On sets $W \subseteq \mathbb{N}$ whose infinite cardinality follows from the existence in W of an element which is greater than a threshold number computed for W

Apoloniusz Tyszka

Abstract

We define computable functions $f,g:\mathbb{N}\setminus\{0\}\to\mathbb{N}\setminus\{0\}$. For a positive integer n, let Θ_n denote the following statement: if a system $S\subseteq\{x_i!=x_k:i,k\in\{1,\ldots,n\}\}\cup\{x_i\cdot x_j=x_k:i,j,k\in\{1,\ldots,n\}\}$ has only finitely many solutions in integers x_1,\ldots,x_n greater than 1, then each such solution (x_1,\ldots,x_n) satisfies $\min(x_1,\ldots,x_n)\leqslant f(n)$. The statement Θ_9 proves that if there exists an integer x>f(9) such that x^2+1 (alternatively, x!+1) is prime, then there are infinitely many primes of the form n^2+1 (respectively, n!+1). The statement Θ_{16} proves that if there exists a twin prime greater than f(16)+3, then there are infinitely many twin primes. We formulate a statement which proves that if $2^{2^n}+1$ is composite for some integer n>g(13), then $2^{2^n}+1$ is composite for infinitely many positive integers n.

Key words and phrases: Brocard's problem, Brocard-Ramanujan equation, composite Fermat numbers, composite numbers of the form $2^{2^n} + 1$, prime numbers of the form $n^2 + 1$, prime numbers of the form n! + 1, Richert's lemma, Richert's theorem, twin prime conjecture.

2010 Mathematics Subject Classification: 03B30, 03D20, 11A41.

1 Introduction

The following observation concerns the theme described in the title of the article.

Observation 1. If $n \in \mathbb{N}$ and $W \subseteq \{0, ..., n\}$, then we take any integer $m \ge n$ as a threshold number for W. If $W \subseteq \mathbb{N}$ and W is infinite, then we take any non-negative integer m as a threshold number for W.

We define the set $\mathcal{U} \subseteq \mathbb{N}$ by declaring that a non-negative integer n belongs to \mathcal{U} if and only if $\sin\left(10^{10^{10^{10}}}\right) > 0$. This inequality is practically undecidable, see [7].

Corollary 1. The set \mathcal{U} equals \emptyset or \mathbb{N} . The statement " $\mathcal{U} = \emptyset$ " remains unproven and the statement " $\mathcal{U} = \mathbb{N}$ " remains unproven. Every non-negative integer m is a threshold number for \mathcal{U} . For every non-negative integer k, the sentence " $k \in \mathcal{U}$ " is only theoretically decidable.

The first-order language of graph theory contains two relation symbols of arity 2: \sim and =, respectively for adjacency and equality of vertices. The term first-order imposes the condition that the variables represent vertices and hence the quantifiers apply to vertices only. For a first-order sentence Λ about graphs, let Spectrum(Λ) denote the set of all positive integers n such that there is a graph on n vertices satisfying Λ . By a graph on n vertices we understand a set of n elements with a binary relation which is symmetric and irreflexive.

Theorem 1. ([15, p. 171]). If a sentence Λ in the language of graph theory has the form $\exists x_1 \dots x_k \ \forall y_1 \dots y_l \ \Upsilon(x_1, \dots, x_k, y_1, \dots, y_l)$, where $\Upsilon(x_1, \dots, x_k, y_1, \dots, y_l)$ is quantifier-free, then either Spectrum(Λ) \subseteq [1, (2^k · 4^l) - 1] or Spectrum(Λ) \supseteq [k + l, ∞) $\cap \mathbb{N}$.

Corollary 2. The number $(2^k \cdot 4^l) - 1$ is a threshold number for Spectrum(Λ).

The classes of the infinite recursively enumerable sets and of the infinite recursive sets are not recursively enumerable, see [13, p. 234].

Corollary 3. If an algorithm Al_1 for every recursive set $W \subseteq \mathbb{N}$ finds a non-negative integer $Al_1(W)$, then there exists a finite set $M \subseteq \mathbb{N}$ such that $M \cap [Al_1(M) + 1, \infty) \neq \emptyset$.

Corollary 4. If an algorithm Al_2 for every recursively enumerable set $W \subseteq \mathbb{N}$ finds a non-negative integer $Al_2(W)$, then there exists a finite set $M \subseteq \mathbb{N}$ such that $M \cap [Al_2(M)+1, \infty) \neq \emptyset$.

Let
$$K = \{j \in \mathbb{N} : 2^{\aleph_j} = \aleph_{j+1}\}.$$

Theorem 2. If ZFC is consistent, then for every non-negative integer n the sentence

"n is a threshold number for K"

is not provable in ZFC

Proof. There exists a model & of ZFC such that

$$\forall i \in \{0,\ldots,n+1\} \ \mathcal{E} \models 2^{\aleph_i} = \aleph_{i+1}$$

and

$$\forall i \in \{n+2, n+3, n+4, \ldots\} \ \mathcal{E} \models 2^{\aleph_i} = \aleph_{i+2}$$

see [5] and [8, p. 232]. In the model \mathcal{E} , $K = \{0, ..., n+1\}$ and n is not a threshold number for K.

Theorem 3. If ZFC is consistent, then for every non-negative integer n the sentence

"n is not a threshold number for K"

is not provable in ZFC.

Proof. The Generalized Continuum Hypothesis (GCH) is consistent with ZFC, see [8, p. 188] and [8, p. 190]. GCH implies that $K = \mathbb{N}$. Consequently, GCH implies that every non-negative integer n is a threshold number for K.

Theorem 4. ([2, p. 35]). There exists a polynomial $D(x_1, ..., x_m)$ with integer coefficients such that if ZFC is arithmetically consistent, then the sentences

"The equation $D(x_1,\ldots,x_m)=0$ is solvable in non-negative integers" and

"The equation $D(x_1, ..., x_m) = 0$ is not solvable in non-negative integers" are not provable in ZFC.

Let Δ denote the set of all non-negative integers k such that the equation $D(x_1, \ldots, x_m) = 0$ has no solutions in $\{0, \ldots, k\}^m$. Since the set $\{0, \ldots, k\}^m$ is finite, the set Δ is computable. Theorem 4 implies the following corollary.

Corollary 5. If ZFC is arithmetically consistent, then for every non-negative integer n the sentences

"n is a threshold number for Δ "

and

"n is not a threshold number for Δ "

are not provable in ZFC.

Let g(1) = 1, and let $g(n + 1) = 2^{2g(n)}$ for every positive integer n.

Hypothesis 1. ([20]). If a system

$$S \subseteq \{x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\} \cup \{x_i + 1 = x_k : i, k \in \{1, \dots, n\}\}$$

has only finitely many solutions in non-negative integers $x_1, ..., x_n$, then each such solution $(x_1, ..., x_n)$ satisfies $x_1, ..., x_n \le g(2n)$.

Theorem 5. ([20]). Hypothesis 1 implies that for every $W(x_1,...,x_n) \in \mathbb{Z}[x_1,...,x_n]$ we can compute a threshold number $b \in \mathbb{N} \setminus \{0\}$ such that any non-negative integers $a_1,...,a_n$ which satisfy

$$(W(a_1,\ldots,a_n)=0) \wedge (\max(a_1,\ldots,a_n)>b)$$

guarantee that the equation $W(x_1,...,x_n)=0$ has infinitely many solutions in non-negative integers.

2 Basic lemmas

Let f(1) = 2, f(2) = 4, and let f(n + 1) = f(n)! for every integer $n \ge 2$. Let \mathcal{V}_1 denote the system of equations $\{x_1! = x_1\}$, and let \mathcal{V}_2 denote the system of equations $\{x_1! = x_1, x_1 \cdot x_1 = x_2\}$. For an integer $n \ge 3$, let \mathcal{V}_n denote the following system of equations:

$$\begin{cases} x_1! = x_1 \\ x_1 \cdot x_1 = x_2 \\ \forall i \in \{2, \dots, n-1\} \ x_i! = x_{i+1} \end{cases}$$

The diagram in Figure 1 illustrates the construction of the system V_n .

Fig. 1 Construction of the system \mathcal{V}_n

Lemma 1. For every positive integer n, the system V_n has exactly one solution in integers greater than 1, namely $(f(1), \ldots, f(n))$.

Let

$$H_n = \{x_i! = x_k : i, k \in \{1, \dots, n\}\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\}$$

For a positive integer n, let Θ_n denote the following statement: if a system $S \subseteq H_n$ has at most finitely many solutions in integers x_1, \ldots, x_n greater than 1, then each such solution (x_1, \ldots, x_n) satisfies $\min(x_1, \ldots, x_n) \leq f(n)$. The assumption $\min(x_1, \ldots, x_n) \leq f(n)$ is weaker than the assumption $\max(x_1, \ldots, x_n) \leq f(n)$ suggested by Lemma 1.

Lemma 2. For every positive integer n, the system H_n has a finite number of subsystems.

Theorem 6. Every statement Θ_n is true with an unknown integer bound that depends on n.

Proof. It follows from Lemma 2.

Lemma 3. For every integers x and y greater than 1, $x! \cdot y = y!$ if and only if x + 1 = y.

Lemma 4. If
$$x \ge 4$$
, then $\frac{(x-1)!+1}{x} > 1$.

Lemma 5. (Wilson's theorem, [6, p. 89]). For every integer $x \ge 2$, x is prime if and only if x divides (x - 1)! + 1.

3 Brocard's problem

A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the Brocard-Ramanujan equation $x! + 1 = y^2$, see [14]. It is conjectured that x! + 1 is a square only for $x \in \{4, 5, 7\}$, see [21, p. 297].

Let \mathcal{A} denote the following system of equations:

$$\begin{cases} x_1! = x_2 \\ x_2! = x_3 \\ x_5! = x_6 \\ x_4 \cdot x_4 = x_5 \\ x_3 \cdot x_5 = x_6 \end{cases}$$

Lemma 3 and the diagram in Figure 2 explain the construction of the system \mathcal{A} .

Fig. 2 Construction of the system \mathcal{A}

Lemma 6. For every integers x_1 and x_4 greater than 1, the system \mathcal{A} is solvable in integers x_2, x_3, x_5, x_6 greater than 1 if and only if $x_1! + 1 = x_4^2$. In this case, the integers x_2, x_3, x_5, x_6 are uniquely determined by the following equalities:

$$x_2 = x_1!$$

 $x_3 = (x_1!)!$
 $x_5 = x_1! + 1$
 $x_6 = (x_1! + 1)!$

and $x_1 = \min(x_1, ..., x_6)$.

Proof. It follows from Lemma 3.

Theorem 7. The statement Θ_6 proves the following implication: if the equation $x_1! + 1 = x_4^2$ has only finitely many solutions in positive integers, then each such solution (x_1, x_4) satisfies $x_1 \le f(6)$.

Proof. Let positive integers x_1 and x_4 satisfy $x_1!+1=x_4^2$. Then, $x_1,x_4 \in \mathbb{N}\setminus\{0,1\}$. By Lemma 6, there exists a unique tuple $(x_2,x_3,x_5,x_6)\in(\mathbb{N}\setminus\{0,1\})^4$ such that the tuple (x_1,\ldots,x_6) solves the system \mathcal{A} . Lemma 6 guarantees that $x_1=\min(x_1,\ldots,x_6)$. By the antecedent and Lemma 6, the system \mathcal{A} has only finitely many solutions in integers x_1,\ldots,x_6 greater than 1. Therefore, the statement Θ_6 implies that $x_1=\min(x_1,\ldots,x_6)\leqslant f(6)$.

Hypothesis 2. The implication in Theorem 7 is true.

Corollary 6. Assuming Hypothesis 2, a single query to an oracle for the halting problem decides the problem of the infinitude of the solutions of the equation $x! + 1 = y^2$.

4 Are there infinitely many prime numbers of the form $n^2 + 1$?

Edmund Landau's conjecture states that there are infinitely many primes of the form $n^2 + 1$, see [12, pp. 37–38]. Let \mathcal{B} denote the following system of equations:

$$\begin{cases} x_2! &= x_3 \\ x_3! &= x_4 \\ x_5! &= x_6 \\ x_8! &= x_9 \\ x_1 \cdot x_1 &= x_2 \\ x_3 \cdot x_5 &= x_6 \\ x_4 \cdot x_8 &= x_9 \\ x_5 \cdot x_7 &= x_8 \end{cases}$$

Lemma 3 and the diagram in Figure 3 explain the construction of the system \mathcal{B} .

Fig. 3 Construction of the system \mathcal{B}

Lemma 7. For every integer $x_1 \ge 2$, the system \mathcal{B} is solvable in integers x_2, \ldots, x_9 greater than 1 if and only if $x_1^2 + 1$ is prime. In this case, the integers x_2, \ldots, x_9 are uniquely determined

by the following equalities:

$$x_{2} = x_{1}^{2}$$

$$x_{3} = (x_{1}^{2})!$$

$$x_{4} = ((x_{1}^{2})!)!$$

$$x_{5} = x_{1}^{2} + 1$$

$$x_{6} = (x_{1}^{2} + 1)!$$

$$x_{7} = \frac{(x_{1}^{2})! + 1}{x_{1}^{2} + 1}$$

$$x_{8} = (x_{1}^{2})! + 1$$

$$x_{9} = ((x_{1}^{2})! + 1)!$$

and $min(x_1,\ldots,x_9)=x_1$.

Proof. By Lemmas 3 and 4, for every integer $x_1 \ge 2$, the system \mathcal{B} is solvable in integers x_2, \ldots, x_9 greater than 1 if and only if $x_1^2 + 1$ divides $(x_1^2)! + 1$. Hence, the claim of Lemma 7 follows from Lemma 5.

Theorem 8. The statement Θ_9 proves the following implication: if there exists an integer $x_1 > f(9)$ such that $x_1^2 + 1$ is prime, then there are infinitely many primes of the form $n^2 + 1$.

Proof. Assume that an integer x_1 is greater than f(9) and $x_1^2 + 1$ is prime. By Lemma 7, there exists a unique tuple $(x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^8$ such that the tuple (x_1, x_2, \ldots, x_9) solves the system \mathcal{B} . Lemma 7 guarantees that $\min(x_1, \ldots, x_9) = x_1$. Since $\mathcal{B} \subseteq H_9$, the statement Θ_9 and the inequality $\min(x_1, \ldots, x_9) = x_1 > f(9)$ imply that the system \mathcal{B} has infinitely many solutions $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^9$. According to Lemma 7, there are infinitely many primes of the form $n^2 + 1$.

Hypothesis 3. *The implication in Theorem 8 is true.*

Corollary 7. Assuming Hypothesis 3, a single query to an oracle for the halting problem decides the problem of the infinitude of primes of the form $n^2 + 1$.

Let \mathcal{P} denote the set of prime numbers. For a non-negative integer n, let $\Omega(n)$ denote the following statement: $\exists m \in \mathbb{N} \cap (n, \infty) \ m^2 + 1 \in \mathcal{P}$. By Theorem 8, assuming the statement Θ_9 , we can infer the statement $\forall n \in \mathbb{N} \ \Omega(n)$ from any statement $\Omega(n)$ with $n \geq f(9)$. A similar situation holds for inference by the so called "super-induction method", see [22]–[25]. In section 8, we present Richert's lemma which is frequently used in proofs by super-induction.

5 Are there infinitely many prime numbers of the form n! + 1?

It is conjectured that there are infinitely many primes of the form n! + 1, see [1, p. 443] and [18]. Let \mathcal{G} denote the following system of equations:

$$\begin{cases} x_1! &= x_2 \\ x_2! &= x_3 \\ x_3! &= x_4 \\ x_5! &= x_6 \\ x_8! &= x_9 \\ x_3 \cdot x_5 &= x_6 \\ x_4 \cdot x_8 &= x_9 \\ x_5 \cdot x_7 &= x_8 \end{cases}$$

Lemma 3 and the diagram in Figure 4 explain the construction of the system \mathcal{G} .

Fig. 4 Construction of the system \mathcal{G}

Lemma 8. For every integer $x_1 \ge 2$, the system G is solvable in integers x_2, \ldots, x_9 greater than 1 if and only if $x_1! + 1$ is prime. In this case, the integers x_2, \ldots, x_9 are uniquely determined by

the following equalities:

$$x_{2} = x_{1}!$$

$$x_{3} = (x_{1}!)!$$

$$x_{4} = ((x_{1}!)!)!$$

$$x_{5} = x_{1}^{!} + 1$$

$$x_{6} = (x_{1}! + 1)!$$

$$x_{7} = \frac{(x_{1}!)! + 1}{x_{1}! + 1}$$

$$x_{8} = (x_{1}!)! + 1$$

$$x_{9} = ((x_{1}!)! + 1)!$$

and $min(x_1, ..., x_9) = x_1$.

Proof. By Lemmas 3 and 4, for every integer $x_1 \ge 2$, the system \mathcal{G} is solvable in integers x_2, \ldots, x_9 greater than 1 if and only if $x_1! + 1$ divides $(x_1!)! + 1$. Hence, the claim of Lemma 8 follows from Lemma 5.

Theorem 9. The statement Θ_9 proves the following implication: if there exists an integer $x_1 > f(9)$ such that $x_1! + 1$ is prime, then there are infinitely many primes of the form n! + 1.

Proof. Assume that an integer x_1 is greater than f(9) and $x_1! + 1$ is prime. By Lemma 8, there exists a unique tuple $(x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^8$ such that the tuple (x_1, x_2, \ldots, x_9) solves the system \mathcal{G} . Lemma 8 guarantees that $\min(x_1, \ldots, x_9) = x_1$. Since $\mathcal{G} \subseteq H_9$, the statement Θ_9 and the inequality $\min(x_1, \ldots, x_9) = x_1 > f(9)$ imply that the system \mathcal{G} has infinitely many solutions $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^9$. According to Lemma 8, there are infinitely many primes of the form n! + 1.

Hypothesis 4. The implication in Theorem 9 is true.

Corollary 8. Assuming Hypothesis 4, a single query to an oracle for the halting problem decides the problem of the infinitude of primes of the form n! + 1.

6 The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [12, p. 39].

Let *C* denote the following system of equations:

$$\begin{cases} x_1! &= x_2 \\ x_2! &= x_3 \\ x_4! &= x_5 \\ x_6! &= x_7 \\ x_7! &= x_8 \\ x_9! &= x_{10} \\ x_{12}! &= x_{13} \\ x_{15}! &= x_{16} \\ x_2 \cdot x_4 &= x_5 \\ x_5 \cdot x_6 &= x_7 \\ x_7 \cdot x_9 &= x_{10} \\ x_4 \cdot x_{11} &= x_{12} \\ x_3 \cdot x_{12} &= x_{13} \\ x_9 \cdot x_{14} &= x_{15} \\ x_8 \cdot x_{15} &= x_{16} \end{cases}$$

Lemma 3 and the diagram in Figure 5 explain the construction of the system *C*.

Fig. 5 Construction of the system *C*

Lemma 9. If $x_4 = 2$, then the system C has no solutions in integers x_1, \ldots, x_{16} greater than 1.

Proof. The equality $x_2 \cdot x_4 = x_5 = x_4!$ and the equality $x_4 = 2$ imply that $x_2 = 1$.

Lemma 10. If $x_4 = 3$, then the system C has no solutions in integers x_1, \ldots, x_{16} greater than 1.

Proof. The equality $x_4 \cdot x_{11} = x_{12} = (x_4 - 1)! + 1$ and the equality $x_4 = 3$ imply that $x_{11} = 1$. \square

Lemma 11. For every $x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$ and for every $x_9 \in \mathbb{N} \setminus \{0, 1\}$, the system C is solvable in integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if x_4 and x_9 are prime and $x_4 + 2 = x_9$. In this case, the integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ are uniquely determined by the following equalities:

$$x_{1} = x_{4} - 1$$

$$x_{2} = (x_{4} - 1)!$$

$$x_{3} = ((x_{4} - 1)!)!$$

$$x_{5} = x_{4}!$$

$$x_{6} = x_{9} - 1$$

$$x_{7} = (x_{9} - 1)!$$

$$x_{8} = ((x_{9} - 1)!)!$$

$$x_{10} = x_{9}!$$

$$x_{11} = \frac{(x_{4} - 1)! + 1}{x_{4}}$$

$$x_{12} = (x_{4} - 1)! + 1$$

$$x_{13} = ((x_{4} - 1)! + 1)!$$

$$x_{14} = \frac{(x_{9} - 1)! + 1}{x_{9}}$$

$$x_{15} = (x_{9} - 1)! + 1$$

$$x_{16} = ((x_{9} - 1)! + 1)!$$

and $min(x_1, ..., x_{16}) = x_1 = x_9 - 3$.

Proof. By Lemmas 3 and 4, for every $x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$ and for every $x_9 \in \mathbb{N} \setminus \{0, 1\}$, the system C is solvable in integers x_1 , x_2 , x_3 , x_5 , x_6 , x_7 , x_8 , x_{10} , x_{11} , x_{12} , x_{13} , x_{14} , x_{15} , x_{16} greater than 1 if and only if

$$(x_4 + 2 = x_9) \wedge (x_4|(x_4 - 1)! + 1) \wedge (x_9|(x_9 - 1)! + 1)$$

Hence, the claim of Lemma 11 follows from Lemma 5.

Theorem 10. The statement Θ_{16} proves the following implication: if there exists a twin prime greater than f(16) + 3, then there are infinitely many twin primes.

Proof. Assume that the antecedent holds. Then, there exist prime numbers x_4 and x_9 such that $x_9 = x_4 + 2 > f(16) + 3$. Hence, $x_4 ∈ \mathbb{N} \setminus \{0, 1, 2, 3\}$. By Lemma 11, there exists a unique tuple $(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) ∈ (\mathbb{N} \setminus \{0, 1\})^{14}$ such that the tuple (x_1, \dots, x_{16}) solves the system C. Lemma 11 guarantees that $\min(x_1, \dots, x_{16}) = x_1 = x_9 - 3 > f(16)$. Since $C \subseteq H_{16}$, the statement Θ_{16} and the inequality $\min(x_1, \dots, x_{16}) > f(16)$ imply that the system C has infinitely many solutions in integers x_1, \dots, x_{16} greater than 1. According to Lemmas 9–11, there are infinitely many twin primes. □

Hypothesis 5. The implication in Theorem 10 is true.

Corollary 9. (cf. [3]). Assuming Hypothesis 5, a single query to an oracle for the halting problem decides the twin prime problem.

7 Are there infinitely many composite Fermat numbers?

Primes of the form $2^{2^n} + 1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^n} + 1$ is prime, see [11, p. 1]. Fermat correctly remarked that $2^{2^0} + 1 = 3$, $2^{2^1} + 1 = 5$, $2^{2^2} + 1 = 17$, $2^{2^3} + 1 = 257$, and $2^{2^4} + 1 = 65537$ are all prime, see [11, p. 1].

Open Problem. ([11, p. 159]). Are there infinitely many composite numbers of the form $2^{2^n} + 1$?

Most mathematicians believe that $2^{2^n} + 1$ is composite for every integer $n \ge 5$, see [10, p. 23].

Theorem 11. ([19]). An unproven inequality stated in [19] implies that $2^{2^n} + 1$ is composite for every integer $n \ge 5$.

Lemma 12. ([11, p. 38]). For every positive integer n, if a prime number p divides $2^{2^n} + 1$, then there exists a positive integer k such that $p = k \cdot 2^{n+1} + 1$.

Corollary 10. Since $k \cdot 2^{n+1} + 1 \ge 2^{n+1} + 1 \ge n+3$, for every positive integers x, y, and n, the equality $(x+1)(y+1) = 2^{2^n} + 1$ implies that $\min(n, x, x+1, y, y+1) = n$.

Let

$$G_n = \{x_i \cdot x_j = x_k : i, j, k \in \{1, \dots, n\}\} \cup \{2^{2^{X_i}} = x_k : i, k \in \{1, \dots, n\}\}$$

Lemma 13. The following subsystem of G_n

$$\begin{cases} x_1 \cdot x_1 &= x_1 \\ \forall i \in \{1, \dots, n-1\} \ 2^{2^{x_i}} &= x_{i+1} \end{cases}$$

has exactly one solution $(x_1, \ldots, x_n) \in (\mathbb{N} \setminus \{0\})^n$, namely $(g(1), \ldots, g(n))$.

For a positive integer n, let Ψ_n denote the following statement: if a system $S \subseteq G_n$ has at most finitely many solutions in positive integers x_1, \ldots, x_n , then each such solution (x_1, \ldots, x_n) satisfies $\min(x_1, \ldots, x_n) \leq g(n)$. The assumption $\min(x_1, \ldots, x_n) \leq g(n)$ is weaker than the assumption $\max(x_1, \ldots, x_n) \leq g(n)$ suggested by Lemma 13.

Lemma 14. For every positive integer n, the system G_n has a finite number of subsystems.

Theorem 12. Every statement Ψ_n is true with an unknown integer bound that depends on n.

Proof. It follows from Lemma 14.

Lemma 15. For every non-negative integers b and c, b + 1 = c if and only if $2^{2^b} \cdot 2^{2^b} = 2^{2^c}$.

Theorem 13. The statement Ψ_{13} proves the following implication: if $2^{2^n} + 1$ is composite for some integer n > g(13), then $2^{2^n} + 1$ is composite for infinitely many positive integers n.

Proof. Let us consider the equation

$$(x+1)(y+1) = 2^{2^{z}} + 1 \tag{1}$$

in positive integers. By Lemma 15, we can transform equation (1) into an equivalent system \mathcal{F} which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms $\alpha \cdot \beta = \gamma$ and $2^{2^{\alpha}} = \gamma$, see the diagram in Figure 6.

Fig. 6 Construction of the system \mathcal{F}

Assume that $2^{2^n} + 1$ is composite for some integer n > g(13). By this and Corollary 10, equation (1) has a solution $(x, y, z) \in (\mathbb{N} \setminus \{0\})^3$ such that z = n and $z = \min(z, x, x + 1, y, y + 1)$. Hence, the system \mathcal{F} has a solution in positive integers such that z = n and n is the smallest number in the solution sequence. Since n > g(13), the statement Ψ_{13} implies that the system \mathcal{F} has infinitely many solutions in positive integers. Therefore, there are infinitely many positive integers n such that $2^{2^n} + 1$ is composite.

Hypothesis 6. The implication in Theorem 13 is true.

Corollary 11. Assuming Hypothesis 6, a single query to an oracle for the halting problem decides whether or not the set of composite Fermat numbers is infinite.

8 Subsets of $\mathbb{N}\setminus\{0\}$ which are cofinite by Richert's lemma and the halting of a computer program

The following lemma is known as Richert's lemma.

Lemma 16. ([4], [16], [17, p. 152]). Let $\{m_i\}_{i=1}^{\infty}$ be an increasing sequence of positive integers such that for some positive integer k the inequality $m_{i+1} \leq 2m_i$ holds for all i > k. Suppose there exists a non-negative integer b such that the numbers b+1, b+2, b+3, ..., $b+m_{k+1}$ are all expressible as sums of one or more distinct elements of the set $\{m_1, \ldots, m_k\}$. Then every integer greater than b is expressible as a sum of one or more distinct elements of the set $\{m_1, \ldots, m_k\}$.

Corollary 12. If the sequence $\{m_i\}_{i=1}^{\infty}$ is computable and the flowchart algorithm in Figure 7 terminates, then almost all positive integers are expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \ldots\}$ and the algorithm returns all positive integers which are not expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \ldots\}$.

Fig. 7 The algorithm which uses Richert's lemma

The above algorithm works correctly because the inequality $\max(H) > m_{k+1}$ holds true if and only if the set *B* contains m_{k+1} consecutive integers.

Theorem 14. ([9, Theorem 2.3]). If there exists $\varepsilon > 0$ such that the inequality $m_{i+1} \leq (2 - \varepsilon) \cdot m_i$ holds for every sufficiently large i, then the flowchart algorithm in Figure 7 terminates if and only if almost all positive integers are expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \ldots\}$.

References

- [1] C. K. Caldwell and Y. Gallot, On the primality of $n! \pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, Math. Comp. 71 (2002), no. 237, 441–448, https://doi.org/10.1090/S0025-5718-01-01315-1.
- [2] N. C. A. da Costa and F. A. Doria, *On the foundations of science (LIVRO): essays, first series,* E-papers Serviços Editoriais Ltda, Rio de Janeiro, 2013.
- [3] F. G. Dorais, Can the twin prime problem be solved with a single use of a halting oracle? July 23, 2011, https://mathoverflow.net/questions/71050.
- [4] R. E. Dressler, A. Mąkowski, T. Parker, Sums of distinct primes from congruence classes modulo 12, Math. Comp. 28 (1974), 651–652.
- [5] W. B. Easton, *Powers of regular cardinals*, Ann. Math. Logic 1 (1970), 139–178.
- [6] M. Erickson, A. Vazzana, D. Garth, *Introduction to number theory*, 2nd ed., CRC Press, Boca Raton, FL, 2016.
- [7] J. van der Hoeven, *Undecidability versus undecidability*, Bull. Symbolic Logic 5 (1999), no. 1, 75, https://dx.doi.org/10.2307/421141.
- [8] T. Jech, *Set theory*, Springer, Berlin, 2003.
- [9] T. Kløve, Sums of distinct elements from a fixed set, Math. Comp. 29 (1975), 1144–1149.
- [10] J.-M. De Koninck and F. Luca, *Analytic number theory: Exploring the anatomy of integers*, American Mathematical Society, Providence, RI, 2012.
- [11] M. Křížek, F. Luca, L. Somer, 17 lectures on Fermat numbers: from number theory to geometry, Springer, New York, 2001.
- [12] W. Narkiewicz, *Rational number theory in the 20th century: From PNT to FLT*, Springer, London, 2012.
- [13] P. Odifreddi, Classical recursion theory: the theory of functions and sets of natural numbers, North-Holland, Amsterdam, 1989.
- [14] M. Overholt, *The Diophantine equation* $n! + 1 = m^2$, Bull. London Math. Soc. 25 (1993), no. 2, 104, https://doi.org/10.1112/blms/25.2.104.

- [15] O. Pikhurko and O. Verbitsky, *Logical complexity of graphs: a survey;* in: *Model theoretic methods in finite combinatorics*, Contemp. Math. 558, 129–179, Amer. Math. Soc., Providence, RI, 2011, https://dx.doi.org/10.1090/conm/558.
- [16] H.-E. Richert, Über Zerlegungen in paarweise verschiedene Zahlen, Norsk Mat. Tidsskr. 31 (1949), 120–122.
- [17] W. Sierpiński, *Elementary theory of numbers*, 2nd ed. (ed. A. Schinzel), PWN Polish Scientific Publishers and North-Holland, Warsaw-Amsterdam, 1987.
- [18] N. J. A. Sloane, *The On-Line Encyclopedia of Integer Sequences, A002981, Numbers n such that n*! + 1 *is prime,* https://oeis.org/A002981.
- [19] A. Tyszka, *Is there a computable upper bound for the height of a solution of a Diophantine equation with a unique solution in positive integers?*, Open Comput. Sci. 7 (2017), no. 1, 17–23, https://doi.org/10.1515/comp-2017-0003.
- [20] A. Tyszka, A hypothetical upper bound on the heights of the solutions of a Diophantine equation with a finite number of solutions, Open Comput. Sci. 8 (2018), no. 1, 109–114, https://dx.doi.org/10.1515/comp-2018-0012.
- [21] E. W. Weisstein, *CRC Concise Encyclopedia of Mathematics*, 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2002.
- [22] A. A. Zenkin, Superinduction: a new method for proving general mathematical statements with a computer, Dokl. Math. 55 (1997), no. 3, 410–413.
- [23] A. A. Zenkin, Superinduction method: logical acupuncture of mathematical infinity (in Russian), in: Infinity in mathematics: philosophical and historical aspects (ed. A. G. Barabashev), Janus-K, Moscow, 1997, 152–168, 173–176.
- [24] A. A. Zenkin, The generalized Waring problem: estimation of the function G(m,r) in terms of the function g(m-1,r) by the superinduction method, Dokl. Math. 56 (1997), no. 1, 597–600.
- [25] A. A. Zenkin, *Super-induction method: logical acupuncture of mathematical infinity*, paper presented at the Twentieth World Congress of Philosophy, Boston, MA, August 10–15, 1998, https://www.bu.edu/wcp/Papers/Logi/LogiZenk.htm.

Apoloniusz Tyszka University of Agriculture Faculty of Production and Power Engineering Balicka 116B, 30-149 Kraków, Poland

E-mail: rttyszka@cyf-kr.edu.pl