On sets $\mathcal{W} \subseteq \mathbb{N} \setminus \{0\}$ for which we can compute $t(\mathcal{W}) \in \mathbb{N}$ such that any element of \mathcal{W} which is greater than $t(\mathcal{W})$ proves that \mathcal{W} is infinite

Apoloniusz Tyszka

Abstract

Let $f(1) = 2$, $f(2) = 4$, and let $f(n + 1) = f(n)!$ for every integer $n \geq 2$. For a positive integer n, let Γ_n denote the statement: if a system $\mathcal{S} \subseteq \{x_i! = x_k : i, k \in \{1, \ldots, n\}\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\}\}$ has at most finitely many solutions in integers x_1, \ldots, x_n greater than 1, then each such solution (x_1, \ldots, x_n) satisfies $\min(x_1, \ldots, x_n) \leq f(n)$. We conjecture that the statements $\Gamma_1, \ldots, \Gamma_{16}$ are true. The statement Γ_9 proves the implication: if there exists an integer $x > f(9)$ such that $x^2 + 1$ is prime, then there are infinitely many primes of the form $n^2 + 1$. The statement Γ_{16} proves the implication: if there exists a twin prime greater than $f(16) + 3$, then there are infinitely many twin primes. Let $g(1) = 1$, and let $g(n + 1) = 2^{2g(n)}$ for every positive integer n. We formulate a conjecture which proves the implication: if $2^{2^n} + 1$ is composite for some integer $n > g(13)$, then $2^{2^n} + 1$ is composite for infinitely many positive integers n.

Key words and phrases: composite Fermat numbers, prime numbers of the form $n^2 + 1$, proving the infinitude of a subset of positive integers, single query to an oracle for the halting problem, twin prime conjecture.

2010 Mathematics Subject Classification: 11U05.

1. Introduction and basic lemmas

In sections 1–4, we study a conjecture which provides a common approach to Brocard’s problem, the problem of the infinitude of primes of the form $n^2 + 1$, and the twin prime problem. Let $f(1) = 2$, $f(2) = 4$, and let $f(n + 1) = f(n)!$ for every integer $n \geq 2$. Let \mathcal{V}_1 denote the system of equations $\{x_1! = x_1\}$, and let \mathcal{V}_2 denote the system of equations $\{x_1! = x_1, x_1 \cdot x_1 = x_2\}$. For an integer $n \geq 3$, let \mathcal{V}_n denote the following system of equations:

$$\begin{align*}
x_1! &= x_1 \\
x_1 \cdot x_1 &= x_2 \\
\forall i \in \{2, \ldots, n-1\} \ x_i! &= x_{i+1}
\end{align*}$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{V}_n.

![Fig. 1](image-url)
Lemma 1. For every positive integer \(n \), the system \(V_n \) has exactly one solution in integers greater than 1, namely \((f(1), \ldots, f(n)) \).

Let \(H_n = \{ x_i! = x_k : i, k \in \{1, \ldots, n\} \} \cup \{ x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\} \} \)

For a positive integer \(n \), let \(\Gamma_n \) denote the following statement: if a system \(S \subseteq H_n \) has at most finitely many solutions in integers \(x_1, \ldots, x_n \) greater than 1, then each such solution \((x_1, \ldots, x_n) \) satisfies \(\min(x_1, \ldots, x_n) \leq f(n) \). We conjecture that the statements \(\Gamma_1, \ldots, \Gamma_{16} \) are true. For every positive integer \(n \), the system \(H_n \) has a finite number of subsystems. Therefore, every statement \(\Gamma_n \) is true with an unknown integer bound that depends on \(n \).

Lemma 2. For every integers \(x \) and \(y \) greater than \(1 \), \(x! \cdot y = y! \) if and only if \(x + 1 = y \).

Lemma 3. If \(x \geq 4 \), then \(\frac{(x-1)! + 1}{x} > 1 \).

