On sets $\mathcal{W} \subseteq \mathbb{N} \backslash\{0\}$ for which we can compute $t(\mathcal{W}) \in \mathbb{N}$ such that any element of \mathcal{W} which is greater than $t(\mathcal{W})$ proves that \mathcal{W} is infinite

Apoloniusz Tyszka

Abstract

Let $f(1)=2, \quad f(2)=4, \quad$ and let $f(n+1)=f(n)!$ for every integer $n \geqslant 2$. For a positive integer n, let Γ_{n} denote the statement: if a system $\mathcal{S} \subseteq\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}$ has at most finitely many solutions in integers x_{1}, \ldots, x_{n} greater than 1 , then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$. We conjecture that the statements $\Gamma_{1}, \ldots, \Gamma_{16}$ are true. The statement Γ_{9} proves the implication: if there exists an integer $x>f(9)$ such that $x^{2}+1$ is prime, then there are infinitely many primes of the form $n^{2}+1$. The statement Γ_{16} proves the implication: if there exists a twin prime greater than $f(16)+3$, then there are infinitely many twin primes. Let $g(1)=1$, and let $g(n+1)=2^{2^{g(n)}}$ for every positive integer n. We formulate a conjecture which proves the implication: if $2^{2^{n}}+1$ is composite for some integer $n>g(13)$, then $2^{2^{n}}+1$ is composite for infinitely many positive integers n.

Key words and phrases: composite Fermat numbers, prime numbers of the form $n^{2}+1$, proving the infinitude of a subset of positive integers, single query to an oracle for the halting problem, twin prime conjecture.
2010 Mathematics Subject Classification: 11U05.

1. Introduction and basic lemmas

In sections $1-4$, we study a conjecture which provides a common approach to Brocard's problem, the problem of the infinitude of primes of the form $n^{2}+1$, and the twin prime problem. Let $f(1)=2, f(2)=4$, and let $f(n+1)=f(n)$! for every integer $n \geqslant 2$. Let \mathcal{V}_{1} denote the system of equations $\left\{x_{1}!=x_{1}\right\}$, and let \mathcal{V}_{2} denote the system of equations $\left\{x_{1}!=x_{1}, x_{1} \cdot x_{1}=x_{2}\right\}$. For an integer $n \geqslant 3$, let \mathcal{V}_{n} denote the following system of equations:

$$
\left\{\begin{array}{rll}
x_{1}! & = & x_{1} \\
x_{1} \cdot x_{1} & = & x_{2} \\
\forall i \in\{2, \ldots, n-1\} x_{i}! & = & x_{i+1}
\end{array}\right.
$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{V}_{n}.

Fig. 1 Construction of the system \mathcal{V}_{n}

Lemma 1. For every positive integer n, the system \mathcal{V}_{n} has exactly one solution in integers greater than 1 , namely $(f(1), \ldots, f(n))$.

Let

$$
H_{n}=\left\{x_{i}!=x_{k}: i, k \in\{1, \ldots, n\}\right\} \cup\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\}
$$

For a positive integer n, let Γ_{n} denote the following statement: if a system $\mathcal{S} \subseteq H_{n}$ has at most finitely many solutions in integers x_{1}, \ldots, x_{n} greater than 1 , then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant f(n)$. We conjecture that the statements $\Gamma_{1}, \ldots, \Gamma_{16}$ are true. For every positive integer n, the system H_{n} has a finite number of subsystems. Therefore, every statement Γ_{n} is true with an unknown integer bound that depends on n.

Lemma 2. For every integers x and y greater than $1, x!\cdot y=y!$ if and only if $x+1=y$.
Lemma 3. If $x \geqslant 4$, then $\frac{(x-1)!+1}{x}>1$.
Lemma 4. (Wilson's theorem, [2] p. 89]). For every integer $x \geqslant 2, x$ is prime if and only if x divides $(x-1)!+1$.

2. Brocard's problem

A weak form of Szpiro's conjecture implies that there are only finitely many solutions to the Brocard-Ramanujan equation $x!+1=y^{2}$, see [6]. It is conjectured that $x!+1$ is a square only for $x \in\{4,5,7\}$, see [7] p. 297].

Let \mathcal{A} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{5}! & =x_{6} \\
x_{4} \cdot x_{4} & =x_{5} \\
x_{3} \cdot x_{5} & =x_{6}
\end{aligned}\right.
$$

Lemma 2 and the diagram in Figure 2 explain the construction of the system \mathcal{A}.

Fig. 2 Construction of the system \mathcal{A}
Lemma 5. For every integers x_{1} and x_{4} greater than 1 , the system \mathcal{A} is solvable in integers $x_{2}, x_{3}, x_{5}, x_{6}$ greater than 1 if and only if $x_{1}!+1=x_{4}^{2}$. In this case, the integers $x_{2}, x_{3}, x_{5}, x_{6}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}! \\
x_{3} & =\left(x_{1}!\right)! \\
x_{5} & =x_{1}!+1 \\
x_{6} & =\left(x_{1}!+1\right)!
\end{aligned}
$$

and $x_{1}=\min \left(x_{1}, \ldots, x_{6}\right)$.

Proof. It follows from Lemma 2 .
Theorem 1. If the equation $x_{1}!+1=x_{4}^{2}$ has only finitely many solutions in positive integers, then the statement Γ_{6} implies that each such solution $\left(x_{1}, x_{4}\right)$ satisfies $x_{1} \leqslant f(6)$.

Proof. Let positive integers x_{1} and x_{4} satisfy $x_{1}!+1=x_{4}^{2}$. Then, $x_{1}, x_{4} \in \mathbb{N} \backslash\{0,1\}$. By Lemma 5 , there exists a unique tuple $\left(x_{2}, x_{3}, x_{5}, x_{6}\right) \in(\mathbb{N} \backslash\{0,1\})^{4}$ such that the tuple $\left(x_{1}, \ldots, x_{6}\right)$ solves the system \mathcal{A}. Lemma 5 guarantees that $x_{1}=\min \left(x_{1}, \ldots, x_{6}\right)$. By the antecedent and Lemma 5, the system \mathcal{A} has only finitely many solutions in integers x_{1}, \ldots, x_{6} greater than 1 . Therefore, the statement Γ_{6} implies that $x_{1}=\min \left(x_{1}, \ldots, x_{6}\right) \leqslant f(6)$.
3. Are there infinitely many prime numbers of the form $n^{2}+1$?

Landau's conjecture states that there are infinitely many primes of the form $n^{2}+1$, see [5], pp. 37-38].

Let \mathcal{B} denote the following system of equations:

$$
\left\{\begin{aligned}
x_{2}! & =x_{3} \\
x_{3}! & =x_{4} \\
x_{5}! & =x_{6} \\
x_{8}! & =x_{9} \\
x_{1} \cdot x_{1} & =x_{2} \\
x_{3} \cdot x_{5} & =x_{6} \\
x_{4} \cdot x_{8} & =x_{9} \\
x_{5} \cdot x_{7} & =x_{8}
\end{aligned}\right.
$$

Lemma 2 and the diagram in Figure 3 explain the construction of the system \mathcal{B}.

Fig. 3 Construction of the system \mathcal{B}
Lemma 6. For every integer $x_{1} \geqslant 2$, the system \mathcal{B} is solvable in integers x_{2}, \ldots, x_{9} greater than 1 if and only if $x_{1}^{2}+1$ is prime. In this case, the integers x_{2}, \ldots, x_{9} are uniquely determined
by the following equalities:

$$
\begin{aligned}
x_{2} & =x_{1}^{2} \\
x_{3} & =\left(x_{1}^{2}\right)! \\
x_{4} & =\left(\left(x_{1}^{2}\right)!\right)! \\
x_{5} & =x_{1}^{2}+1 \\
x_{6} & =\left(x_{1}^{2}+1\right)! \\
x_{7} & =\frac{\left(x_{1}^{2}\right)!+1}{x_{1}^{2}+1} \\
x_{8} & =\left(x_{1}^{2}\right)!+1 \\
x_{9} & =\left(\left(x_{1}^{2}\right)!+1\right)!
\end{aligned}
$$

and $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}$.
Proof. By Lemmas 2 and 3, for every integer $x_{1} \geqslant 2$, the system \mathcal{B} is solvable in integers x_{2}, \ldots, x_{9} greater than 1 if and only if $x_{1}^{2}+1$ divides $\left(x_{1}^{2}\right)!+1$. Hence, the claim of Lemma 6 follows from Lemma 4

Theorem 2. The statement Γ_{9} proves the implication: if there exists an integer $x_{1}>f(9)$ such that $x_{1}^{2}+1$ is prime, then there are infinitely many primes of the form $n^{2}+1$.
Proof. Assume that an integer x_{1} is greater than $f(9)$ and $x_{1}^{2}+1$ is prime. By Lemma 6, there exists a unique tuple $\left(x_{2}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{8}$ such that the tuple $\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ solves the system \mathcal{B}. Lemma 6 guarantees that $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}$. Since $\mathcal{B} \subseteq H_{9}$, the statement Γ_{9} and the inequality $\min \left(x_{1}, \ldots, x_{9}\right)=x_{1}>f(9)$ imply that the system \mathcal{B} has infinitely many solutions $\left(x_{1}, \ldots, x_{9}\right) \in(\mathbb{N} \backslash\{0,1\})^{9}$. According to Lemma 6 , there are infinitely many primes of the form $n^{2}+1$.

Corollary 1. Assuming the statement Γ_{9}, a single query to an oracle for the halting problem decides the problem of the infinitude of primes of the form $n^{2}+1$.

4. The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [5], p. 39].

Let C denote the following system of equations:

$$
\left\{\begin{aligned}
x_{1}! & =x_{2} \\
x_{2}! & =x_{3} \\
x_{4}! & =x_{5} \\
x_{6}! & =x_{7} \\
x_{7}! & =x_{8} \\
x_{9}! & =x_{10} \\
x_{12}! & =x_{13} \\
x_{15}! & =x_{16} \\
x_{2} \cdot x_{4} & =x_{5} \\
x_{5} \cdot x_{6} & =x_{7} \\
x_{7} \cdot x_{9} & =x_{10} \\
x_{4} \cdot x_{11} & =x_{12} \\
x_{3} \cdot x_{12} & =x_{13} \\
x_{9} \cdot x_{14} & =x_{15} \\
x_{8} \cdot x_{15} & =x_{16}
\end{aligned}\right.
$$

Lemma 2 and the diagram in Figure 4 explain the construction of the system C.

Fig. 4 Construction of the system C
Lemma 7. If $x_{4}=2$, then the system C has no solutions in integers x_{1}, \ldots, x_{16} greater than 1 .
Proof. The equality $x_{2} \cdot x_{4}=x_{5}=x_{4}$! and the equality $x_{4}=2$ imply that $x_{2}=1$.
Lemma 8. If $x_{4}=3$, then the system C has no solutions in integers x_{1}, \ldots, x_{16} greater than 1 .
Proof. The equality $x_{4} \cdot x_{11}=x_{12}=\left(x_{4}-1\right)!+1$ and the equality $x_{4}=3$ imply that $x_{11}=1$.
Lemma 9. For every $x_{4} \in \mathbb{N} \backslash\{0,1,2,3\}$ and for every $x_{9} \in \mathbb{N} \backslash\{0,1\}$, the system C is solvable in integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if x_{4} and x_{9} are prime and $x_{4}+2=x_{9}$. In this case, the integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ are uniquely determined by the following equalities:

$$
\begin{aligned}
x_{1} & =x_{4}-1 \\
x_{2} & =\left(x_{4}-1\right)! \\
x_{3} & =\left(\left(x_{4}-1\right)!\right)! \\
x_{5} & =x_{4}! \\
x_{6} & =x_{9}-1 \\
x_{7} & =\left(x_{9}-1\right)! \\
x_{8} & =\left(\left(x_{9}-1\right)!\right)! \\
x_{10} & =x_{9}! \\
x_{11} & =\frac{\left(x_{4}-1\right)!+1}{x_{4}} \\
x_{12} & =\left(x_{4}-1\right)!+1 \\
x_{13} & =\left(\left(x_{4}-1\right)!+1\right)! \\
x_{14} & =\frac{\left(x_{9}-1\right)!+1}{x_{9}} \\
x_{15} & =\left(x_{9}-1\right)!+1 \\
x_{16} & =\left(\left(x_{9}-1\right)!+1\right)!
\end{aligned}
$$

and $\min \left(x_{1}, \ldots, x_{16}\right)=x_{1}=x_{9}-3$.

Proof. By Lemmas 2 and 3, for every $x_{4} \in \mathbb{N} \backslash\{0,1,2,3\}$ and for every $x_{9} \in \mathbb{N} \backslash\{0,1\}$, the system C is solvable in integers $x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if

$$
\left(x_{4}+2=x_{9}\right) \wedge\left(x_{4} \mid\left(x_{4}-1\right)!+1\right) \wedge\left(x_{9} \mid\left(x_{9}-1\right)!+1\right)
$$

Hence, the claim of Lemma 9 follows from Lemma 4
Theorem 3. The statement Γ_{16} proves the implication: if there exists a twin prime greater than $f(16)+3$, then there are infinitely many twin primes.

Proof. Assume the antecedent holds. Then, there exist prime numbers x_{4} and x_{9} such that $x_{9}=x_{4}+2>f(16)+3$. Hence, $x_{4} \in \mathbb{N} \backslash\{0,1,2,3\}$. By Lemma 9 , there exists a unique tuple $\left(x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}, x_{8}, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}\right) \in(\mathbb{N} \backslash\{0,1\})^{14}$ such that the tuple $\left(x_{1}, \ldots, x_{16}\right)$ solves the system C. Lemma 9 guarantees that $\min \left(x_{1}, \ldots, x_{16}\right)=x_{1}=$ $x_{9}-3>f(16)$. Since $C \subseteq H_{16}$, the statement Γ_{16} and the inequality $\min \left(x_{1}, \ldots, x_{16}\right)>f(16)$ imply that the system C has infinitely many solutions in integers x_{1}, \ldots, x_{16} greater than 1 . According to Lemmas7-9, there are infinitely many twin primes.

Corollary 2. (cf. [7]). Assuming the statement Γ_{16}, a single query to an oracle for the halting problem decides the twin prime problem.

5. Composite Fermat numbers

Primes of the form $2^{2^{n}}+1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^{n}}+1$ is prime, see [4, p. 1]. Fermat correctly remarked that $2^{2^{0}}+1=3$, $2^{2^{1}}+1=5,2^{2^{2}}+1=17,2^{2^{3}}+1=257$, and $2^{2^{4}}+1=65537$ are all prime, see [4, p. 1].
Open Problem. ([4, p. 159]). Are there infinitely many composite numbers of the form $2^{2^{n}}+1$? Most mathematicians believe that $2^{2^{n}}+1$ is composite for every integer $n \geqslant 5$, see [3, p. 23].
Lemma 10. ([4] p.38]). For every positive integer n, if a prime number p divides $2^{2^{n}}+1$, then there exists a positive integer k such that $p=k \cdot 2^{n+1}+1$.

Corollary 3. Since $k \cdot 2^{n+1}+1 \geqslant 2^{n+1}+1 \geqslant n+3$, for every positive integers x, y, and n, the equality $(x+1)(y+1)=2^{2^{n}}+1$ implies that $\min (n, x, x+1, y, y+1)=n$.

Let $g(1)=1$, and let $g(n+1)=2^{2^{g(n)}}$ for every positive integer n. Let

$$
G_{n}=\left\{x_{i} \cdot x_{j}=x_{k}: i, j, k \in\{1, \ldots, n\}\right\} \cup\left\{2^{2^{x_{i}}}=x_{k}: i, k \in\{1, \ldots, n\}\right\}
$$

The following subsystem of G_{n}

$$
\left\{\begin{aligned}
x_{1} \cdot x_{1} & =x_{1} \\
\forall i \in\{1, \ldots, n-1\} 2^{2^{x_{i}}} & =x_{i+1}
\end{aligned}\right.
$$

has exactly one solution $\left(x_{1}, \ldots, x_{n}\right) \in(\mathbb{N} \backslash\{0\})^{n}$, namely $(g(1), \ldots, g(n))$.
For a positive integer n, let Ψ_{n} denote the following statement: if a system $S \subseteq G_{n}$ has at most finitely many solutions in positive integers x_{1}, \ldots, x_{n}, then each such solution $\left(x_{1}, \ldots, x_{n}\right)$ satisfies $\min \left(x_{1}, \ldots, x_{n}\right) \leqslant g(n)$. We conjecture that the statements $\Psi_{1}, \ldots, \Psi_{13}$ are true. For every positive integer n, the system G_{n} has a finite number of subsystems. Therefore, every statement Ψ_{n} is true with an unknown integer bound that depends on n.

Lemma 11. For every positive integers b and $c, b+1=c$ if and only if $2^{2^{b}} \cdot 2^{2^{b}}=2^{2^{c}}$.
Theorem 4. The statement Ψ_{13} proves the implication: if $2^{2^{n}}+1$ is composite for some integer $n>g(13)$, then $2^{2^{n}}+1$ is composite for infinitely many positive integers n.
Proof. Let us consider the equation

$$
\begin{equation*}
(x+1)(y+1)=2^{2^{z}}+1 \tag{1}
\end{equation*}
$$

in positive integers. By Lemma 11, we can transform equation (1) into an equivalent system \mathcal{F} which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the forms $\alpha \cdot \beta=\gamma$ and $2^{2^{\alpha}}=\gamma$, see the diagram in Figure 5.

Fig. 5 Construction of the system \mathcal{F}

Assume that $2^{2^{n}}+1$ is composite for some integer $n>g(13)$. By this and Corollary 33, equation (1) has a solution $(x, y, z) \in(\mathbb{N} \backslash\{0\})^{3}$ such that $z=n$ and $z=\min (z, x, x+1, y, y+1)$. Hence, the system \mathcal{F} has a solution in positive integers such that $z=n$ and n is the smallest number in the solution sequence. Since $n>g(13)$, the statement Ψ_{13} implies that the system \mathcal{F} has infinitely many solutions in positive integers. Therefore, there are infinitely many positive integers n such that $2^{2^{n}}+1$ is composite.

Corollary 4. Assuming the statement Ψ_{13}, a single query to an oracle for the halting problem decides whether or not the set of composite Fermat numbers is infinite.

6. The implication from the title

If a set $\mathcal{W} \subseteq \mathbb{N} \backslash\{0\}$ satisfies

$$
\forall n(n \in \mathcal{W} \Longrightarrow\{n, 2 n, 3 n, \ldots\} \subseteq \mathcal{W})
$$

then the implication from the title holds for \mathcal{W} with $t(\mathcal{W})=0$. If \mathcal{W} equals the set of positive integers n such that $n^{2}+1$ is prime, then Theorem 2 suggests a possibility that the implication from the title holds for \mathcal{W} with $t(\mathcal{W})=f(9)$. If \mathcal{W} equals the set of twin primes, then Theorem 3 suggests a possibility that the implication from the title holds for \mathcal{W} with $t(\mathcal{W})=f(16)+3$. If \mathcal{W} equals the set of positive integers n such that $2^{2^{n}}+1$ is composite, then Theorem 4 suggests a possibility that the implication from the title holds for \mathcal{W} with $t(\mathcal{W})=g(13)$.

References

[1] F. G. Dorais, Can the twin prime problem be solved with a single use of a halting oracle? July 23, 2011, http://mathoverflow.net/questions/71050.
[2] M. Erickson, A. Vazzana, D. Garth, Introduction to number theory, 2nd ed., CRC Press, Boca Raton, FL, 2016.
[3] J.-M. De Koninck and F. Luca, Analytic number theory: Exploring the anatomy of integers, American Mathematical Society, Providence, RI, 2012.
[4] M. Křížek, F. Luca, L. Somer, 17 lectures on Fermat numbers: from number theory to geometry, Springer, New York, 2001.
[5] W. Narkiewicz, Rational number theory in the 20th century: From PNT to FLT, Springer, London, 2012.
[6] M. Overholt, The Diophantine equation $n!+1=m^{2}$, Bull. London Math. Soc. 25 (1993), no. 2, 104.
[7] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics, 2nd ed., Chapman \& Hall/CRC, Boca Raton, FL, 2002.

Apoloniusz Tyszka
Technical Faculty
Hugo Kołłątaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl

