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Abstract

We define computable functions f , g : N \ {0} → N \ {0}. For a positive integer n, let Θn

denote the following statement: if a system S ⊆
{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪

{
xi · x j = xk :

i, j, k ∈ {1, . . . , n}
}

has only finitely many solutions in integers x1, . . . , xn greater than 1, then
each such solution (x1, . . . , xn) satisfies min(x1, . . . , xn) 6 f (n). The statement Θ9 proves
that if there exists an integer x > f (9) such that x2 + 1 (alternatively, x! + 1) is prime, then
there are infinitely many primes of the form n2 + 1 (respectively, n! + 1). The statement Θ16

proves that if there exists a twin prime greater than f (16) + 3, then there are infinitely many
twin primes. We formulate a statement which proves that if 22n

+ 1 is composite for some
integer n > g(13), then 22n

+ 1 is composite for infinitely many positive integers n.

Key words and phrases: Brocard’s problem, Brocard-Ramanujan equation, composite Fermat
numbers, composite numbers of the form 22n

+ 1, prime numbers of the form n2 + 1, prime
numbers of the form n! + 1, Richert’s lemma, Richert’s theorem, twin prime conjecture.

2010 Mathematics Subject Classification: 03B30, 03D20, 11A41.

1 Introduction

The following observation concerns the theme described in the title of the article.

Observation 1. If n ∈ N and W ⊆ {0, . . . , n}, then we take any integer m > n as a threshold
number for W. If W ⊆ N and W is infinite, then we take any non-negative integer m as a
threshold number forW.



We define the setU ⊆ N by declaring that a non-negative integer n belongs toU if and only

if sin

10101010  > 0. This inequality is practically undecidable, see [7].

Corollary 1. The set U equals ∅ or N. The statement “U = ∅” remains unproven and the
statement “U = N” remains unproven. Every non-negative integer m is a threshold number
forU. For every non-negative integer k, the sentence “k ∈ U” is only theoretically decidable.

The first-order language of graph theory contains two relation symbols of arity 2: ∼ and =,
respectively for adjacency and equality of vertices. The term first-order imposes the condition
that the variables represent vertices and hence the quantifiers apply to vertices only. For a first-
order sentence Λ about graphs, let Spectrum(Λ) denote the set of all positive integers n such
that there is a graph on n vertices satisfying Λ. By a graph on n vertices we understand a set of
n elements with a binary relation which is symmetric and irreflexive.

Theorem 1. ([15, p. 171]). If a sentence Λ in the language of graph theory has the form
∃x1 . . . xk ∀y1 . . . yl Υ(x1, . . . , xk, y1, . . . , yl), where Υ(x1, . . . , xk, y1, . . . , yl) is quantifier-free, then
either Spectrum(Λ) ⊆ [1, (2k · 4l) − 1] or Spectrum(Λ) ⊇ [k + l,∞) ∩ N.

Corollary 2. The number
(
2k · 4l

)
− 1 is a threshold number for Spectrum(Λ).

The classes of the infinite recursively enumerable sets and of the infinite recursive sets are
not recursively enumerable, see [13, p. 234].

Corollary 3. If an algorithm Al1 for every recursive setW ⊆ N finds a non-negative integer
Al1(W), then there exists a finite setM ⊆ N such thatM∩ [Al1(M) + 1,∞) , ∅.

Corollary 4. If an algorithm Al2 for every recursively enumerable set W ⊆ N finds a non-
negative integer Al2(W), then there exists a finite setM ⊆ N such thatM∩[Al2(M)+1,∞) , ∅.

Let K = { j ∈ N : 2ℵ j = ℵ j+1}.

Theorem 2. If ZFC is consistent, then for every non-negative integer n the sentence

"n is a threshold number for K"

is not provable in ZFC
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Proof. There exists a model E of ZFC such that

∀i ∈ {0, . . . , n + 1} E |= 2ℵi = ℵi+1

and
∀i ∈ {n + 2, n + 3, n + 4, . . .} E |= 2ℵi = ℵi+2

see [5] and [8, p. 232]. In the model E, K = {0, . . . , n + 1} and n is not a threshold number
for K. �

Theorem 3. If ZFC is consistent, then for every non-negative integer n the sentence

"n is not a threshold number for K"

is not provable in ZFC.

Proof. The Generalized Continuum Hypothesis (GCH) is consistent with ZFC, see [8, p. 188]
and [8, p. 190]. GCH implies that K = N. Consequently, GCH implies that every non-negative
integer n is a threshold number for K. �

Theorem 4. ([2, p. 35]). There exists a polynomial D(x1, . . . , xm) with integer coefficients such
that if ZFC is arithmetically consistent, then the sentences

"The equation D(x1, . . . , xm) = 0 is solvable in non-negative integers"

and

"The equation D(x1, . . . , xm) = 0 is not solvable in non-negative integers"

are not provable in ZFC.

Let ∆ denote the set of all non-negative integers k such that the equation D(x1, . . . , xm) = 0
has no solutions in {0, . . . , k}m. Since the set {0, . . . , k}m is finite, the set ∆ is computable. Theo-
rem 4 implies the following corollary.

Corollary 5. If ZFC is arithmetically consistent, then for every non-negative integer n the
sentences

"n is a threshold number for ∆"

and

"n is not a threshold number for ∆"

are not provable in ZFC.
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Let g(1) = 1, and let g(n + 1) = 22g(n)
for every positive integer n.

Hypothesis 1. ([20]). If a system

S ⊆ {xi · x j = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈ {1, . . . , n}}

has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution
(x1, . . . , xn) satisfies x1, . . . , xn 6 g(2n).

Theorem 5. ([20]). Hypothesis 1 implies that for every W(x1, . . . , xn) ∈ Z[x1, . . . , xn] we can
compute a threshold number b ∈ N \ {0} such that any non-negative integers a1, . . . , an which
satisfy

(W(a1, . . . , an) = 0) ∧ (max(a1, . . . , an) > b)

guarantee that the equation W(x1, . . . , xn) = 0 has infinitely many solutions in non-negative
integers.

2 Basic lemmas

Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2. Let V1 denote the
system of equations {x1! = x1}, and letV2 denote the system of equations {x1! = x1, x1·x1 = x2}.
For an integer n > 3, letVn denote the following system of equations:



x1! = x1

x1 · x1 = x2

∀i ∈ {2, . . . , n − 1} xi! = xi+1

The diagram in Figure 1 illustrates the construction of the systemVn.

!

x1 squaring x2 ! x3 . . . xn−1 ! xn

Fig. 1 Construction of the systemVn

Lemma 1. For every positive integer n, the system Vn has exactly one solution in integers
greater than 1, namely

(
f (1), . . . , f (n)

)
.
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Let
Hn =

{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}

For a positive integer n, let Θn denote the following statement: if a system S ⊆ Hn has at most
finitely many solutions in integers x1, . . . , xn greater than 1, then each such solution (x1, . . . , xn)
satisfies min(x1, . . . , xn) 6 f (n). The assumption min(x1, . . . , xn) 6 f (n) is weaker than the
assumption max(x1, . . . , xn) 6 f (n) suggested by Lemma 1.

Lemma 2. For every positive integer n, the system Hn has a finite number of subsystems.

Theorem 6. Every statement Θn is true with an unknown integer bound that depends on n.

Proof. It follows from Lemma 2. �

Lemma 3. For every integers x and y greater than 1, x! · y = y! if and only if x + 1 = y.

Lemma 4. If x > 4, then (x − 1)! + 1
x > 1.

Lemma 5. (Wilson’s theorem, [6, p. 89]). For every integer x > 2, x is prime if and only if x
divides (x − 1)! + 1.

3 Brocard’s problem

A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the
Brocard-Ramanujan equation x! + 1 = y2, see [14]. It is conjectured that x! + 1 is a square only
for x ∈ {4, 5, 7}, see [21, p. 297].

LetA denote the following system of equations:


x1! = x2

x2! = x3

x5! = x6

x4 · x4 = x5

x3 · x5 = x6

Lemma 3 and the diagram in Figure 2 explain the construction of the systemA.
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x1
! x2 x4

squaringx5+1

!

x3

!

x6x3 · x5 = x6

Fig. 2 Construction of the systemA

Lemma 6. For every integers x1 and x4 greater than 1, the system A is solvable in integers
x2, x3, x5, x6 greater than 1 if and only if x1! + 1 = x2

4. In this case, the integers x2, x3, x5, x6 are
uniquely determined by the following equalities:

x2 = x1!
x3 = (x1!)!
x5 = x1! + 1
x6 = (x1! + 1)!

and x1 = min(x1, . . . , x6).

Proof. It follows from Lemma 3. �

Theorem 7. The statement Θ6 proves the following implication: if the equation x1! + 1 = x2
4

has only finitely many solutions in positive integers, then each such solution (x1, x4) satisfies
x1 6 f (6).

Proof. Let positive integers x1 and x4 satisfy x1!+1 = x2
4. Then, x1, x4 ∈ N\{0, 1}. By Lemma 6,

there exists a unique tuple (x2, x3, x5, x6) ∈ (N \ {0, 1})4 such that the tuple (x1, . . . , x6) solves the
systemA. Lemma 6 guarantees that x1 = min(x1, . . . , x6). By the antecedent and Lemma 6, the
system A has only finitely many solutions in integers x1, . . . , x6 greater than 1. Therefore, the
statement Θ6 implies that x1 = min(x1, . . . , x6) 6 f (6). �

Hypothesis 2. The implication in Theorem 7 is true.

Corollary 6. Assuming Hypothesis 2, a single query to an oracle for the halting problem de-
cides the problem of the infinitude of the solutions of the equation x! + 1 = y2.
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4 Are there infinitely many prime numbers of the form n2 + 1?

Edmund Landau’s conjecture states that there are infinitely many primes of the form n2 + 1, see
[12, pp. 37–38]. Let B denote the following system of equations:



x2! = x3

x3! = x4

x5! = x6

x8! = x9

x1 · x1 = x2

x3 · x5 = x6

x4 · x8 = x9

x5 · x7 = x8

Lemma 3 and the diagram in Figure 3 explain the construction of the system B.

x1
squaring x2 +1 x5 ! x6

!

x3

!

x4

+1 x8

!

x9

x5 · x7 = x8

x3 · x5 = x6

x4 · x8 = x9

Fig. 3 Construction of the system B

Lemma 7. For every integer x1 > 2, the system B is solvable in integers x2, . . . , x9 greater
than 1 if and only if x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are uniquely determined
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by the following equalities:
x2 = x2

1

x3 = (x2
1)!

x4 = ((x2
1)!)!

x5 = x2
1 + 1

x6 = (x2
1 + 1)!

x7 =
(x2

1)! + 1
x2

1 + 1
x8 = (x2

1)! + 1
x9 = ((x2

1)! + 1)!

and min(x1, . . . , x9) = x1.

Proof. By Lemmas 3 and 4, for every integer x1 > 2, the system B is solvable in integers
x2, . . . , x9 greater than 1 if and only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of Lemma 7

follows from Lemma 5. �

Theorem 8. The statement Θ9 proves the following implication: if there exists an integer
x1 > f (9) such that x2

1 + 1 is prime, then there are infinitely many primes of the form n2 + 1.

Proof. Assume that an integer x1 is greater than f (9) and x2
1 + 1 is prime. By Lemma 7, there

exists a unique tuple (x2, . . . , x9) ∈ (N \ {0, 1})8 such that the tuple (x1, x2, . . . , x9) solves the
system B. Lemma 7 guarantees that min(x1, . . . , x9) = x1. Since B ⊆ H9, the statement Θ9 and
the inequality min(x1, . . . , x9) = x1 > f (9) imply that the systemB has infinitely many solutions
(x1, . . . , x9) ∈ (N \ {0, 1})9. According to Lemma 7, there are infinitely many primes of the form
n2 + 1. �

Hypothesis 3. The implication in Theorem 8 is true.

Corollary 7. Assuming Hypothesis 3, a single query to an oracle for the halting problem de-
cides the problem of the infinitude of primes of the form n2 + 1.

Let P denote the set of prime numbers. For a non-negative integer n, let Ω(n) denote the
following statement: ∃m ∈ N∩(n,∞) m2+1 ∈ P. By Theorem 8, assuming the statement Θ9, we
can infer the statement ∀n ∈ N Ω(n) from any statement Ω(n) with n > f (9). A similar situation
holds for inference by the so called "super-induction method", see [22]–[25]. In section 8, we
present Richert’s lemma which is frequently used in proofs by super-induction.
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5 Are there infinitely many prime numbers of the form n! + 1?

It is conjectured that there are infinitely many primes of the form n! + 1, see [1, p. 443] and
[18]. Let G denote the following system of equations:



x1! = x2

x2! = x3

x3! = x4

x5! = x6

x8! = x9

x3 · x5 = x6

x4 · x8 = x9

x5 · x7 = x8

Lemma 3 and the diagram in Figure 4 explain the construction of the system G.

x1
! x2 +1 x5 ! x6

!

x3

!

x4

+1 x8

!

x9

x5 · x7 = x8

x3 · x5 = x6

x4 · x8 = x9

Fig. 4 Construction of the system G

Lemma 8. For every integer x1 > 2, the systemG is solvable in integers x2, . . . , x9 greater than 1
if and only if x1! + 1 is prime. In this case, the integers x2, . . . , x9 are uniquely determined by
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the following equalities:
x2 = x1!
x3 = (x1!)!
x4 = ((x1!)!)!
x5 = x!

1 + 1
x6 = (x1! + 1)!

x7 =
(x1!)! + 1

x1! + 1
x8 = (x1!)! + 1
x9 = ((x1!)! + 1)!

and min(x1, . . . , x9) = x1.

Proof. By Lemmas 3 and 4, for every integer x1 > 2, the system G is solvable in integers
x2, . . . , x9 greater than 1 if and only if x1! + 1 divides (x1!)! + 1. Hence, the claim of Lemma 8
follows from Lemma 5. �

Theorem 9. The statement Θ9 proves the following implication: if there exists an integer
x1 > f (9) such that x1! + 1 is prime, then there are infinitely many primes of the form n! + 1.

Proof. Assume that an integer x1 is greater than f (9) and x1! + 1 is prime. By Lemma 8, there
exists a unique tuple (x2, . . . , x9) ∈ (N \ {0, 1})8 such that the tuple (x1, x2, . . . , x9) solves the
system G. Lemma 8 guarantees that min(x1, . . . , x9) = x1. Since G ⊆ H9, the statement Θ9 and
the inequality min(x1, . . . , x9) = x1 > f (9) imply that the system G has infinitely many solutions
(x1, . . . , x9) ∈ (N \ {0, 1})9. According to Lemma 8, there are infinitely many primes of the form
n! + 1. �

Hypothesis 4. The implication in Theorem 9 is true.

Corollary 8. Assuming Hypothesis 4, a single query to an oracle for the halting problem de-
cides the problem of the infinitude of primes of the form n! + 1.

6 The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The
twin prime conjecture states that there are infinitely many twin primes, see [12, p. 39].

10



Let C denote the following system of equations:


x1! = x2

x2! = x3

x4! = x5

x6! = x7

x7! = x8

x9! = x10

x12! = x13

x15! = x16

x2 · x4 = x5

x5 · x6 = x7

x7 · x9 = x10

x4 · x11 = x12

x3 · x12 = x13

x9 · x14 = x15

x8 · x15 = x16

Lemma 3 and the diagram in Figure 5 explain the construction of the system C.

!

x5

!

x10

x1
+1 x4 +1 x6 +1 x9

x2
+1 x12

+1 x15

!

x2

!

x3

!

x13

!

x7

!

x8

!

x16

x2 · x4 = x5 x7 · x9 = x10

x5 · x6 = x7

x4 · x11 = x12 x9 · x14 = x15

x3 · x12 = x13 x8 · x15 = x16

Fig. 5 Construction of the system C
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Lemma 9. If x4 = 2, then the system C has no solutions in integers x1, . . . , x16 greater than 1.

Proof. The equality x2 · x4 = x5 = x4! and the equality x4 = 2 imply that x2 = 1. �

Lemma 10. If x4 = 3, then the system C has no solutions in integers x1, . . . , x16 greater than 1.

Proof. The equality x4 · x11 = x12 = (x4 − 1)! + 1 and the equality x4 = 3 imply that x11 = 1. �

Lemma 11. For every x4 ∈ N \ {0, 1, 2, 3} and for every x9 ∈ N \ {0, 1}, the system C is solvable
in integers x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 greater than 1 if and only if x4

and x9 are prime and x4 + 2 = x9. In this case, the integers x1, x2, x3, x5, x6, x7, x8, x10, x11, x12,
x13, x14, x15, x16 are uniquely determined by the following equalities:

x1 = x4 − 1
x2 = (x4 − 1)!
x3 = ((x4 − 1)!)!
x5 = x4!
x6 = x9 − 1
x7 = (x9 − 1)!
x8 = ((x9 − 1)!)!

x10 = x9!

x11 =
(x4 − 1)! + 1

x4

x12 = (x4 − 1)! + 1
x13 = ((x4 − 1)! + 1)!

x14 =
(x9 − 1)! + 1

x9

x15 = (x9 − 1)! + 1
x16 = ((x9 − 1)! + 1)!

and min(x1, . . . , x16) = x1 = x9 − 3.

Proof. By Lemmas 3 and 4, for every x4 ∈ N \ {0, 1, 2, 3} and for every x9 ∈ N \ {0, 1}, the
system C is solvable in integers x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 greater
than 1 if and only if

(
x4 + 2 = x9

)
∧

(
x4|(x4 − 1)! + 1

)
∧

(
x9|(x9 − 1)! + 1

)

Hence, the claim of Lemma 11 follows from Lemma 5. �
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Theorem 10. The statement Θ16 proves the following implication: if there exists a twin prime
greater than f (16) + 3, then there are infinitely many twin primes.

Proof. Assume that the antecedent holds. Then, there exist prime numbers x4 and x9 such that
x9 = x4 + 2 > f (16) + 3. Hence, x4 ∈ N \ {0, 1, 2, 3}. By Lemma 11, there exists a unique
tuple (x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16) ∈ (N \ {0, 1})14 such that the tuple
(x1, . . . , x16) solves the system C. Lemma 11 guarantees that min(x1, . . . , x16) = x1 = x9 − 3 >
f (16). Since C ⊆ H16, the statement Θ16 and the inequality min(x1, . . . , x16) > f (16) imply that
the system C has infinitely many solutions in integers x1, . . . , x16 greater than 1. According to
Lemmas 9–11, there are infinitely many twin primes. �

Hypothesis 5. The implication in Theorem 10 is true.

Corollary 9. (cf. [3]). Assuming Hypothesis 5, a single query to an oracle for the halting
problem decides the twin prime problem.

7 Are there infinitely many composite Fermat numbers?

Primes of the form 22n
+ 1 are called Fermat primes, as Fermat conjectured that every integer

of the form 22n
+ 1 is prime, see [11, p. 1]. Fermat correctly remarked that 220

+ 1 = 3,

221
+ 1 = 5, 222

+ 1 = 17, 223
+ 1 = 257, and 224

+ 1 = 65537 are all prime, see [11, p. 1].

Open Problem. ([11, p. 159]). Are there infinitely many composite numbers of the form
22n

+ 1?

Most mathematicians believe that 22n
+ 1 is composite for every integer n > 5, see [10, p. 23].

Theorem 11. ([19]). An unproven inequality stated in [19] implies that 22n
+ 1 is composite

for every integer n > 5.

Lemma 12. ([11, p. 38]). For every positive integer n, if a prime number p divides 22n
+ 1,

then there exists a positive integer k such that p = k · 2n + 1 + 1.

Corollary 10. Since k · 2n + 1 + 1 > 2n + 1 + 1 > n + 3, for every positive integers x, y, and n,
the equality (x + 1)(y + 1) = 22n

+ 1 implies that min(n, x, x + 1, y, y + 1) = n.

Let
Gn =

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
∪

{
22xi

= xk : i, k ∈ {1, . . . , n}
}
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Lemma 13. The following subsystem of Gn


x1 · x1 = x1

∀i ∈ {1, . . . , n − 1} 22xi
= xi+1

has exactly one solution (x1, . . . , xn) ∈ (N \ {0})n, namely (g(1), . . . , g(n)).

For a positive integer n, let Ψn denote the following statement: if a system S ⊆ Gn has at
most finitely many solutions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn)
satisfies min(x1, . . . , xn) 6 g(n). The assumption min(x1, . . . , xn) 6 g(n) is weaker than the
assumption max(x1, . . . , xn) 6 g(n) suggested by Lemma 13.

Lemma 14. For every positive integer n, the system Gn has a finite number of subsystems.

Theorem 12. Every statement Ψn is true with an unknown integer bound that depends on n.

Proof. It follows from Lemma 14. �

Lemma 15. For every non-negative integers b and c, b + 1 = c if and only if 22b · 22b
= 22c

.

Theorem 13. The statement Ψ13 proves the following implication: if 22n
+ 1 is composite for

some integer n > g(13), then 22n
+ 1 is composite for infinitely many positive integers n.

Proof. Let us consider the equation

(x + 1)(y + 1) = 22z
+ 1 (1)

in positive integers. By Lemma 15, we can transform equation (1) into an equivalent system F
which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the
forms α · β = γ and 22α = γ, see the diagram in Figure 6.
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x

22(·)

22x
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Fig. 6 Construction of the system F
Assume that 22n

+ 1 is composite for some integer n > g(13). By this and Corollary 10,
equation (1) has a solution (x, y, z) ∈ (N \ {0})3 such that z = n and z = min(z, x, x + 1, y, y + 1).
Hence, the system F has a solution in positive integers such that z = n and n is the smallest
number in the solution sequence. Since n > g(13), the statement Ψ13 implies that the system F
has infinitely many solutions in positive integers. Therefore, there are infinitely many positive
integers n such that 22n

+ 1 is composite. �

Hypothesis 6. The implication in Theorem 13 is true.
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Corollary 11. Assuming Hypothesis 6, a single query to an oracle for the halting problem
decides whether or not the set of composite Fermat numbers is infinite.

8 Subsets of N \ {0} which are cofinite by Richert’s lemma and the halting of a computer
program

The following lemma is known as Richert’s lemma.

Lemma 16. ([4], [16], [17, p. 152]). Let {mi}∞i=1 be an increasing sequence of positive integers
such that for some positive integer k the inequality mi+1 6 2mi holds for all i > k. Suppose there
exists a non-negative integer b such that the numbers b + 1, b + 2, b + 3, . . . , b + mk+1 are all
expressible as sums of one or more distinct elements of the set {m1, . . . ,mk}. Then every integer
greater than b is expressible as a sum of one or more distinct elements of the set {m1,m2,m3, . . .}.

Corollary 12. If the sequence {mi}∞i=1 is computable and the flowchart algorithm in Figure 7
terminates, then almost all positive integers are expressible as a sum of one or more distinct
elements of the set {m1,m2,m3, . . .} and the algorithm returns all positive integers which are not
expressible as a sum of one or more distinct elements of the set {m1,m2,m3, . . .}.
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Start b := 0

k := the smallest integer k > 2 such that
the inequality mi + 1 6 2mi holds for all i > k

A :=
{
m1, . . . ,mk

}
B :=

{
m1
}

i := 2

B := B ∪
{
mi
}
∪
{
B[ j] + mi: j ∈ {1, . . . , card(B)}

}

i := i + 1 Print the set {1, . . . , b} \ B Stop

Is i = k + 1? Is b = 0?

G := {min(B) − 1, . . . ,max(B) + 1} \ B

H :=
{
G[n + 1] −G[n]: n ∈ {1, . . . , card(G) − 1}

}

b := max(B) Is max(H) > mk + 1? k := k + 1

k := the largest integer k such that mk 6 b

Yes
No

Yes

NoYes

No

Fig. 7 The algorithm which uses Richert’s lemma

The above algorithm works correctly because the inequality max(H) > mk+1 holds true if
and only if the set B contains mk+1 consecutive integers.

Theorem 14. ([9, Theorem 2.3]). If there exists ε > 0 such that the inequality mi+1 6 (2 − ε) · mi

holds for every sufficiently large i, then the flowchart algorithm in Figure 7 terminates if and
only if almost all positive integers are expressible as a sum of one or more distinct elements of
the set {m1,m2,m3, . . .}.
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