On sets $W \subseteq \mathbb{N}$ whose infinitude follows from the existence in W of an element which is greater than a threshold number computed for W

Abstract

We define computable functions $f, g : \mathbb{N} \setminus \{0\} \rightarrow \mathbb{N} \setminus \{0\}$. For a positive integer n, let Θ_n denote the following statement: if a system $S \subseteq \{x_i! = x_k : i, k \in \{1, \ldots, n\}\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\}\}$ has only finitely many solutions in integers x_1, \ldots, x_n greater than 1, then each such solution (x_1, \ldots, x_n) satisfies $\min(x_1, \ldots, x_n) \leq f(n)$. The statement Θ_9 proves that if there exists an integer $x > f(9)$ such that $x^2 + 1$ (alternatively, $x! + 1$) is prime, then there are infinitely many primes of the form $n^2 + 1$ (respectively, $n! + 1$). The statement Θ_{16} proves that if there exists a twin prime greater than $f(16) + 3$, then there are infinitely many twin primes. We formulate a statement which proves that if $2^{2^n} + 1$ is composite for some integer $n > g(13)$, then $2^{2^n} + 1$ is composite for infinitely many positive integers n.

Key words and phrases: Brocard’s problem, Brocard-Ramanujan equation, composite Fermat numbers, composite numbers of the form $2^{2^n} + 1$, infinite set, prime numbers of the form $n^2 + 1$, prime numbers of the form $n! + 1$, Richert’s lemma, twin prime conjecture.

2010 Mathematics Subject Classification: 03B30, 03D20, 11A41.

1 Introduction

Euclid indirectly proved that there are infinitely many prime numbers. A stronger theorem states that for every integer $n > 1$ there exists a prime number p such that $n < p < 2n$, see [19] p. 145. This theorem is a Π_1 statement.
A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [14, p. 39]. The following statement

(A) "For every non-negative integer \(n \) there exists a twin prime which belongs to the interval \((10^n, 10^n + 1) \)"
is a \(\Pi_1 \) statement which strengthens the twin prime conjecture, cf. [3] p. 43. The statement (A) is equivalent to the non-halting of a Turing machine. C. H. Bennett claims that most mathematical conjectures can be settled indirectly by proving stronger \(\Pi_1 \) statements, see [1].

In this article, we study sets \(W \subseteq \mathbb{N} \) whose infinitude follows from the existence in \(W \) of an element which is greater than a threshold number computed for \(W \). If \(W \) is computable, then this property implies that the infinity of \(W \) is equivalent to the halting of a Turing machine. If \(n \in \mathbb{N} \) and \(W \subseteq \{0, \ldots, n\} \), then any integer \(m \geq n \) is a threshold number for \(W \). If \(W \subseteq \mathbb{N} \) and \(W \) is empty or infinite, then any non-negative integer \(m \) is a threshold number for \(W \).

We define the set \(U \subseteq \mathbb{N} \) by declaring that a non-negative integer \(n \) belongs to \(U \) if and only if \(\sin \left(10^{10^{10^{10}}} \right) > 0 \). This inequality is practically undecidable, see [9]. The set \(U \) equals \(\emptyset \) or \(\mathbb{N} \). The statement "\(U = \emptyset \)" remains unproven and the statement "\(U = \mathbb{N} \)" remains unproven. Every non-negative integer \(m \) is a threshold number for \(U \). For every non-negative integer \(k \), the sentence "\(k \in U \)" is only theoretically decidable.

The first-order language of graph theory contains two relation symbols of arity 2: \(\sim \) and \(= \), respectively for adjacency and equality of vertices. The term first-order imposes the condition that the variables represent vertices and hence the quantifiers apply to vertices only. For a first-order sentence \(\Lambda \) about graphs, let \(\text{Spectrum}(\Lambda) \) denote the set of all positive integers \(n \) such that there is a graph on \(n \) vertices satisfying \(\Lambda \). By a graph on \(n \) vertices we understand a set of \(n \) elements with a binary relation which is symmetric and irreflexive.

