On sets ‘W C N whose infinitude follows from the
existence in ‘W of an element which is greater than a

threshold number computed for W

Abstract

We define computable functions f, g: N\ {0} — N\ {0}. For a positive integer n, let ®,,

denote the following statement: if a system S C {xi! =x:L,kell,... ,n}} U {xi CXj = X
L, pkell,..., n}} has only finitely many solutions in integers xi, . . ., x, greater than 1, then
each such solution (x1,..., x,) satisfies min(xy, ..., x,) < f(n). The statement @y proves

that if there exists an integer x > £(9) such that x> + 1 (alternatively, x! + 1) is prime, then
there are infinitely many primes of the form n® + 1 (respectively, n! + 1). The statement @14
proves that if there exists a twin prime greater than f(16) + 3, then there are infinitely many
twin primes. We formulate a statement which proves that if 22n + 1 is composite for some
integer n > g(13), then 22n + 1 is composite for infinitely many positive integers n.
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1 Introduction

Euclid indirectly proved that there are infinitely many prime numbers. A stronger theorem states
that for every integer n > 1 there exists a prime number p such thatn < p < 2n, see [19, p. 145].

This theorem is a I1; statement.



A twin prime is a prime number that is either 2 less or 2 more than another prime number.
The twin prime conjecture states that there are infinitely many twin primes, see [[14, p. 39]. The
following statement

(A) "For every non-negative integer n there exists a twin
prime which belongs to the interval (IO”, 10n 1)"
is a I1; statement which strengthens the twin prime conjecture, cf. [3), p. 43]. The statement (A)
is equivalent to the non-halting of a Turing machine. C. H. Bennett claims that most mathemat-

ical conjectures can be settled indirectly by proving stronger I1; statements, see [1].

In this article, we study sets ‘W C N whose infinitude follows from the existence in ‘W of an
element which is greater than a threshold number computed for ‘W. If ‘W is computable, then
this property implies that the infinity of W is equivalent to the halting of a Turing machine. If
n € Nand W C{0,...,n}, then any integer m > n is a threshold number for W. If ‘W C N and
W is empty or infinite, then any non-negative integer m is a threshold number for W.

We define the set U C N by declaring that a non-negative integer n belongs to U if and only
10

1
if sin| 1010 > (. This inequality is practically undecidable, see [9]. The set U equals O
or N. The statement “U = ("’ remains unproven and the statement “U = N” remains unproven.
Every non-negative integer m is a threshold number for U. For every non-negative integer k,
the sentence “k € U is only theoretically decidable.

The first-order language of graph theory contains two relation symbols of arity 2: ~ and =,
respectively for adjacency and equality of vertices. The term first-order imposes the condition
that the variables represent vertices and hence the quantifiers apply to vertices only. For a
first-order sentence A about graphs, let Spectrum(A) denote the set of all positive integers n
such that there is a graph on n vertices satisfying A. By a graph on n vertices we understand a
set of n elements with a binary relation which is symmetric and irreflexive.

Theorem 1. (/lI7, p. 171]). If a sentence A in the language of graph theory has the form
Axy oo Yy oy Y, e Xk Vi - -2, V1), Where (X, .., Xk, V1, - - -5 Y1) IS quantifier-free, then
either Spectrum(A) C [1, (2% - 4') — 1] or Spectrum(A) 2 [k + [, 00) N N.

Corollary 1. The number (2" : 4’) — 1 is a threshold number for Spectrum(A).

The classes of the infinite recursively enumerable sets and of the infinite recursive sets are
not recursively enumerable, see [15, p. 234].



Corollary 2. If an algorithm Al for every recursive set ‘W C N finds a non-negative integer
Al,(‘W), then there exists a finite set M C N such that M N [AL1;{(M) + 1, 00) # 0.

Corollary 3. If an algorithm AL, for every recursively enumerable set W C N finds a non-
negative integer Al,(“W), then there exists a finite set M C N such that MN[AL,(M)+1, o) # 0.

