
On setsW ⊆ N whose infinitude follows from the
existence inW of an element which is greater than a

threshold number computed forW

Abstract

We define computable functions f , g : N \ {0} → N \ {0}. For a positive integer n, let Θn

denote the following statement: if a system S ⊆
{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪

{
xi · x j = xk :

i, j, k ∈ {1, . . . , n}
}

has only finitely many solutions in integers x1, . . . , xn greater than 1, then
each such solution (x1, . . . , xn) satisfies min(x1, . . . , xn) 6 f (n). The statement Θ9 proves
that if there exists an integer x > f (9) such that x2 + 1 (alternatively, x! + 1) is prime, then
there are infinitely many primes of the form n2 + 1 (respectively, n! + 1). The statement Θ16

proves that if there exists a twin prime greater than f (16) + 3, then there are infinitely many
twin primes. We formulate a statement which proves that if 22n

+ 1 is composite for some
integer n > g(13), then 22n

+ 1 is composite for infinitely many positive integers n.
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1 Introduction

The following observation concerns the theme described in the title of the article.

Observation 1. If n ∈ N and W ⊆ {0, . . . , n}, then we take any integer m > n as a threshold
number for W. If W ⊆ N and W is infinite, then we take any non-negative integer m as a
threshold number forW.



We define the setU ⊆ N by declaring that a non-negative integer n belongs toU if and only

if sin

10101010  > 0. This inequality is practically undecidable, see [7].

Corollary 1. The set U equals ∅ or N. The statement “U = ∅” remains unproven and the
statement “U = N” remains unproven. Every non-negative integer m is a threshold number
forU. For every non-negative integer k, the sentence “k ∈ U” is only theoretically decidable.

The first-order language of graph theory contains two relation symbols of arity 2: ∼ and =,
respectively for adjacency and equality of vertices. The term first-order imposes the condition
that the variables represent vertices and hence the quantifiers apply to vertices only. For a first-
order sentence Λ about graphs, let Spectrum(Λ) denote the set of all positive integers n such
that there is a graph on n vertices satisfying Λ. By a graph on n vertices we understand a set of
n elements with a binary relation which is symmetric and irreflexive.

Theorem 1. ([15, p. 171]). If a sentence Λ in the language of graph theory has the form
∃x1 . . . xk ∀y1 . . . yl Υ(x1, . . . , xk, y1, . . . , yl), where Υ(x1, . . . , xk, y1, . . . , yl) is quantifier-free, then
either Spectrum(Λ) ⊆ [1, (2k · 4l) − 1] or Spectrum(Λ) ⊇ [k + l,∞) ∩ N.

Corollary 2. The number
(
2k · 4l

)
− 1 is a threshold number for Spectrum(Λ).

The classes of the infinite recursively enumerable sets and of the infinite recursive sets are
not recursively enumerable, see [13, p. 234].

Corollary 3. If an algorithm Al1 for every recursive setW ⊆ N finds a non-negative integer
Al1(W), then there exists a finite setM ⊆ N such thatM∩ [Al1(M) + 1,∞) , ∅.

Corollary 4. If an algorithm Al2 for every recursively enumerable set W ⊆ N finds a non-
negative integer Al2(W), then there exists a finite setM ⊆ N such thatM∩[Al2(M)+1,∞) , ∅.

Let K = { j ∈ N : 2ℵ j = ℵ j+1}.

Theorem 2. If ZFC is consistent, then for every non-negative integer n the sentence

"n is a threshold number for K"

is not provable in ZFC.

2



Proof. There exists a model E of ZFC such that

∀i ∈ {0, . . . , n + 1} E |= 2ℵi = ℵi+1

and
∀i ∈ {n + 2, n + 3, n + 4, . . .} E |= 2ℵi = ℵi+2

see [5] and [8, p. 232]. In the model E, K = {0, . . . , n + 1} and n is not a threshold number
for K. �

Theorem 3. If ZFC is consistent, then for every non-negative integer n the sentence

"n is not a threshold number for K"

is not provable in ZFC.

Proof. The Generalized Continuum Hypothesis (GCH) is consistent with ZFC, see [8, p. 188]
and [8, p. 190]. GCH implies that K = N. Consequently, GCH implies that every non-negative
integer n is a threshold number for K. �

Theorem 4. ([2, p. 35]). There exists a polynomial D(x1, . . . , xm) with integer coefficients such
that if ZFC is arithmetically consistent, then the sentences

"The equation D(x1, . . . , xm) = 0 is solvable in non-negative integers"

and

"The equation D(x1, . . . , xm) = 0 is not solvable in non-negative integers"

are not provable in ZFC.

