On sets $\mathcal{W} \subseteq \mathbb{N}$ whose infinite cardinality follows from the existence in \mathcal{W} of an element which is greater than a threshold number computed for \mathcal{W}

Apoloniusz Tyszka

Abstract

We define computable functions $f, g: \mathbb{N} \backslash\{0\} \rightarrow \mathbb{N} \backslash\{0\}$. For a positive integer n, let Θ_{n} denote the following statement: if a system $\mathcal{S} \subseteq\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}\right.$: $i, j, k \in\{1, \ldots, n\}\}$ has only finitely many solutions in integers x_{1}, \ldots, x_{n} greater than 1 , then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$. The statement Θ_{9} proves that if there exists an integer $x>f(9)$ such that $x^{2}+1$ (alternatively, $x!+1$) is prime, then there are infinitely many primes of the form $n^{2}+1$ (respectively, $n!+1$). The statement Θ_{16} proves that if there exists a twin prime greater than $f(16)+3$, then there are infinitely many twin primes. We formulate a statement which proves that if $2^{2^{n}}+1$ is composite for some integer $n>g(13)$, then $2^{2^{n}}+1$ is composite for infinitely many positive integers n.

Key words and phrases: Brocard's problem, Brocard-Ramanujan equation, composite Fermat numbers, composite numbers of the form $2^{2^{n}}+1$, prime numbers of the form $n^{2}+1$, prime numbers of the form $n!+1$, Richert's lemma, Richert's theorem, twin prime conjecture.

2010 Mathematics Subject Classification: 03B30, 03D20, 11A41.

1 Introduction

The following observation concerns the theme described in the title of the article.
Observation 1. If $n \in \mathbb{N}$ and $\mathcal{W} \subseteq\{0, \ldots, n\}$, then we take any integer $m \geqslant n$ as a threshold number for \mathcal{W}. If $\mathcal{W} \subseteq \mathbb{N}$ and W is infinite, then we take any non-negative integer m as a threshold number for \mathcal{W}.

We define the set $\mathcal{U} \subseteq \mathbb{N}$ by declaring that a non-negative integer n belongs to \mathcal{U} if and only if $\sin \left(10^{10^{10^{10}}}\right)>0$. This inequality is practically undecidable, see [7].

Corollary 1. The set \mathcal{U} equals \emptyset or \mathbb{N}. The statement " $\mathcal{U}=\emptyset$ " remains unproven and the statement " $\mathcal{U}=\mathbb{N}$ " remains unproven. Every non-negative integer m is a threshold number for \mathcal{U}. For every non-negative integer k, the sentence " $k \in \mathcal{U}$ " is only theoretically decidable.

The first-order language of graph theory contains two relation symbols of arity 2: \sim and $=$, respectively for adjacency and equality of vertices. The term first-order imposes the condition that the variables represent vertices and hence the quantifiers apply to vertices only. For a firstorder sentence Λ about graphs, let Spectrum(Λ) denote the set of all positive integers n such that there is a graph on n vertices satisfying Λ. By a graph on n vertices we understand a set of n elements with a binary relation which is symmetric and irreflexive.

Theorem 1. ([15] p. 171]). If a sentence Λ in the language of graph theory has the form $\exists x_{1} \ldots x_{k} \forall y_{1} \ldots y_{l} \Upsilon\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}\right)$, where $\Upsilon\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}\right)$ is quantifier-free, then either $\operatorname{Spectrum}(\Lambda) \subseteq\left[1,\left(2^{k} \cdot 4^{l}\right)-1\right] \operatorname{or} \operatorname{Spectrum}(\Lambda) \supseteq[k+l, \infty) \cap \mathbb{N}$.

Corollary 2. The number $\left(2^{k} \cdot 4^{l}\right)-1$ is a threshold number for $\operatorname{Spectrum}(\Lambda)$.
The classes of the infinite recursively enumerable sets and of the infinite recursive sets are not recursively enumerable, see [13, p. 234].

Corollary 3. If an algorithm Al_{1} for every recursive set $\mathcal{W} \subseteq \mathbb{N}$ finds a non-negative integer $\mathrm{Al}_{1}(\mathcal{W})$, then there exists a finite set $\mathcal{M} \subseteq \mathbb{N}$ such that $\mathcal{M} \cap\left[\mathrm{Al}_{1}(\mathcal{M})+1, \infty\right) \neq \emptyset$.

Corollary 4. If an algorithm Al_{2} for every recursively enumerable set $\mathcal{W} \subseteq \mathbb{N}$ finds a nonnegative integer $\mathrm{Al}_{2}(\mathcal{W})$, then there exists a finite set $\mathcal{M} \subseteq \mathbb{N}$ such that $\mathcal{M} \cap\left[\mathrm{Al}_{2}(\mathcal{M})+1, \infty\right) \neq \emptyset$.

$$
\text { Let } K=\left\{j \in \mathbb{N}: 2^{\boldsymbol{\aleph}_{j}}=\boldsymbol{\aleph}_{j+1}\right\}
$$

Theorem 2. If ZFC is consistent, then for every non-negative integer n the sentence
" n is a threshold number for K "
is not provable in ZFC

Proof. There exists a model \mathcal{E} of ZFC such that

$$
\forall i \in\{0, \ldots, n+1\} \mathcal{E} \vDash 2^{\boldsymbol{\aleph}_{i}}=\boldsymbol{\aleph}_{i+1}
$$

and

$$
\forall i \in\{n+2, n+3, n+4, \ldots\} \mathcal{E} \vDash 2^{\boldsymbol{\aleph}_{i}}=\boldsymbol{\aleph}_{i+2}
$$

see [5] and [8, p. 232]. In the model $\mathcal{E}, K=\{0, \ldots, n+1\}$ and n is not a threshold number for K.

Theorem 3. If ZFC is consistent, then for every non-negative integer n the sentence

$$
" n \text { is not a threshold number for } K "
$$

is not provable in ZFC.
Proof. The Generalized Continuum Hypothesis (GCH) is consistent with ZFC, see [8, p. 188] and [8, p. 190]. GCH implies that $K=\mathbb{N}$. Consequently, GCH implies that every non-negative integer n is a threshold number for K.

Theorem 4. ([2] p. 35]). There exists a polynomial $D\left(x_{1}, \ldots, x_{m}\right)$ with integer coefficients such that if ZFC is arithmetically consistent, then the sentences
"The equation $D\left(x_{1}, \ldots, x_{m}\right)=0$ is solvable in non-negative integers" and
"The equation $D\left(x_{1}, \ldots, x_{m}\right)=0$ is not solvable in non-negative integers" are not provable in ZFC.

Let Δ denote the set of all non-negative integers k such that the equation $D\left(x_{1}, \ldots, x_{m}\right)=0$ has no solutions in $\{0, \ldots, k\}^{m}$. Since the set $\{0, \ldots, k\}^{m}$ is finite, the set Δ is computable. Theorem 4 implies the following corollary.

Corollary 5. If ZFC is arithmetically consistent, then for every non-negative integer n the sentences

$$
" n \text { is a threshold number for } \Delta "
$$

and

$$
" n \text { is not a threshold number for } \Delta "
$$

are not provable in ZFC.

Let $g(1)=1$, and let $g(n+1)=2^{2^{g(n)}}$ for every positive integer n.
Hypothesis 1. ([20]). If a system

$$
\mathcal{S} \subseteq\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i}+1=x_{k}: i, k \in\{1, \ldots, n\}\right\}
$$

has only finitely many solutions in non-negative integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{1}, \ldots, x_{n} \leqslant g(2 n)$.

Theorem 5. ([[20]). Hypothesis 1 implies that for every $W\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ we can compute a threshold number $b \in \mathbb{N} \backslash\{0\}$ such that any non-negative integers a_{1}, \ldots, a_{n} which satisfy

$$
\left(W\left(a_{1}, \ldots, a_{n}\right)=0\right) \wedge\left(\max \left(a_{1}, \ldots, a_{n}\right)>b\right)
$$

guarantee that the equation $W\left(x_{1}, \ldots, x_{n}\right)=0$ has infinitely many solutions in non-negative integers.

2 Basic lemmas

Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 2$. Let \mathcal{V}_{1} denote the system of equations $\left\{x_{1}!=x_{1}\right\}$, and let \mathcal{V}_{2} denote the system of equations $\left\{x_{1}!=x_{1}, x_{1} \cdot x_{1}=x_{2}\right\}$. For an integer $n \geqslant 3$, let \mathcal{V}_{n} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{1} \\
x_{1} \cdot x_{1} & =x_{2} \\
\forall i \in\{2, \ldots, n-1\} x_{i}! & =x_{i+1}
\end{aligned}\right.
$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{V}_{n}.

Fig. 1 Construction of the system \mathcal{V}_{n}
Lemma 1. For every positive integer n, the system \mathcal{V}_{n} has exactly one solution in integers greater than 1 , namely $(f(1), \ldots, f(n))$.

Let

$$
H_{n}=\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

For a positive integer n, let Θ_{n} denote the following statement: if a system $\mathcal{S} \subseteq H_{n}$ has at most finitely many solutions in integers x_{1}, \ldots, x_{n} greater than 1 , then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$. The assumption $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$ is weaker than the assumption $\max \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$ suggested by Lemma 1 .

Lemma 2. For every positive integer n, the system H_{n} has a finite number of subsystems.
Theorem 6. Every statement Θ_{n} is true with an unknown integer bound that depends on n.
Proof. It follows from Lemma 2 .
Lemma 3. For every integers x and y greater than $1, x!\cdot y=y!$ if and only if $x+1=y$.
Lemma 4. If $x \geqslant 4$, then $\frac{(x-1)!+1}{x}>1$.
Lemma 5. (Wilson's theorem, [6] p. 89]). For every integer $x \geqslant 2, x$ is prime if and only if x divides $(x-1)!+1$.

3 Brocard's problem

A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the Brocard-Ramanujan equation $x!+1=y^{2}$, see [14]. It is conjectured that $x!+1$ is a square only for $x \in\{4,5,7\}$, see [21, p. 297].

Let \mathcal{A} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{5}! & =x_{6} \\
x_{4} \cdot x_{4} & =x_{5} \\
x_{3} \cdot x_{5} & =x_{6}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 2 explain the construction of the system \mathcal{A}.

Fig. 2 Construction of the system \mathcal{A}
Lemma 6. For every integers x_{1} and x_{4} greater than 1 , the system \mathcal{A} is solvable in integers $x_{2}, x_{3}, x_{5}, x_{6}$ greater than 1 if and only if $x_{1}!+1=x_{4}^{2}$. In this case, the integers $x_{2}, x_{3}, x_{5}, x_{6}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}! \\
x_{3} & =\left(x_{1}!\right)! \\
x_{5} & =x_{1}!+1 \\
x_{6} & =\left(x_{1}!+1\right)!
\end{aligned}
$$

and $x_{1}=\min \left(x_{1}, \ldots, x_{6}\right)$.
Proof. It follows from Lemma 3 .
Theorem 7. The statement Θ_{6} proves the following implication: if the equation $x_{1}!+1=x_{4}^{2}$ has only finitely many solutions in positive integers, then each such solution $\left(x_{1}, x_{4}\right)$ satisfies $x_{1} \leqslant f(6)$.

Proof. Let positive integers x_{1} and x_{4} satisfy $x_{1}!+1=x_{4}^{2}$. Then, $x_{1}, x_{4} \in \mathbb{N} \backslash\{0,1\}$. By Lemma 6 , there exists a unique tuple $\left(x_{2}, x_{3}, x_{5}, x_{6}\right) \in(\mathbb{N} \backslash\{0,1\})^{4}$ such that the tuple $\left(x_{1}, \ldots, x_{6}\right)$ solves the system \mathcal{A}. Lemma 6 guarantees that $x_{1}=\min \left(x_{1}, \ldots, x_{6}\right)$. By the antecedent and Lemma6, the system \mathcal{A} has only finitely many solutions in integers x_{1}, \ldots, x_{6} greater than 1 . Therefore, the statement Θ_{6} implies that $x_{1}=\min \left(x_{1}, \ldots, x_{6}\right) \leqslant f(6)$.

Hypothesis 2. The implication in Theorem 7 is true.
Corollary 6. Assuming Hypothesis 2 a single query to an oracle for the halting problem decides the problem of the infinitude of the solutions of the equation $x!+1=y^{2}$.

4 Are there infinitely many prime numbers of the form $n^{2}+1$?

Edmund Landau's conjecture states that there are infinitely many primes of the form $n^{2}+1$, see [12, pp. 37-38]. Let \mathcal{B} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{1} \cdot x_{1} & =x_{2} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 3 explain the construction of the system \mathcal{B}.

Fig. 3 Construction of the system \mathcal{B}
Lemma 7. For every integer $x_{1} \geqslant 2$, the system \mathcal{B} is solvable in integers x_{2}, \ldots, x_{9} greater than 1 if and only if $x_{1}^{2}+1$ is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined
by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}^{2} \\
x_{3} & =\left(x_{1}^{2}\right)! \\
x_{4} & =\left(\left(x_{1}^{2}\right)!\right)! \\
x_{5} & =x_{1}^{2}+1 \\
x_{6} & =\left(x_{1}^{2}+1\right)! \\
x_{7} & =\frac{\left(x_{1}^{2}\right)!+1}{x_{1}^{2}+1} \\
x_{8} & =\left(x_{1}^{2}\right)!+1 \\
x_{9} & =\left(\left(x_{1}^{2}\right)!+1\right)!
\end{aligned}
$$

and $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}$.
Proof. By Lemmas 3 and 4, for every integer $x_{1} \geqslant 2$, the system \mathcal{B} is solvable in integers x_{2}, \ldots, x_{9} greater than 1 if and only if $x_{1}^{2}+1$ divides $\left(x_{1}^{2}\right)!+1$. Hence, the claim of Lemma 7 follows from Lemma 5 ,

Theorem 8. The statement Θ_{9} proves the following implication: if there exists an integer $x_{1}>f(9)$ such that $x_{1}^{2}+1$ is prime, then there are infinitely many primes of the form $n^{2}+1$.

Proof. Assume that an integer x_{1} is greater than $f(9)$ and $x_{1}^{2}+1$ is prime. By Lemma 7, there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{B}. Lemma 7 guarantees that $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}$. Since $\mathcal{B} \subseteq H_{9}$, the statement Θ_{9} and the inequality $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}>f(9)$ imply that the system \mathcal{B} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{9}$. According to Lemma 7 , there are infinitely many primes of the form $n^{2}+1$.

Hypothesis 3. The implication in Theorem 8 is true.
Corollary 7. Assuming Hypothesis 3 a single query to an oracle for the halting problem decides the problem of the infinitude of primes of the form $n^{2}+1$.

Let \mathcal{P} denote the set of prime numbers. For a non-negative integer n, let $\Omega(n)$ denote the following statement: $\exists m \in \mathbb{N} \cap(n, \infty) m^{2}+1 \in \mathcal{P}$. By Theorem 8 , assuming the statement Θ_{9}, we can infer the statement $\forall n \in \mathbb{N} \Omega(n)$ from any statement $\Omega(n)$ with $n \geqslant f(9)$. A similar situation holds for inference by the so called "super-induction method", see [22]-[25]. In section 8, we present Richert's lemma which is frequently used in proofs by super-induction.

5 Are there infinitely many prime numbers of the form $n!+1$?

It is conjectured that there are infinitely many primes of the form $n!+1$, see [1, p. 443] and [18]. Let \mathcal{G} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 4 explain the construction of the system \mathcal{G}.

Fig. 4 Construction of the system \mathcal{G}
Lemma 8. For every integer $x_{1} \geqslant 2$, the system \mathcal{G} is solvable in integers x_{2}, \ldots, x_{9} greater than 1 if and only if $x_{1}!+1$ is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined by
the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}! \\
x_{3} & =\left(x_{1}!\right)! \\
x_{4} & =\left(\left(x_{1}!\right)!\right)! \\
x_{5} & =x_{1}^{!}+1 \\
x_{6} & =\left(x_{1}!+1\right)! \\
x_{7} & =\frac{\left(x_{1}!\right)!+1}{x_{1}!+1} \\
x_{8} & =\left(x_{1}!\right)!+1 \\
x_{9} & =\left(\left(x_{1}!\right)!+1\right)!
\end{aligned}
$$

and $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}$.
Proof. By Lemmas 3 and 4, for every integer $x_{1} \geqslant 2$, the system \mathcal{G} is solvable in integers x_{2}, \ldots, x_{9} greater than 1 if and only if $x_{1}!+1$ divides $\left(x_{1}!\right)!+1$. Hence, the claim of Lemma 8 follows from Lemma 5 ,

Theorem 9. The statement Θ_{9} proves the following implication: if there exists an integer $x_{1}>f(9)$ such that $x_{1}!+1$ is prime, then there are infinitely many primes of the form $n!+1$.

Proof. Assume that an integer x_{1} is greater than $f(9)$ and $x_{1}!+1$ is prime. By Lemma 8 , there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{G}. Lemma 8 guarantees that $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}$. Since $\mathcal{G} \subseteq H_{9}$, the statement Θ_{9} and the inequality $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}>f(9)$ imply that the system \mathcal{G} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{9}$. According to Lemma 8 , there are infinitely many primes of the form $n!+1$.

Hypothesis 4. The implication in Theorem 9 is true.
Corollary 8. Assuming Hypothesis 4 a single query to an oracle for the halting problem decides the problem of the infinitude of primes of the form $n!+1$.

6 The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [12, p. 39].

Let C denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{4}! & =x_{5} \\
x_{6}! & =x_{7} \\
x_{7}! & =x_{8} \\
x_{9}! & =x_{10} \\
x_{12}! & =x_{13} \\
x_{15}! & =x_{16} \\
x_{2} \cdot x_{4} & =x_{5} \\
x_{5} \cdot x_{6} & =x_{7} \\
x_{7} \cdot x_{9} & =x_{10} \\
x_{4} \cdot x_{11} & =x_{12} \\
x_{3} \cdot x_{12} & =x_{13} \\
x_{9} \cdot x_{14} & =x_{15} \\
x_{8} \cdot x_{15} & =x_{16}
\end{aligned}\right.
$$

Lemma 3 and the diagram in Figure 5 explain the construction of the system C.

Fig. 5 Construction of the system C

Lemma 9. If $x_{4}=2$, then the system C has no solutions in integers x_{1}, \ldots, x_{16} greater than 1.
Proof. The equality $x_{2} \cdot x_{4}=x_{5}=x_{4}$! and the equality $x_{4}=2$ imply that $x_{2}=1$.
Lemma 10. If $x_{4}=3$, then the system C has no solutions in integers x_{1}, \ldots, x_{16} greater than 1.
Proof. The equality $x_{4} \cdot x_{11}=x_{12}=\left(x_{4}-1\right)!+1$ and the equality $x_{4}=3$ imply that $x_{11}=1$.
Lemma 11. For every $x_{4} \in \mathbb{N} \backslash\{0,1,2,3\}$ and for every $x_{9} \in \mathbb{N} \backslash\{0,1\}$, the system C is solvable in integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if x_{4} and x_{9} are prime and $x_{4}+2=x_{9}$. In this case, the integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}$, $x_{13}, x_{14}, x_{15}, x_{16}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{1} & =x_{4}-1 \\
x_{2} & =\left(x_{4}-1\right)! \\
x_{3} & =\left(\left(x_{4}-1\right)!\right)! \\
x_{5} & =x_{4}! \\
x_{6} & =x_{9}-1 \\
x_{7} & =\left(x_{9}-1\right)! \\
x_{8} & =\left(\left(x_{9}-1\right)!\right)! \\
x_{10} & =x_{9}! \\
x_{11} & =\frac{\left(x_{4}-1\right)!+1}{x_{4}} \\
x_{12} & =\left(x_{4}-1\right)!+1 \\
x_{13} & =\left(\left(x_{4}-1\right)!+1\right)! \\
x_{14} & =\frac{\left(x_{9}-1\right)!+1}{x_{9}} \\
x_{15} & =\left(x_{9}-1\right)!+1 \\
x_{16} & =\left(\left(x_{9}-1\right)!+1\right)!
\end{aligned}
$$

and $\min \left(x_{1}, \ldots, x_{16}\right)=x_{1}=x_{9}-3$.
Proof. By Lemmas 3 and 4 , for every $x_{4} \in \mathbb{N} \backslash\{0,1,2,3\}$ and for every $x_{9} \in \mathbb{N} \backslash\{0,1\}$, the system C is solvable in integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if

$$
\left(x_{4}+2=x_{9}\right) \wedge\left(x_{4} \mid\left(x_{4}-1\right)!+1\right) \wedge\left(x_{9} \mid\left(x_{9}-1\right)!+1\right)
$$

Hence, the claim of Lemma 11 follows from Lemma 5 .

Theorem 10. The statement Θ_{16} proves the following implication: if there exists a twin prime greater than $f(16)+3$, then there are infinitely many twin primes.

Proof. Assume that the antecedent holds. Then, there exist prime numbers x_{4} and x_{9} such that $x_{9}=x_{4}+2>f(16)+3$. Hence, $x_{4} \in \mathbb{N} \backslash\{0,1,2,3\}$. By Lemma 11, there exists a unique tuple $\left(x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right) \in(\mathbb{N} \backslash\{0,1\})^{14}$ such that the tuple $\left(x_{1}, \ldots, x_{16}\right)$ solves the system C. Lemma 11 guarantees that $\min \left(x_{1}, \ldots, x_{16}\right)=x_{1}=x_{9}-3>$ $f(16)$. Since $C \subseteq H_{16}$, the statement Θ_{16} and the inequality $\min \left(x_{1}, \ldots, x_{16}\right)>f(16)$ imply that the system C has infinitely many solutions in integers x_{1}, \ldots, x_{16} greater than 1 . According to Lemmas 9,11 , there are infinitely many twin primes.

Hypothesis 5. The implication in Theorem 10 is true.
Corollary 9. (cf. [3]). Assuming Hypothesis [5] a single query to an oracle for the halting problem decides the twin prime problem.

7 Are there infinitely many composite Fermat numbers?

Primes of the form $2^{2^{n}}+1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^{n}}+1$ is prime, see [11, p. 1]. Fermat correctly remarked that $2^{2^{0}}+1=3$, $2^{2^{1}}+1=5,2^{2^{2}}+1=17,2^{2^{3}}+1=257$, and $2^{2^{4}}+1=65537$ are all prime, see [11, p. 1].

Open Problem. ([11, p. 159]). Are there infinitely many composite numbers of the form $2^{2^{n}}+1$?
Most mathematicians believe that $2^{2^{n}}+1$ is composite for every integer $n \geqslant 5$, see [10, p. 23].
Theorem 11. ([[19]). An unproven inequality stated in [19] implies that $2^{2^{n}}+1$ is composite for every integer $n \geqslant 5$.

Lemma 12. ([[1] p. 38]). For every positive integer n, if a prime number p divides $2^{2^{n}}+1$, then there exists a positive integer k such that $p=k \cdot 2^{n+1}+1$.

Corollary 10. Since $k \cdot 2^{n+1}+1 \geqslant 2^{n+1}+1 \geqslant n+3$, for every positive integers x, y, and n, the equality $(x+1)(y+1)=2^{2^{n}}+1$ implies that $\min (n, x, x+1, y, y+1)=n$.

Let

$$
G_{n}=\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\} \cup\left\{2^{2^{x_{i}}}=x_{k}: i, k \in\{1, \ldots, n\}\right\}
$$

Lemma 13. The following subsystem of G_{n}

$$
\left\{\begin{aligned}
x_{1} \cdot x_{1} & =x_{1} \\
\forall i \in\{1, \ldots, n-1\} 2^{2^{x_{i}}} & =x_{i+1}
\end{aligned}\right.
$$

has exactly one solution $\left(x_{1}, \ldots, x_{n}\right) \in(\mathbb{N} \backslash\{0\})^{n}$, namely $(g(1), \ldots, g(n))$.
For a positive integer n, let Ψ_{n} denote the following statement: if a system $S \subseteq G_{n}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant g(n)$. The assumption $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant g(n)$ is weaker than the assumption $\max \left(x_{1}, \ldots, x_{n}\right) \leqslant g(n)$ suggested by Lemma 13

Lemma 14. For every positive integer n, the system G_{n} has a finite number of subsystems.
Theorem 12. Every statement Ψ_{n} is true with an unknown integer bound that depends on n.
Proof. It follows from Lemma 14 .
Lemma 15. For every non-negative integers b and $c, b+1=c$ if and only if $2^{2^{b}} \cdot 2^{2^{b}}=2^{2^{c}}$.
Theorem 13. The statement Ψ_{13} proves the following implication: if $2^{2^{n}}+1$ is composite for some integer $n>g(13)$, then $2^{2^{n}}+1$ is composite for infinitely many positive integers n.

Proof. Let us consider the equation

$$
\begin{equation*}
(x+1)(y+1)=2^{2^{z}}+1 \tag{1}
\end{equation*}
$$

in positive integers. By Lemma 15, we can transform equation (1) into an equivalent system \mathcal{F} which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms $\alpha \cdot \beta=\gamma$ and $2^{2^{\alpha}}=\gamma$, see the diagram in Figure 6.

Fig. 6 Construction of the system \mathcal{F}
Assume that $2^{2^{n}}+1$ is composite for some integer $n>g(13)$. By this and Corollary 10 , equation (1) has a solution $(x, y, z) \in(\mathbb{N} \backslash\{0\})^{3}$ such that $z=n$ and $z=\min (z, x, x+1, y, y+1)$. Hence, the system \mathcal{F} has a solution in positive integers such that $z=n$ and n is the smallest number in the solution sequence. Since $n>g(13)$, the statement Ψ_{13} implies that the system \mathcal{F} has infinitely many solutions in positive integers. Therefore, there are infinitely many positive integers n such that $2^{2^{n}}+1$ is composite.

Hypothesis 6. The implication in Theorem 13 is true.

Corollary 11. Assuming Hypothesis 6, a single query to an oracle for the halting problem decides whether or not the set of composite Fermat numbers is infinite.

8 Subsets of $\mathbb{N} \backslash\{0\}$ which are cofinite by Richert's lemma and the halting of a computer program

The following lemma is known as Richert's lemma.
Lemma 16. ([4], [[76], [17] p.152]). Let $\left\{m_{i}\right\}_{i=1}^{\infty}$ be an increasing sequence of positive integers such that for some positive integer k the inequality $m_{i+1} \leqslant 2 m_{i}$ holds for all $i>k$. Suppose there exists a non-negative integer b such that the numbers $b+1, b+2, b+3, \ldots, b+m_{k+1}$ are all expressible as sums of one or more distinct elements of the set $\left\{m_{1}, \ldots, m_{k}\right\}$. Then every integer greater than b is expressible as a sum of one or more distinct elements of the set $\left\{m_{1}, m_{2}, m_{3}, \ldots\right\}$.

Corollary 12. If the sequence $\left\{m_{i}\right\}_{i=1}^{\infty}$ is computable and the flowchart algorithm in Figure 7 terminates, then almost all positive integers are expressible as a sum of one or more distinct elements of the set $\left\{m_{1}, m_{2}, m_{3}, \ldots\right\}$ and the algorithm returns all positive integers which are not expressible as a sum of one or more distinct elements of the set $\left\{m_{1}, m_{2}, m_{3}, \ldots\right\}$.

Fig. 7 The algorithm which uses Richert's lemma
The above algorithm works correctly because the inequality $\max (H)>m_{k+1}$ holds true if and only if the set B contains m_{k+1} consecutive integers.

Theorem 14. ([9] Theorem 2.3]). If there exists $\varepsilon>0$ such that the inequality $m_{i+1} \leqslant(2-\varepsilon) \cdot m_{i}$ holds for every sufficiently large i, then the flowchart algorithm in Figure 7 terminates if and only if almost all positive integers are expressible as a sum of one or more distinct elements of the set $\left\{m_{1}, m_{2}, m_{3}, \ldots\right\}$.

References

[1] C. K. Caldwell and Y. Gallot, On the primality of $n!\pm 1$ and $2 \times 3 \times 5 \times \cdots \times p \pm 1$, Math. Comp. 71 (2002), no. 237, 441-448, https://doi.org/10.1090/ S0025-5718-01-01315-1.
[2] N. C. A. da Costa and F. A. Doria, On the foundations of science (LIVRO): essays, first series, E-papers Serviços Editoriais Ltda, Rio de Janeiro, 2013.
[3] F. G. Dorais, Can the twin prime problem be solved with a single use of a halting oracle? July 23, 2011, https://mathoverflow.net/questions/71050.
[4] R. E. Dressler, A. Mąkowski, T. Parker, Sums of distinct primes from congruence classes modulo 12, Math. Comp. 28 (1974), 651-652.
[5] W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139-178.
[6] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[7] J. van der Hoeven, Undecidability versus undecidability, Bull. Symbolic Logic 5 (1999), no. 1, 75, https://dx.doi.org/10.2307/421141.
[8] T. Jech, Set theory, Springer, Berlin, 2003.
[9] T. Kløve, Sums of distinct elements from a fixed set, Math. Comp. 29 (1975), 1144-1149.
[10] J.-M. De Koninck and F. Luca, Analytic number theory: Exploring the anatomy of integers, American Mathematical Society, Providence, RI, 2012.
[11] M. Křížek, F. Luca, L. Somer, 17 lectures on Fermat numbers: from number theory to geometry, Springer, New York, 2001.
[12] W. Narkiewicz, Rational number theory in the 20th century: From PNT to FLT, Springer, London, 2012.
[13] P. Odifreddi, Classical recursion theory: the theory of functions and sets of natural numbers, North-Holland, Amsterdam, 1989.
[14] M. Overholt, The Diophantine equation $n!+1=m^{2}$, Bull. London Math. Soc. 25 (1993), no. 2, 104, https://doi.org/10.1112/blms/25.2.104.
[15] O. Pikhurko and O. Verbitsky, Logical complexity of graphs: a survey; in: Model theoretic methods in finite combinatorics, Contemp. Math. 558, 129-179, Amer. Math. Soc., Providence, RI, 2011, https://dx.doi.org/10.1090/conm/558.
[16] H.-E. Richert, Über Zerlegungen in paarweise verschiedene Zahlen, Norsk Mat. Tidsskr. 31 (1949), 120-122.
[17] W. Sierpiński, Elementary theory of numbers, 2nd ed. (ed. A. Schinzel), PWN - Polish Scientific Publishers and North-Holland, Warsaw-Amsterdam, 1987.
[18] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, A002981, Numbers n such that $n!+1$ is prime, https://oeis.org/A002981.
[19] A. Tyszka, Is there a computable upper bound for the height of a solution of a Diophantine equation with a unique solution in positive integers?, Open Comput. Sci. 7 (2017), no. 1, 17-23, https://doi.org/10.1515/comp-2017-0003.
[20] A. Tyszka, A hypothetical upper bound on the heights of the solutions of a Diophantine equation with a finite number of solutions, Open Comput. Sci. 8 (2018), no. 1, 109-114, https://dx.doi.org/10.1515/comp-2018-0012.
[21] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chapman \& Hall/CRC, Boca Raton, FL, 2002.
[22] A. A. Zenkin, Superinduction: a new method for proving general mathematical statements with a computer, Dokl. Math. 55 (1997), no. 3, 410-413.
[23] A. A. Zenkin, Superinduction method: logical acupuncture of mathematical infinity (in Russian), in: Infinity in mathematics: philosophical and historical aspects (ed. A. G. Barabashev), Janus-K, Moscow, 1997, 152-168, 173-176.
[24] A. A. Zenkin, The generalized Waring problem: estimation of the function $G(m, r)$ in terms of the function $g(m-1, r)$ by the superinduction method, Dokl. Math. 56 (1997), no. 1, 597-600.
[25] A. A. Zenkin, Super-induction method: logical acupuncture of mathematical infinity, paper presented at the Twentieth World Congress of Philosophy, Boston, MA, August 10-15, 1998, https://www.bu.edu/wcp/Papers/Logi/LogiZenk.htm.

Apoloniusz Tyszka
University of Agriculture
Faculty of Production and Power Engineering
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