LetK = {jeN: 28 =&},
Theorem 2. If ZFC is consistent, then for every non-negative integer n the sentence

"n is a threshold number for K"

is not provable in ZFC.

Proof. There exists a model & of ZFC such that
. N _
Yie{0,...,n+ 1} EE 2" = N4
and
Vieln+2.n+3n+4,.. 1 6E2N =R,
see [7] and [10, p. 232]. In the model &, K = {0,...,n + 1} and 7 is not a threshold number
for K. =
Theorem 3. If ZFC is consistent, then for every non-negative integer n the sentence
"n is not a threshold number for K"

is not provable in ZFC.

Proof. The Generalized Continuum Hypothesis (GCH) is consistent with ZFC, see [10, p. 188]
and [10, p. 190]. GCH implies that K = N. Consequently, GCH implies that every non-negative
integer n is a threshold number for K. O

Theorem 4. (/4] p. 35]). There exists a polynomial D(x, ..., x,,) with integer coefficients such

that if ZFC is arithmetically consistent, then the sentences
"The equation D(xi,...,x,) =0 is solvable in non-negative integers"
and
"The equation D(x,...,x,) =0 is not solvable in non-negative integers"

are not provable in ZFC.



Let A denote the set of all non-negative integers k such that the equation D(xy,...,x,) =0
has no solutions in {0, ..., k}". Since the set {0, ..., k}" is finite, we know a computer program
which for every non-negative integer x decides whether or not x belongs to A. Theorem

implies Theorem 5

Theorem 5. If ZFC is arithmetically consistent, then for every non-negative integer n the sen-

tences
"n is a threshold number for A"
and
"n is not a threshold number for A"
are not provable in ZFC.

Let o: N"*! — N be a computable bijection. Let H € N™*! be the solution set of the equa-
tion D(x,...,x,) +0-x,. =0.

Theorem 6. We know a computer program which for every non-negative integer x decides
whether or not x belongs to H. The set o(H) is empty or infinite. In both cases, every
non-negative integer n is a threshold number for o-(H). If ZFC is arithmetically consistent, then
the sentences "o (H) = 0", "o(H) = 0", "o(H) is finite", and "o (H) is infinite"
are not provable in ZFC.

Proof. We leave the proof to the reader. O
Letg(l)=1,andletg(n+1) = 22g(n) for every positive integer n.
Hypothesis 1. (/22)]). If a system
SCixi-xj=x: L,ke{l,...,nJu{x;+1=x: i,kel{l,...,n}}

has only finitely many solutions in non-negative integers Xxi,...,X,, then each such solution

(x1,...,Xx,) satisfies x1,...,x, < g(2n).

Theorem 7. ([22]]). Hypothesis[I|implies that for every W(xy,...,x,) € Z[xy,...,X,] we can

compute a threshold number b € N \ {0} such that any non-negative integers a, . ..,a, which
satisfy

W(ay,...,a,) = 0) A (max(ay,...,a,) >b)
guarantee that the equation W(xy,...,x,) = 0 has infinitely many solutions in non-negative
integers.



2 Basic lemmas

Let f(1) = 2, f(2) = 4, and let f(n + 1) = f(n)! for every integer n > 2. Let V; denote the
system of equations {x;! = x;}, and let V, denote the system of equations {x;! = x;, x;-x; = x,}.

For an integer n > 3, let V,, denote the following system of equations:

Xl! = X
X1°X1 = X
Vie{2,....n—1}x;! = x4

The diagram in Figure 1 illustrates the construction of the system V,,.

X; squaring x, | Xx3 Xn—1 1 Xy
y > > o o 0 >

Fig. 1 Construction of the system YV,

Lemma 1. For every positive integer n, the system V, has exactly one solution in integers
greater than 1, namely (f(l), cees f(n)).

Let
Hy={xt=x: ikell,...mfuflx x;=x: ijkell,....n)

For a positive integer n, let ®, denote the following statement: if a system S C H,, has at most

finitely many solutions in integers xi, . .., x,, greater than 1, then each such solution (xy, ..., x,)
satisfies min(xy, ..., x,) < f(n). The assumption min(xi,...,x,) < f(n) is weaker than the
assumption max(xi, ..., x,) < f(n) suggested by Lemmal[l]

Lemma 2. For every positive integer n, the system H, has a finite number of subsystems.
Theorem 8. Every statement ®, is true with an unknown integer bound that depends on n.
Proof. Tt follows from Lemma [2] o
Lemma 3. For every integers x and y greater than 1, x! -y =yl ifand only if x + 1 = y.
Lemma 4. If x > 4, then ¢

_ 1\
X lx)'+l>1'

Lemma 5. (Wilson’s theorem, [8, p. 89]). For every integer x > 2, x is prime if and only if x
divides (x — 1)! + 1.



3 Brocard’s problem

A weak form of Szpiro’s conjecture implies that there are only finitely many solutions to the
Brocard-Ramanujan equation x! + 1 = y?, see [[16]. It is conjectured that x! + 1 is a square only
for x € {4,5,7}, see [23) p. 297].

Let A denote the following system of equations:

X1 ! = X2
)Cz! = X3
X5! = X
X4 X4 = X5
X3°+X5 = Xg

Lemma [3]and the diagram in Figure 2 explain the construction of the system A.

! X7 +1 X5 squaring
X —— - mmm - - m - X4

Vv 02

x3[X3 - X5 = Xo|xe

Fig. 2 Construction of the system A

Lemma 6. For every integers x| and x4 greater than 1, the system A is solvable in integers
X2, X3, X5, Xg greater than 1 if and only if x;! + 1 = xi. In this case, the integers x,, X3, X5, X¢ are

uniquely determined by the following equalities:

X2 = X !
x3 = (gqH!
xs = x!+1
X6 = (x!+1)!
and x; = min(xy, ..., Xg).
Proof. Tt follows from Lemma 3] m]



Theorem 9. The statement g proves the following implication: if the equation x\! + 1 = xﬁ

has only finitely many solutions in positive integers, then each such solution (xi, x4) satisfies

x; < f(6).

Proof. Let positive integers x; and x4 satisfy x;!1+1 = xﬁ. Then, x;, x4, € N\{0, 1}. By Lemma@,

there exists a unique tuple (x, X3, x5, X¢) € (N \ {0, 1})* such that the tuple (xi, . .., xs) solves the
system A. Lemma [6| guarantees that x; = min(xy, ..., xs). By the antecedent and Lemma 6] the
system (A has only finitely many solutions in integers xi, ..., x¢ greater than 1. Therefore, the
statement O implies that x; = min(xy, ..., x¢) < f(6). O

Hypothesis 2. The implication in Theorem[9is true.

Corollary 4. Assuming Hypothesis 2} a single query to an oracle for the halting problem de-
cides the problem of the infinitude of the solutions of the equation x! + 1 = y*.

4 Are there infinitely many prime numbers of the form n> + 1?

Edmund Landau’s conjecture states that there are infinitely many primes of the form n” + 1, see
[14, pp. 37-38]. Let 8B denote the following system of equations:

)Cz! = X3
X3! = X4
X5 ' = X6
X8 ' = X9
X1X1T = X2
X3+ X5 = Xe
X4+ Xg = X9
X5 X7 = Xg

Lemma [3|and the diagram in Figure 3 explain the construction of the system 5.



squaring x, +1 X5 !

Xl ——————— - - > > X6
X3+ X5 = Xg
!
X5+ X7 = X3
+1
X3 F------=------- X8

xy[X4 - X8 = Xolxg

Fig. 3 Construction of the system 8B

Lemma 7. For every integer x| > 2, the system B is solvable in integers x,, ..., X9 greater
than 1 if and only if x% + 1 is prime. In this case, the integers x,, . .., X9 are uniquely determined

by the following equalities:
2

Xy = Xl

xo= ()

xs = ((xHH!

xs = xp+1

X = (xf + 1)!

L G
T x% +1

xg = (DI+1

xg = (D! +1)!

and min(xy, ..., X9) = Xxi.

Proof. By Lemmas [3] and [4] for every integer x; > 2, the system B is solvable in integers
X2, ..., X9 greater than 1 if and only if x% + 1 divides (x%)! + 1. Hence, the claim of Lemma

follows from Lemma O

Theorem 10. The statement @qg proves the following implication: if there exists an integer

x1 > f(9) such that x; + 1 is prime, then there are infinitely many primes of the form n* + 1.

Proof. Assume that an integer x; is greater than f(9) and x? + 1 is prime. By Lemma (7} there
exists a unique tuple (xz,...,X9) € (N \ {0, 1})® such that the tuple (x;,xs, ..., Xo) solves the

8



system B. Lemma [7] guarantees that min(xy, ..., x9) = x;. Since B C Hy, the statement @9 and

the inequality min(xy, ..., X9) = x; > f(9) imply that the system &8 has infinitely many solutions
(X1,...,X9) € N\ {0, 1})°. According to Lemma there are infinitely many primes of the form
n? + 1. o

Hypothesis 3. The implication in Theorem|[I0]is true.

Corollary 5. Assuming Hypothesis [5| a single query to an oracle for the halting problem de-
cides the problem of the infinitude of primes of the form n* + 1.

The following question is open: Is it possible to effectively determine the largest prime
number of the form n®> + 1, if the set of these primes is finite? The unproven statement Og
implies this claim although does not imply that there are infinitely many primes of the form

2
n-+ 1.

Let J={0}ufie{1}: 2N =R},

Theorem 11. It is impossible to uniquely determine an integer j € {0, 1} which is the largest
element of J.

Proof. If ZFC is inconsistent, then for every integer n € N the sentence
"n is the largest element of J"

is provable in ZFC. If ZFC is consistent, then by Easton’s theorem ([7] and [10, p. 232]) for
every integer n € {0, 1} there exists a model of ZFC in which J = {0, ...,n}. |

Let £ denote the set of prime numbers. For a non-negative integer n, let Q(n) denote the
following statement: Im € NN (n, 00) m*> + 1 € P. By Theorem assuming the statement Oy,
we can infer the statement Vn € N Q(n) from any statement Q(n) with n > f(9). A similar situ-
ation holds for inference by the so called "super-induction method", see [24]-[27]. In section[§]
we present Richert’s lemma which is frequently used in proofs by super-induction.



S Are there infinitely many prime numbers of the form n! + 1?

It is conjectured that there are infinitely many primes of the form n! + 1, see [2, p. 443] and
[20]]. Let G denote the following system of equations:

X1 ' = X2
Xz! = X3
X3 ' = X4
X5 ' = X6
)Cg! = X9
X3°X5 = Xg
X4 Xg = Xg
X5 X7 = Xg

Lemma [3|and the diagram in Figure 4 explain the construction of the system G.

! X2 +1 X5 !
X] ———— - > > X6

X3 F------=------- » X§

Vv 02

X4 X4 - X8 = X9[xg

Fig. 4 Construction of the system G

Lemma 8. For every integer x; > 2, the system G is solvable in integers x,, . . ., X9 greater than 1

if and only if x\! + 1 is prime. In this case, the integers x,, ..., X9 are uniquely determined by

10



the following equalities:

X2 = xp!

X3 = (xl‘)‘

xg = ((xHH!

X5 = )C!l +1

X6 = (x!+1)!
o (xeH'+1

S I I

xg = (pqD'+1

X9 = ((eH!'+ D!

and min(xy, ..., xX9) = Xxj.

Proof. By Lemmas [3] and [ for every integer x; > 2, the system G is solvable in integers
X2, ..., Xy greater than 1 if and only if x;! + 1 divides (x;!)! + 1. Hence, the claim of Lemma/§]

follows from Lemma O

Theorem 12. The statement @qg proves the following implication: if there exists an integer
x1 > f(9) such that x;! + 1 is prime, then there are infinitely many primes of the form n! + 1.

Proof. Assume that an integer x; is greater than f(9) and x;! + 1 is prime. By Lemma[§] there
exists a unique tuple (x,,...,x9) € (N \ {0, 1})® such that the tuple (x;, x,, ..., X9) solves the
system G. Lemma [§] guarantees that min(xy, ..., x9) = x;. Since G C Hy, the statement @9 and
the inequality min(x, ..., x9) = x; > f(9) imply that the system G has infinitely many solutions
(X1,...,X9) € W\ {0, 1})°. According to Lemrna there are infinitely many primes of the form
n!+1. m|

Hypothesis 4. The implication in Theorem|[I2]is true.

Corollary 6. Assuming Hypothesis 4} a single query to an oracle for the halting problem de-
cides the problem of the infinitude of primes of the form n! + 1.

The following question is open: Is it possible to effectively determine the largest prime
number of the form n! + 1, if the set of these primes is finite? The unproven statement Qg
implies this claim although does not imply that there are infinitely many primes of the form
n!+ 1.

11



6 The twin prime conjecture

Let C denote the following system of equations:

xl! = X
)Cz! = X3
)C4! = X5
Xg! = x7
X7l = xg
Xo! = xpo
xip! = xi3
x5! = xi6
X2 X4 = X5
X5 X = X7
X7+-X9 = X0
X4 X11 = X2
X3 X2 = X3
Xg - X14 = Xi5
Xg - X15 = Xie

Lemma [3]and the diagram in Figure 5 explain the construction of the system C.

12



X5

— — X10
X2 X4 = X5| o X7:X9 =X10| 4
! X5+ Xg = X7 !

+1 X4 +1 X6 +1
X] pommmmmmmmm b e ymmmmmmmmmm--- ¥ X9
! |x4~x11=x12| ! |x9-x14:x15
+1 +1
XD f======mmmmmm- X12 X7 f======mmmmmm- » X15

X3 ¥|X3 * X12 = X13[¥ X13 Xg Y|Xg * X15 = X16[¥ X16

Fig. 5 Construction of the system C

Lemma 9. If x4 = 2, then the system C has no solutions in integers xi, ..., X greater than 1.
Proof. The equality x, - x4, = x5 = x4! and the equality x4 = 2 imply that x, = 1. O
Lemma 10. If x, = 3, then the system C has no solutions in integers xi, . . ., X\ greater than 1.

Proof. The equality x4 - x;; = x5 = (x4 — 1)! + 1 and the equality x, = 3 imply that x;; = 1. O

Lemma 11. For every x4, € N\ {0, 1,2, 3} and for every xg € N\ {0, 1}, the system C is solvable
in integers Xy, X, X3, Xs, X¢, X7, X3, X10, X11, X12, X13, X14, X15, X16 greater than 1 if and only if x4

and xg are prime and x4 +2 = xq. In this case, the integers xi, Xa, X3, X5, X¢, X7, X8, X10, X11, X12,

13



X13, X14, X15, X16 are uniquely determined by the following equalities:

xp = x—1

X, = (xg—1)!

x3 = ((u—DH!

X5 = Xxg4!

X = Xx9—1

x7 = (x9—1)!

xg = ((xo—1DH!

X10 = Xo!

Xy = (x4 —xl4)! + 1

X2 = (=D +1

xi3 = ((u—-DH+ D!
(=D +1

X4 = T x

X5 = (—1D'+1

X6 = ((xo—D!+ 1)
and min(xy, ..., X1) = X1 = X9 — 3.

Proof. By Lemmas [3] and [] for every x4 € N\ {0,1,2,3} and for every xy € N\ {0, 1}, the
system C is solvable in integers xi, X2, X3, X5, X¢, X7, X8, X10, X11, X12, X135 X14, X15, X1¢ greater

than 1 if and only if
(4 +2 = x0) A (3l = D!+ 1) A (x0l(x0 = D!+ 1)
Hence, the claim of Lemma [I1]follows from Lemma 5] |

Theorem 13. The statement © ¢ proves the following implication: if there exists a twin prime

greater than f(16) + 3, then there are infinitely many twin primes.

Proof. Assume that the antecedent holds. Then, there exist prime numbers x4 and x9 such that
Xo = x4 +2 > f(16) + 3. Hence, x4 € N'\ {0,1,2,3}. By Lemma [ 1] there exists a unique

tuple (x1, X2, X3, X5, X6, X7, Xg, X105 X115 X12, X13, X14, X15, X16) € (NN '\ {0, 1)) such that the tuple

(x1,...,x16) solves the system C. Lemma@ guarantees that min(xy, ..., xj¢) = Xy = X9 — 3 >
f(16). Since C C Hi¢, the statement @4 and the inequality min(x, ..., x;6) > f(16) imply that
the system C has infinitely many solutions in integers xi, ..., xj¢ greater than 1. According to
Lemmas [9HIT] there are infinitely many twin primes. ]

14



Hypothesis 5. The implication in Theorem|[I3]is true.

Corollary 7. (¢f. [5)]). Assuming Hypothesis 5| a single query to an oracle for the halting

problem decides the twin prime problem.

The following question is open: Is it possible to effectively determine the largest twin prime,
if the set of twin primes is finite? The unproven statement ®,¢ implies this claim although does

not imply that there are infinitely many twin primes.

7 Are there infinitely many composite Fermat numbers?

n n
Integers of the form 22" + 1 are called Fermat numbers. Primes of the form 22 + 1 are

called Fermat primes, as Fermat conjectured that every integer of the form 2211 + 1 is prime,
0 1 2
see [13, p. 1]. Fermat correctly remarked that 22 +1 =3, 22 +1 =15, 22741 = 17,
3 4
227 +1=1257,and 22" + 1 = 65537 are all prime, see [13, p. 1].

Open Problem. ([13, p. 159]). Are there infinitely many composite numbers of the form
2]’l
22 +17?

n
Most mathematicians believe that 22 + 1 is composite for every integer n > 35, see [12, p. 23].

n
Theorem 14. ([21|]). An unproven inequality stated in [21] implies that 22" 4 1is composite

for every integer n > 5.

n
Lemma 12. (/3| p. 38]). For every positive integer n, if a prime number p divides 22" 4 1,
then there exists a positive integer k such that p = k -2+ )

Corollary 8. Since k -2+ Litsont iy 3, for every positive integers x, y, and n,
n
the equality (x + 1)(y+ 1) = 227 1+ 1 implies that min(n, x,x + 1,y,y+ 1) = n.

Let _
Go=f{ri-x=x: ijke (L. mule? = x: ikell,....n)

Lemma 13. The following subsystem of G,

X1+ X1

X1
{Vie{l,...,n—l}szi

Xit1

has exactly one solution (xy,...,x,) € W\ {0})", namely (g(1),..., g(n)).

15



For a positive integer n, let ¥, denote the following statement: if a system S C G, has at

most finitely many solutions in positive integers xi, . .., X,, then each such solution (xi, ..., x,)
satisfies min(xy,...,x,) < g(n). The assumption min(xy,...,x,) < g(n) is weaker than the
assumption max(xy, ..., x,) < g(n) suggested by Lemma|[I3]

Lemma 14. For every positive integer n, the system G, has a finite number of subsystems.
Theorem 15. Every statement V), is true with an unknown integer bound that depends on n.
Proof. Tt follows from Lemma [T4] o
2b _ ¢

b
Lemma 15. For every non-negative integers b and c, b + 1 = c if and only if 227 .

n
Theorem 16. The statement Y3 proves the following implication: if 22" 4 1is composite for

7
some integer n > g(13), then 227 4 1is composite for infinitely many positive integers n.
Proof. Let us consider the equation
2%
x+DHoy+1) =2 +1 (1)

in positive integers. By Lemma[15] we can transform equation (1)) into an equivalent system ¥

which has 13 variables (x, y, z, and 10 other variables) and which consists of equations of the
o

forms a - B =y and 227 = v, see the diagram in Figure 6.

16



22(') 22(')

squarin
xRS

22(') 22(')

squaring

72— v+l

2

22(')

1 —— % 22%41

22(') 22(')

squaring
Xeerere—— 222Z+ 1

222

Fig. 6 Construction of the system 7

Assume that 22n + 1 is composite for some integer n > g(13). By this and Corollary |8 equa-
tion has a solution (x,y,z) € (N \ {0})® such that z = n and z = min(z, x, x + 1,y,y + 1).
Hence, the system ¥ has a solution in positive integers such that z = n and n is the smallest
number in the solution sequence. Since n > g(13), the statement V3 implies that the system 7

has infinitely many solutions in positive integers. Therefore, there are infinitely many positive

n
integers n such that 227 4 1is composite.

Hypothesis 6. The implication in Theorem|l6|is true.

17



Corollary 9. Assuming Hypothesis [0} a single query to an oracle for the halting problem de-

cides whether or not the set of composite Fermat numbers is infinite.

The following question is open: Is it possible to effectively determine the largest composite
Fermat number; if the set of these numbers is finite? The unproven statement ‘'3 implies this

claim although does not imply that there are infinitely many composite Fermat numbers.

8 Subsets of N \ {0} which are cofinite by Richert’s lemma and the halting of a computer
program

The following lemma is known as Richert’s lemma.

Lemma 16. ([6], [18)], [19, p. 152]). Let {m;}2| be an increasing sequence of positive integers
such that for some positive integer k the inequality m;,; < 2m; holds for all i > k. Suppose there
exists a non-negative integer b such that the numbersb +1, b+ 2, b+3, ..., b+ my are all
expressible as sums of one or more distinct elements of the set {my, ..., my}. Then every integer

greater than b is expressible as a sum of one or more distinct elements of the set {m,, my, ms, .. .}.

Corollary 10. If the sequence {m;};", is computable and the flowchart algorithm in Figure 7
terminates, then almost all positive integers are expressible as a sum of one or more distinct
elements of the set {m;, my, ms, ...} and the algorithm returns all positive integers which are not

expressible as a sum of one or more distinct elements of the set {m;, my, ms, .. .}.

18



b::O
1

k := the smallest integer k£ > 2 such that

the inequality m; 1 < 2m; holds for all i >k

A::{ml,...,mk} BZZ{ml} =2

B:=BU{m} U{BLjl+m; je{l,... card(B)}

,-;:,-J,ll /Print the set {1,...,b}\B

No
No > Yes
Isi=k+17? Is b=07

Yes

G :={min(B)-1,...,max(B) + 1} \ B
Il

H := {Gln+1]-Glnl: nefl,... card(G) - 1}}

]
Y N
b = max(B) j—] Is max(H) > my ; 17— k =k + |

!

k:= the largest integer k such that my <b

Fig. 7 The algorithm which uses Richert’s lemma

The above algorithm works correctly because the inequality max(H) > my,, holds true if

and only if the set B contains my; consecutive integers.

Theorem 17. (/11 Theorem 2.3]). If there exists € > O such that the inequality m;;\, < (2 — €) - m;
holds for every sufficiently large i, then the flowchart algorithm in Figure 7 terminates if and
only if almost all positive integers are expressible as a sum of one or more distinct elements of

the set {my,mr, ms, .. .}.
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