Let ∆ denote the set of all non-negative integers k such that the equation D(x1, . . . , xm) = 0
has no solutions in {0, . . . , k}m. Since the set {0, . . . , k}m is finite, the set ∆ is computable. Theo-
rem 4 implies the following corollary.

Corollary 5. If ZFC is arithmetically consistent, then for every non-negative integer n the
sentences

"n is a threshold number for ∆"

and

"n is not a threshold number for ∆"

are not provable in ZFC.
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Let g(1) = 1, and let g(n + 1) = 22g(n)
for every positive integer n.

Hypothesis 1. ([20]). If a system

S ⊆ {xi · x j = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈ {1, . . . , n}}

has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution
(x1, . . . , xn) satisfies x1, . . . , xn 6 g(2n).

Theorem 5. ([20]). Hypothesis 1 implies that for every W(x1, . . . , xn) ∈ Z[x1, . . . , xn] we can
compute a threshold number b ∈ N \ {0} such that any non-negative integers a1, . . . , an which
satisfy

(W(a1, . . . , an) = 0) ∧ (max(a1, . . . , an) > b)

guarantee that the equation W(x1, . . . , xn) = 0 has infinitely many solutions in non-negative
integers.

2 Basic lemmas

Let f (1) = 2, f (2) = 4, and let f (n + 1) = f (n)! for every integer n > 2. Let V1 denote the
system of equations {x1! = x1}, and letV2 denote the system of equations {x1! = x1, x1·x1 = x2}.
For an integer n > 3, letVn denote the following system of equations:



x1! = x1

x1 · x1 = x2

∀i ∈ {2, . . . , n − 1} xi! = xi+1

The diagram in Figure 1 illustrates the construction of the systemVn.

!

x1 squaring x2 ! x3 . . . xn−1 ! xn

Fig. 1 Construction of the systemVn

Lemma 1. For every positive integer n, the system Vn has exactly one solution in integers
greater than 1, namely

(
f (1), . . . , f (n)

)
.
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Let
Hn =

{
xi! = xk : i, k ∈ {1, . . . , n}

}
∪

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}

For a positive integer n, let Θn denote the following statement: if a system S ⊆ Hn has at most
finitely many solutions in integers x1, . . . , xn greater than 1, then each such solution (x1, . . . , xn)
satisfies min(x1, . . . , xn) 6 f (n). The assumption min(x1, . . . , xn) 6 f (n) is weaker than the
assumption max(x1, . . . , xn) 6 f (n) suggested by Lemma 1.

Lemma 2. For every positive integer n, the system Hn has a finite number of subsystems.

Theorem 6. Every statement Θn is true with an unknown integer bound that depends on n.

Proof. It follows from Lemma 2. �

Lemma 3. For every integers x and y greater than 1, x! · y = y! if and only if x + 1 = y.

Lemma 4. If x > 4, then (x − 1)! + 1
x > 1.

Lemma 5. (Wilson’s theorem, [6, p. 89]). For every integer x > 2, x is prime if and only if x
divides (x − 1)! + 1.

3 Brocard’s problem

A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the
Brocard-Ramanujan equation x! + 1 = y2, see [14]. It is conjectured that x! + 1 is a square only
for x ∈ {4, 5, 7}, see [21, p. 297].

LetA denote the following system of equations:


x1! = x2

x2! = x3

x5! = x6

x4 · x4 = x5

x3 · x5 = x6

Lemma 3 and the diagram in Figure 2 explain the construction of the systemA.
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x1
! x2 x4

squaringx5+1

!

x3

!

x6x3 · x5 = x6

Fig. 2 Construction of the systemA

Lemma 6. For every integers x1 and x4 greater than 1, the system A is solvable in integers
x2, x3, x5, x6 greater than 1 if and only if x1! + 1 = x2

4. In this case, the integers x2, x3, x5, x6 are
uniquely determined by the following equalities:

x2 = x1!
x3 = (x1!)!
x5 = x1! + 1
x6 = (x1! + 1)!

and x1 = min(x1, . . . , x6).

Proof. It follows from Lemma 3. �

Theorem 7. The statement Θ6 proves the following implication: if the equation x1! + 1 = x2
4

has only finitely many solutions in positive integers, then each such solution (x1, x4) satisfies
x1 6 f (6).

Proof. Let positive integers x1 and x4 satisfy x1!+1 = x2
4. Then, x1, x4 ∈ N\{0, 1}. By Lemma 6,

there exists a unique tuple (x2, x3, x5, x6) ∈ (N \ {0, 1})4 such that the tuple (x1, . . . , x6) solves the
systemA. Lemma 6 guarantees that x1 = min(x1, . . . , x6). By the antecedent and Lemma 6, the
system A has only finitely many solutions in integers x1, . . . , x6 greater than 1. Therefore, the
statement Θ6 implies that x1 = min(x1, . . . , x6) 6 f (6). �

Hypothesis 2. The implication in Theorem 7 is true.

Corollary 6. Assuming Hypothesis 2, a single query to an oracle for the halting problem de-
cides the problem of the infinitude of the solutions of the equation x! + 1 = y2.
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4 Are there infinitely many prime numbers of the form n2 + 1?

Edmund Landau’s conjecture states that there are infinitely many primes of the form n2 + 1, see
[12, pp. 37–38]. Let B denote the following system of equations:



x2! = x3

x3! = x4

x5! = x6

x8! = x9

x1 · x1 = x2

x3 · x5 = x6

x4 · x8 = x9

x5 · x7 = x8

Lemma 3 and the diagram in Figure 3 explain the construction of the system B.

x1
squaring x2 +1 x5 ! x6

!

x3

!

x4

+1 x8

!

x9

x5 · x7 = x8

x3 · x5 = x6

x4 · x8 = x9

Fig. 3 Construction of the system B

Lemma 7. For every integer x1 > 2, the system B is solvable in integers x2, . . . , x9 greater
than 1 if and only if x2

1 + 1 is prime. In this case, the integers x2, . . . , x9 are uniquely determined
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by the following equalities:
x2 = x2

1

x3 = (x2
1)!

x4 = ((x2
1)!)!

x5 = x2
1 + 1

x6 = (x2
1 + 1)!

x7 =
(x2

1)! + 1
x2

1 + 1
x8 = (x2

1)! + 1
x9 = ((x2

1)! + 1)!

and min(x1, . . . , x9) = x1.

Proof. By Lemmas 3 and 4, for every integer x1 > 2, the system B is solvable in integers
x2, . . . , x9 greater than 1 if and only if x2

1 + 1 divides (x2
1)! + 1. Hence, the claim of Lemma 7

follows from Lemma 5. �

Theorem 8. The statement Θ9 proves the following implication: if there exists an integer
x1 > f (9) such that x2

1 + 1 is prime, then there are infinitely many primes of the form n2 + 1.

Proof. Assume that an integer x1 is greater than f (9) and x2
1 + 1 is prime. By Lemma 7, there

exists a unique tuple (x2, . . . , x9) ∈ (N \ {0, 1})8 such that the tuple (x1, x2, . . . , x9) solves the
system B. Lemma 7 guarantees that min(x1, . . . , x9) = x1. Since B ⊆ H9, the statement Θ9 and
the inequality min(x1, . . . , x9) = x1 > f (9) imply that the systemB has infinitely many solutions
(x1, . . . , x9) ∈ (N \ {0, 1})9. According to Lemma 7, there are infinitely many primes of the form
n2 + 1. �

Hypothesis 3. The implication in Theorem 8 is true.

Corollary 7. Assuming Hypothesis 3, a single query to an oracle for the halting problem de-
cides the problem of the infinitude of primes of the form n2 + 1.

The following question is open: Is it possible to effectively determine the largest prime
number of the form n2 + 1, if the set of these primes is finite? The unproven statement Θ9

implies this claim although does not imply that there are infinitely many primes of the form
n2 + 1.

Let P denote the set of prime numbers. For a non-negative integer n, let Ω(n) denote the
following statement: ∃m ∈ N∩(n,∞) m2+1 ∈ P. By Theorem 8, assuming the statement Θ9, we
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can infer the statement ∀n ∈ N Ω(n) from any statement Ω(n) with n > f (9). A similar situation
holds for inference by the so called "super-induction method", see [22]–[25]. In section 8, we
present Richert’s lemma which is frequently used in proofs by super-induction.

5 Are there infinitely many prime numbers of the form n! + 1?

It is conjectured that there are infinitely many primes of the form n! + 1, see [1, p. 443] and
[18]. Let G denote the following system of equations:



x1! = x2

x2! = x3

x3! = x4

x5! = x6

x8! = x9

x3 · x5 = x6

x4 · x8 = x9

x5 · x7 = x8

Lemma 3 and the diagram in Figure 4 explain the construction of the system G.

x1
! x2 +1 x5 ! x6

!

x3

!

x4

+1 x8

!

x9

x5 · x7 = x8

x3 · x5 = x6

x4 · x8 = x9

Fig. 4 Construction of the system G

Lemma 8. For every integer x1 > 2, the systemG is solvable in integers x2, . . . , x9 greater than 1
if and only if x1! + 1 is prime. In this case, the integers x2, . . . , x9 are uniquely determined by
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the following equalities:
x2 = x1!
x3 = (x1!)!
x4 = ((x1!)!)!
x5 = x!

1 + 1
x6 = (x1! + 1)!

x7 =
(x1!)! + 1

x1! + 1
x8 = (x1!)! + 1
x9 = ((x1!)! + 1)!

and min(x1, . . . , x9) = x1.

Proof. By Lemmas 3 and 4, for every integer x1 > 2, the system G is solvable in integers
x2, . . . , x9 greater than 1 if and only if x1! + 1 divides (x1!)! + 1. Hence, the claim of Lemma 8
follows from Lemma 5. �

Theorem 9. The statement Θ9 proves the following implication: if there exists an integer
x1 > f (9) such that x1! + 1 is prime, then there are infinitely many primes of the form n! + 1.

Proof. Assume that an integer x1 is greater than f (9) and x1! + 1 is prime. By Lemma 8, there
exists a unique tuple (x2, . . . , x9) ∈ (N \ {0, 1})8 such that the tuple (x1, x2, . . . , x9) solves the
system G. Lemma 8 guarantees that min(x1, . . . , x9) = x1. Since G ⊆ H9, the statement Θ9 and
the inequality min(x1, . . . , x9) = x1 > f (9) imply that the system G has infinitely many solutions
(x1, . . . , x9) ∈ (N \ {0, 1})9. According to Lemma 8, there are infinitely many primes of the form
n! + 1. �

Hypothesis 4. The implication in Theorem 9 is true.

Corollary 8. Assuming Hypothesis 4, a single query to an oracle for the halting problem de-
cides the problem of the infinitude of primes of the form n! + 1.

The following question is open: Is it possible to effectively determine the largest prime
number of the form n! + 1, if the set of these primes is finite? The unproven statement Θ9

implies this claim although does not imply that there are infinitely many primes of the form
n! + 1.
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6 The twin prime conjecture

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The
twin prime conjecture states that there are infinitely many twin primes, see [12, p. 39].

Let C denote the following system of equations:


x1! = x2

x2! = x3

x4! = x5

x6! = x7

x7! = x8

x9! = x10

x12! = x13

x15! = x16

x2 · x4 = x5

x5 · x6 = x7

x7 · x9 = x10

x4 · x11 = x12

x3 · x12 = x13

x9 · x14 = x15

x8 · x15 = x16

Lemma 3 and the diagram in Figure 5 explain the construction of the system C.
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!

x5

!

x10

x1
+1 x4 +1 x6 +1 x9

x2
+1 x12

+1 x15

!

x2

!

x3

!

x13

!

x7

!

x8

!

x16

x2 · x4 = x5 x7 · x9 = x10

x5 · x6 = x7

x4 · x11 = x12 x9 · x14 = x15

x3 · x12 = x13 x8 · x15 = x16

Fig. 5 Construction of the system C

Lemma 9. If x4 = 2, then the system C has no solutions in integers x1, . . . , x16 greater than 1.

Proof. The equality x2 · x4 = x5 = x4! and the equality x4 = 2 imply that x2 = 1. �

Lemma 10. If x4 = 3, then the system C has no solutions in integers x1, . . . , x16 greater than 1.

Proof. The equality x4 · x11 = x12 = (x4 − 1)! + 1 and the equality x4 = 3 imply that x11 = 1. �

Lemma 11. For every x4 ∈ N \ {0, 1, 2, 3} and for every x9 ∈ N \ {0, 1}, the system C is solvable
in integers x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 greater than 1 if and only if x4

and x9 are prime and x4 + 2 = x9. In this case, the integers x1, x2, x3, x5, x6, x7, x8, x10, x11, x12,
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x13, x14, x15, x16 are uniquely determined by the following equalities:

x1 = x4 − 1
x2 = (x4 − 1)!
x3 = ((x4 − 1)!)!
x5 = x4!
x6 = x9 − 1
x7 = (x9 − 1)!
x8 = ((x9 − 1)!)!

x10 = x9!

x11 =
(x4 − 1)! + 1

x4

x12 = (x4 − 1)! + 1
x13 = ((x4 − 1)! + 1)!

x14 =
(x9 − 1)! + 1

x9

x15 = (x9 − 1)! + 1
x16 = ((x9 − 1)! + 1)!

and min(x1, . . . , x16) = x1 = x9 − 3.

Proof. By Lemmas 3 and 4, for every x4 ∈ N \ {0, 1, 2, 3} and for every x9 ∈ N \ {0, 1}, the
system C is solvable in integers x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16 greater
than 1 if and only if

(
x4 + 2 = x9

)
∧

(
x4|(x4 − 1)! + 1

)
∧

(
x9|(x9 − 1)! + 1

)

Hence, the claim of Lemma 11 follows from Lemma 5. �

Theorem 10. The statement Θ16 proves the following implication: if there exists a twin prime
greater than f (16) + 3, then there are infinitely many twin primes.

Proof. Assume that the antecedent holds. Then, there exist prime numbers x4 and x9 such that
x9 = x4 + 2 > f (16) + 3. Hence, x4 ∈ N \ {0, 1, 2, 3}. By Lemma 11, there exists a unique
tuple (x1, x2, x3, x5, x6, x7, x8, x10, x11, x12, x13, x14, x15, x16) ∈ (N \ {0, 1})14 such that the tuple
(x1, . . . , x16) solves the system C. Lemma 11 guarantees that min(x1, . . . , x16) = x1 = x9 − 3 >
f (16). Since C ⊆ H16, the statement Θ16 and the inequality min(x1, . . . , x16) > f (16) imply that
the system C has infinitely many solutions in integers x1, . . . , x16 greater than 1. According to
Lemmas 9–11, there are infinitely many twin primes. �
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Hypothesis 5. The implication in Theorem 10 is true.

Corollary 9. (cf. [3]). Assuming Hypothesis 5, a single query to an oracle for the halting
problem decides the twin prime problem.

The following question is open: Is it possible to effectively determine the largest twin prime,
if the set of twin primes is finite? The unproven statement Θ16 implies this claim although does
not imply that there are infinitely many twin primes.

7 Are there infinitely many composite Fermat numbers?

Integers of the form 22n
+ 1 are called Fermat numbers. Primes of the form 22n

+ 1 are
called Fermat primes, as Fermat conjectured that every integer of the form 22n

+ 1 is prime,

see [11, p. 1]. Fermat correctly remarked that 220
+ 1 = 3, 221

+ 1 = 5, 222
+ 1 = 17,

223
+ 1 = 257, and 224

+ 1 = 65537 are all prime, see [11, p. 1].

Open Problem. ([11, p. 159]). Are there infinitely many composite numbers of the form
22n

+ 1?

Most mathematicians believe that 22n
+ 1 is composite for every integer n > 5, see [10, p. 23].

Theorem 11. ([19]). An unproven inequality stated in [19] implies that 22n
+ 1 is composite

for every integer n > 5.

Lemma 12. ([11, p. 38]). For every positive integer n, if a prime number p divides 22n
+ 1,

then there exists a positive integer k such that p = k · 2n + 1 + 1.

Corollary 10. Since k · 2n + 1 + 1 > 2n + 1 + 1 > n + 3, for every positive integers x, y, and n,
the equality (x + 1)(y + 1) = 22n

+ 1 implies that min(n, x, x + 1, y, y + 1) = n.

Let
Gn =

{
xi · x j = xk : i, j, k ∈ {1, . . . , n}

}
∪

{
22xi

= xk : i, k ∈ {1, . . . , n}
}

Lemma 13. The following subsystem of Gn


x1 · x1 = x1

∀i ∈ {1, . . . , n − 1} 22xi
= xi+1

has exactly one solution (x1, . . . , xn) ∈ (N \ {0})n, namely (g(1), . . . , g(n)).
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For a positive integer n, let Ψn denote the following statement: if a system S ⊆ Gn has at
most finitely many solutions in positive integers x1, . . . , xn, then each such solution (x1, . . . , xn)
satisfies min(x1, . . . , xn) 6 g(n). The assumption min(x1, . . . , xn) 6 g(n) is weaker than the
assumption max(x1, . . . , xn) 6 g(n) suggested by Lemma 13.

Lemma 14. For every positive integer n, the system Gn has a finite number of subsystems.

Theorem 12. Every statement Ψn is true with an unknown integer bound that depends on n.

Proof. It follows from Lemma 14. �

Lemma 15. For every non-negative integers b and c, b + 1 = c if and only if 22b · 22b
= 22c

.

Theorem 13. The statement Ψ13 proves the following implication: if 22n
+ 1 is composite for

some integer n > g(13), then 22n
+ 1 is composite for infinitely many positive integers n.

Proof. Let us consider the equation

(x + 1)(y + 1) = 22z
+ 1 (1)

in positive integers. By Lemma 15, we can transform equation (1) into an equivalent system F
which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the
forms α · β = γ and 22α = γ, see the diagram in Figure 6.
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x

22(·)

22x

x+1

22(·)

22x+1

y

22(·)

22y

y+1

22(·)

22y+1

22z

22(·)

2222z

22z
+1

22(·)

2222z
+1

squaring

squaring

z 22(·)

squaring

m
u
l
t
i
p
l
y
i
n
g

Fig. 6 Construction of the system F
Assume that 22n

+ 1 is composite for some integer n > g(13). By this and Corollary 10,
equation (1) has a solution (x, y, z) ∈ (N \ {0})3 such that z = n and z = min(z, x, x + 1, y, y + 1).
Hence, the system F has a solution in positive integers such that z = n and n is the smallest
number in the solution sequence. Since n > g(13), the statement Ψ13 implies that the system F
has infinitely many solutions in positive integers. Therefore, there are infinitely many positive
integers n such that 22n

+ 1 is composite. �

Hypothesis 6. The implication in Theorem 13 is true.
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Corollary 11. Assuming Hypothesis 6, a single query to an oracle for the halting problem
decides whether or not the set of composite Fermat numbers is infinite.

The following question is open: Is it possible to effectively determine the largest composite
Fermat number, if the set of these numbers is finite? The unproven statement Ψ13 implies this
claim although does not imply that there are infinitely many composite Fermat numbers.

8 Subsets of N \ {0} which are cofinite by Richert’s lemma and the halting of a computer
program

The following lemma is known as Richert’s lemma.

Lemma 16. ([4], [16], [17, p. 152]). Let {mi}∞i=1 be an increasing sequence of positive integers
such that for some positive integer k the inequality mi+1 6 2mi holds for all i > k. Suppose there
exists a non-negative integer b such that the numbers b + 1, b + 2, b + 3, . . . , b + mk+1 are all
expressible as sums of one or more distinct elements of the set {m1, . . . ,mk}. Then every integer
greater than b is expressible as a sum of one or more distinct elements of the set {m1,m2,m3, . . .}.

Corollary 12. If the sequence {mi}∞i=1 is computable and the flowchart algorithm in Figure 7
terminates, then almost all positive integers are expressible as a sum of one or more distinct
elements of the set {m1,m2,m3, . . .} and the algorithm returns all positive integers which are not
expressible as a sum of one or more distinct elements of the set {m1,m2,m3, . . .}.
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Start b := 0

k := the smallest integer k > 2 such that
the inequality mi + 1 6 2mi holds for all i > k

A :=
{
m1, . . . ,mk

}
B :=

{
m1
}

i := 2

B := B ∪
{
mi
}
∪
{
B[ j] + mi: j ∈ {1, . . . , card(B)}

}

i := i + 1 Print the set {1, . . . , b} \ B Stop

Is i = k + 1? Is b = 0?

G := {min(B) − 1, . . . ,max(B) + 1} \ B

H :=
{
G[n + 1] −G[n]: n ∈ {1, . . . , card(G) − 1}

}

b := max(B) Is max(H) > mk + 1? k := k + 1

k := the largest integer k such that mk 6 b

Yes
No

Yes

NoYes

No

Fig. 7 The algorithm which uses Richert’s lemma

The above algorithm works correctly because the inequality max(H) > mk+1 holds true if
and only if the set B contains mk+1 consecutive integers.

Theorem 14. ([9, Theorem 2.3]). If there exists ε > 0 such that the inequality mi+1 6 (2 − ε) · mi

holds for every sufficiently large i, then the flowchart algorithm in Figure 7 terminates if and
only if almost all positive integers are expressible as a sum of one or more distinct elements of
the set {m1,m2,m3, . . .}.
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