left(x_{1}, \ldots, x_{9}\right) \text { solves } \mathcal{S}\right) \wedge\left(\max \left(x_{1}, \ldots, x_{9}\right)>((256!)!)!\right)
$$

remains unproven.
Let Γ denote the statement: if the system \mathcal{A} has at most finitely many solutions in positive integers x_{1}, \ldots, x_{9}, then each such solution $\left(x_{1}, \ldots, x_{9}\right)$ satisfies $x_{1}, \ldots, x_{9} \leqslant((256!)!)$!. The number $46^{512}+1$ is prime $([9])$ and greater than 256 !, see also [12, p. 239] for the primality of $150^{2048}+1$. Hence, the statement Γ is equivalent to the infiniteness of $\mathcal{P}_{n^{2}+1}$. It heuristically justifies the infiniteness of $\mathcal{P}_{n^{2}+1}$ in a sophisticated way.

Acknowledgement. An earlier version of this article was presented at Logic Colloquium 2021, http://lc2021.pl. Agnieszka Kozdęba prepared two diagrams. Apoloniusz Tyszka wrote the article.

References

[1] J. Case and M. Ralston, Beyond Rogers' non-constructively computable function, in: The nature of computation, Lecture Notes in Comput. Sci., 7921, 45-54, Springer, Heidelberg, 2013, http://link.springer. com/chapter/10.1007/978-3-642-39053-1_6
[2] R. Crandall, J. Doenias, C. Norrie, J. Young, The twenty-second Fermat number is composite, Math. Comp. 64 (1995), 863-868.
[3] R. Crandall, E. Mayer, J. Papadopoulos, The twenty-fourth Fermat number is composite, Math. Comp. 72 (2003), 1555-1572.
[4] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[5] J.-M. De Koninck and F. Luca, Analytic number theory: Exploring the anatomy of integers, American Mathematical Society, Providence, RI, 2012.
[6] M. Křížek, F. Luca, L. Somer, 17 lectures on Fermat numbers: from number theory to geometry, Springer, New York, 2001.
[7] S. Lloyd, Ultimate physical limits to computation, Nature 406 (2000), 1047-1054, http://doi.org/10.1038/ 35023282
[8] PARI/GP online documentation, http://pari.math.u-bordeaux.fr/dochtml/html/Arithmetic_functions.html
[9] X. M. Pi, Searching for generalized Fermat primes (Chinese), J. Math. (Wuhan) 18 (1998), no. 3, 276-280.
[10] Proth Search Page, http://www.prothsearch.com/fermat.html\#Complete
[11] R. Reitzig, How can it be decidable whether π has some sequence of digits?, http://cs.stackexchange.com/ questions/367/how-can-it-be-decidable-whether-pi-has-some-sequence-of-digits
[12] P. Ribenboim, The little book of bigger primes, 2nd ed., Springer-Verlag, New York, 2004.
[13] H. Rogers, Jr., Theory of recursive functions and effective computability, 2nd ed., MIT Press, Cambridge, MA, 1987.
[14] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002496, Primes of the form $n^{2}+1$, http://oeis.org/A002496
[15] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A083844, Number of primes of the form $x^{2}+1<10^{n}$, http://oeis.org/A083844
[16] Wolfram MathWorld, Landau's Problems, http://mathworld.wolfram.com/LandausProblems.html
[17] S. Y. Yan, Number theory for computing, 2nd ed., Springer, Berlin, 2002.

Agnieszka Kozdęba

Faculty of Environmental Engineering and Land Surveying
Hugo Kołłątaj University
Balicka 253C, 30-198 Kraków, Poland
Institute of Mathematics
Jagiellonian University
Łojasiewicza 6, 30-348 Kraków, Poland

Apoloniusz Tyszka
Technical Faculty
Hugo Kołłątaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail address: rttyszka@cyf-kr.edu.pl