Lemma 4. (Wilson’s theorem, [2, p. 89]). For every integer \(x \geq 2 \), \(x \) is prime if and only if \(x \) divides \((x-1)! + 1 \).

2. Brocard’s problem

A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the Brocard-Ramanujan equation \(x! + 1 = y^2 \), see [6]. It is conjectured that \(x! + 1 \) is a square only for \(x \in \{4, 5, 7\} \), see [7, p. 297].

Let \(\mathcal{A} \) denote the following system of equations:

\[
\begin{align*}
 x_1! &= x_2 \\
 x_2! &= x_3 \\
 x_3! &= x_6 \\
 x_4 \cdot x_4 &= x_5 \\
 x_3 \cdot x_5 &= x_6
\end{align*}
\]

Lemma 2 and the diagram in Figure 2 explain the construction of the system \(\mathcal{A} \).

Fig. 2 Construction of the system \(\mathcal{A} \)

Lemma 5. For every integers \(x_1 \) and \(x_4 \) greater than 1, the system \(\mathcal{A} \) is solvable in integers \(x_2, x_3, x_5, x_6 \) greater than 1 if and only if \(x_1! + 1 = x_2^2 \). In this case, the integers \(x_2, x_3, x_5, x_6 \) are uniquely determined by the following equalities:

\[
\begin{align*}
 x_2 &= x_1! \\
 x_3 &= (x_1!)! \\
 x_5 &= x_1! + 1 \\
 x_6 &= (x_1! + 1)!
\end{align*}
\]

and \(x_1 = \min(x_1, \ldots, x_6) \).
Proof. It follows from Lemma 2. □

Theorem 1. If the equation \(x_1! + 1 = x_4^2 \) has only finitely many solutions in positive integers, then the statement \(\Gamma_6 \) implies that each such solution \((x_1, x_4) \) satisfies \(x_1 \leq f(6) \).

Proof. Let positive integers \(x_1 \) and \(x_4 \) satisfy \(x_1! + 1 = x_4^2 \). Then, \(x_1, x_4 \in \mathbb{N} \setminus \{0, 1\} \). By Lemma 5, there exists a unique tuple \((x_2, x_3, x_5, x_6) \in (\mathbb{N} \setminus \{0, 1\})^4 \) such that the tuple \((x_1, \ldots, x_6) \) solves the system \(\mathcal{A} \). Lemma 5 guarantees that \(x_1 = \min(x_1, \ldots, x_6) \). By the antecedent and Lemma 5, the system \(\mathcal{A} \) has only finitely many solutions in integers \(x_1, \ldots, x_6 \) greater than 1. Therefore, the statement \(\Gamma_6 \) implies that \(x_1 = \min(x_1, \ldots, x_6) \leq f(6) \). □

3. Are there infinitely many prime numbers of the form \(n^2 + 1 \)?

Landau’s conjecture states that there are infinitely many primes of the form \(n^2 + 1 \), see [5, pp. 37–38].

Let \(\mathcal{B} \) denote the following system of equations:

\[
\begin{align*}
x_2! &= x_3 \\
x_3! &= x_4 \\
x_5! &= x_6 \\
x_8! &= x_9 \\
x_1 \cdot x_1 &= x_2 \\
x_3 \cdot x_5 &= x_6 \\
x_4 \cdot x_8 &= x_9 \\
x_5 \cdot x_7 &= x_8
\end{align*}
\]

Lemma 2 and the diagram in Figure 3 explain the construction of the system \(\mathcal{B} \).

