STATEMENTS AND OPEN PROBLEMS ON DECIDABLE SETS $X \subseteq \mathbb{N}$ THAT CONTAIN INFORMAL NOTIONS AND REFER TO THE CURRENT KNOWLEDGE ON X

APOLONIUSZ TYSZKA

Abstract. Edmund Landau’s conjecture states that the set \mathcal{P}_{n^2+1} of primes of the form $n^2 + 1$ is infinite. Landau’s conjecture implies the following unproven statement Φ: $\text{card}(\mathcal{P}_{n^2+1}) < \omega \Rightarrow \mathcal{P}_{n^2+1} \subseteq [2, ((24!)!)!]$. We heuristically justify the statement Φ. This justification does not yield the finiteness/infiniteness of \mathcal{P}_{n^2+1}. We present a new heuristic argument for the infiniteness of \mathcal{P}_{n^2+1}, which is not based on the statement Φ. The distinction between algorithms whose existence is provable in ZFC and constructively defined algorithms which are currently known inspires statements and open problems on decidable sets $X \subseteq \mathbb{N}$ that contain informal notions and refer to the current knowledge on X.

2020 Mathematics Subject Classification: 03F55, 11A41.

Key words and phrases: conjecturally infinite sets $X \subseteq \mathbb{N}$; constructively defined integers n satisfies $\text{card}(X) < \omega \Rightarrow X \subseteq (-\infty, n]$: known elements of a set $X \subseteq \mathbb{N}$ whose infiniteness is false or unproven; mathematical definitions, statements and open problems with epistemic and informal notions; primes of the form $n^2 + 1$; primes of the form $n! + 1$; X is decidable by a constructively defined algorithm which is currently known.

Sections 1–8 contain purely mathematical results. Nicolas D. Goodman observed that epistemic notions increase the scope of mathematics, see [5]. The article [5] does not discuss the notion of the current mathematical knowledge. This notion and some informal notions occur in Sections 4–8.

1. Number-theoretic statements Ψ_n

Let $f(1) = 2$, $f(2) = 4$, and let $f(n+1) = f(n)!$ for every integer $n \geq 2$. Let \mathcal{U}_1 denote the system of equations $\{x_1! = x_1\}$. For an integer $n \geq 2$, let \mathcal{U}_n denote the following system of equations:

$$
\begin{align*}
{x_1!} &= x_1 \\
{x_1 \cdot x_1} &= x_2 \\
\forall i \in \{2, \ldots, n-1\}, \; x_i! &= x_{i+1}
\end{align*}
$$

Lemma 1. For every positive integer n, the system \mathcal{U}_n has exactly two solutions in positive integers x_1, \ldots, x_n, namely $(1, \ldots, 1)$ and $(f(1), \ldots, f(n))$.

Let B_n denote the following system of equations:

$${\{x_i! = x_k : \; j, k \in \{1, \ldots, n\}\}} \cup \{x_i \cdot x_j = x_k : \; i, j, k \in \{1, \ldots, n\}\}$$
For every positive integer n, no known system $S \subseteq B_n$ with a finite number of solutions in positive integers x_1, \ldots, x_n has a solution $(x_1, \ldots, x_n) \in (\mathbb{N} \setminus \{0\})^n$ satisfying $\max(x_1, \ldots, x_n) > f(n)$. For every positive integer n and for every known system $S \subseteq B_n$, if the finiteness/infiniteness of the set

$$\{(x_1, \ldots, x_n) \in (\mathbb{N} \setminus \{0\})^n : (x_1, \ldots, x_n) \text{ solves } S\}$$

is unknown, then the statement

$$\exists x_1, \ldots, x_n \in \mathbb{N} \setminus \{0\} ((x_1, \ldots, x_n) \text{ solves } S) \land (\max(x_1, \ldots, x_n) > f(n))$$

remains unproven.

For a positive integer n, let Ψ_n denote the following statement: if a system $S \subseteq B_n$ has at most finitely many solutions in positive integers x_1, \ldots, x_n, then each such solution $(x_1, \ldots, x_n) \in S$ satisfies $x_1, \ldots, x_n \leq f(n)$. The statement Ψ_n says that for subsystems of B_n with a finite number of solutions, the largest known solution is indeed the largest possible.

The statements Ψ_1 and Ψ_2 hold trivially. There is no reason to assume the validity of the statement $\forall n \in \mathbb{N} \setminus \{0\} \Psi_n$.

Theorem 1. For every statement Ψ_n, the bound $f(n)$ cannot be decreased.

Proof. It follows from Lemma 1 because $U_n \subseteq B_n$. \square

Theorem 2. For every integer $n \geq 2$, the statement Ψ_{n+1} implies the statement Ψ_n.

Proof. If a system $S \subseteq B_n$ has at most finitely many solutions in positive integers x_1, \ldots, x_n, then for every integer $i \in \{1, \ldots, n\}$ the system $S \cup \{x_i = x_{n+1}\}$ has at most finitely many solutions in positive integers x_1, \ldots, x_{n+1}. The statement Ψ_{n+1} implies that $x_i = x_{n+1} \leq f(n + 1) = f(n)!$. Hence, $x_i \leq f(n)$. \square

Theorem 3. Every statement Ψ_n is true with an unknown integer bound that depends on n.

Proof. For every positive integer n, the system B_n has a finite number of subsystems. \square

2. A special case of the statement Ψ_9 applies to Edmund Landau’s conjecture that the set P_{n+1} of primes of the form $n^2 + 1$ is infinite

Lemma 2. For every positive integers x and y, $x! \cdot y! = y! \cdot x!$ if and only if $(x + 1 = y) \lor (x = y = 1)$

Let A denote the following system of equations:

$$\begin{align*}
x_2! &= x_3 \\
x_3! &= x_4 \\
x_5! &= x_6 \\
x_8! &= x_9 \\
x_1 \cdot x_1 &= x_2 \\
x_3 \cdot x_5 &= x_6 \\
x_4 \cdot x_8 &= x_9 \\
x_5 \cdot x_7 &= x_8
\end{align*}$$

Lemma 2 and the diagram in Figure 1 explain the construction of the system A.
Lemma 3. (Wilson’s theorem, [4, p. 89]). For every integer \(x \geq 2 \), \(x \) is prime if and only if \(x \) divides \((x - 1)! + 1 \).

Lemma 4. For every integer \(x_1 \geq 2 \), the system \(\mathcal{A} \) is solvable in positive integers \(x_2, \ldots, x_9 \) if and only if \(x_1^2 + 1 \) is prime. In this case, the integers \(x_2, \ldots, x_9 \) are uniquely determined by the following equalities:

\[
\begin{align*}
x_2 &= x_1^2 \\
x_3 &= (x_1^2)! \\
x_4 &= ((x_1^2))! \\
x_5 &= x_1^2 + 1 \\
x_6 &= (x_1^2 + 1)! \\
x_7 &= (x_1^2)! + 1 \\
x_8 &= (x_1^2)! + 1 \\
x_9 &= (x_1^2)! + 1
\end{align*}
\]

Proof. By Lemma 3, for every integer \(x_1 \geq 2 \), the system \(\mathcal{A} \) is solvable in positive integers \(x_2, \ldots, x_9 \) if and only if \(x_1^2 + 1 \) divides \((x_1^2)! + 1 \). Hence, the claim of Lemma 4 follows from Lemma 3.

Lemma 5. There are only finitely many tuples \((x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9 \), which solve the system \(\mathcal{A} \) and satisfy \(x_1 = 1 \). It is true as every such tuple \((x_1, \ldots, x_9) \) satisfies \(x_1, \ldots, x_9 \in \{1, 2\} \).

Proof. The equality \(x_1 = 1 \) implies that \(x_2 = x_1 \cdot x_1 = 1 \). Hence, \(x_3 = x_2! = 1 \). Therefore, \(x_4 = x_3! = 1 \). The equalities \(x_5 = x_6 \) and \(x_5 = 1 \cdot x_6 = x_3 \cdot x_5 = x_6 \) imply that \(x_5, x_6 \in \{1, 2\} \). The equalities \(x_7 = x_8 \) and \(x_7 = 1 \cdot x_8 = x_4 \cdot x_8 = x_9 \) imply that \(x_8, x_9 \in \{1, 2\} \). The equality \(x_5 \cdot x_7 = x_8 \) implies that \(x_7 = \frac{x_8}{x_5} \in \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}\} \cap (\mathbb{N} \setminus \{0\}) = \{1, 2\} \).