Theorem 1. ([17] p. 171). *If a sentence \(\Lambda \) in the language of graph theory has the form*

\[
\exists x_1 \ldots x_k \forall y_1 \ldots y_l \, \Upsilon(x_1, \ldots, x_k, y_1, \ldots, y_l), \text{ where } \Upsilon(x_1, \ldots, x_k, y_1, \ldots, y_l) \text{ is quantifier-free, then either } \text{Spectrum}(\Lambda) \subseteq [1, (2^k \cdot 4^l) - 1] \text{ or } \text{Spectrum}(\Lambda) \supseteq [k + l, \infty) \cap \mathbb{N}.
\]

Corollary 1. *The number \((2^k \cdot 4^l) - 1 \) is a threshold number for \(\text{Spectrum}(\Lambda) \).*

The classes of the infinite recursively enumerable sets and of the infinite recursive sets are not recursively enumerable, see [15] p. 234.
Corollary 2. If an algorithm A_1 for every recursive set $W \subseteq \mathbb{N}$ finds a non-negative integer $A_1(W)$, then there exists a finite set $M \subseteq \mathbb{N}$ such that $M \cap [A_1(M) + 1, \infty) \neq \emptyset$.

Corollary 3. If an algorithm A_2 for every recursively enumerable set $W \subseteq \mathbb{N}$ finds a non-negative integer $A_2(W)$, then there exists a finite set $M \subseteq \mathbb{N}$ such that $M \cap [A_2(M) + 1, \infty) \neq \emptyset$.

Let $K = \{ j \in \mathbb{N} : 2^{N_j} = N_{j+1}\}$.

Theorem 2. If ZFC is consistent, then for every non-negative integer n the sentence

"n is a threshold number for K"

is not provable in ZFC.

Proof. There exists a model E of ZFC such that

$\forall i \in \{0, \ldots, n+1\} \ E \models 2^{N_i} = N_{i+1}$

and

$\forall i \in \{n+2, n+3, n+4, \ldots\} \ E \models 2^{N_i} = N_{i+2}$

see [7] and [10, p. 232]. In the model E, $K = \{0, \ldots, n+1\}$ and n is not a threshold number for K. □

Theorem 3. If ZFC is consistent, then for every non-negative integer n the sentence

"n is not a threshold number for K"

is not provable in ZFC.

Proof. The Generalized Continuum Hypothesis (GCH) is consistent with ZFC, see [10, p. 188] and [10, p. 190]. GCH implies that $K = \mathbb{N}$. Consequently, GCH implies that every non-negative integer n is a threshold number for K. □

Theorem 4. ([4, p. 35]). There exists a polynomial $D(x_1, \ldots, x_m)$ with integer coefficients such that if ZFC is arithmetically consistent, then the sentences

"The equation $D(x_1, \ldots, x_m) = 0$ is solvable in non-negative integers"

and

"The equation $D(x_1, \ldots, x_m) = 0$ is not solvable in non-negative integers"

are not provable in ZFC.
Let Δ denote the set of all non-negative integers k such that the equation $D(x_1, \ldots, x_m) = 0$ has no solutions in $\{0, \ldots, k\}^m$. Since the set $\{0, \ldots, k\}^m$ is finite, we know a computer program which for every non-negative integer x decides whether or not x belongs to Δ. Theorem 4 implies Theorem 5.

Theorem 5. If ZFC is arithmetically consistent, then for every non-negative integer n the sentences

"n is a threshold number for Δ" and

"n is not a threshold number for $\Delta"

are not provable in ZFC.

Let $\sigma: \mathbb{N}^{m+1} \to \mathbb{N}$ be a computable bijection. Let $\mathcal{H} \subseteq \mathbb{N}^{m+1}$ be the solution set of the equation $D(x_1, \ldots, x_m) + 0 \cdot x_{m+1} = 0$.

Theorem 6. We know a computer program which for every non-negative integer x decides whether or not x belongs to \mathcal{H}. The set $\sigma(\mathcal{H})$ is empty or infinite. In both cases, every non-negative integer n is a threshold number for $\sigma(\mathcal{H})$. If ZFC is arithmetically consistent, then the sentences "$\sigma(\mathcal{H}) = \emptyset$", "$\sigma(\mathcal{H}) \neq \emptyset$", "$\sigma(\mathcal{H})$ is finite", and "$\sigma(\mathcal{H})$ is infinite" are not provable in ZFC.

Proof. We leave the proof to the reader. \hfill \Box

Let $g(1) = 1$, and let $g(n + 1) = 2^{2g(n)}$ for every positive integer n.

Hypothesis 1. (22]). If a system

$$S \subseteq \{x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\}\} \cup \{x_i + 1 = x_k : i, k \in \{1, \ldots, n\}\}$$

has only finitely many solutions in non-negative integers x_1, \ldots, x_n, then each such solution (x_1, \ldots, x_n) satisfies $x_1, \ldots, x_n \leq g(2n)$.

Theorem 7. (22]). Hypothesis 1 implies that for every $W(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$ we can compute a threshold number $b \in \mathbb{N}\setminus\{0\}$ such that any non-negative integers a_1, \ldots, a_n which satisfy

$$(W(a_1, \ldots, a_n) = 0) \land (\max(a_1, \ldots, a_n) > b)$$

guarantee that the equation $W(x_1, \ldots, x_n) = 0$ has infinitely many solutions in non-negative integers.
2 Basic lemmas

Let $f(1) = 2$, $f(2) = 4$, and let $f(n + 1) = f(n)!$ for every integer $n \geqslant 2$. Let \mathcal{V}_1 denote the system of equations $\{x_1! = x_1\}$, and let \mathcal{V}_2 denote the system of equations $\{x_1! = x_1, \ x_1 \cdot x_1 = x_2\}$. For an integer $n \geqslant 3$, let \mathcal{V}_n denote the following system of equations:

$$\begin{align*}
x_1! &= x_1 \\
x_1 \cdot x_1 &= x_2 \\
\forall i \in \{2, \ldots, n-1\} \ x_i! &= x_{i+1}
\end{align*}$$

The diagram in Figure 1 illustrates the construction of the system \mathcal{V}_n.

![Diagram](image)

Fig. 1 Construction of the system \mathcal{V}_n

Lemma 1. For every positive integer n, the system \mathcal{V}_n has exactly one solution in integers greater than 1, namely $(f(1), \ldots, f(n))$.

Let $H_n = \{x_i! = x_k : i, k \in \{1, \ldots, n\}\} \cup \{x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\}\}$

For a positive integer n, let Θ_n denote the following statement: if a system $S \subseteq H_n$ has at most finitely many solutions in integers x_1, \ldots, x_n greater than 1, then each such solution (x_1, \ldots, x_n) satisfies $\min(x_1, \ldots, x_n) \leqslant f(n)$. The assumption $\min(x_1, \ldots, x_n) \leqslant f(n)$ is weaker than the assumption $\max(x_1, \ldots, x_n) \leqslant f(n)$ suggested by Lemma 1.

Lemma 2. For every positive integer n, the system H_n has a finite number of subsystems.

Theorem 8. Every statement Θ_n is true with an unknown integer bound that depends on n.

Proof. It follows from Lemma 2.

Lemma 3. For every integers x and y greater than 1, $x! \cdot y = y!$ if and only if $x + 1 = y$.

Lemma 4. If $x \geqslant 4$, then $\frac{(x-1)! + 1}{x} > 1$.

Lemma 5. (Wilson’s theorem, [8, p. 89]). For every integer $x \geqslant 2$, x is prime if and only if x divides $(x-1)! + 1$.

5
3 Brocard’s problem

A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the Brocard-Ramanujan equation \(x! + 1 = y^2 \), see [16]. It is conjectured that \(x! + 1 \) is a square only for \(x \in \{4, 5, 7\} \), see [23, p. 297].

Let \(\mathcal{A} \) denote the following system of equations:

\[
\begin{align*}
 x_1! & = x_2 \\
 x_2! & = x_3 \\
 x_5! & = x_6 \\
 x_4 \cdot x_4 & = x_5 \\
 x_3 \cdot x_5 & = x_6
\end{align*}
\]

Lemma 3 and the diagram in Figure 2 explain the construction of the system \(\mathcal{A} \).

Fig. 2 Construction of the system \(\mathcal{A} \)

Lemma 6. For every integers \(x_1 \) and \(x_4 \) greater than 1, the system \(\mathcal{A} \) is solvable in integers \(x_2, x_3, x_5, x_6 \) greater than 1 if and only if \(x_1! + 1 = x_4^2 \). In this case, the integers \(x_2, x_3, x_5, x_6 \) are uniquely determined by the following equalities:

\[
\begin{align*}
 x_2 & = x_1! \\
 x_3 & = (x_1!)! \\
 x_5 & = x_1! + 1 \\
 x_6 & = (x_1! + 1)!
\end{align*}
\]

and \(x_1 = \min(x_1, \ldots, x_6) \).

Proof. It follows from Lemma 3. \(\Box \)
Theorem 9. The statement \(\Theta_6 \) proves the following implication: if the equation \(x_1! + 1 = x_4^2 \) has only finitely many solutions in positive integers, then each such solution \((x_1, x_4)\) satisfies \(x_1 \leq f(6) \).

Proof. Let positive integers \(x_1 \) and \(x_4 \) satisfy \(x_1! + 1 = x_4^2 \). Then, \(x_1, x_4 \in \mathbb{N} \setminus \{0, 1\} \). By Lemma 6, there exists a unique tuple \((x_2, x_3, x_5, x_6) \in (\mathbb{N} \setminus \{0, 1\})^4\) such that the tuple \((x_1, \ldots, x_6)\) solves the system \(\mathcal{A} \). Lemma 6 guarantees that \(x_1 = \min(x_1, \ldots, x_6) \). By the antecedent and Lemma 6, the system \(\mathcal{A} \) has only finitely many solutions in integers \(x_1, \ldots, x_6 \) greater than 1. Therefore, the statement \(\Theta_6 \) implies that \(x_1 = \min(x_1, \ldots, x_6) \leq f(6) \). \(\square \)

Hypothesis 2. The implication in Theorem 9 is true.

Corollary 4. Assuming Hypothesis 2, a single query to an oracle for the halting problem decides the problem of the infinitude of the solutions of the equation \(x! + 1 = y^2 \).

4 Are there infinitely many prime numbers of the form \(n^2 + 1 \)?

Edmund Landau’s conjecture states that there are infinitely many primes of the form \(n^2 + 1 \), see [14, pp. 37–38]. Let \(\mathcal{B} \) denote the following system of equations:

\[
\begin{align*}
x_2! &= x_3 \\
x_3! &= x_4 \\
x_5! &= x_6 \\
x_8! &= x_9 \\
x_1 \cdot x_1 &= x_2 \\
x_3 \cdot x_5 &= x_6 \\
x_4 \cdot x_8 &= x_9 \\
x_5 \cdot x_7 &= x_8
\end{align*}
\]

Lemma 3 and the diagram in Figure 3 explain the construction of the system \(\mathcal{B} \).
Lemma 7. For every integer $x_1 \geq 2$, the system B is solvable in integers x_2, \ldots, x_9 greater than 1 if and only if $x_1^2 + 1$ is prime. In this case, the integers x_2, \ldots, x_9 are uniquely determined by the following equalities:

\[
\begin{align*}
 x_2 &= x_1^2 \\
 x_3 &= (x_1^2)! \\
 x_4 &= ((x_1^2)!)! \\
 x_5 &= x_1^3 + 1 \\
 x_6 &= (x_1^2 + 1)! \\
 x_7 &= \frac{(x_1^2)! + 1}{x_1^3 + 1} \\
 x_8 &= (x_1^2)! + 1 \\
 x_9 &= ((x_1^2)! + 1)!
\end{align*}
\]

and $\min(x_1, \ldots, x_9) = x_1$.

Proof. By Lemmas 3 and 4, for every integer $x_1 \geq 2$, the system B is solvable in integers x_2, \ldots, x_9 greater than 1 if and only if $x_1^2 + 1$ divides $(x_1^2)! + 1$. Hence, the claim of Lemma 7 follows from Lemma 5.

\[\square\]

Theorem 10. The statement Θ_9 proves the following implication: if there exists an integer $x_1 > f(9)$ such that $x_1^2 + 1$ is prime, then there are infinitely many primes of the form $n^2 + 1$.

Proof. Assume that an integer x_1 is greater than $f(9)$ and $x_1^2 + 1$ is prime. By Lemma 7, there exists a unique tuple $(x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^8$ such that the tuple (x_1, x_2, \ldots, x_9) solves the
system \(\mathcal{B} \). Lemma 7 guarantees that \(\min(x_1, \ldots, x_9) = x_1 \). Since \(\mathcal{B} \subseteq H_9 \), the statement \(\Theta_9 \) and the inequality \(\min(x_1, \ldots, x_9) = x_1 > f(9) \) imply that the system \(\mathcal{B} \) has infinitely many solutions \((x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^9 \). According to Lemma 7 there are infinitely many primes of the form \(n^2 + 1 \).

\[\square \]

Hypothesis 3. The implication in Theorem 10 is true.

Corollary 5. Assuming Hypothesis 3 a single query to an oracle for the halting problem decides the problem of the infinitude of primes of the form \(n^2 + 1 \).

The following question is open: Is it possible to effectively determine the largest prime number of the form \(n^2 + 1 \), if the set of these primes is finite? The unproven statement \(\Theta_9 \) implies this claim although does not imply that there are infinitely many primes of the form \(n^2 + 1 \).

Let \(J = \{0\} \cup \{i \in \{1\} : 2^{\aleph_i} = \aleph_{i+1}\} \).

Theorem 11. It is impossible to uniquely determine an integer \(j \in \{0, 1\} \) which is the largest element of \(J \).

Proof. If ZFC is inconsistent, then for every integer \(n \in \mathbb{N} \) the sentence

\["n \text{ is the largest element of } J" \]

is provable in ZFC. If ZFC is consistent, then by Easton’s theorem ([7] and [10, p. 232]) for every integer \(n \in \{0, 1\} \) there exists a model of ZFC in which \(J = \{0, \ldots, n\} \). \[\square \]

Let \(\mathcal{P} \) denote the set of prime numbers. For a non-negative integer \(n \), let \(\Omega(n) \) denote the following statement: \(\exists m \in \mathbb{N} \cap (n, \infty) \) \(m^2 + 1 \in \mathcal{P} \). By Theorem 10, assuming the statement \(\Theta_9 \), we can infer the statement \(\forall n \in \mathbb{N} \) \(\Omega(n) \) from any statement \(\Omega(n) \) with \(n > f(9) \). A similar situation holds for inference by the so called "super-induction method", see [24]-[27]. In section we present Richert’s lemma which is frequently used in proofs by super-induction.
5 Are there infinitely many prime numbers of the form $n! + 1$?

It is conjectured that there are infinitely many primes of the form $n! + 1$, see [2] p. 443] and [20]. Let G denote the following system of equations:

\[
\begin{align*}
x_1! & = x_2 \\
x_2! & = x_3 \\
x_3! & = x_4 \\
x_5! & = x_6 \\
x_8! & = x_9 \\
x_3 \cdot x_5 & = x_6 \\
x_4 \cdot x_8 & = x_9 \\
x_5 \cdot x_7 & = x_8
\end{align*}
\]

Lemma 3 and the diagram in Figure 4 explain the construction of the system G.

Fig. 4 Construction of the system G

Lemma 8. For every integer $x_1 \geq 2$, the system G is solvable in integers x_2, \ldots, x_9 greater than 1 if and only if $x_1! + 1$ is prime. In this case, the integers x_2, \ldots, x_9 are uniquely determined by
the following equalities:

\[x_2 = x_1! \]
\[x_3 = (x_1!)! \]
\[x_4 = ((x_1!)!)! \]
\[x_5 = x_1^2 + 1 \]
\[x_6 = (x_1! + 1)! \]
\[x_7 = \frac{(x_1!)! + 1}{x_1! + 1} \]
\[x_8 = (x_1!)! + 1 \]
\[x_9 = ((x_1!)! + 1)! \]

and \(\min(x_1, \ldots, x_9) = x_1. \)

Proof. By Lemmas 3 and 4, for every integer \(x_1 \geq 2, \) the system \(G \) is solvable in integers \(x_2, \ldots, x_9 \) greater than 1 if and only if \(x_1! + 1 \) divides \((x_1!)! + 1. \) Hence, the claim of Lemma 8 follows from Lemma 5. \(\square \)