Lemma 6. For every integer \(x_1 \geq 2 \), the system \(\mathcal{B} \) is solvable in integers \(x_2, \ldots, x_9 \) greater than 1 if and only if \(x_1^2 + 1 \) is prime. In this case, the integers \(x_2, \ldots, x_9 \) are uniquely determined.
by the following equalities:

\[
\begin{align*}
x_2 &= x_1^2, \\
x_3 &= (x_1^2)! \\
x_4 &= ((x_1^2)!)! \\
x_5 &= x_1^2 + 1 \\
x_6 &= (x_1^2 + 1)! \\
x_7 &= rac{(x_1^3)! + 1}{x_1^2 + 1} \\
x_8 &= (x_1^2)! + 1 \\
x_9 &= ((x_1^2)! + 1)!
\end{align*}
\]

and \(\min(x_1, \ldots, x_9) = x_1\).

Proof. By Lemmas 2 and 3, for every integer \(x_1 \geq 2\), the system \(B\) is solvable in integers \(x_2, \ldots, x_9\) greater than 1 if and only if \(x_1^2 + 1\) divides \((x_1^2)! + 1\). Hence, the claim of Lemma 6 follows from Lemma 4. \(\Box\)

Theorem 2. The statement \(\Gamma_9\) proves the implication: if there exists an integer \(x_1 > f(9)\) such that \(x_1^2 + 1\) is prime, then there are infinitely many primes of the form \(n^2 + 1\).

Proof. Assume that an integer \(x_1\) is greater than \(f(9)\) and \(x_1^2 + 1\) is prime. By Lemma 6, there exists a unique tuple \((x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^8\) such that the tuple \((x_1, x_2, \ldots, x_9)\) solves the system \(B\). Lemma 6 guarantees that \(\min(x_1, \ldots, x_9) = x_1\). Since \(B \subseteq H_9\), the statement \(\Gamma_9\) and the inequality \(\min(x_1, \ldots, x_9) = x_1 > f(9)\) imply that the system \(B\) has infinitely many solutions \((x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^9\). According to Lemma 6, there are infinitely many primes of the form \(n^2 + 1\). \(\Box\)

Corollary 1. Assuming the statement \(\Gamma_9\), a single query to an oracle for the halting problem decides the problem of the infinitude of primes of the form \(n^2 + 1\).

4. The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [5, p. 39].

Let \(C\) denote the following system of equations:

\[
\begin{align*}
x_1! &= x_2 \\
x_2! &= x_3 \\
x_4! &= x_5 \\
x_6! &= x_7 \\
x_7! &= x_8 \\
x_9! &= x_{10} \\
x_{12}! &= x_{13} \\
x_{15}! &= x_{16} \\
x_2 \cdot x_4 &= x_5 \\
x_5 \cdot x_6 &= x_7 \\
x_7 \cdot x_9 &= x_{10} \\
x_4 \cdot x_{11} &= x_{12} \\
x_3 \cdot x_{12} &= x_{13} \\
x_9 \cdot x_{14} &= x_{15} \\
x_8 \cdot x_{15} &= x_{16}
\end{align*}
\]

Lemma 2 and the diagram in Figure 4 explain the construction of the system \(C\).
Lemma 7. If \(x_4 = 2 \), then the system \(C \) has no solutions in integers \(x_1, \ldots, x_{16} \) greater than 1.

Proof. The equality \(x_2 \cdot x_4 = x_5 = x_4! \) and the equality \(x_4 = 2 \) imply that \(x_2 = 1 \). \(\square \)

Lemma 8. If \(x_4 = 3 \), then the system \(C \) has no solutions in integers \(x_1, \ldots, x_{16} \) greater than 1.

Proof. The equality \(x_4 \cdot x_{11} = x_{12} = (x_4 - 1)! + 1 \) and the equality \(x_4 = 3 \) imply that \(x_{11} = 1 \). \(\square \)

Lemma 9. For every \(x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\} \) and for every \(x_9 \in \mathbb{N} \setminus \{0, 1\} \), the system \(C \) is solvable in integers \(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16} \) greater than 1 if and only if \(x_4 \) and \(x_9 \) are prime and \(x_4 + 2 = x_9 \). In this case, the integers \(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16} \) are uniquely determined by the following equalities:

\[
\begin{align*}
x_1 &= x_4 - 1 \\
x_2 &= (x_4 - 1)! \\
x_3 &= ((x_4 - 1)!)! \\
x_5 &= x_4! \\
x_6 &= x_9 - 1 \\
x_7 &= (x_9 - 1)! \\
x_8 &= ((x_9 - 1)!)! \\
x_{10} &= x_9! \\
x_{11} &= (x_4 - 1)! + 1 \\
x_{12} &= (x_4 - 1)! + 1 \\
x_{13} &= ((x_4 - 1)! + 1)! \\
x_{14} &= (x_9 - 1)! + 1 \\
x_{15} &= (x_9 - 1)! + 1 \\
x_{16} &= (((x_9 - 1)! + 1)!)
\end{align*}
\]

and \(\min(x_1, \ldots, x_{16}) = x_1 = x_9 - 3 \).
Proof. By Lemmas 2 and 3, for every \(x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\} \) and for every \(x_9 \in \mathbb{N} \setminus \{0, 1\} \), the system \(C \) is solvable in integers \(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16} \) greater than 1 if and only if
\[
(x_4 + 2 = x_9) \land (x_4((x_4 - 1)! + 1)) \land (x_9((x_9 - 1)! + 1))
\]
Hence, the claim of Lemma 9 follows from Lemma 4. \(\square \)

Theorem 3. The statement \(\Gamma_{16} \) proves the implication: if there exists a twin prime greater than \(f(16) + 3 \), then there are infinitely many twin primes.

Proof. Assume the antecedent holds. Then, there exist prime numbers \(x_4 \) and \(x_9 \) such that \(x_9 = x_4 + 2 > f(16) + 3 \). Hence, \(x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\} \). By Lemma 9, there exists a unique tuple \((x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) \in (\mathbb{N} \setminus \{0, 1\})^{14}\) such that the tuple \((x_1, \ldots, x_{16})\) solves the system \(C \). Lemma 9 guarantees that \(\min(x_1, \ldots, x_{16}) = x_1 = x_9 - 3 > f(16) \). Since \(C \subseteq H_{16} \), the statement \(\Gamma_{16} \) and the inequality \(\min(x_1, \ldots, x_{16}) > f(16) \) imply that the system \(C \) has infinitely many solutions in integers \(x_1, \ldots, x_{16} \) greater than 1. According to Lemmas 7–9, there are infinitely many twin primes. \(\square \)

Corollary 2. (cf. [7]). Assuming the statement \(\Gamma_{16} \), a single query to an oracle for the halting problem decides the twin prime problem.

5. Composite Fermat numbers

Primes of the form \(2^{2^n} + 1 \) are called Fermat primes, as Fermat conjectured that every integer of the form \(2^{2^n} + 1 \) is prime, see [4, p. 1]. Fermat correctly remarked that \(2^{2^0} + 1 = 3 \), \(2^{2^1} + 1 = 5 \), \(2^{2^2} + 1 = 17 \), \(2^{2^3} + 1 = 257 \), and \(2^{2^4} + 1 = 65537 \) are all prime, see [4, p. 1].

Open Problem. ([4, p. 159]). Are there infinitely many composite numbers of the form \(2^{2^n} + 1 \)? Most mathematicians believe that \(2^{2^n} + 1 \) is composite for every integer \(n \geq 5 \), see [3, p. 23].

Lemma 10. ([4, p. 38]). For every positive integer \(n \), if a prime number \(p \) divides \(2^{2^n} + 1 \), then there exists a positive integer \(k \) such that \(p = k \cdot 2^n + 1 + 1 \).

Corollary 3. Since \(k \cdot 2^n + 1 + 1 \geq 2^n + 1 + 1 \geq n + 3 \), for every positive integers \(x, y, \) and \(n \), the equality \((x + 1)(y + 1) = 2^{2^n} + 1 \) implies that \(\min(n, x + 1, y + 1) = n \).

