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Abstract. Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2. Edmund
Landau’s conjecture states that the set Pn2+1 of primes of the form n2 + 1 is infinite. Landau’s
conjecture implies the following unproven statement Φ: card(Pn2+1) < ω⇒ Pn2+1 ⊆ [2, f (7)]. Let
B denote the system of equations: {xi! = xk : i, k ∈ {1, . . . , 9}} ∪ {xi · x j = xk : i, j, k ∈ {1, . . . , 9}}.
We write some system U ⊆ B of 9 equations which has exactly two solutions in positive
integers x1, . . . , x9, namely (1, . . . , 1) and ( f (1), . . . , f (9)). No known system S ⊆ B with a
finite number of solutions in positive integers x1, . . . , x9 has a solution (x1, . . . , x9) ∈ (N \ {0})9

satisfying max(x1, . . . , x9) > f (9). For every known system S ⊆ B, if the finiteness/infiniteness
of the set {(x1, . . . , x9) ∈ (N \ {0})9 : (x1, . . . , x9) solves S} is unknown, then the statement
∃x1, . . . , x9 ∈ N \ {0} ((x1, . . . , x9) solves S) ∧ (max(x1, . . . , x9) > f (9)) remains unproven. We write
some system A ⊆ B of 8 equations. Let Λ denote the statement: if the system A has at most
finitely many solutions in positive integers x1, . . . , x9, then each such solution (x1, . . . , x9) satisfies
x1, . . . , x9 6 f (9). The statement Λ is equivalent to the statement Φ. It heuristically justifies the
statement Φ. This justification does not yield the finiteness/infiniteness of Pn2+1. We present a new
heuristic argument for the infiniteness of Pn2+1, which is not based on the statement Φ. Algorithms
always terminate. We explain the distinction between existing algorithms (i.e. algorithms whose
existence is provable in ZFC) and known algorithms (i.e. algorithms whose definition is constructive
and currently known). Assuming that the infiniteness of a set X ⊆ N is false or unproven, we define
which elements of X are classified as known. No known set X ⊆ N satisfies Conditions (1)�(4)
and is widely known in number theory or naturally defined, where this term has only informal
meaning. (1) A known algorithm with no input returns an integer n satisfying card(X) < ω⇒
X ⊆ (−∞, n]. (2) A known algorithm for every k ∈ N decides whether or not k ∈ X. (3) No known
algorithm with no input returns the logical value of the statement card(X) = ω. (4) There are many
elements of X and it is conjectured, though so far unproven, that X is infinite. (5) X is naturally
defined. The infiniteness of X is false or unproven. X has the simplest definition among known
sets Y ⊆ N with the same set of known elements. Conditions (2)�(5) hold for X = Pn2+1. The
statement Φ implies the conjunction of Conditions (1)�(5) for X = Pn2+1. We define a set X ⊆ N
which satisfies Conditions (1)�(5) except the requirement that X is naturally defined. We present a
table that shows satisfiable conjunctions of the form #(Condition 1)∧(Condition 2)∧#(Condition 3)∧
(Condition 4)∧#(Condition 5), where # denotes the negation ¬ or the absence of any symbol. No set
X ⊆ N will satisfy Conditions (1)�(4) forever, if for every algorithm with no input, at some future
day, a computer will be able to execute this algorithm in 1 second or less. The physical limits of
computation disprove this assumption.
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Purely mathematical results

1. Number-theoretic statements Ψn

Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2. LetU1 denote
the system of equations which consists of the equation x1! = x1. For an integer n > 2, let
Un denote the following system of equations:

x1! = x1
x1 · x1 = x2

∀i ∈ {2, . . . , n − 1} xi! = xi+1

Lemma 1. For every positive integer n, the systemUn has exactly two solutions in positive
integers x1, . . . , xn, namely (1, . . . , 1) and ( f (1), . . . , f (n)).

Let Bn denote the following system of equations:{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
For every positive integer n, no known system S ⊆ Bn with a finite number of
solutions in positive integers x1, . . . , xn has a solution (x1, . . . , xn) ∈ (N \ {0})n satisfying
max(x1, . . . , xn) > f (n). For every positive integer n and for every known system S ⊆ Bn,
if the finiteness/infiniteness of the set

{(x1, . . . , xn) ∈ (N \ {0})n : (x1, . . . , xn) solves S}

is unknown, then the statement

∃x1, . . . , xn ∈ N \ {0} ((x1, . . . , xn) solves S) ∧ (max(x1, . . . , xn) > f (n))

remains unproven.

For a positive integer n, let Ψn denote the following statement: if a system S ⊆ Bn

has at most finitely many solutions in positive integers x1, . . . , xn, then each such solution
(x1, . . . , xn) satisfies x1, . . . , xn 6 f (n). The statement Ψn says that for subsystems of Bn

with a finite number of solutions, the largest known solution is indeed the largest possible.
The statements Ψ1 and Ψ2 hold trivially. There is no reason to assume the validity of the
statement ∀n ∈ N \ {0} Ψn.

Theorem 1. For every statement Ψn, the bound f (n) cannot be decreased.

Proof. It follows from Lemma 1 becauseUn ⊆ Bn. �

Theorem 2. For every integer n > 2, the statement Ψn+1 implies the statement Ψn.

Proof. If a system S ⊆ Bn has at most finitely many solutions in positive integers
x1, . . . , xn, then for every integer i ∈ {1, . . . , n} the system S ∪ {xi! = xn+1} has at most
finitely many solutions in positive integers x1, . . . , xn+1. The statement Ψn+1 implies that
xi! = xn+1 6 f (n + 1) = f (n)!. Hence, xi 6 f (n). �

Theorem 3. Every statement Ψn is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system Bn has a finite number of subsystems. �

2. On Edmund Landau’s conjecture that the set Pn2+1 of primes of the form n2 + 1 is
infinite

Lemma 2. For every positive integers x and y, x! · y = y! if and only if

(x + 1 = y) ∨ (x = y = 1)
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LetA denote the following system of equations:

x2! = x3
x3! = x4
x5! = x6
x8! = x9

x1 · x1 = x2
x3 · x5 = x6
x4 · x8 = x9
x5 · x7 = x8

Lemma 2 and the diagram in Figure 1 explain the construction of the systemA.

Fig. 1 Construction of the systemA

Lemma 3. (Wilson’s theorem, [4, p. 89]). For every integer x > 2, x is prime if and only if
x divides (x − 1)! + 1.

Lemma 4. For every integer x1 > 2, the systemA is solvable in positive integers x2, . . . , x9
if and only if x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are uniquely determined
by the following equalities:

x2 = x2
1

x3 =
(
x2

1

)
!

x4 =
((

x2
1

)
!
)
!

x5 = x2
1 + 1

x6 =
(
x2

1 + 1
)
!

x7 =

(
x2

1

)
! + 1

x2
1 + 1

x8 =
(
x2

1

)
! + 1

x9 =
((

x2
1

)
! + 1

)
!

Proof. By Lemma 2, for every integer x1 > 2, the systemA is solvable in positive integers
x2, . . . , x9 if and only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of Lemma 4 follows

from Lemma 3. �
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Lemma 5. There are only finitely many tuples (x1, . . . , x9) ∈ (N \ {0})9, which solve
the system A and satisfy x1 = 1. It is true as every such tuple (x1, . . . , x9) satisfies
x1, . . . , x9 ∈ {1, 2}.

Proof. The equality x1 = 1 implies that x2 = x1 · x1 = 1. Hence, x3 = x2! = 1. Therefore,
x4 = x3! = 1. The equalities x5! = x6 and x5 = 1 · x5 = x3 · x5 = x6 imply that x5, x6 ∈

{1, 2}. The equalities x8! = x9 and x8 = 1 · x8 = x4 · x8 = x9 imply that x8, x9 ∈ {1, 2}. The
equality x5 · x7 = x8 implies that x7 =

x8
x5
∈

{
1
1 ,

1
2 ,

2
1 ,

2
2

}
∩ (N \ {0}) = {1, 2}. �

Conjecture 1. The statement Ψ9 is true when is restricted to the systemA.

Edmund Landau’s conjecture states that the set Pn2+1 of primes of the form n2 + 1 is
infinite, see [14]–[16].

Theorem 4. Conjecture 1 proves the following implication: if there exists an integer x1 > 2
such that x2

1 + 1 is prime and greater than f (7), then the set Pn2+1 is infinite.

Proof. Suppose that the antecedent holds. By Lemma 4, there exists a unique tuple
(x2, . . . , x9) ∈ (N \ {0})8 such that the tuple (x1, x2, . . . , x9) solves the system A. Since
x2

1 + 1 > f (7), we obtain that x2
1 > f (7). Hence, (x2

1)! > f (7)! = f (8). Consequently,

x9 = ((x2
1)! + 1)! > ( f (8) + 1)! > f (8)! = f (9)

Conjecture 1 and the inequality x9 > f (9) imply that the system A has infinitely many
solutions (x1, . . . , x9) ∈ (N \ {0})9. According to Lemmas 4 and 5, the set Pn2+1 is infinite.

�

Landau’s conjecture implies the following unproven statement Φ:

card(Pn2+1) < ω⇒ Pn2+1 ⊆ [2, (((24!)!)!)!]

Theorem 5 heuristically justifies the statement Φ. This justification does not yield the
finiteness/infiniteness of Pn2+1.

Theorem 5. Conjecture 1 implies the statement Φ.

Proof. It follows from Theorem 4 and the equality f (7) = (((24!)!)!)!. �

Theorem 6. The statement Φ implies Conjecture 1.

Proof. By Lemmas 4 and 5, if positive integers x1, . . . , x9 solve the systemA, then

(x1 > 2) ∧ (x5 = x2
1 + 1) ∧ (x5 is prime)

or x1, . . . , x9 ∈ {1, 2}. In the first case, Lemma 4 and the statement Φ imply
that the inequality x5 6 (((24!)!)!)! = f (7) holds when the system A has at most
finitely many solutions in positive integers x1, . . . , x9. Hence, x2 = x5 − 1 < f (7) and
x3 = x2! < f (7)! = f (8). Continuing this reasoning in the same manner, we can show that
every xi does not exceed f (9). �

3. A new heuristic argument for the infiniteness of Pn2+1

The system A contains four factorials and four multiplications. Let F denote the
family of all systems S ⊆ B9 which contain at most four factorials and at most four
multiplications.
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Among known systems S ∈ F , the following system C

x1! = x2
x2 · x9 = x1
x2 · x2 = x3
x3 · x3 = x4
x4 · x4 = x5

x5! = x6
x6! = x7
x7! = x8

attains the greatest solution in positive integers x1, . . . , x9 and has at
most finitely many solutions in (N \ {0})9. Only the tuples (1, . . . , 1) and
(2, 2, 4, 16, 256, 256!, (256!)!, ((256!)!)!, 1) solve C and belong to (N \ {0})9.

For every known system S ∈ F , if the finiteness of the set

{(x1, . . . , x9) ∈ (N \ {0})9 : (x1, . . . , x9) solves S}

is unproven and conjectured, then the statement

∃x1, . . . , x9 ∈ N \ {0} ((x1, . . . , x9) solves S) ∧ (max(x1, . . . , x9) > ((256!)!)!)

remains unproven.

Let Γ denote the statement: if the systemA has at most finitely many solutions in positive
integers x1, . . . , x9, then each such solution (x1, . . . , x9) satisfies x1, . . . , x9 6 ((256!)!)!.
The number 46512 + 1 is prime ([9]) and greater than 256!, see also [12, p. 239] for the
primality of 1502048 + 1. Hence, the statement Γ is equivalent to the infiniteness of Pn2+1.
It heuristically justifies the infiniteness of Pn2+1 in a sophisticated way.

Mathematical theorems and open problems with epistemic notions

4. Definitions and the distinction between existing algorithms and constructively
defined algorithms which are currently known

Algorithms always terminate. Semi-algorithms may not terminate. Examples 1–4 and
the proof of Statement 1 explain the distinction between existing algorithms (i.e. algorithms
whose existence is provable in ZFC) and known algorithms (i.e. algorithms whose
definition is constructive and currently known). A definition of an integer n is called
constructive, if it provides a known algorithm with no input that returns n. Definition 1
applies to sets X ⊆ N whose infiniteness is false or unproven.

Definition 1. We say that a non-negative integer k is a known element of X, if k ∈ X and
we know an algebraic expression that defines k and consists of the following signs: 1 (one),
+ (addition), − (subtraction), · (multiplication), ˆ (exponentiation with exponent in N),
! (factorial of a non-negative integer), ( (left parenthesis), ) (right parenthesis).

The set of known elements of X is finite and time-dependent, so cannot be defined in
mathematics understood as an a priori science. Let t denote the largest twin prime that is
smaller than ((((((((9!)!)!)!)!)!)!)!)!. The number t is an unknown element of the set of twin
primes.
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Definition 2. Conditions (1)�(5) concern sets X ⊆ N.
(1) A known algorithm with no input returns an integer n satisfying card(X) < ω⇒
X ⊆ (−∞, n].
(2) A known algorithm for every k ∈ N decides whether or not k ∈ X.
(3) No known algorithm with no input returns the logical value of the statement
card(X) = ω.
(4) There are many elements of X and it is conjectured, though so far unproven, that X is
infinite.
(5) X is naturally defined. The infiniteness of X is false or unproven. X has the simplest
definition among known sets Y ⊆ N with the same set of known elements.

Condition (3) implies that no known proof shows the finiteness/infiniteness of X. No
known set X ⊆ N satisfies Conditions (1)�(4) and is widely known in number theory or
naturally defined, where this term has only informal meaning.

Let [·] denote the integer part function. Let β = (((24!)!)!)!.

Lemma 6. log2(log2(log2(log2(log2(log2(log2(β))))))) ≈ 1.42298.

Proof. We ask Wolfram Alpha at http://wolframalpha.com. �

Example 1. The set X = Pn2+1 satisfies Condition (3).

Example 2. The set X =

{
N, if [ β

π
] is odd

∅, otherwise
does not satisfy Condition (3) because we

know an algorithm with no input that computes [ β
π
]. The set of known elements of X is

empty. Hence, Condition (5) fails for X.

Example 3. ([1], [11], [13, p. 9]). The function

N 3 n
h
−→

{
1, i f the decimal expansion o f π contains n consecutive zeros
0, otherwise

is computable because h = N × {1} or there exists k ∈ N such that

h = ({0, . . . , k} × {1}) ∪ ({k + 1, k + 2, k + 3, . . .} × {0})

No known algorithm computes the function h.

Example 4. The set

X =

{
N, i f the continuum hypothesis holds
∅, otherwise

is decidable. ThisX satisfies Conditions (1) and (3) and does not satisfy Conditions (2),
(4), and (5). These facts will hold forever.

Statement 1. Condition (1) remains unproven for X = Pn2+1.

Proof. For every set X ⊆ N, there exists an algorithm Alg(X) with no input that returns

n =

{
0, if card(X) ∈ {0, ω}

max(X), otherwise

This n satisfies the implication in Condition (1), but the algorithm Alg(Pn2+1) is unknown
because its definition is ineffective. �

Proving the statement Φ will disprove Statement 1. Statement 1 cannot be formalized in
mathematics understood as an a priori science because it refers to the current mathematical
knowledge. The same is true for Open Problems 1–5 and Statements 2–5.

http://wolframalpha.com
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Definition 3. We say that an integer n is a threshold number of a set X ⊆ N, if
card(X) < ω⇒ X ⊆ (−∞, n].

If a set X ⊆ N is empty or infinite, then any integer n is a threshold number of X. If
a set X ⊆ N is non-empty and finite, then the all threshold numbers of X form the set
[max(X),∞) ∩ N.

5. The physical limits of computation inspire Open Problem 1

Statement 2. The set

X = {k ∈ N : (106 < k)⇒ ( f (106), f (k)) ∩ Pn2+1 , ∅}

satisfies Conditions (1)�(4). Condition (5) fails for X.

Proof. Condition (4) holds as X ⊇ {0, . . . , 106} and the set Pn2+1 is conjecturally infinite.
By Lemma 6, due to known physics we are not able to confirm by a direct computation
that some element of Pn2+1 is greater than f (106) > f (7) = β, see [7]. Thus Condition (3)
holds. Condition (2) holds trivially. Since the set

{k ∈ N : (106 < k) ∧ ( f (106), f (k)) ∩ Pn2+1 , ∅}

is empty or infinite, the integer 106 is a threshold number of X. Thus X satisfies
Condition (1). Condition (5) fails for X as the set of known elements of X equals
{0, . . . , 106}. �

For a non-negative integer n, let θ(n) denote the largest integer divisor of 101010
smaller

than n. For a non-negative integer n, let θ1(n) denote the largest integer divisor of 1010

smaller than n.

Lemma 7. For every integer j > 101010
, θ( j) = 101010

.

Lemma 8. For every integer j ∈ (6553600, 7812500], θ( j) = 6553600.

Proof. 6553600 equals 218 · 52 and divides 101010
. 7812500 < 224. 7812500 < 510.

We need to prove that every integer j ∈ (6553600, 7812500) does not divide 101010
. It

holds as the set {
2u · 5v : (u ∈ {0, . . . , 23}) ∧ (v ∈ {0, . . . , 9})

}
contains 6553600 and 7812500 as consecutive elements. �

Lemma 9. The number 65536002 + 1 is prime.

Proof. The following PARI/GP ([8]) command
isprime(6553600^2+1,{flag=2})

returns 1. This command performs the APRCL primality test, the best deterministic
primality test algorithm ([17, p. 226]). It rigorously shows that the number 65536002 + 1
is prime. �
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In the next lemmas, the execution of the command isprime(n,{flag=2}) proves the
primality of n.

Lemma 10. The number 101421015042 + 1 is prime. 10142101504 > 1010.

Lemma 11. The function

N 3 n
κ
−→ the_exponent_o f _2_in_the_prime_ f actorization_o f _ n + 1︸︷︷︸ ∈ N

takes every non-negative integer value infinitely often.

Before Open Problem 1, X denotes the set {n ∈ N : (θ(n) + κ(n))2 + 1 is prime}.

Lemma 12. The set X satisfies card(X) > 629450.

Proof. By Lemmas 8 and 9, for every even integer j ∈ (6553600, 7812500], the number
(θ( j) + κ( j))2 + 1 = (6553600 + 0)2 + 1 is prime. Hence,

{2k : k ∈ N} ∩ (6553600, 7812500] ⊆ X

Consequently,

card(X) > card({2k : k ∈ N} ∩ (6553600, 7812500]) =
7812500 − 6553600

2
= 629450

�

Lemma 13. 10242 ∈ X. 10242 < X1 = {n ∈ N : (θ1(n) + κ(n))2 + 1 is prime}.

Proof. The number 10240 = 211 · 5 divides 101010
. Hence, θ(10242) = 10240. The

number (θ(10242) + κ(10242))2 + 1 = (10240 + 0)2 + 1 is prime. The set{
2u · 5v : (u ∈ {0, . . . , 10}) ∧ (v ∈ {0, . . . , 10})

}
contains 10000 and 12500 as consecutive elements. Hence, θ1(10242) = 10000. The
number (θ1(10242) + κ(10242))2 + 1 = (10000 + 0)2 + 1 = 17 · 5882353 is composite. �

Statement 3. The set X satisfies Conditions (1)�(5) except the requirement that X is
naturally defined.

Proof. Condition (2) holds trivially. Let δ denote 101010
. By Lemmas 7 and 11,

Condition (1) holds for n = δ. Since the statement Pn2+1 ∩
(
δ2 + 1,∞

)
, ∅ remains

unproven, Condition (3) holds. Lemma 12 and the implication

Pn2+1 ∩
(
δ2 + 1,∞

)
, ∅ =⇒ card(X) = ω

show that Condition (4) holds. By Lemma 10, the set X1 is infinite. Since Definition 1
applies to sets X ⊆ N whose infiniteness is false or unproven, Condition 5 holds except the
requirement that X is naturally defined. �

The set X satisfies Condition (5) except the requirement that X is naturally defined. It
is true because X1 is infinite and Definition 1 applies only to sets X ⊆ N whose infiniteness
is false or unproven. Ignoring this restriction, X still satisfies the same identical condition
due to Lemma 13.

Open Problem 1. Is there a set X ⊆ N which satisfies Conditions (1)�(5)?

The answers to Open Problems 1–5 may change in time as they depend on the current
mathematical knowledge. These answers are currently negative.
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Theorem 7. No set X ⊆ N will satisfy Conditions (1)-(4) forever, if for every algorithm
with no input, at some future day, a computer will be able to execute this algorithm in
1 second or less.

Proof. The proof goes by contradiction. We fix an integer n that satisfies Condition (1).
Since Conditions (1)�(3) will hold forever, the semi-algorithm in Figure 2 never
terminates and sequentially prints the following sentences:

(T) n + 1 < X, n + 2 < X, n + 3 < X, . . .

Fig. 2 Semi-algorithm that terminates if and only if X is infinite

The sentences from the sequence (T) and our assumption imply that for every integer
m > n computed by a known algorithm, at some future day, a computer will be able to
confirm in 1 second or less that (n,m] ∩ X = ∅. Thus, at some future day, numerical
evidence will support the conjecture that the set X is finite, contrary to the conjecture
in Condition (4). �

The physical limits of computation ([7]) disprove the assumption of Theorem 7.

6. A conjectural solution of Open Problem 1

Statement 4. Conditions (2)�(5) hold for X = Pn2+1. The statement Φ implies that
Condition (1) holds for X = Pn2+1.

Proof. The set Pn2+1 is conjecturally infinite. There are 2199894223892 primes of the
form n2 + 1 in the interval [2, 1028), see [15]. These two facts imply Condition (4). By
Lemma 6, due to known physics we are not able to confirm by a direct computation that
some element of Pn2+1 is greater than f (7) = (((24!)!)!)! = β, see [7]. Thus Condition (3)
holds. Conditions (2) and (5) hold trivially. The statement Φ implies that Condition (1)
holds for X = Pn2+1 with n = β = (((24!)!)!)!. �

Proving Landau’s conjecture will disprove Statement 4.

Conjecture 2. (Conditions (1)�(5) hold for X = Pn2+1) ∧ Φ.

Conjecture 2 implies that every known proof of the statement Φ does not yield the
finiteness/infiniteness of Pn2+1.
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7. Satisfiable conjunctions which consist of Conditions 1�5 and their negations

The set X = Pn2+1 satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ (Condition 5)

The set X = {0, . . . , f (7)} ∪ Pn2+1 satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

The set X =

{
N, i f ( f (98), f (99)) ∩ Pn2+1 , ∅
{0, . . . , 106}, otherwise satisfies the conjunction

(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

Open Problem 2. Is there a set X ⊆ N that satisfies the conjunction

(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ (Condition 5)?

The numbers 22k
+ 1 are prime for k ∈ {0, 1, 2, 3, 4}. It is open whether or not there

are infinitely many primes of the form 22k
+ 1, see [6, p. 158] and [12, p. 74]. It is open

whether or not there are infinitely many composite numbers of the form 22k
+ 1, see

[6, p. 159] and [12, p. 74]. Most mathematicians believe that 22k
+ 1 is composite for

every integer k > 5, see [5, p. 23].

The set

X =

 N, i f ( f (98), f (99)) ∩ Pn2+1 , ∅

{0, . . . , 106} ∪ {n ∈ N : n is the sixth prime number o f the f orm 22k
+ 1}, otherwise

satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

Open Problem 3. Is there a set X ⊆ N that satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ (Condition 5)?

It is possible, although very doubtful, that at some future day, the set X = Pn2+1 will
solve Open Problem 2. The same is true for Open Problem 3. It is possible, although very

doubtful, that at some future day, the set X = {k ∈ N : 22k
+ 1 is composite} will solve

Open Problem 1. The same is true for Open Problems 2 and 3.

The following table shows satisfiable conjunctions of the form

#(Condition 1) ∧ (Condition 2) ∧ #(Condition 3) ∧ (Condition 4) ∧ #(Condition 5)

where # denotes the negation ¬ or the absence of any symbol.
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(Condition 2) ∧ (Condition 3) ∧
(Condition 4)

(Condition 2) ∧ ¬(Condition 3) ∧
(Condition 4)

(Condition 1) ∧
(Condition 5)

Open Problem 1 (conjecturally
solved with X = Pn2+1)

Open Problem 2

(Condition 1) ∧
¬(Condition 5)

X = {k ∈ N : (106 < k)⇒
( f (106), f (k)) ∩ Pn2+1 , ∅}

X =

{
N, i f ( f (98), f (99)) ∩ Pn2+1 , ∅
{0, . . . , 106}, otherwise

¬(Condition 1) ∧
(Condition 5)

X = Pn2+1 Open Problem 3

¬(Condition 1) ∧
¬(Condition 5)

X = {0, . . . , f (7)} ∪ Pn2+1 X =


N, i f ( f (98), f (99)) ∩ Pn2+1 , ∅
{0, . . . , 106} ∪ {n ∈ N : n is
the sixth prime number o f

the f orm 22k
+ 1}, otherwise

8. Previously known results of a similar type

Statements 1–4 and Open Problems 1–3 cannot be formalized in mathematics
understood as an a priori science. Previously known statements of this type, such as
Statement 5, express the current knowledge on particular elements of N, which are known
to us according to Definition 1. Previously known open problems of this type, such as
Open Problems 4 and 5, ask about constructive existence of special elements of N.

Statement 5. ([2], [3], [6, p. 209], [10]). The numbers 2222
+ 1 and 2224

+ 1 are

composite. The known integer divisors of 2222
+ 1 form the set{

−2222
− 1,−1, 1, 2222

+ 1
}

. The known integer divisors of 2224
+ 1 form the set{

−2224
− 1,−1, 1, 2224

+ 1
}

.

Open Problem 4. Is there a known prime number greater than 10101010
?

Open Problem 5. Is there a known threshold number of Pn2+1?
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Faculty of Environmental Engineering and Land Surveying
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