Theorem 12. The statement \(\Theta_9 \) proves the following implication: if there exists an integer \(x_1 > f(9) \) such that \(x_1! + 1 \) is prime, then there are infinitely many primes of the form \(n! + 1. \)

Proof. Assume that an integer \(x_1 \) is greater than \(f(9) \) and \(x_1! + 1 \) is prime. By Lemma 8, there exists a unique tuple \((x_2, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^8 \) such that the tuple \((x_1, x_2, \ldots, x_9) \) solves the system \(G. \) Lemma 8 guarantees that \(\min(x_1, \ldots, x_9) = x_1. \) Since \(G \subseteq H_9, \) the statement \(\Theta_9 \) and the inequality \(\min(x_1, \ldots, x_9) = x_1 > f(9) \) imply that the system \(G \) has infinitely many solutions \((x_1, \ldots, x_9) \in (\mathbb{N} \setminus \{0, 1\})^9. \) According to Lemma 8, there are infinitely many primes of the form \(n! + 1. \) \(\square \)

Hypothesis 4. The implication in Theorem 12 is true.

Corollary 6. Assuming Hypothesis 4, a single query to an oracle for the halting problem decides the problem of the infinitude of primes of the form \(n! + 1. \)

The following question is open: Is it possible to effectively determine the largest prime number of the form \(n! + 1, \) if the set of these primes is finite? The unproven statement \(\Theta_9 \) implies this claim although does not imply that there are infinitely many primes of the form \(n! + 1. \)
6 The twin prime conjecture

Let C denote the following system of equations:

$$\begin{align*}
 x_1! &= x_2 \\
 x_2! &= x_3 \\
 x_4! &= x_5 \\
 x_6! &= x_7 \\
 x_7! &= x_8 \\
 x_9! &= x_{10} \\
 x_{12}! &= x_{13} \\
 x_{15}! &= x_{16} \\
 x_2 \cdot x_4 &= x_5 \\
 x_5 \cdot x_6 &= x_7 \\
 x_7 \cdot x_9 &= x_{10} \\
 x_4 \cdot x_{11} &= x_{12} \\
 x_3 \cdot x_{12} &= x_{13} \\
 x_9 \cdot x_{14} &= x_{15} \\
 x_8 \cdot x_{15} &= x_{16}
\end{align*}$$

Lemma 3 and the diagram in Figure 5 explain the construction of the system C.
Lemma 9. If $x_4 = 2$, then the system C has no solutions in integers x_1, \ldots, x_{16} greater than 1.

Proof. The equality $x_2 \cdot x_4 = x_5 = x_4!$ and the equality $x_4 = 2$ imply that $x_2 = 1$. □

Lemma 10. If $x_4 = 3$, then the system C has no solutions in integers x_1, \ldots, x_{16} greater than 1.

Proof. The equality $x_4 \cdot x_{11} = x_{12} = (x_4 - 1)! + 1$ and the equality $x_4 = 3$ imply that $x_{11} = 1$. □

Lemma 11. For every $x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$ and for every $x_9 \in \mathbb{N} \setminus \{0, 1\}$, the system C is solvable in integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if x_4 and x_9 are prime and $x_4 + 2 = x_9$. In this case, the integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$
$x_{13}, x_{14}, x_{15}, x_{16}$ are uniquely determined by the following equalities:

\[
\begin{align*}
x_1 &= x_4 - 1 \\
x_2 &= (x_4 - 1)! \\
x_3 &= ((x_4 - 1)!)! \\
x_5 &= x_4 \\
x_6 &= x_9 - 1 \\
x_7 &= (x_9 - 1)! \\
x_8 &= ((x_9 - 1)!)! \\
x_{10} &= x_9 \\
x_{11} &= \frac{(x_4 - 1)! + 1}{x_4} \\
x_{12} &= (x_4 - 1)! + 1 \\
x_{13} &= ((x_4 - 1)! + 1)! \\
x_{14} &= \frac{(x_9 - 1)! + 1}{x_9} \\
x_{15} &= (x_9 - 1)! + 1 \\
x_{16} &= ((x_9 - 1)! + 1)!
\end{align*}
\]

and $\min(x_1, \ldots, x_{16}) = x_1 = x_9 - 3$.

Proof. By Lemmas 3 and 4 for every $x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$ and for every $x_9 \in \mathbb{N} \setminus \{0, 1\}$, the system C is solvable in integers $x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}$ greater than 1 if and only if

\[
(x_4 + 2 = x_9) \land (x_4!(x_4 - 1)! + 1) \land (x_9!(x_9 - 1)! + 1)
\]

Hence, the claim of Lemma 11 follows from Lemma 5. \hfill \Box

Theorem 13. The statement Θ_{16} proves the following implication: if there exists a twin prime greater than $f(16) + 3$, then there are infinitely many twin primes.

Proof. Assume that the antecedent holds. Then, there exist prime numbers x_4 and x_9 such that $x_9 = x_4 + 2 > f(16) + 3$. Hence, $x_4 \in \mathbb{N} \setminus \{0, 1, 2, 3\}$. By Lemma 11 there exists a unique tuple $(x_1, x_2, x_3, x_5, x_6, x_7, x_8, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}) \in (\mathbb{N} \setminus \{0, 1\})^{14}$ such that the tuple (x_1, \ldots, x_{16}) solves the system C. Lemma 11 guarantees that $\min(x_1, \ldots, x_{16}) = x_1 = x_9 - 3 > f(16)$. Since $C \subseteq H_{16}$, the statement Θ_{16} and the inequality $\min(x_1, \ldots, x_{16}) > f(16)$ imply that the system C has infinitely many solutions in integers x_1, \ldots, x_{16} greater than 1. According to Lemmas 9–11 there are infinitely many twin primes. \hfill \Box
Hypothesis 5. The implication in Theorem 13 is true.

Corollary 7. (cf. [5]). Assuming Hypothesis 5 a single query to an oracle for the halting problem decides the twin prime problem.

The following question is open: Is it possible to effectively determine the largest twin prime, if the set of twin primes is finite? The unproven statement Θ_{16} implies this claim although does not imply that there are infinitely many twin primes.

7 Are there infinitely many composite Fermat numbers?

Integers of the form $2^{2^n} + 1$ are called Fermat numbers. Primes of the form $2^{2^n} + 1$ are called Fermat primes, as Fermat conjectured that every integer of the form $2^{2^n} + 1$ is prime, see [13, p. 1]. Fermat correctly remarked that $2^{2^0} + 1 = 3$, $2^{2^1} + 1 = 5$, $2^{2^2} + 1 = 17$, $2^{2^3} + 1 = 257$, and $2^{2^4} + 1 = 65537$ are all prime, see [13, p. 1].

Open Problem. ([13, p. 159]). Are there infinitely many composite numbers of the form $2^{2^n} + 1$?

Most mathematicians believe that $2^{2^n} + 1$ is composite for every integer $n \geq 5$, see [12, p. 23].

Theorem 14. ([27]). An unproven inequality stated in [27] implies that $2^{2^n} + 1$ is composite for every integer $n \geq 5$.

Lemma 12. ([13, p. 38]). For every positive integer n, if a prime number p divides $2^{2^n} + 1$, then there exists a positive integer k such that $p = k \cdot 2^n + 1 + 1$.

Corollary 8. Since $k \cdot 2^n + 1 + 1 \geq 2^n + 1 + 1 \geq n + 3$, for every positive integers x, y, and n, the equality $(x + 1)(y + 1) = 2^{2^n} + 1$ implies that $\min(n, x, x + 1, y, y + 1) = n$.

Let

$$G_n = \{ x_i \cdot x_j = x_k : i, j, k \in \{1, \ldots, n\} \} \cup \{ 2^{2^{x_i}} = x_k : i, k \in \{1, \ldots, n\} \}$$

Lemma 13. The following subsystem of G_n

$$\begin{cases}
 x_1 \cdot x_1 = x_1 \\
 \forall i \in \{1, \ldots, n-1\} \quad 2^{2^{x_i}} = x_{i+1}
\end{cases}$$

has exactly one solution $(x_1, \ldots, x_n) \in (\mathbb{N} \setminus \{0\})^n$, namely $(g(1), \ldots, g(n))$.

15
For a positive integer \(n\), let \(\Psi_n\) denote the following statement: if a system \(S \subseteq G_n\) has at most finitely many solutions in positive integers \(x_1, \ldots, x_n\), then each such solution \((x_1, \ldots, x_n)\) satisfies \(\min(x_1, \ldots, x_n) \leq g(n)\). The assumption \(\min(x_1, \ldots, x_n) \leq g(n)\) is weaker than the assumption \(\max(x_1, \ldots, x_n) \leq g(n)\) suggested by Lemma 13.

Lemma 14. For every positive integer \(n\), the system \(G_n\) has a finite number of subsystems.

Theorem 15. Every statement \(\Psi_n\) is true with an unknown integer bound that depends on \(n\).

Proof. It follows from Lemma 14. \(\square\)

Lemma 15. For every non-negative integers \(b\) and \(c\), \(b + 1 = c\) if and only if \(2^{2^b} \cdot 2^{2^b} = 2^{2^c}\).

Theorem 16. The statement \(\Psi_{13}\) proves the following implication: if \(2^{2^n} + 1\) is composite for some integer \(n > g(13)\), then \(2^{2^n} + 1\) is composite for infinitely many positive integers \(n\).

Proof. Let us consider the equation

\[(x + 1)(y + 1) = 2^{2^z} + 1\] \hspace{1cm} (1)

in positive integers. By Lemma 15, we can transform equation (1) into an equivalent system \(\mathcal{F}\) which has 13 variables \((x, y, z, \text{and } 10 \text{ other variables})\) and which consists of equations of the forms \(\alpha \cdot \beta = \gamma\) and \(2^{2^\alpha} = \gamma\), see the diagram in Figure 6.
Assume that $2^{2n} + 1$ is composite for some integer $n > g(13)$. By this and Corollary 8, equation (1) has a solution $(x, y, z) \in (\mathbb{N} \setminus \{0\})^3$ such that $z = n$ and $z = \min(z, x, x + 1, y, y + 1)$. Hence, the system F has a solution in positive integers such that $z = n$ and n is the smallest number in the solution sequence. Since $n > g(13)$, the statement Ψ_{13} implies that the system F has infinitely many solutions in positive integers. Therefore, there are infinitely many positive integers n such that $2^{2n} + 1$ is composite. \hfill \square

Hypothesis 6. The implication in Theorem 16 is true.
Corollary 9. Assuming Hypothesis 6 a single query to an oracle for the halting problem decides whether or not the set of composite Fermat numbers is infinite.

The following question is open: Is it possible to effectively determine the largest composite Fermat number, if the set of these numbers is finite? The unproven statement Ψ_{13} implies this claim although does not imply that there are infinitely many composite Fermat numbers.

8 Subsets of $\mathbb{N} \setminus \{0\}$ which are cofinite by Richert’s lemma and the halting of a computer program

The following lemma is known as Richert’s lemma.

Lemma 16. ([6], [18], [19, p. 152]). Let $\{m_i\}_{i=1}^{\infty}$ be an increasing sequence of positive integers such that for some positive integer k the inequality $m_{i+1} \leq 2m_i$ holds for all $i > k$. Suppose there exists a non-negative integer b such that the numbers $b+1$, $b+2$, $b+3$, ..., $b+m_{k+1}$ are all expressible as sums of one or more distinct elements of the set $\{m_1, \ldots, m_k\}$. Then every integer greater than b is expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \ldots\}$.

Corollary 10. If the sequence $\{m_i\}_{i=1}^{\infty}$ is computable and the flowchart algorithm in Figure 7 terminates, then almost all positive integers are expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \ldots\}$ and the algorithm returns all positive integers which are not expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \ldots\}$.

18
The above algorithm works correctly because the inequality $\max(H) > m_{k+1}$ holds true if and only if the set B contains m_{k+1} consecutive integers.

Theorem 17. ([17] Theorem 2.3). If there exists $\varepsilon > 0$ such that the inequality $m_{i+1} \leq (2 - \varepsilon) \cdot m_i$ holds for every sufficiently large i, then the flowchart algorithm in Figure 7 terminates if and only if almost all positive integers are expressible as a sum of one or more distinct elements of the set $\{m_1, m_2, m_3, \ldots\}$.

References

Apoloniusz Tyszka
Technical Faculty
Hugo Kołłątaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl