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Abstract. Edmund Landau’s conjecture states that the set Pn2+1 of primes of the form
n2 + 1 is infinite. Landau’s conjecture implies the following unproven statement Φ:
card(Pn2+1) < ω⇒ Pn2+1 ⊆ [2, (((24!)!)!)!]. We heuristically justify the statement Φ.
This justification does not yield the finiteness/infiniteness of Pn2+1. We present a new
heuristic argument for the infiniteness of Pn2+1, which is not based on the statement Φ.
The distinction between algorithms whose existence is provable in ZFC and constructively
defined algorithms which are currently known inspires statements and open problems on
decidable sets X ⊆ N that refer to the current knowledge on X.
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1. Summary

Sections 2–4 contain purely mathematical results, which we summarize now shortly
starting from the results of sections 2 and 3. Edmund Landau’s conjecture states that
the set Pn2+1 of primes of the form n2 + 1 is infinite, see [15]–[17]. Landau’s conjecture
implies the following unproven statement Φ: card(Pn2+1) < ω⇒ Pn2+1 ⊆ [2, (((24!)!)!)!].
Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2. Let B denote the
system of equations:

{x j! = xk : j, k ∈ {1, . . . , 9}} ∪ {xi · x j = xk : i, j, k ∈ {1, . . . , 9}}

We write some system U ⊆ B of 9 equations which has exactly two solutions in pos-
itive integers x1, . . . , x9, namely (1, . . . , 1) and ( f (1), . . . , f (9)). No known system
S ⊆ B with a finite number of solutions in positive integers x1, . . . , x9 has a solu-
tion (x1, . . . , x9) ∈ (N \ {0})9 satisfying max(x1, . . . , x9) > f (9). For every known system
S ⊆ B, if the finiteness/infiniteness of the set

{(x1, . . . , x9) ∈ (N \ {0})9 : (x1, . . . , x9) solves S}

is unknown, then the statement

∃x1, . . . , x9 ∈ N \ {0} ((x1, . . . , x9) solves S) ∧ (max(x1, . . . , x9) > f (9))

remains unproven.

1
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We write some system A ⊆ B of 8 equations. Let Λ denote the statement: if the sys-
tem A has at most finitely many solutions in positive integers x1, . . . , x9, then each such
solution (x1, . . . , x9) satisfies x1, . . . , x9 6 f (9). The statement Λ is equivalent to the state-
ment Φ. It heuristically justifies the statement Φ. This justification does not yield the
finiteness/infiniteness of Pn2+1.

In section 4, we present a new heuristic argument for the infiniteness of Pn2+1, which is
not based on the statement Φ.

Statements and open problems in sections 5–8 involve epistemic and informal notions
and justify the next sentence. The distinction between algorithms whose existence is prov-
able in ZFC and constructively defined algorithms which are currently known inspires
statements and open problems on decidable sets X ⊆ N that refer to the current knowledge
on X.

2. Number-theoretic statements Ψn

Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2. LetU1 denote
the system of equations {x1! = x1. For an integer n > 2, letUn denote the following system
of equations: 

x1! = x1
x1 · x1 = x2

∀i ∈ {2, . . . , n − 1} xi! = xi+1

Lemma 1. For every positive integer n, the systemUn has exactly two solutions in positive
integers x1, . . . , xn, namely (1, . . . , 1) and ( f (1), . . . , f (n)).

Let Bn denote the following system of equations:

{x j! = xk : j, k ∈ {1, . . . , n}} ∪ {xi · x j = xk : i, j, k ∈ {1, . . . , n}}

For every positive integer n, no known system S ⊆ Bn with a finite number of so-
lutions in positive integers x1, . . . , xn has a solution (x1, . . . , xn) ∈ (N \ {0})n satisfying
max(x1, . . . , xn) > f (n). For every positive integer n and for every known system S ⊆ Bn,
if the finiteness/infiniteness of the set

{(x1, . . . , xn) ∈ (N \ {0})n : (x1, . . . , xn) solves S}

is unknown, then the statement

∃x1, . . . , xn ∈ N \ {0} ((x1, . . . , xn) solves S) ∧ (max(x1, . . . , xn) > f (n))

remains unproven.

For a positive integer n, let Ψn denote the following statement: if a system S ⊆ Bn

has at most finitely many solutions in positive integers x1, . . . , xn, then each such solution
(x1, . . . , xn) satisfies x1, . . . , xn 6 f (n). The statement Ψn says that for subsystems of Bn

with a finite number of solutions, the largest known solution is indeed the largest possible.
The statements Ψ1 and Ψ2 hold trivially. There is no reason to assume the validity of the
statement ∀n ∈ N \ {0} Ψn.

Theorem 1. For every statement Ψn, the bound f (n) cannot be decreased.

Proof. It follows from Lemma 1 becauseUn ⊆ Bn. �
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Theorem 2. For every integer n > 2, the statement Ψn+1 implies the statement Ψn.

Proof. If a system S ⊆ Bn has at most finitely many solutions in positive integers
x1, . . . , xn, then for every integer i ∈ {1, . . . , n} the system S ∪ {xi! = xn+1} has at most
finitely many solutions in positive integers x1, . . . , xn+1. The statement Ψn+1 implies that
xi! = xn+1 6 f (n + 1) = f (n)!. Hence, xi 6 f (n). �

Theorem 3. Every statement Ψn is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system Bn has a finite number of subsystems. �

3. A special case of the statement Ψ9 applies to Edmund Landau’s conjecture that the
set Pn2+1 of primes of the form n2 + 1 is infinite

Lemma 2. For every positive integers x and y, x! · y = y! if and only if

(x + 1 = y) ∨ (x = y = 1)

LetA denote the following system of equations:

x2! = x3
x3! = x4
x5! = x6
x8! = x9

x1 · x1 = x2
x3 · x5 = x6
x4 · x8 = x9
x5 · x7 = x8

Lemma 2 and the diagram in Figure 1 explain the construction of the systemA.

Fig. 1 Construction of the systemA

Lemma 3. (Wilson’s theorem, [4, p. 89]). For every integer x > 2, x is prime if and only if
x divides (x − 1)! + 1.
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Lemma 4. For every integer x1 > 2, the systemA is solvable in positive integers x2, . . . , x9
if and only if x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are uniquely determined
by the following equalities:

x2 = x2
1

x3 =
(
x2

1

)
!

x4 =
((

x2
1

)
!
)
!

x5 = x2
1 + 1

x6 =
(
x2

1 + 1
)
!

x7 =

(
x2

1

)
! + 1

x2
1 + 1

x8 =
(
x2

1

)
! + 1

x9 =
((

x2
1

)
! + 1

)
!

Proof. By Lemma 2, for every integer x1 > 2, the systemA is solvable in positive integers
x2, . . . , x9 if and only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of Lemma 4 follows

from Lemma 3. �

Lemma 5. There are only finitely many tuples (x1, . . . , x9) ∈ (N \ {0})9, which solve
the system A and satisfy x1 = 1. It is true as every such tuple (x1, . . . , x9) satisfies
x1, . . . , x9 ∈ {1, 2}.

Proof. The equality x1 = 1 implies that x2 = x1 · x1 = 1. Hence, x3 = x2! = 1.
Therefore, x4 = x3! = 1. The equalities x5! = x6 and x5 = 1 · x5 = x3 · x5 = x6
imply that x5, x6 ∈ {1, 2}. The equalities x8! = x9 and x8 = 1 · x8 = x4 · x8 = x9

imply that x8, x9 ∈ {1, 2}. The equality x5 · x7 = x8 implies that x7 =
x8
x5
∈{

1
1 ,

1
2 ,

2
1 ,

2
2

}
∩ (N \ {0}) = {1, 2}. �

Conjecture 1. The statement Ψ9 is true when is restricted to the systemA.

Edmund Landau’s conjecture states that the set Pn2+1 of primes of the form n2 + 1 is
infinite, see [15]–[17].

Theorem 4. Conjecture 1 proves the following implication: if there exists an integer x1 > 2
such that x2

1 + 1 is prime and greater than f (7), then the set Pn2+1 is infinite.

Proof. Suppose that the antecedent holds. By Lemma 4, there exists a unique tuple
(x2, . . . , x9) ∈ (N \ {0})8 such that the tuple (x1, x2, . . . , x9) solves the system A. Since
x2

1 + 1 > f (7), we obtain that x2
1 > f (7). Hence, (x2

1)! > f (7)! = f (8). Consequently,

x9 = ((x2
1)! + 1)! > ( f (8) + 1)! > f (8)! = f (9)

Conjecture 1 and the inequality x9 > f (9) imply that the system A has infinitely many
solutions (x1, . . . , x9) ∈ (N \ {0})9. According to Lemmas 4 and 5, the set Pn2+1 is infinite.

�

Landau’s conjecture implies the following unproven statement Φ:

card(Pn2+1) < ω⇒ Pn2+1 ⊆ [2, (((24!)!)!)!]

Theorem 5 heuristically justifies the statement Φ. This justification does not yield the
finiteness/infiniteness of Pn2+1.

Theorem 5. Conjecture 1 implies the statement Φ.

Proof. It follows from Theorem 4 and the equality f (7) = (((24!)!)!)!. �
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Theorem 6. The statement Φ implies Conjecture 1.

Proof. By Lemmas 4 and 5, if positive integers x1, . . . , x9 solve the systemA, then

(x1 > 2) ∧ (x5 = x2
1 + 1) ∧ (x5 is prime)

or x1, . . . , x9 ∈ {1, 2}. In the first case, Lemma 4 and the statement Φ imply that the inequal-
ity x5 6 (((24!)!)!)! = f (7) holds when the system A has at most finitely many solutions
in positive integers x1, . . . , x9. Hence, x2 = x5 − 1 < f (7) and x3 = x2! < f (7)! = f (8).
Continuing this reasoning in the same manner, we can show that every xi does not ex-
ceed f (9). �

4. A new heuristic argument for the infiniteness of Pn2+1

The systemA contains four factorials and four multiplications. Let F denote the family
of all systems S ⊆ B9 which contain at most four factorials and at most four multiplica-
tions.

Among known systems S ∈ F , the following system C

x1! = x2
x2 · x9 = x1
x2 · x2 = x3
x3 · x3 = x4
x4 · x4 = x5

x5! = x6
x6! = x7
x7! = x8

attains the greatest solution in positive integers x1, . . . , x9 and has at
most finitely many solutions in (N \ {0})9. Only the tuples (1, . . . , 1) and
(2, 2, 4, 16, 256, 256!, (256!)!, ((256!)!)!, 1) solve C and belong to (N \ {0})9.

For every known system S ∈ F , if the finiteness of the set

{(x1, . . . , x9) ∈ (N \ {0})9 : (x1, . . . , x9) solves S}

is unproven and conjectured, then the statement

∃x1, . . . , x9 ∈ N \ {0} ((x1, . . . , x9) solves S) ∧ (max(x1, . . . , x9) > ((256!)!)!)

remains unproven.

Let Γ denote the statement: if the systemA has at most finitely many solutions in positive
integers x1, . . . , x9, then each such solution (x1, . . . , x9) satisfies x1, . . . , x9 6 ((256!)!)!.
The number 46512 + 1 is prime ([10]) and greater than 256!, see also [13, p. 239] for the
primality of 1502048 + 1. Hence, the statement Γ is equivalent to the infiniteness of Pn2+1.
It heuristically justifies the infiniteness of Pn2+1 in a sophisticated way.

5. The distinction between algorithms whose existence is provable in ZFC and
constructively defined algorithms which are currently known

N. D. Goodman observed that epistemic notions increase the scope of mathematics,
see [5]. The article [5] does not discuss the notion of the current mathematical knowledge.
This notion occurs in Sections 5–9.
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Algorithms always terminate. Semi-algorithms may not terminate. Examples 1–4 and
the proof of Statement 1 explain the distinction between existing algorithms (i.e. algo-
rithms whose existence is provable in ZFC) and known algorithms (i.e. algorithms whose
definition is constructive and currently known). A definition of an integer n is called con-
structive, if it provides a known algorithm with no input that returns n. Definition 1 applies
to sets X ⊆ N whose infiniteness is false or unproven.

Definition 1. We say that a non-negative integer k is a known element of X, if k ∈ X and
we know an algebraic expression that defines k and consists of the following signs: 1 (one),
+ (addition), − (subtraction), · (multiplication), ˆ (exponentiation with exponent in N),
! (factorial of a non-negative integer), ( (left parenthesis), ) (right parenthesis).

The set of known elements of X is finite and time-dependent, so cannot be defined in
the formal language of classical mathematics. Let t denote the largest twin prime that is
smaller than ((((((((9!)!)!)!)!)!)!)!)!. The number t is an unknown element of the set of twin
primes.

Definition 2. Conditions (1)�(5) concern sets X ⊆ N.
(1) A known algorithm with no input returns an integer n satisfying card(X) < ω⇒
X ⊆ (−∞, n].
(2) A known algorithm for every k ∈ N decides whether or not k ∈ X.
(3) No known algorithm with no input returns the logical value of the statement
card(X) = ω.
(4) There are many elements of X and it is conjectured, though so far unproven, that X is
infinite.
(5) X is naturally defined. The infiniteness of X is false or unproven. X has the simplest
definition among known sets Y ⊆ N with the same set of known elements.

Condition (3) implies that no known proof shows the finiteness/infiniteness of X. No
known set X ⊆ N satisfies Conditions (1)�(4) and is widely known in number theory or
naturally defined, where this term has only informal meaning.

Let [·] denote the integer part function. Let β = (((24!)!)!)!.

Lemma 6. log2(log2(log2(log2(log2(log2(log2(β))))))) ≈ 1.42298.

Proof. We ask Wolfram Alpha at http://wolframalpha.com. �

Example 1. The set X = Pn2+1 satisfies Condition (3).

Example 2. The set X =

{
N, if [ β

π
] is odd

∅, otherwise
does not satisfy Condition (3) because we

know an algorithm with no input that computes [ β
π
]. The set of known elements of X is

empty. Hence, Condition (5) fails for X.

Example 3. ([1], [12], [14, p. 9]). The function

N 3 n
h
−→

{
1, i f the decimal expansion o f π contains n consecutive zeros
0, otherwise

is computable because h = N × {1} or there exists k ∈ N such that

h = ({0, . . . , k} × {1}) ∪ ({k + 1, k + 2, k + 3, . . .} × {0})

No known algorithm computes the function h.

http://wolframalpha.com
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Example 4. The set

X =

{
N, i f the continuum hypothesis holds
∅, otherwise

is decidable. ThisX satisfies Conditions (1) and (3) and does not satisfy Conditions (2),
(4), and (5). These facts will hold forever.

Statement 1. Condition (1) remains unproven for X = Pn2+1.

Proof. For every set X ⊆ N, there exists an algorithm Alg(X) with no input that returns

n =

{
0, if card(X) ∈ {0, ω}

max(X), otherwise

This n satisfies the implication in Condition (1), but the algorithm Alg(Pn2+1) is unknown
because its definition is ineffective. �

Proving the statement Φ will disprove Statement 1. Statement 1 refers to the current
mathematical knowledge. The same is true for Open Problems 1–5 and Statements 2–6.

6. The physical limits of computation inspire Open Problem 1

Definition 3. We say that an integer n is a threshold number of a set X ⊆ N, if
card(X) < ω⇒ X ⊆ (−∞, n].

If a set X ⊆ N is empty or infinite, then any integer n is a threshold number of X. If
a set X ⊆ N is non-empty and finite, then the all threshold numbers of X form the set
[max(X),∞) ∩ N.

Statement 2. The set

X = {k ∈ N : (106 < k)⇒ ( f (106), f (k)) ∩ Pn2+1 , ∅}

satisfies Conditions (1)�(4). Condition (5) fails for X.

Proof. Condition (4) holds as X ⊇ {0, . . . , 106} and the set Pn2+1 is conjecturally infinite.
By Lemma 6, due to known physics we are not able to confirm by a direct computation
that some element of Pn2+1 is greater than f (106) > f (7) = β, see [8]. Thus Condition (3)
holds. Condition (2) holds trivially. Since the set

{k ∈ N : (106 < k) ∧ ( f (106), f (k)) ∩ Pn2+1 , ∅}

is empty or infinite, the integer 106 is a threshold number of X. Thus X satisfies
Condition (1). Condition (5) fails for X as the set of known elements of X equals
{0, . . . , 106}. �

Statement 3 provides a stronger example. To formulate Statement 3 and its proof, we
need some lemmas.

For a non-negative integer n, let θ(n) denote the largest integer divisor of 101010
smaller

than n. For a non-negative integer n, let θ1(n) denote the largest integer divisor of 1010

smaller than n.

Lemma 7. For every integer j > 101010
, θ( j) = 101010

.
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Lemma 8. For every integer j ∈ (6553600, 7812500], θ( j) = 6553600.

Proof. 6553600 equals 218 · 52 and divides 101010
. 7812500 < 224. 7812500 < 510.

We need to prove that every integer j ∈ (6553600, 7812500) does not divide 101010
. It

holds as the set {
2u · 5v : (u ∈ {0, . . . , 23}) ∧ (v ∈ {0, . . . , 9})

}
contains 6553600 and 7812500 as consecutive elements. �

Lemma 9. The number 65536002 + 1 is prime.

Proof. The following PARI/GP ([9]) command
isprime(6553600^2+1,{flag=2})

returns 1. This command performs the APRCL primality test, the best deterministic pri-
mality test algorithm ([18, p. 226]). It rigorously shows that the number 65536002 + 1 is
prime. �

In the next lemmas, the execution of the command isprime(n,{flag=2}) proves the
primality of n.

Lemma 10. The number 101421015042 + 1 is prime. 10142101504 > 1010.

Lemma 11. The function

N 3 n
κ
−→ the_exponent_o f _2_in_the_prime_ f actorization_o f _ n + 1︸︷︷︸ ∈ N

takes every non-negative integer value infinitely often.

Before Open Problem 1, X denotes the set {n ∈ N : (θ(n) + κ(n))2 + 1 is prime}.

Lemma 12. card(X) > 629450.

Proof. By Lemmas 8 and 9, for every even integer j ∈ (6553600, 7812500], the number
(θ( j) + κ( j))2 + 1 = (6553600 + 0)2 + 1 is prime. Hence,

{2k : k ∈ N} ∩ (6553600, 7812500] ⊆ X

Consequently,

card(X) > card({2k : k ∈ N} ∩ (6553600, 7812500]) =
7812500 − 6553600

2
= 629450

�

Lemma 13. 10242 ∈ X. 10242 < X1 = {n ∈ N : (θ1(n) + κ(n))2 + 1 is prime}.

Proof. The number 10240 = 211 · 5 divides 101010
. Hence, θ(10242) = 10240. The num-

ber (θ(10242) + κ(10242))2 + 1 = (10240 + 0)2 + 1 is prime. The set{
2u · 5v : (u ∈ {0, . . . , 10}) ∧ (v ∈ {0, . . . , 10})

}
contains 10000 and 12500 as consecutive elements. Hence, θ1(10242) = 10000. The num-
ber (θ1(10242) + κ(10242))2 + 1 = (10000 + 0)2 + 1 = 17 · 5882353 is composite. �
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Statement 3. The set X satisfies Conditions (1)�(5) except the requirement that X is
naturally defined.

Proof. Condition (2) holds trivially. Let δ denote 101010
. By Lemmas 7 and 11, Con-

dition (1) holds for n = δ. Since the statement Pn2+1 ∩
(
δ2 + 1,∞

)
, ∅ remains unproven,

Condition (3) holds. Lemma 12 and the implication

Pn2+1 ∩
(
δ2 + 1,∞

)
, ∅ =⇒ card(X) = ω

show that Condition (4) holds. By Lemma 10, the set X1 is infinite. Since Definition 1
applies to sets X ⊆ N whose infiniteness is false or unproven, Condition (5) holds except
the requirement that X is naturally defined. �

The set X satisfies Condition (5) except the requirement that X is naturally defined. It
is true because X1 is infinite and Definition 1 applies only to sets X ⊆ N whose infiniteness
is false or unproven. Ignoring this restriction, X still satisfies the same identical condition
due to Lemma 13.

Open Problem 1. Is there a set X ⊆ N which satisfies Conditions (1)�(5)?

Open Problem 1 asks about the existence of a year t > 2022 in which the conjunction

(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ (Condition 5)

will hold for some X ⊆ N. For every year t > 2022 and for every i ∈ {1, 2, 3}, a positive
solution to Open Problem i in the year t may change in the future. Currently, the answers
to Open Problems 1–5 are negative.

Statement 4. No setX ⊆ N will satisfy Conditions (1)-(4) forever, if for every algorithm
with no input, at some future day, a computer will be able to execute this algorithm in
1 second or less.

Proof. The proof goes by contradiction. We fix an integer n that satisfies Condition (1).
Since Conditions (1)�(3) will hold forever, the semi-algorithm in Figure 2 never termi-
nates and sequentially prints the following sentences:

(T) n + 1 < X, n + 2 < X, n + 3 < X, . . .

Fig. 2 Semi-algorithm that terminates if and only if X is infinite
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The sentences from the sequence (T) and our assumption imply that for every integer
m > n computed by a known algorithm, at some future day, a computer will be able to
confirm in 1 second or less that (n,m] ∩ X = ∅. Thus, at some future day, numerical ev-
idence will support the conjecture that the set X is finite, contrary to the conjecture in
Condition (4). �

The physical limits of computation ([8]) disprove the assumption of Statement 4.

Statement 5. Conditions (2)�(5) hold for X = Pn2+1. The statement Φ implies Condi-
tion (1) for X = Pn2+1.

Proof. The set Pn2+1 is conjecturally infinite. There are 2199894223892 primes of the
form n2 + 1 in the interval [2, 1028), see [16]. These two facts imply Condition (4). By
Lemma 6, due to known physics we are not able to confirm by a direct computation that
some element of Pn2+1 is greater than f (7) = (((24!)!)!)! = β, see [8]. Thus Condition (3)
holds. Conditions (2) and (5) hold trivially. The statement Φ implies that Condition (1)
holds for X = Pn2+1 with n = (((24!)!)!)!. �

Proving Landau’s conjecture will disprove Statement 5. We do not conjecture that

(Conditions (1)�(5) hold for X = Pn2+1) ∧ Φ

7. Satisfiable conjunctions which consist of Conditions (1)�(5) and their negations

The set X = Pn2+1 satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ (Condition 5)

The set X = {0, . . . , 106} ∪ Pn2+1 satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

The set X =

{
N, i f ( f (98), f (99)) ∩ Pn2+1 , ∅
{0, . . . , 106}, otherwise satisfies the conjunction

(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

Open Problem 2. Is there a set X ⊆ N that satisfies the conjunction

(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ (Condition 5)?

The numbers 22k
+ 1 are prime for k ∈ {0, 1, 2, 3, 4}. It is open whether or not there

are infinitely many primes of the form 22k
+ 1, see [7, p. 158] and [13, p. 74]. It is open

whether or not there are infinitely many composite numbers of the form 22k
+ 1, see

[7, p. 159] and [13, p. 74]. Most mathematicians believe that 22k
+ 1 is composite for

every integer k > 5, see [6, p. 23].

The set

X =


N, i f ( f (98), f (99)) ∩ Pn2+1 , ∅
{0, . . . , 106}∪

{n ∈ N : n is the sixth prime number o f the f orm 22k
+ 1}, otherwise

satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)
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Open Problem 3. Is there a set X ⊆ N that satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ (Condition 5)?

It is possible, although very doubtful, that at some future day, the set X = Pn2+1 will
solve Open Problem 2. The same is true for Open Problem 3. It is possible, although very

doubtful, that at some future day, the set X = {k ∈ N : 22k
+ 1 is composite} will solve

Open Problem 1. The same is true for Open Problems 2 and 3.

The following table shows satisfiable conjunctions of the form

#(Condition 1) ∧ (Condition 2) ∧ #(Condition 3) ∧ (Condition 4) ∧ #(Condition 5)

where # denotes the negation ¬ or the absence of any symbol.

(Condition 2) ∧
(Condition 3) ∧
(Condition 4)

(Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4)

(Condition 1) ∧
(Condition 5)

Open Problem 1 Open Problem 2

(Condition 1) ∧
¬(Condition 5)

X = {k ∈ N : (106 < k)⇒
( f (106), f (k)) ∩ Pn2+1 , ∅}

X =

{
N, i f ( f (98), f (99)) ∩ Pn2+1 , ∅
{0, . . . , 106}, otherwise

¬(Condition 1) ∧
(Condition 5)

X = Pn2+1 Open Problem 3

¬(Condition 1) ∧
¬(Condition 5)

X = {0, . . . , 106} ∪ Pn2+1 X =


N, i f ( f (98), f (99)) ∩ Pn2+1 , ∅
{0, . . . , 106} ∪ {n ∈ N : n is
the sixth prime number o f

the f orm 22k
+ 1}, otherwise

8. Previously known results which correspond to the results of sections 5–7

Statements 1–5 and Open Problems 1–3 refer to the current mathematical knowledge.
Previously known statements of this type, such as Statement 6, express the current knowl-
edge on particular elements of N, which are known to us according to Definition 1. Pre-
viously known open problems of this type, such as Open Problems 4 and 5, ask about
constructive existence of special elements of N.

Statement 6. ([2], [3], [7, p. 209], [11]). The numbers 2222
+ 1 and 2224

+ 1 are com-

posite. The known integer divisors of 2222
+ 1 form the set

{
−2222

− 1,−1, 1, 2222
+ 1

}
.

The known integer divisors of 2224
+ 1 form the set

{
−2224

− 1,−1, 1, 2224
+ 1

}
.

Open Problem 4. Is there a known threshold number of Pn2+1?

Open Problem 4 asks about the existence of a year t > 2022 in which the implication
card(Pn2+1) < ω⇒ Pn2+1 ⊆ (−∞, n] will hold for some known integer n.

Let T denote the set of twin primes.

Open Problem 5. Is there a known threshold number of T ?

Open Problem 5 asks about the existence of a year t > 2022 in which the implication
card(T ) < ω⇒ T ⊆ (−∞, n] will hold for some known integer n.
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9. Extended summary

Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2. Ed-
mund Landau’s conjecture states that the set Pn2+1 of primes of the form n2 + 1
is infinite. Landau’s conjecture implies the following unproven statement Φ:
card(Pn2+1) < ω⇒ Pn2+1 ⊆ [2, (((24!)!)!)!]. Let B denote the system of equations:
{x j! = xk : j, k ∈ {1, . . . , 9}} ∪ {xi · x j = xk : i, j, k ∈ {1, . . . , 9}}. We write some system
U ⊆ B of 9 equations which has exactly two solutions in positive integers x1, . . . , x9,
namely (1, . . . , 1) and ( f (1), . . . , f (9)). No known system S ⊆ B with a finite number
of solutions in positive integers x1, . . . , x9 has a solution (x1, . . . , x9) ∈ (N \ {0})9 satisfy-
ing max(x1, . . . , x9) > f (9). For every known system S ⊆ B, if the finiteness/infiniteness
of the set {(x1, . . . , x9) ∈ (N \ {0})9 : (x1, . . . , x9) solves S} is unknown, then the statement
∃x1, . . . , x9 ∈ N \ {0} ((x1, . . . , x9) solves S) ∧ (max(x1, . . . , x9) > f (9)) remains unproven.
We write some system A ⊆ B of 8 equations. Let Λ denote the statement: if the sys-
tem A has at most finitely many solutions in positive integers x1, . . . , x9, then each such
solution (x1, . . . , x9) satisfies x1, . . . , x9 6 f (9). The statement Λ is equivalent to the state-
ment Φ. It heuristically justifies the statement Φ. This justification does not yield the
finiteness/infiniteness of Pn2+1. We present a new heuristic argument for the infiniteness
of Pn2+1, which is not based on the statement Φ. Algorithms always terminate. The next
statements and open problems justify the title of the article and involve epistemic and infor-
mal notions. We explain the distinction between existing algorithms (i.e. algorithms whose
existence is provable in ZFC) and known algorithms (i.e. algorithms whose definition is
constructive and currently known). For a setX ⊆ Nwhose infiniteness is false or unproven,
we say that a non-negative integer k is a known element of X, if k ∈ X and we know an al-
gebraic expression that defines k and consists of the following signs: 1 (one), + (addition),
− (subtraction), · (multiplication), ˆ (exponentiation with exponent in N), ! (factorial of a
non-negative integer), ( (left parenthesis), ) (right parenthesis). No known set X ⊆ N sat-
isfies Conditions (1)�(4) and is widely known in number theory or naturally defined,
where this term has only informal meaning. (1) A known algorithm with no input re-
turns an integer n satisfying card(X) < ω⇒ X ⊆ (−∞, n]. (2) A known algorithm for
every k ∈ N decides whether or not k ∈ X. (3) No known algorithm with no input re-
turns the logical value of the statement card(X) = ω. (4) There are many elements
of X and it is conjectured, though so far unproven, that X is infinite. (5) X is natu-
rally defined. The infiniteness of X is false or unproven. X has the simplest definition
among known sets Y ⊆ N with the same set of known elements. Conditions (2)�(5)
hold for X = Pn2+1. The statement Φ implies Condition (1) for X = Pn2+1. We de-
fine a set X ⊆ N which satisfies Conditions (1)�(5) except the requirement that X is
naturally defined. We present a table that shows satisfiable conjunctions of the form
#(Condition 1) ∧ (Condition 2) ∧ #(Condition 3) ∧ (Condition 4) ∧ #(Condition 5), where
# denotes the negation ¬ or the absence of any symbol. No set X ⊆ N will satisfy Condi-
tions (1)�(4) forever, if for every algorithm with no input, at some future day, a computer
will be able to execute this algorithm in 1 second or less. The physical limits of computa-
tion disprove this assumption.
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