Conjecture 1. The statement \(\Psi_9 \) is true when is restricted to the system \(\mathcal{A} \).
Edmund Landau’s conjecture states that the set \mathcal{P}_{p^2+1} of primes of the form $n^2 + 1$ is infinite, see [14], [16], and [17].

Theorem 4. Conjecture[7] proves the following implication: if there exists an integer $x_1 \geq 2$ such that $x_1^2 + 1$ is prime and greater than $f(7)$, then the set \mathcal{P}_{p^2+1} is infinite.

Proof. Suppose that the antecedent holds. By Lemma 4 there exists a unique tuple $(x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$ such that the tuple (x_1, x_2, \ldots, x_9) solves the system \mathcal{A}. Since $x_1^2 + 1 > f(7)$, we obtain that $x_1^2 \geq f(7)$. Hence, $(x_1^2)! \geq f(7)! = f(8)$. Consequently,

$$x_9 = ((x_1^2)! + 1)! > (f(8) + 1)! > f(8)! = f(9)$$

Conjecture[1] and the inequality $x_9 > f(9)$ imply that the system \mathcal{A} has infinitely many solutions $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$. According to Lemmas 4 and 5 the set \mathcal{P}_{p^2+1} is infinite.

\[\square \]

Landau’s conjecture implies the following unproven statement Φ:

$$\text{card}(\mathcal{P}_{p^2+1}) < \omega \Rightarrow \mathcal{P}_{p^2+1} \subseteq [2,((24!)!)!]$$

Theorem 5 heuristically justifies the statement Φ. This justification does not yield the finiteness/infiniteness of \mathcal{P}_{p^2+1}.

Theorem 5. Conjecture[7] implies the statement Φ.

Proof. It follows from Theorem 4 and the equality $f(7) = ((24!)!)!$.

\[\square \]

Theorem 6. The statement Φ implies Conjecture 7

Proof. By Lemmas 4 and 5 if positive integers x_1, \ldots, x_9 solve the system \mathcal{A}, then

$$(x_1 \geq 2) \land (x_5 = x_1^2 + 1) \land (x_5 \text{ is prime})$$

or $x_1, \ldots, x_9 \in \{1, 2\}$. In the first case, Lemma 4 and the statement Φ imply that the inequality $x_5 \leq ((24!)!)! = f(7)$ holds when the system \mathcal{A} has at most finitely many solutions in positive integers x_1, \ldots, x_9. Hence, $x_5 = x_5 - 1 < f(7)$ and $x_5 = x_2! < f(7)! = f(8)$. Continuing this reasoning in the same manner, we can show that every x_i does not exceed $f(9)$.

\[\square \]

3. A new heuristic argument for the infiniteness of \mathcal{P}_{p^2+1}

The system \mathcal{A} contains four factorials and four multiplications. Let \mathcal{F} denote the family of all systems $\mathcal{S} \subseteq \mathcal{B}_9$ which contain at most four factorials and at most four multiplications.

Among known systems $\mathcal{S} \in \mathcal{F}$, the following system \mathcal{C}

$$\begin{align*}
x_1! &= x_2 \\
x_2 \cdot x_9 &= x_1 \\
x_2 \cdot x_2 &= x_3 \\
x_3 \cdot x_3 &= x_4 \\
x_4 \cdot x_4 &= x_5 \\
x_5! &= x_6 \\
x_6! &= x_7 \\
x_7! &= x_8 \\
\end{align*}$$

attains the greatest solution in positive integers x_1, \ldots, x_9 and has at most finitely many solutions in $(\mathbb{N} \setminus \{0\})^9$. Only the tuples $(1, \ldots, 1)$ and $(2, 2, 4, 16, 256, 256!, (256!)!, (256!)!, \ldots, 1)$ solve \mathcal{C} and belong to $(\mathbb{N} \setminus \{0\})^9$.
For every known system \(S \in \mathcal{F} \), if the finiteness of the set
\[\{(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9 : (x_1, \ldots, x_9) \text{ solves } S\} \]
is unproven and conjectured, then the statement
\[\exists x_1, \ldots, x_9 \in \mathbb{N} \setminus \{0\} ((x_1, \ldots, x_9) \text{ solves } S) \wedge (\max(x_1, \ldots, x_9) > ((256!)!)) \]
remains unproven.

Let \(\Gamma \) denote the statement: if the system \(A \) has at most finitely many solutions in positive integers \(x_1, \ldots, x_9 \), then each such solution \((x_1, \ldots, x_9) \) satisfies \(x_1, \ldots, x_9 \leq ((256!)!) \).

The number \(46512 + 1 \) is prime ([9]) and greater than \(256! \), see also [12, p. 239] for the primality of \(1502048 + 1 \). Hence, the statement \(\Gamma \) is equivalent to the infiniteness of \(P_{n^2+1} \). It heuristically justifies the infiniteness of \(P_{n^2+1} \) in a sophisticated way.

4. THE DISTINCTION BETWEEN ALGORITHMS Whose Existence Is provable in ZFC AND CONSTRUCTIVELY Defined Algorithms Which Are Currently Known

Algorithms always terminate. Semi-algorithms may not terminate. Examples 1–4 and the proof of Statement 1 explain the distinction between existing algorithms (i.e. algorithms whose existence is provable in ZFC) and known algorithms (i.e. algorithms whose definition is constructive and currently known). A definition of an integer \(n \) is called constructive, if it provides a known algorithm with no input that returns \(n \). Definition 1 applies to sets \(X \subseteq \mathbb{N} \) whose infiniteness is false or unproven.

Definition 1. We say that a non-negative integer \(k \) is a known element of \(X \), if \(k \in X \) and we know an algebraic expression that defines \(k \) and consists of the following signs: 1 (one), + (addition), − (subtraction), · (multiplication), ^ (exponentiation with exponent in \(\mathbb{N} \)), ! (factorial of a non-negative integer), ((left parenthesis),) (right parenthesis).

The set of known elements of \(X \) is finite and time-dependent, so cannot be defined in the formal language of classical mathematics. Let \(t \) denote the largest twin prime that is smaller than \((((((9!)!)!)!)!)!)!\). The number \(t \) is an unknown element of the set of twin primes.

Definition 2. Conditions (1)–(5) concern sets \(X \subseteq \mathbb{N} \).

(1) A known algorithm with no input returns an integer \(n \) satisfying \(\text{card}(X) < \omega \Rightarrow X \subseteq (-\infty, n] \).
(2) A known algorithm for every \(k \in \mathbb{N} \) decides whether or not \(k \in X \).
(3) No known algorithm with no input returns the logical value of the statement \(\text{card}(X) = \omega \).
(4) There are many elements of \(X \) and it is conjectured, though so far unproven, that \(X \) is infinite.
(5) \(X \) is naturally defined. The infiniteness of \(X \) is false or unproven. \(X \) has the simplest definition among known sets \(Y \subseteq \mathbb{N} \) with the same set of known elements.

Condition (3) implies that no known proof shows the finiteness/infiniteness of \(X \). No known set \(X \subseteq \mathbb{N} \) satisfies Conditions (1)–(4) and is widely known in number theory or naturally defined, where this term has only informal meaning.
Let $\lfloor \cdot \rfloor$ denote the integer part function. Let $\beta = (((24!)!)!)!$.

Lemma 6. \(\log_2(\log_2(\log_2(\log_2(\log_2(\log_2(\log_2(\beta))))) \approx 1.42298 \).

Proof. We ask Wolfram Alpha at http://wolframalpha.com \(\Box \)

Example 1. The set \(X = \mathcal{P}_{n^2 + 1} \) satisfies Condition (3).

Example 2. The set \(X = \begin{cases} \mathbb{N}, & \text{if } \lfloor \frac{\pi}{2} \rfloor \text{ is odd } \\ 0, & \text{otherwise} \end{cases} \) does not satisfy Condition (3) because we know an algorithm with no input that computes \(\lfloor \frac{\pi}{2} \rfloor \). The set of known elements of \(X \) is empty. Hence, Condition (5) fails for \(X \).

Example 3. \([1], [11], [13] \text{ p. 9}\). The function \(\mathbb{N} \ni n \rightarrow \begin{cases} 1, & \text{if the decimal expansion of } \pi \text{ contains } n \text{ consecutive zeros } \\ 0, & \text{otherwise} \end{cases} \) is computable because \(h = \mathbb{N} \times \{1\} \) or there exists \(k \in \mathbb{N} \) such that \(h = ([0, \ldots, k] \times \{1\}) \cup ([k + 1, k + 2, k + 3, \ldots] \times \{0\}) \). No known algorithm computes the function \(h \).

Example 4. The set \(X = \begin{cases} \mathbb{N}, & \text{if the continuum hypothesis holds } \\ 0, & \text{otherwise} \end{cases} \) is decidable. This \(X \) satisfies Conditions (1) and (3) and does not satisfy Conditions (2), (4), and (5). These facts will hold forever.

Statement 1. Condition (1) remains unproven for \(X = \mathcal{P}_{n^2 + 1} \).

Proof. For every set \(X \subseteq \mathbb{N} \), there exists an algorithm \(\text{Alg}(X) \) with no input that returns

\[n = \begin{cases} 0, & \text{if } \text{card}(X) \in \{0, \omega\} \\ \max(X), & \text{otherwise} \end{cases} \]

This \(n \) satisfies the implication in Condition (1), but the algorithm \(\text{Alg}(\mathcal{P}_{n^2 + 1}) \) is unknown because its definition is ineffective. \(\Box \)

Statement 2. The statement

\[\exists n \in \mathbb{N} \ (\text{card}(\mathcal{P}_{n^2 + 1}) < \omega \Rightarrow \mathcal{P}_{n^2 + 1} \subseteq [2, n + 3]) \]

remains unproven in ZFC and classical logic without the law of excluded middle.

Statements \([1],[2]\) refer to the current mathematical knowledge. The same is true for Open Problems \([1],[5]\) and Statements \([3],[4]\).

5. **The physical limits of computation inspire Open Problem 1**

Definition 3. We say that an integer \(n \) is a threshold number of a set \(X \subseteq \mathbb{N} \), if \(\text{card}(X) < \omega \Rightarrow X \subseteq (-\infty, n] \). If a set \(X \subseteq \mathbb{N} \) is empty or infinite, then any integer \(n \) is a threshold number of \(X \). If a set \(X \subseteq \mathbb{N} \) is non-empty and finite, then the all threshold numbers of \(X \) form the set \([\max(X), \infty) \cap \mathbb{N} \).
Statement 3. The set
\[X = \{ k \in \mathbb{N} : (10^6 < k) \Rightarrow (f(10^6), f(k)) \cap P_{n+1} \neq \emptyset \} \]
satisfies Conditions (1)–(4). Condition (5) fails for \(X \).

Proof. Condition (4) holds as \(X \supseteq \{0, \ldots, 10^6\} \) and the set \(P_{n+1} \) is conjecturally infinite. By Lemma 6 due to known physics we are not able to confirm by a direct computation that some element of \(P_{n+1} \) is greater than \(f(10^6) > f(7) = \beta \), see [8]. Thus Condition (3) holds. Since the set
\[\{ k \in \mathbb{N} : (10^6 < k) \land (f(10^6), f(k)) \cap P_{n+1} \neq \emptyset \} \]
is empty or infinite, the integer \(10^6 \) is a threshold number of \(X \). Thus \(X \) satisfies Condition (1). Condition (5) fails for \(X \) as the set of known elements of \(X \) equals \(\{0, \ldots, 10^6\} \).

\[\square \]

Statement 4 provides a stronger example.

Conjecture 2. ([15]). There are infinitely many primes of the form \(k! + 1 \).

The primality of \(k! + 1 \) is only proven when \(k \in \{0, 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, 872, 1477, 6380, 26951, 110059, 150209, 288465\} \), see [15]. For a non-negative integer \(n \), let \(\rho(n) \) denote \(299.5 + \frac{500000}{1+n^{0.1}} \cdot (|\sin(n)| - 0.2) \).

Statement 4. The set
\[X = \{ n \in \mathbb{N} : \text{the interval } [-1, n] \text{ contains more than } \rho(n) \text{ primes of the form } k! + 1 \} \]
satisfies Conditions (1)–(5) except the requirement that \(X \) is naturally defined. Conjecture 2 implies that the set \(\mathbb{N} \setminus X \) is finite.

Proof. For every integer \(n \geq 2 \cdot 10^6 \cdot 50000010 \), 300 is the smallest integer greater than \(\rho(n) \). This proves Condition (1) with \(n = 2 \cdot 10^6 \cdot 50000010 \). The number 300 is greater than the number of known primes of the form \(k! + 1 \), which proves Condition (3). The following code is written in MuPAD Light 2.5.3.

```
m:=0:
for n from 0 to 10^6 do
    if n<1!+1 then r:=0 end_if:
    if n>=1!+1 and n<2!+1 then r:=1 end_if:
    if n>=2!+1 and n<3!+1 then r:=2 end_if:
    if n>=3!+1 then r:=3 end_if:
    b:=299.5+(500000/(1+n^0.1))*(abs(sin(n+0.1))-0.2):
    if r>b then m:=m+1 end_if:
end_for:
print(m):
```

The number \(r \) in the code counts the number of primes of the form \(k! + 1 \) in the interval \([-1, n]\), because \(k! + 1 \) is composite for every \(k \in \{4, 5, 6, 7, 8, 9\} \) and \(10! + 1 > 10^6 \geq n \). The code computes that \(\text{card}(X \cap [0, 10^6]) = 126385 \), which proves Condition (4).

\[\square \]
Open Problem 1. Is there a set \(X \subseteq \mathbb{N} \) which satisfies Conditions (1)–(5)?

Open Problem 1 asks about the existence of a year \(t \geq 2022 \) in which the conjunction

\[
\text{(Condition 1)} \land \text{(Condition 2)} \land \text{(Condition 3)} \land \text{(Condition 4)} \land \text{(Condition 5)}
\]

will hold for some \(X \subseteq \mathbb{N} \). For every year \(t \geq 2022 \) and for every \(i \in \{1, 2, 3\} \), a positive solution to Open Problem \(i \) in the year \(t \) may change in the future. Currently, the answers to Open Problems \([1, 5]\) are negative.

Statement 5. No set \(X \subseteq \mathbb{N} \) will satisfy Conditions (1)–(4) forever, if for every algorithm with no input, at some future day, a computer will be able to execute this algorithm in 1 second or less.

Proof. The proof goes by contradiction. We fix an integer \(n \) that satisfies Condition (1). Since Conditions (1)–(3) will hold forever, the semi-algorithm in Figure 2 never terminates and sequentially prints the following sentences:

\[
\text{(T)} \quad n + 1 \notin X, \; n + 2 \notin X, \; n + 3 \notin X, \ldots
\]

Fig. 2 Semi-algorithm that terminates if and only if \(X \) is infinite

The sentences from the sequence (T) and our assumption imply that for every integer \(m > n \) computed by a known algorithm, at some future day, a computer will be able to confirm in 1 second or less that \((n, m) \cap X = \emptyset \). Thus, at some future day, numerical evidence will support the conjecture that the set \(X \) is finite, contrary to the conjecture in Condition (4).

The physical limits of computation ([8]) disprove the assumption of Statement 5.

Statement 6. Conditions (2)–(5) hold for \(X = \mathcal{P}_{n^2+1} \). The statement \(\Phi \) implies Condition (1) for \(X = \mathcal{P}_{n^2+1} \).

Proof. The set \(\mathcal{P}_{n^2+1} \) is conjecturally infinite. There are 2199894223892 primes of the form \(n^2 + 1 \) in the interval \([2, 10^{28}]\), see [16]. These two facts imply Condition (4). By Lemma [9], due to known physics we are not able to confirm by a direct computation that some element of \(\mathcal{P}_{n^2+1} \) is greater than \(f(7) = (((24!)!)!)! = \beta \), see [8]. Thus Condition (3) holds. Conditions (2) and (5) hold trivially. The statement \(\Phi \) implies that Condition (1) holds for \(X = \mathcal{P}_{n^2+1} \) with \(n = (((24!)!)!)! \). \(\square \)
Proving Landau’s conjecture will disprove Statement 6. We do not conjecture that (Conditions (1)–(5) hold for \(X = \mathcal{P}_{n^2+1} \) \& \(\Phi \))

6. Satisfiable conjunctions which consist of Conditions (1)–(5) and their negations

The set \(X = \mathcal{P}_{n^2+1} \) satisfies the conjunction

\[\neg(\text{Condition 1}) \land (\text{Condition 2}) \land (\text{Condition 3}) \land (\text{Condition 4}) \land (\text{Condition 5}) \]

The set \(X = \{0, \ldots, 10^6\} \cup \mathcal{P}_{n^2+1} \) satisfies the conjunction

\[\neg(\text{Condition 1}) \land (\text{Condition 2}) \land (\text{Condition 3}) \land (\text{Condition 4}) \land \neg(\text{Condition 5}) \]

The set \(X = \begin{cases} \mathbb{N}, \text{ if } (f(9^8), f(9^9)) \cap \mathcal{P}_{n^2+1} \neq \emptyset \\ \{0, \ldots, 10^6\}, \text{ otherwise} \end{cases} \)

satisfies the conjunction

\[(\text{Condition 1}) \land (\text{Condition 2}) \land \neg(\text{Condition 3}) \land (\text{Condition 4}) \land \neg(\text{Condition 5}) \]

Open Problem 2. Is there a set \(X \subseteq \mathbb{N} \) that satisfies the conjunction

\[(\text{Condition 1}) \land (\text{Condition 2}) \land \neg(\text{Condition 3}) \land (\text{Condition 4}) \land (\text{Condition 5}) \]?

The numbers \(2^{2^k} + 1 \) are prime for \(k \in \{0, 1, 2, 3, 4\} \). It is open whether or not there are infinitely many primes of the form \(2^{2^k} + 1 \), see [7, p. 158] and [12, p. 74]. It is open whether or not there are infinitely many composite numbers of the form \(2^{2^k} + 1 \), see [7, p. 159] and [12, p. 74]. Most mathematicians believe that \(2^{2^k} + 1 \) is composite for every integer \(k \geq 5 \), see [6, p. 23].

The set

\[X = \begin{cases} \mathbb{N}, \text{ if } (f(9^8), f(9^9)) \cap \mathcal{P}_{n^2+1} \neq \emptyset \\ \{0, \ldots, 10^6\} \cup \{ n \in \mathbb{N} : n \text{ is the sixth prime number of the form } 2^{2^k} + 1 \}, \text{ otherwise} \end{cases} \]

satisfies the conjunction

\[\neg(\text{Condition 1}) \land (\text{Condition 2}) \land \neg(\text{Condition 3}) \land (\text{Condition 4}) \land \neg(\text{Condition 5}) \]

Open Problem 3. Is there a set \(X \subseteq \mathbb{N} \) that satisfies the conjunction

\[\neg(\text{Condition 1}) \land (\text{Condition 2}) \land \neg(\text{Condition 3}) \land (\text{Condition 4}) \land (\text{Condition 5}) \]?

It is possible, although very doubtful, that at some future day, the set \(X = \mathcal{P}_{n^2+1} \) will solve Open Problem 2. The same is true for Open Problem 3. It is possible, although very doubtful, that at some future day, the set \(X = \{ k \in \mathbb{N} : 2^{2^k} + 1 \text{ is composite} \} \) will solve Open Problem 1. The same is true for Open Problems 2 and 3.

Table 1 shows satisfiable conjunctions of the form

\[\#(\text{Condition 1}) \land (\text{Condition 2}) \land \#(\text{Condition 3}) \land (\text{Condition 4}) \land \#(\text{Condition 5}) \]

where \# denotes the negation \(\neg \) or the absence of any symbol.
Table 1 Five satisfiable conjunctions

Open Problem 4. Is there a known threshold number of P_{n^2+1}?

Open Problem 4 asks about the existence of a year $t \geq 2022$ in which the implication $\text{card}(P_{n^2+1}) < \omega \Rightarrow P_{n^2+1} \subseteq (-\infty, n]$ will hold for some known integer n.

Let T denote the set of twin primes.

Open Problem 5. Is there a known threshold number of T?

Open Problem 5 asks about the existence of a year $t \geq 2022$ in which the implication $\text{card}(T) < \omega \Rightarrow T \subseteq (-\infty, n]$ will hold for some known integer n.

7. PREVIOUSLY KNOWN RESULTS WHICH CORRESPOND TO THE RESULTS OF SECTIONS 4–6

Statements [1–6] and Open Problems [1–5] refer to the current mathematical knowledge. Previously known statements of this type, such as Statement [7], express the current knowledge on particular elements of \mathbb{N}, which are known to us according to Definition [1].

Statement 7. ([2, 3, 7, p. 209], [10]). The numbers $2^{22^2} + 1$ and $2^{24^2} + 1$ are composite. The known integer divisors of $2^{22^2} + 1$ form the set \(-2^{22^2} - 1, -1, 1, 2^{22^2} + 1\). The known integer divisors of $2^{24^2} + 1$ form the set \(-2^{24^2} - 1, -1, 1, 2^{24^2} + 1\).

8. SUMMARY

Let $f(1) = 2$, $f(2) = 4$, and let $f(n + 1) = f(n)!$ for every integer $n \geq 2$. Edmund Landau’s conjecture states that the set P_{n^2+1} of primes of the form $n^2 + 1$ is infinite. Landau’s conjecture implies the following unproven statement Φ: $\text{card}(P_{n^2+1}) < \omega \Rightarrow P_{n^2+1} \subseteq [2, ((241!)^!)!]$. Let B denote the system of equations: $\{x_i! = x_k : j, k \in \{1, \ldots, 9\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, 9\}\}$. We write some system $\mathcal{U} \subseteq B$ of 9 equations which has exactly two solutions in positive integers x_1, \ldots, x_9, namely $(1, \ldots, 1)$ and $(f(1), \ldots, f(9))$. No known system $\mathcal{S} \subseteq B$ with a finite number of solutions in positive integers x_1, \ldots, x_9 has a solution $(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9$ satisfying $\max(x_1, \ldots, x_9) > f(9)$. For every known system $\mathcal{S} \subseteq B$, if the finiteness/infinite nature of the set $\{(x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0\})^9 : (x_1, \ldots, x_9) \text{ solves } \mathcal{S}\}$ is unknown, then the statement
Theorem 1. For any $k \in \mathbb{N}$, the set $X = \{n \in \mathbb{N} : \text{the interval } [-1, n] \text{ contains more than } 299.5 + \frac{500000}{1 + n!} \cdot (\lfloor \sin(n) \rfloor - 0.2) \}$ primes of the form $k! + 1$ satisfies Conditions (1)-(5) except the requirement that X is naturally defined. The conjecture that there are infinitely many primes of the form $k! + 1$ implies that the set $\mathbb{N} \setminus X$ is finite. Table 1 shows satisfiable conjunctions of the form $\#(\text{Condition 1}) \land (\text{Condition 2}) \land (\text{Condition 3}) \land (\text{Condition 4}) \land (\text{Condition 5})$, where $\#$ denotes the negation \neg or the absence of any symbol. No set $X \subseteq \mathbb{N}$ will satisfy Conditions (1)-(5) forever, if for every algorithm with no input, at some future day, a computer will be able to execute this algorithm in 1 second or less. The physical limits of computation disprove this assumption.

References

Acknowledgement. The author would like to thank Mrs Agnieszka Kozdęba who prepared Figures 1 and 2. The article was presented at the 25th Conference Applications of Logic in Philosophy and the Foundations of Mathematics, see http://www.applications-of-logic.uni.wroc.pl/Program-1

Apoloniusz Tyszka
Faculty of Production and Power Engineering
University of Agriculture
Balicka 116B, 30-149 Kraków, Poland
E-mail address: rttyszka@cyf-kr.edu.pl