Let \(g(1) = 1 \), and let \(g(n + 1) = 2

g(n) \) for every positive integer \(n \). Let
\[
G_n = \{x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\}\} \cup \{2^{2^x_i} = x_k : i, k \in \{1, \ldots, n\}\}
\]

The following subsystem of \(G_n \)
\[
\begin{align*}
&\forall i \in \{1, \ldots, n-1\} \ 2^{2^{x_i}} = x_{i+1} \\
&x_1 \cdot x_j = x_1
\end{align*}
\]
has exactly one solution \((x_1, \ldots, x_n) \in (\mathbb{N} \setminus \{0\})^n\), namely \((g(1), \ldots, g(n))\).

For a positive integer \(n \), let \(\Psi_n \) denote the following statement: if a system \(S \subseteq G_n \) has at most finitely many solutions in positive integers \(x_1, \ldots, x_n \), then each such solution \((x_1, \ldots, x_n)\) satisfies \(\min(x_1, \ldots, x_n) \leq g(n) \). We conjecture that the statements \(\Psi_1, \ldots, \Psi_{13} \) are true. For every positive integer \(n \), the system \(G_n \) has a finite number of subsystems. Therefore, every statement \(\Psi_n \) is true with an unknown integer bound that depends on \(n \).
Lemma 11. For every positive integers b and c, $b + 1 = c$ if and only if $2^{2b} \cdot 2^{2b} = 2^{2c}$.

Theorem 4. The statement Ψ_{13} proves the implication: if $2^{2n} + 1$ is composite for some integer $n > g(13)$, then $2^{2n} + 1$ is composite for infinitely many positive integers n.

Proof. Let us consider the equation

\[(x + 1)(y + 1) = 2^{2z} + 1\] \hspace{1cm} (1)

in positive integers. By Lemma 11 we can transform equation (1) into an equivalent system \mathcal{F} which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms $\alpha \cdot \beta = \gamma$ and $2^{2\alpha} = \gamma$, see the diagram in Figure 5.

![Diagram](image-url)
Assume that $2^{2^n} + 1$ is composite for some integer $n > g(13)$. By this and Corollary 3, equation (1) has a solution $(x, y, z) \in (\mathbb{N} \setminus \{0\})^3$ such that $z = n$ and $z = \min(z, x + 1, y, y + 1)$. Hence, the system \mathcal{F} has a solution in positive integers such that $z = n$ and n is the smallest number in the solution sequence. Since $n > g(13)$, the statement Ψ_{13} implies that the system \mathcal{F} has infinitely many solutions in positive integers. Therefore, there are infinitely many positive integers n such that $2^{2^n} + 1$ is composite.

Corollary 4. Assuming the statement Ψ_{13}, a single query to an oracle for the halting problem decides whether or not the set of composite Fermat numbers is infinite.

6. The implication from the title

If a set $\mathcal{W} \subseteq \mathbb{N} \setminus \{0\}$ satisfies

$$\forall n (n \in \mathcal{W} \implies \{n, 2n, 3n, \ldots\} \subseteq \mathcal{W})$$

then the implication from the title holds for \mathcal{W} with $t(\mathcal{W}) = 0$. If \mathcal{W} equals the set of positive integers n such that $n^2 + 1$ is prime, then Theorem 2 suggests a possibility that the implication from the title holds for \mathcal{W} with $t(\mathcal{W}) = f(9)$. If \mathcal{W} equals the set of twin primes, then Theorem 3 suggests a possibility that the implication from the title holds for \mathcal{W} with $t(\mathcal{W}) = f(16) + 3$. If \mathcal{W} equals the set of positive integers n such that $2^{2^n} + 1$ is composite, then Theorem 4 suggests a possibility that the implication from the title holds for \mathcal{W} with $t(\mathcal{W}) = g(13)$.

References

Apoloniusz Tyszka
Technical Faculty
Hugo Kołłątaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl